
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 1, pages 27–41, January 2016

The Next 700 Impossibility Results in Time-Varying Graphs1 2

Nicolas Braud-Santoni

IAIK, Graz University of Technology, Austria

Swan Dubois Mohamed-Hamza Kaaouachi Franck Petit

Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606, France

Received: August 1, 2015
Revised: October 13, 2015
Accepted: December 1, 2015

Communicated by Susumu Matsumae

Abstract

We consider highly dynamic distributed systems modelled by time-varying graphs (TVGs).
We first address proof of impossibility results that often use informal arguments about conver-
gence. We provide a general framework that formally proves the convergence of the sequence
of executions of any deterministic algorithm over TVGs of any convergent sequence of TVGs.
Next, we focus of the weakest class of long-lived TVGs, i.e., the class of TVGs where any node
can communicate any other node infinitely often. We illustrate the relevance of our result by
showing that no deterministic algorithm is able to compute various distributed covering struc-
ture on any TVG of this class. Namely, our impossibility results focus on the eventual footprint,
the minimal dominating set and the maximal matching problems.

1 Introduction

The availability of wireless communications has drastically increased in recent years and established
new applications. Humans, agents, devices, robots, and applications interact together through more
and more heterogeneous infrastructures, such as mobile ad hoc networks (MANET), vehicular net-
works (VANET), (mobile) sensor and actuator networks (SAN), body area networks (BAN), as well
as always evolving network infrastructures on the Internet. In modern networks, items (users, links,
equipments, etc.) may join, leave, or move inside the network at unforeseeable times. A common
feature of these networks is their high dynamics, meaning that their topology keeps continuously
changing over time. Dynamics, heterogeneity of devices, usages, and participants, and often the
unprecedented scale to consider, make the design of such infrastructures extremely challenging. For
a vast majority of them, the dynamics are also unpredictable. Classically, distributed systems are

1This paper is an extended version of [3] and includes materials from [7]. The title is a tribute to a series of papers
including “The Next 700 BFT Protocols” (ACM TOCS, 2015) and “The Next 700 Programming Languages” (CACM,
1966) due to the common point between them: the genericity of proposed results.

2This work was performed within the Labex SMART, supported by French state funds managed by the ANR
within the “Investissements d’Avenir” programme under reference ANR-11-LABX-65.

27

The Next 700 Impossibility Results in Time-Varying Graphs

modeled by a static undirected connected graph where vertices are processes (nodes, servers, pro-
cessors, etc.) and edges represent bidirectional communication links. Clearly, such modeling is not
suitable for highly dynamic networks.

Numerous models taking topological changes over time into account have been proposed since
several decades, e.g. [1, 2, 8, 9]. Some works aim at unifying most of the above approaches. For
instance, in [12], the authors introduced the evolving graphs. They proposed modeling the time as a
sequence of discrete time instants and the system dynamics by a sequence of static graphs, one for
each time instant. More recently, another graph formalism, called Time-Varying Graphs (TVG), has
been provided in [5]. In contrast with evolving graphs, TVGs allow systems evolving within contin-
uous time. Also in [5], TVGs are gathered and ordered into classes depending mainly on two main
features: the quality of connectivity among the participating nodes and the possibility/impossibility
to perform tasks.

In this paper, we propose a generic framework that would help to formally prove impossibility
results in TVGs. We first define a metric to compute a distance between any pair of TVGs based on
the length of their longest common temporal prefix. Such distance allows to study the convergence
of TVG sequences. Our main result consists of showing that, given an algorithm A designed for any
TVG and a sequence of TVGs that converges toward a TVG G, then the sequence of executions
of A on each TVG of the sequence also converges. Furthermore, the latter converges toward the
execution of A over G.

This result is useful for proving impossibility results in the following way. We proceed by con-
tradiction and we assume that there exists an algorithm A solving the considered problem. Assume
now that we are able to build a sequence of TVGs sharing ever-growing common temporal prefixes
such that the execution of A does not converge on these prefixes. Then, by applying our main result,
we can deduce that this sequence converges to a TVG G such that the execution of A on G never
converges. In other words, our main result allows to formally construct a counter-example based on
a limit of a sequence of TVG. Obviously, the delicate part of the impossibility proof is then delegated
to the building of the adequate sequence of TVG depending on the desired impossibility result.

Next, we illustrate the use of this general result by providing various examples of use. We consider
the weakest class of long-lived TVGs, in the following referred to as connected-over-time (COT , for
short) TVGs, i.e. the class of TVGs where any node can contact any other node infinitely often.
It can also be described as the family of TVGs such that the eventual underlying graph (i.e. the
subgraph encompassing all edges that are infinitely often present) is connected.

Within this model, we first show that no deterministic algorithm exists to compute the eventual
underlying graph. Intuitively, this impossibility result comes from the fact that, with such an
algorithm, no node is able to determine whether any of its adjacent edges (appearing/disappearing
arbitrarily along the time) may disappear definitively or not.

Next, we address two well-known and well-studied cover problems in distributed systems, namely
the Maximal Matching (MM) and the Minimal Dominating Set (MDS). In static graphs, MM is
defined as follows: A matching M is a set of pairwise non-adjacent edges, that is no two edges share
a common vertex. M is maximal if any edge that is not in M is added to M , then M is no longer a
matching. Maximal matching has many applications in distributed applications. Examples include
among others the problem of assigning tasks to workers or creating pairs of entities. Still in static
environment, a dominating set is a subset of vertices of a graph such as each vertex of this graph is
either in the dominating set or neighbor of a vertex in the dominating set. A minimal dominating
set is such that none of its proper subsets is also a dominating set of the graph. Minimal Dominating
Set is a key building block for numerous network protocols, e.g. hierarchical routing and clustering,
multicast, topology control, media access coordination, to name only a few.

Both problems received some attention in the context of dynamic networks, e.g. [6, 10, 11]. The
difficulty to define covering structures in dynamic networks (including MM and MDS) is pointed
out in [4]. Indeed, the authors show that the definition of such structures may become ambiguous,
incorrect, or even irrelevant when applied in dynamic systems. As an example, consider the MDS
problem. If the dynamics of the graph is modeled as a sequence of static graphs and a new MDS
is computed at each topological change as in [11], the stability of the MDS fully depends on the
dynamic rate of the network (i.e. the relative speed of appearance/disappearance of edges). This

28

International Journal of Networking and Computing

natural definition may hence lead to a high instability (or even impossibility of use) of the MDS.
As a consequence, we first provide new definitions for Maximal Matching and Minimal Dom-

inating Set constructions that are relevant in COT TVGs. More precisely, we require the cover
set (either minimal dominating set or maximal matching) to be built over the eventual underlying
graph. This requirement ensures us that the cover set will be eventually stable and that each vertex
will infinitely often satisfy the local property of the cover set.

In this context, we then use our main result to prove a necessary topological condition for
the existence of a deterministic algorithm for both problems in connected-over-time TVGs. The
sufficiency of these conditions fall outside the scope of this paper and is proved in [7].

The paper is organized as follows. Section 2 presents the model. Our main result is presented in
Section 3, followed by its three applications about underlying graph computation, minimal dominat-
ing set, and maximal matching over the class of connected-over-time TVGs (Section 4). Section 5
concludes this work.

2 Model

This section aims to formally present the framework of our study of dynamic systems: time-varying
graphs (TVGs). This model was introduced by [5]. We present only definitions needed for the
comprehension of our work. We refer the reader to [5] for more details and an interesting taxonomy
of TVGs.

2.1 Model

Let us first borrow the formalism introduced in [5] in order to describe the distributed systems
prone to high dynamics. We consider distributed systems made of n processes. A process has a local
memory, a local sequential and deterministic algorithm, and message exchange capabilities. We
assume that each process has a unique identifier and that process identifiers are totally ordered by
some relation <. All these processes are gathered in a set V . Let E be a set of edges (or relations)
between pairwise processes, that describes interactions between processes, namely communication
exchange. The presence of an edge between two processes p and q at a given time t means that each
process among {p, q} is able to send a message to the other at t. For any given (static) graph G, we
denote by diam(G) the diameter of G (that is, the longest distance between two processes of G).

The interactions between processes are assumed to take place over a time span T ⊆ T called the
lifetime of the system. The temporal domain T is generally assumed to be either N (discrete-time
systems) or R+ (continuous-time systems).

Definition 1 (Time-varying graph [5]) A time-varying graph (TVG for short) G is a tuple
(V,E, T , ρ, ζ, φ) where V is a (static) set of processes {v1, . . . , vn}, E a (static) set of edges between
these processes E ⊆ V × V , ρ : E × T → {0, 1} (called presence function) that indicates whether a
given edge is available (i.e. present) at a given time, ζ : E × T → T (called edge latency function)
indicates the time it takes to cross a given edge if starting at a given date, and φ : V ×T → T (called
process latency function) indicates the time an internal action of a process takes at a given date.

In order to simplify some definitions, we restrict ourselves this definition in the following way.

Definition 2 (Well-formed TVG) A well-formed TVG G = (V,E, T , ρ, ζ, φ) is a TVG satisfying
the two following properties:{
∀e ∈ E,∃t ∈ T , ρ(e, t) = 1

∀e ∈ E,∀t ∈ T ,∃ε ∈ T , (ρ(e, t) = 1 ∧ ∀t′ ∈]t− ε, t[, ρ(e, t′) = 0)⇒ ∀t′ ∈ [t, t+ ζ(e, t)], ρ(e, t′) = 1

Intuitively, these properties ensure that any edge of E appears at least once during the lifetime
of the TVG and that each apparition of an edge is sufficiently long to overcome its latency at the

29

The Next 700 Impossibility Results in Time-Varying Graphs

time of its apparition. In the sequel of this paper, we focus only on well-formed TVGs and we hence
omit the words “well-formed” for lightness.

Given a TVGG, let TG be the subset of T for which a topological event (appearance/disappearance
of an edge) occurs in G. The evolution of G during its lifetime T can be described as the sequence of
graphs SG = G1, G2, . . ., where Gi = (V,Ei) corresponds to the static snapshot of G at time ti ∈ TG,
i.e. e ∈ Ei if and only if ∀t ∈ [ti, ti+1[, ρ(e, t) = 1. Note that Gi 6= Gi+1 for any i.

We consider asynchronous distributed systems, i.e. no pair of processes has access to any kind
of shared device that could allow to synchronize their execution rate. Furthermore, at any time,
no process has access to the output of ζ, i.e. none of them can (a priori) predict a bound on the
message delay. Note that the ability to send a message to another process at a given time does not
mean that this message will be delivered. Indeed, the dynamics of the communication graph implies
that the edge between the two processes may disappear before the delivery of this message leading
to the lost of messages in transit.

The presences and absences of an edge are instantly detected by its two adjacent processes. We
assume that our system provides to each process a non-blocking communication primitive named
Send retry that ensures the following property. When a process p invokes Send retry(m, q) (where
m is an arbitrary message and q another process of V) at time t, this primitive delivers m to q in a
finite time provided that there exists a time t′ ≥ t such that the edge {p, q} is present at time t′ during
at least ζ({p, q}, t′) units of time. In other words, the delivery of the message is ensured if there is,
after the invocation of the primitive, an availability of the edge that is sufficient to overcome the
communication delay of the edge at this time. Note that this primitive may never deliver a message
(e.g. if the considered edge never appears after invocation). Details of the implementation of this
primitive are not considered here but it typically consists in resending m at each apparition of the
edge {p, q} until its reception by q. This primitive allows us to abstract from topology changes and
asynchronous communication and to write high-level algorithms.

Configurations and executions. The state of a process is defined by the values of its variables.
Given a TVG G, a configuration of G is a vector of n + 2 components (Gi,Mi, p1, p2, . . . , pn) such
that Gi is a static snapshot of G (i.e. Gi ∈ SG), Mi is the set of messages carried by each edge of
Ei (one multi-set of messages per edge), and p1 to pn represent the state of the n processes in V .
We say that a process p outputs a value v in a configuration γ if one of its variable (then called an
output variable) has the value v in γ.

An execution of the distributed system modeled by G is a sequence of configurations e =
γ0, . . . , γk, γk+1, . . ., such that for each k ≥ 0, during an execution step (γk, γk+1), one of the
following event occurs: (i) Gk 6= Gk+1, or (ii) at least one process receives a message, sends a mes-
sage, or executes some internal actions changing its state. The algorithm executed by G describes
the set of all allowed internal actions of processes (in function of their current state or external
events as message receptions or time-out expirations) during an execution of G. We assume that
during any configuration step (γk, γk+1) of an execution, if Gk 6= Gk+1, then for each edge e such
that e ∈ Ek and e /∈ Ek+1 (i.e. e disappears during the step (γk, γk+1), none of the messages carried
by e belongs to Mk+1. Also, for each edge e such that e ∈ Ek+1 and e /∈ Ek (i.e. e appears during
the step (γk, γk+1)), e contains no message in configuration γk+1.

Connected over time TVGs. A key concept of time-varying graphs has been identified in [5].
The authors shows that the classical notion of path in static graphs in meaningless in TVGs. Indeed,
some processes may communicate even if there is no (static) path between them at each time. To
perform communication between two processes, the existence of a temporal path (a.k.a. journey)
between them is sufficient. They define such a temporal path of a TVG G as a sequence of or-
dered pairs {(p1, t1), (p2, t2), ..., (pk−1, tk−1), (pk, tk)} such that p1, p2, . . . , pk−1, pk is a (static) path
of (V,E) and, for every i ∈ {1, . . . , k − 1}, ρ({pi, pi+1}, ti) = 1 and ti+1 ≥ ti + ζ({pi, pi+1}, ti) +
φ(pt+1, ti + ζ({pi, pi+1}, ti)). In other words, a temporal path from process p to process q is a se-
quence of adjacent edges from p to q such that availability and latency of edges and processes allow
the sending of a message from p to q using the Send retry primitive at each intermediate process
(refer to [5] for a formal definition). Note that the existence of a temporal path is a non symmetric

30

International Journal of Networking and Computing

relation between two processes, even though the graph may be undirected. Based on various as-
sumptions made about journeys (e.g. recurrence, periodicity, symmetry, and so on), [5] proposes a
relevant hierarchy of TVG classes. In this paper, we choose to make minimal assumptions on the
dynamics of our system since we restrict ourselves on connected-over-time TVGs defined as follows:

Definition 3 (Connected-over-time TVG [5]) A TVG (V,E, T , ρ, ζ, φ) is connected-over-time
if, for any time t ∈ T and for any pair of processes p and q of V , there exists a journey from p to q
after time t. The class of connected-over-time TVGs is denoted by COT 3.

Note that the lifetime of a connected-over-time TVG is necessarily infinite by definition. The
class COT allows us to capture highly dynamic systems since we only require that any process will be
always able to communicate with any other one without any extra assumption on this communication
(such as delay, periodicity, or used route). In particular, note that a connected-over-time TVG may
be disconnected at each time and that the presence of an edge at a given time does not preclude
that this edge will appear again after this time. Define an eventual missing edge as an edge that is
never present after some finite time. The main difficulty encountered in the design of distributed
algorithms in COT is to deal with such eventual missing edges because no process is able to predict
if a given adjacent edge is an eventual missing edge or not. Note that the time of the last presence
of such an eventual missing edge cannot even be bounded.

Definition 4 ((Eventual) Underlying Graph) The underlying graph of a TVG G = (V,E, T , ρ,
ζ, φ) is the (static) graph UG = (V,E). The eventual underlying graph of G is the (static) subgraph
UωG = (V,EωG) with EωG = E \MG, where MG is the set of eventual missing edges of G.

Intuitively, the underlying graph (sometimes referred to as footprint) of a TVG G gathers all
edges that appear at least once during the lifetime of G, whereas the eventual underlying graph of G
gathers all edges that are infinitely often present during the lifetime of G. Note that, for any TVG
of COT , both underlying graph and eventual underlying graph are connected by definition. Let us
define the neighborhood Np of a process p is the set of processes with which p shares an edge in the
underlying graph.

Induced subclasses. In the following, we focus on specific subclasses of the class COT to establish
our impossibility result. Informally, we focus on subclasses that gather all TVGs whose underlying
graph belongs to a given set. The intuition behind this restriction is the following. In practice, some
technical reasons may restrict or prevent the communication between some processes, that induces
a given underlying graph for the TVG that models our system. In contrast, we cannot predict in
general the availabilities of communication edges, that leads us to consider all TVGs sharing this
underlying graph.

Definition 5 (Induced subclass) Given a set of (static) graphs F and a class of TVGs C, the
subclass of C induced by F (denoted by C|F) is the set of all TVGs of C whose underlying graph
belongs to F .

The two following results follow directly from Definitions 3 and 5:

Lemma 1 In any induced subclass C|F , if a TVG G admits f ∈ F as underlying graph, then any
other TVG of C that admits f as underlying graph belongs to C|F .

Lemma 2 No TVG of COT |F admits an eventual missing edge if and only if F contains only trees.

3Authors of [5] refer to this class as C5 in their hierarchy of TVG classes.

31

The Next 700 Impossibility Results in Time-Varying Graphs

3 Main Theorem

In this section, we state our main result that provides a general framework for proving impossibility
results in TVGs. First, we introduce in Section 3.1 some tools needed for the proof of our theorem.
Namely, we prove that TVGs and executions sets may be seen as metric spaces with useful topological
properties. Then, we prove our main result in Section 3.2.

3.1 TVG and Output Spaces

TVG Space. For a given time domain T, a given static graph (V,E) and a given latency function
ζ, let us consider the set Γ(V,E),T,ζ of all TVGs over T that admit (V,E) as underlying graph and ζ
as latency function. For the sake of clarity, we will omit the subscript (V,E),T, ζ and simply denote
this set by Γ. Remark that two distinct TVGs of Γ can be distinguished only by their presence
function. For any TVG G in Γ, let us denote its presence function by ρG. We define the application
dΓ : Γ× Γ −→ [0, 1] by:

(G,G′) 7→
{

0 if G = G′

2−λ else, with λ = Sup {t ∈ T|∀t′ ≤ t,∀e ∈ E, ρG(e, t′) = ρG′(e, t′)}

Lemma 3 The application dΓ is an ultrametric over Γ, i.e.

1. ∀(G,G′) ∈ Γ2, dΓ(G,G′) = 0⇔ G = G′

2. ∀(G,G′) ∈ Γ2, dΓ(G,G′) = dΓ(G′, G)

3. ∀(G,G′, G′′) ∈ Γ3, dΓ(G,G′′) ≤ max(dΓ(G,G′), dΓ(G′, G′′))

Proof. The two first properties follow directly from the definition of dΓ.

To prove the third one, let G, G′, and G′′ be three TVGs of Γ. Assume that dΓ(G,G′) = 2−λ
′

and dΓ(G′, G′′) = 2−λ
′′

and let be λ = min(λ′, λ′′). Then, by definition of dΓ, we have: ∀t <
λ′,∀e ∈ E, ρG(e, t) = ρG′(e, t) and ∀t < λ′′,∀e ∈ E, ρG′(e, t) = ρG′′(e, t). We can deduce that
∀t < λ,∀e ∈ E, ρG(e, t) = ρG′′(e, t), that means that dΓ(G,G′′) ≤ 2−λ.

On the other hand, we have: max(dΓ(G,G′), dΓ(G′, G′′)) = max(2−λ
′
, 2−λ

′′
) = 2−λ. In conclu-

sion, dΓ(G,G′′) ≤ max(dΓ(G,G′), dΓ(G′, G′′)), that ends the proof. �
In other words, we can consider (Γ, dΓ) as a metric space (an ultrametric is a particular case of

metric) and associate to (Γ, dΓ) the canonical topology, i.e. the set of all open balls induced by dΓ

over Γ. This topological space have the following property that is useful in the following.

Lemma 4 The metric space (Γ, dΓ) is complete, i.e. a sequence converges in Γ if and only if this
sequence is Cauchy4.

Proof. Let (Gn)n∈N be a Cauchy sequence in Γ. By definition of convergence, any convergent
sequence is Cauchy; hence, if suffices to prove that (Gn)n∈N converges in Γ.

By definition of a Cauchy sequence, we have: ∀ε ∈ R∗+,∃k ∈ N,∀i ∈ N, dΓ(Gk, Gk+i) < ε. In
particular, we have: ∀λ ∈ T,∃k ∈ N,∀i ∈ N, dΓ(Gk, Gk+i) < 2−λ.

In the other hand, by definition of dΓ, we know that the existence of λ(k,i) ∈ T such that

dΓ(Gk, Gk+i) < 2−λ(k,i) for k ∈ N and i ∈ N means that ∀t < λ(k,i),∀e ∈ E, ρGk(e, t) = ρGk+i(e, t).
Hence, we have: ∀λ ∈ T,∃k ∈ N,∀i ∈ N,∀t < λ, ∀e ∈ E, ρGk(e, t) = ρGk+i(e, t). Let Gω ∈ Γ be the
TVG defined by ∀λ ∈ T,∀e ∈ E, ρGω (e, λ) = ρGk(e, λ).

Let ε ∈ R∗+ and λ be the smallest integer such that 2−λ < ε. Then, we know that ∃k ∈ N,∀i ∈
N,∀t < λ, ∀e ∈ E, ρGk+i(e, t) = ρGk(e, t) = ρGω (e, t). We can deduce that: ∀i ∈ N, dΓ(Gk, Gω) ≤
2−λ < ε. In other words, (Gn)n∈N converges to Gω ∈ Γ, that proves the completeness of (Γ, dΓ). �

4Recall that a Cauchy sequence in a metric space (S, dS) is a sequence (un)n∈N of S whose oscillation converges
to 0. More formally, ∀ε ∈ R∗+, ∃k ∈ N,∀i ∈ N, dS(uk, uk+i) < ε.

32

International Journal of Networking and Computing

Output Space. For a given algorithm A and a given TVG G, let us define the (A, G)-output as
the function that associates to any time t ∈ T the state of G at time t when it executes A. We say
that G is the supporting TVG of this output. Let us consider the set OA,Γ of all (A, G)-outputs
over all TVGs G of Γ. For the sake of clarity, we will omit the subscript A,Γ and simply denote
this set by O. Remark that two distinct outputs of O can be distinguished only by their supporting
TVG. For any output o in O, let us denote its supporting TVG by Go.

We define the application dO : O ×O −→ [0, 1] by:

(o, o′) 7→
{

0 if o = o′

2−λ else, with λ = Sup {t ∈ T|∀t′ ≤ t, o(t′) = o′(t′)}
Due to the similarity between the definition of dΓ and dO, we can easily prove the following

result:

Lemma 5 The application dO is an ultrametric over O.

As previously, we can now consider (O, dO) as a metric space, associate the canonical topology
to (O, dO), and prove the following result:

Lemma 6 The metric space (O, dO) is complete.

3.2 Convergence of Sequences of TVGs

We are now ready to state our main result. Intuitively, this theorem ensures us that, if we take a
sequence of TVGs with ever-growing common prefixes, then the sequence of corresponding outputs
also converges. Moreover, we are able to describe the output to which it converges as the output
that corresponds to the TVG that shares all commons prefixes of our TVGs sequence. This result is
useful since it allows us to construct counter-example in the context of impossibility results. Indeed,
it is sufficient to construct a TVG sequence (with ever-growing common prefixes) and to prove that
their corresponding outputs violates the specification of the problem for ever-growing time to exhibit
an execution that violates infinitely often the specification of the problem. More formally, we have:

Theorem 1 For any deterministic algorithm A, if a sequence (Gn)n∈N of Γ converges to a given
Gω ∈ Γ, then the sequence (on)n∈N of the (A, Gn)-outputs converges to oω ∈ O. Moreover, oω is the
(A, Gω)-output.

Proof. Let A be a deterministic algorithm and (Gn)n∈N be a sequence of Γ that converges to
a given Gω ∈ Γ. Then, let (on)n∈N be the sequence of the (A, Gn)-outputs.

First, we are going to prove that (on)n∈N converges in O. As O is complete (see Lemma 6), it
is sufficient to prove that (on)n∈N is a Cauchy sequence to obtain this result. Let ε ∈ R∗+. As Γ is
also complete (see Lemma 4), we know that (Gn)n∈N is a Cauchy sequence and hence, we have by
definition: ∃kε ∈ N,∀i ∈ N, dΓ(Gkε , Gkε+i) < ε.

In the other hand, by definition of dΓ, we know that the existence of λ(k,i) ∈ T such that

dΓ(Gk, Gk+i) = 2−λ(k,i) for k ∈ N and i ∈ N means that ∀t < λ(k,i),∀e ∈ E, ρGk(e, t) = ρGk+i(e, t).
As A is deterministic, we can deduce that ∀t < λ(k,i), ok(t) = ok+i(t) (since Gon = Gn for any n ∈ N
by construction of (on)n∈N). Then, the definition of dO implies that dO(ok, ok+i) ≤ 2−λ(k,i) . In other
words, we can deduce that we have ∀k ∈ N,∀i ∈ N, dO(ok, ok+i) ≤ dΓ(Gk, Gk+i).

We can conclude that ∃kε ∈ N,∀i ∈ N, dO(okε , okε+i) < ε. In conclusion, (on)n∈N is a Cauchy
sequence and then converges to o ∈ O.

Let oω be the (A, Gω)-output. Then, we are going to prove that o = oω. As dO is an ultrametric
(see Lemma 5), we know that 0 ≤ dO(o, oω) ≤ max(dO(o, on), dO(on, oω)) for any n ∈ N. By
that precedes, the sequence (dO(o, on))n∈N converges to 0. Due to the determinism of A and the
completeness of Γ and O, we can prove by a similar reasoning as above that dO(on, oω) ≤ dΓ(Gn, Gω)
for any n ∈ N. The convergence of (Gn)n∈N to Gω implies that the sequence (dΓ(Gn, Gω))n∈N
converges to 0. Then, the sequence (dO(on, oω))n∈N also converges to 0 (since dO(on, oω) ≥ 0 for
any n ∈ N). Then, the sequence (max(dO(o, on), dO(on, oω)))n∈N converges to 0 that implies that
dO(o, oω) = 0. As dO is a metric, we can conclude that o = oω, that ends the proof. �

33

The Next 700 Impossibility Results in Time-Varying Graphs

4 Applications

In this section, we present some applications of our main theorem by proving impossibility results
on three classical problems on the very weak class of connected-over-time TVGs. As the proofs of
these impossibility results strongly rely on our main theorem, they naturally make use of similar
arguments. Nevertheless, the construction of the ad-hoc sequence of TVGs is very related to the
considered problem and makes each proof different from others. These impossibility results identify
a necessary topological condition for each problem.

We first interest in the eventual underlying graph computation and prove that this problem does
not admit a deterministic solution on any TVG such that its underlying graph has at least one
cycle (Section 4.1). Then, we focus on cover problems and prove a necessary topological condition
for the Minimal Dominating Set construction and the Maximal Matching construction respectively
(Section 4.2 and 4.3). For Minimal Dominating Set, we prove that any deterministic algorithm
requires that there exists a set of vertices that is a minimal dominating set for every connected
spanning subgraph of the underlying graph. Regarding Maximal Matching, our result states that
this problem is impossible to solve in a deterministic way unless the underlying graph of the TVG
admits a maximal matching containing only bridges.

Maybe surprisingly, note that all these conditions involve the underlying graph of the TVG
whereas the definition of each problem is related to the eventual underlying graph. This is intuitively
due the fact that to no process is able to determine if, along its adjacent edges, there exists some
eventual missing edges or not (in any TVG of COT whose underlying graph is not a tree). That
implies that the algorithm must converge to a solution that satisfies the problem for any possible
eventual underlying graph of the TVG (i.e. any connected spanning subgraph of the underlying
graph). Our necessary conditions exhibited in this section follow from the fact that such a solution
does not exists for every graph.

4.1 Eventual Underlying Graph Computation

Roughly speaking, the eventual underlying graph computation problem consists in, for each process,
to compute eventually the set of vertices and of edges of the eventual underlying graph of the TVG.
More formally, we can specify this problem in the following way.

Specification 1 (Eventual underlying graph) An algorithm A satisfies the eventual underlying
graph specification for a class of TVGs C if every execution e = γ0, γ1, ... on any TVG G of C has a
suffix ei = γi, γi+1, ... for a given i ∈ N such that each process outputs the eventual underlying graph
of G in any configuration of ei.

Unfortunately, this very natural problem is impossible to solve deterministically on COT apart
from trivial cases where the underlying graph is a tree. This latter case is trivial since such TVG
does not admit eventual missing edges. This impossibility is captured by the following theorem.

Theorem 2 For any set of (static) graphs F that does not contain only trees, there exists no de-
terministic algorithm that satisfies the eventual underlying graph specification for COT |F .

Proof. We define, for any TVG G = (V,E, T , ρ, ζ, φ), the TVG G⊕ {(e1, Te1), . . . , (ek, Tek)}
(with, for any i ∈ {0, . . . , k}, ei ∈ E and Tei ⊆ T) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =

{
1 if ∃i ∈ {0, . . . , k}, e = ei and t ∈ Tei
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F that does not contain only
trees such that there exists a deterministic algorithm A that satisfies the eventual underlying graph
specification for COT |F . In consequence, any process that executes A outputs a (static) graph at
any time.

34

International Journal of Networking and Computing

gi

g4

g3

g2

g1

g0
⌘0

↵0

⌘1
↵1

⌘2
↵2 ↵3

⌘3 ⌘4
↵4 ↵i

⌘i

gi+1

⌘i+1
↵i+1

g!

Figure 1: Construction of (Gn)n∈N in the proof of Theorem 2. Grey bold lines represent instants
where e belongs to the graph outputted by all process of V .

By Lemma 2, we know that there exists G ∈ COT |F such that G = (V,E, T , ρ, ζ, φ) admits at
least one eventual missing edge e. We construct then a sequence (Gn)n∈N of TVGs as follows. We
set G0 = G and we define inductively Gi for any i ∈ N as follows—refer to Figure 1:

1. Consider the execution of A over Gi and let ηi ∈ T ∪{+∞} be the largest time where e belongs
to the graph outputted by some process of V (remark that ηi = +∞ if and only if e belongs
infinitely often to the outputted graph of at least one process);

2. Let G′i = Gi ⊕ (e, T ∩]ηi,+∞[);

3. Consider the execution of A over G′i and let αi ∈ T ∪{+∞} be the smallest time strictly greater
than ηi where e belongs to the graph outputted by all process of V (remark that αi = +∞ if
and only if e never belongs simultaneously to the outputted graph of all processes ηi = +∞);

4. Let Gi+1 = Gi ⊕ (e, T ∩]ηi, αi[).

We can prove that, for any i ∈ N, if Gi belongs to COT |F and if e is an eventual missing edge in
Gi, then ηi 6= +∞ and αi 6= +∞. Indeed, assume that e is an eventual missing edge in Gi ∈ COT |F
for a given i ∈ N. By definition, e does not belong to UωGi . As A satisfies the eventual underlying
graph specification for COT |F , we know that e cannot belongs infinitely often to the outputted graph
of a process in the execution of A over Gi, i.e. ηi 6= +∞. Then, as e is not an eventual missing
edge in G′i by construction, e belongs to UωG′

i
. By Lemma 1, G′i belongs to COT |F since Gi and

G′i share the same underlying graph UG. As A satisfies the eventual underlying graph specification
for COT |F , we know that e belongs eventually to the outputted graph of all processes of V , i.e.
αi 6= +∞.

We obtain that, for any i ∈ N, if Gi belongs to COT |F and if e is an eventual missing edge in
Gi, then Gi+1 belongs to COT |F and e is an eventual missing edge in Gi+1. Indeed, Gi+1 belongs
to COT |F by Lemma 1 (since Gi and Gi+1 share the same underlying graph UG). As we proved
that ηi 6= +∞ and αi 6= +∞ when e is an eventual missing edge in Gi, Gi+1 is obtained by adding
e during a finite amount of time to Gi, that implies that e is an eventual missing edge in Gi+1.

Now, it is sufficient to note that G belongs to COT |F by assumption and that e is an eventual
missing edge in G0 = G by construction to obtain that (Gn)n∈N is a sequence of COT |F such that

35

The Next 700 Impossibility Results in Time-Varying Graphs

ηi 6= +∞ and αi 6= +∞ for any i ∈ N. Moreover, note that, for any i ∈ N, ηi < αi (by construction)
and αi < ηi+1 (since e belongs to the graph outputted by any process at time αi in Gi+1 whereas e
does not belong to the graph outputted by any process at time ηi+1 in Gi+1).

That allows us to define the following TVG: Gω = G ⊕ {(e, T ∩]ηi, αi[)|i ∈ N}. Note that
UGω = UG and then, by Lemma 1, that Gω belongs to COT |F . Observe that, for any k ∈ N∗, we
have dΓ(Gk, Gω) = 2−ηk by construction of (Gn)n∈N and Gω. Thus, (Gn)n∈N converges in COT |F
to Gω.

By Theorem 1, the (A, Gω)-output is the limit of the sequence of the (A, Gn)-outputs. In other
words, the (A, Gω)-output shares a prefix of length ηi with the (A, Gi)-output for any i ∈ N (recall
that the sequence of the (A, Gn)-outputs is Cauchy since it converges). That means that there
exists infinitely many configurations in the execution of A on Gω where e belongs to the outputted
graph of all process and infinitely many configurations in the execution of A on Gω where e does not
belong to the outputted graph of any process, that contradicts the fact that A satisfies the eventual
underlying graph specification for COT |F and ends the proof. �

4.2 Minimal Dominating Set Construction

Recall that, in a static distributed system, a dominating set D is a subset of processes of the system
such that each process that does not belong to D have at least one neighbor in D. Such a dominating
set is minimal when it has is no strict subset that is also a dominating set.

Regarding dynamic distributed systems, two different approaches have been proposed to handle
minimal dominating set problem. We survey them quickly here and show that these definitions seem
not relevant in our context, that motivates the need of our new definition presented in this section.

The most natural way to extend minimal dominating set definition in the context of dynamic
systems is presented in [11]. In this work, the dynamic graph is seen as a sequence of static graphs
and a new minimal dominating set is computed at each topological change. This approach is not
suitable in the case of highly dynamic systems since the system may be always in computation phase
(the computation of the new dominating set at each topological change is not instantaneous). In this
case, the dominating set may be never stable and is then useless for the application that required it.

The second approach, proposed by [4], consists in computing a stable dominating set on the
underlying graph of the TVG. This approach is interesting since the outputted dominating set is
stable in spite of the dynamics of the system but is still not suitable for our purpose. Indeed, as the
dominating set is computed on the underlying graph that may contain eventual missing edges, it is
possible for a process to be dominated only through such edges. In other words, a dominated process
may have eventually only dominated neighbors, that is counter-intuitive for a minimal dominating
set and makes sense only in TVGs where there is no eventual missing edges.

To overcome flaws of precedent definitions in our context of highly dynamic distributed systems
(captured by the class of TVGs COT), we propose a third definition in which we require the outputted
minimal dominating set to be stable and each dominated process to be infinitely often neighbor of
at least one dominating process. In other words, we want to compute a minimal dominating set
on the eventual underlying graph. Note that this definition is exactly the same as the one of [4] in
TVGs where there is no eventual missing edges. We specify the minimal dominating set construction
problem over TVGs as follows.

Definition 6 (Minimal dominating set over time) A set of processes M is a minimal domi-
nating set over time (MDST for short) of a TVG G if M is a minimal dominating set of UωG.

Specification 2 (Minimal dominating set) An algorithm A satisfies the minimal dominating
set specification for a class of TVGs C if the execution e = γ0, γ1, . . . of A on every TVG G of C has
a suffix ei = γi, γi+1, . . . for a given i ∈ N such that each process constantly outputs a boolean value
in any configuration of ei and that the set of processes outputting true is a minimal dominating set
over time of G.

In the following, we prove that this problem does not admit a deterministic solution for any TVG
of COT . In particular, we prove that any deterministic algorithm requires that there exists a set of

36

International Journal of Networking and Computing

Figure 2: The graph on the left side admits a robust minimal dominating set (the set of black
vertices). The graph on the right side admits no robust minimal dominating set (for instance, the
black minimal dominating set is not a dominating set of the connected spanning subgraph with bold
edges).

vertices that is a minimal dominating set for every connected spanning subgraph of the underlying
graph of the TVG. Such a minimal dominating set is hereafter referenced as robust–refer to Figure
2 for an illustration. A formal definition follows.

Definition 7 (Robust minimal dominating set) A robust minimal dominating set of a (static)
graph G is a subset of processes of G that is a minimal dominating set of every connected spanning
subgraph of G.

Intuitively, the impossibility comes from the following fact. As no process is able to detect
eventual missing edges, the minimal dominated set computed by any algorithm must be a minimal
dominated set of any possible eventual underlying graph, that is of any connected subgraph of
the underlying graph. In other words, the computed minimal dominated set is a robust minimal
dominating set. The existence of such a set is then a necessary condition to the existence of an
algorithm to compute a minimal dominating set over time. The main difficulty of the formal proof
of this result lies in the construction of the TVGs sequence that allows us to apply Theorem 1.

Theorem 3 For any set of (static) graphs F containing at least one graph that does not admit a
robust minimal dominating set, there exists no deterministic algorithm that satisfies the minimal
dominating set specification for COT |F .

Proof. Let us introduce some notation first. We define, for any TVG G = (V,E, T , ρ, ζ, φ),
the TVG G � {(Ei, Ti)|i ∈ I} (with I ⊆ N and for any i ∈ I, Ei ⊆ E and Ti ⊆ T) as the TVG
(V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =


0 if ∃i ∈ I, e ∈ Ei and t ∈ Ti
1 if ∃i ∈ I, e ∈ E \ Ei and t ∈ Ti
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F containing at least one
graph that does not admit a robust minimal dominating set and that there exists a deterministic
algorithm A that satisfies the minimal dominating set specification for COT |F . In consequence, any
process that executes A outputs a boolean value at any time.

Let G = (V,E, T , ρ, ζ, φ) be a TVG of COT |F such that UG does not admit a robust minimal
dominating set and that there exists t0 ∈ T such that ∀e ∈ E,∀t ≤ t0, ρ(e, t) = 1 (G exists by
construction of F and by definition of COT |F). We construct then a sequence (Gn)n∈N of TVGs as
follows. We set G0 = G. Assume that we have already Gi = (V,E, T , ρ′, ζ, φ) for a given i ∈ N such

37

The Next 700 Impossibility Results in Time-Varying Graphs

that Gi ∈ COT |F , UGi = UG, and ∃αi−1 > t0,∀e ∈ E,∀t > αi, ρ
′(e, t) = ρ(e, t). Then, we define

inductively Gi+1 as follows:

1. Consider the execution of A over Gi and let ηi ∈ T be the smallest time strictly greater than
αi−1 from which the set of processes that output true is constant (ηi exists by assumption on
A since Gi ∈ COT |F);

2. Let Mi be the minimal dominating set computed by A on Gi (i.e. the set of processes of Gi
outputting true after ηi). As UGi = UG, we know by assumption on UG that UGi does not
admit a robust minimal dominating set. In particular, Mi is not a robust minimal dominating
set of UGi . Hence, there exists a process pi of V \Mi such that the set of edges Ei = {{pi, q}|q ∈
Mi ∩Npi} is not a cut-set of UGi ;

3. Let G′i = Gi � {(Ei, T ∩]ηi,+∞[)}.

4. Remark that UG′
i

= UGi = UG (by construction of G′i since ηi > t0) and that UωG′
i

is connected

(since E(UωG′
i
) = E(UG) \ Ei by construction5 and Ei is not a cut-set of UG). Hence, G′i ∈

COT |F and we can consider the execution of A over G′i. Let αi ∈ T be the smallest time
strictly greater than ηi from which the set of processes that output true is constant. Let M ′i be
the minimal dominating set computed by A on G′i (i.e. the set of processes of G′i outputting
true after αi). Note that M ′i 6= Mi since Mi is not a minimal dominating set of UωG′

i
(recall

that, in UωG′
i
, pi has no neighbor in Mi);

5. Let Gi+1 = Gi � {(Ei, T ∩]ηi, αi])}.

It is straightforward to check that this construction ensures that, if there existsGi = (V,E, T , ρ′, ζ, φ)
for a given i ∈ N such that Gi ∈ COT |F , UGi = UG, and ∃αi−1 > t0,∀e ∈ E,∀t > αi, ρ

′(e, t) =
ρ(e, t), then Gi+1 satisfies the same property. Moreover, as G0 = G, this property is naturally
satisfied for i = 0 with any α−1 > t0. Hence, the sequence (Gn)n∈N is well-defined. Note that, for
any i ∈ N, ηi < αi and αi < ηi+1 (by construction).

That allows us to define the following TVG: Gω = G�{(Ei, T ∩]ηi, αi])|i ∈ N}. Note that UGω =
UG and then that Gω belongs to COT |F . Observe that, for any k ∈ N∗, we have dΓ(Gk, Gω) = 2−ηk

by construction of (Gn)n∈N and Gω. Thus, (Gn)n∈N converges in COT |F to Gω.
We are now ready to apply Theorem 1 that states that the (A, Gω)-output is the limit of the

sequence of the (A, Gn)-outputs. In other words, the (A, Gω)-output shares a prefix of length ηi
with the (A, Gi)-output for any i ∈ N (recall that the sequence of the (A, Gn)-outputs is Cauchy
since it converges). That means that, for any i ∈ N∗, the set of processes that output true in Gω at
ηi is Mi and the set of processes that output true in Gω at αi is M ′i . As we know that Mi 6= M ′i
for any i ∈ N, we obtain that the set of processes that output true in Gω never converges, that
contradicts the fact that A satisfies the minimal dominating set specification for COT |F and ends
the proof. �

4.3 Maximal Matching

As the maximal matching shares similarities with other cover problems (such as the minimal domi-
nating set), we can adopt the same approach than in the previous section to specify it in the context
of dynamic systems.

Definition 8 (Maximal matching over time) A set of processes M is a maximal matching over
time of a TVG G if M is a maximal matching of UωG.

Specification 3 (Maximal matching) An algorithm A satisfies the maximal matching specifica-
tion for a class of TVGs C if the execution e = γ0, γ1, . . . of A on every TVG G of C has a suffix
ei = γi, γi+1, . . . for a given i ∈ N such that each process constantly outputs a boolean value in any

5where E(G) denotes the set of edges of G.

38

International Journal of Networking and Computing

Figure 3: The graph on the left side admits a maximal matching containing only bridges (the set of
bold edges). The graph on the right side admits no maximal matching containing only bridges.

configuration of ei and that the set of processes outputting true is a maximal matching over time of
G.

In this section, we prove that this problem is impossible to solve in a deterministic way for
a TVG of the class COT unless the underlying graph of this TVG admits a maximal matching
containing only bridges—refer to Figure 3 for an illustration. Intuitively, this condition follows from
the following fact. Such a maximal matching is by construction a maximal matching of any connected
spanning subgraph of the underlying graph and hence of any potential eventual underlying graph of
the TVG. Then, we obtain the following theorem.

Theorem 4 For any set of (static) graphs F containing at least one graph that does not admit a
maximal matching containing only bridges, there exists no deterministic algorithm that satisfies the
maximal matching specification for COT |F .

Proof. We define, for any TVG G = (V,E, T , ρ, ζ, φ), the TVG G	 {(e1, Te1), . . . , (ek, Tek)}
(with, for any i ∈ {0, . . . , k}, ei ∈ E and Tei ⊆ T) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =

{
0 if ∃i ∈ {0, . . . , k}, e = ei and t ∈ Tei
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F containing at least one graph
that does not admit a maximal matching containing only bridges and that there exists a deterministic
algorithm A that satisfies the maximal matching specification for COT |F . In consequence, any
process that executes A outputs a boolean value at any time.

Let G = (V,E, T , ρ, ζ, φ) be a TVG of COT |F such that UG does not admit a maximal matching
containing only bridges and that ∀e ∈ E,∀t ∈ T , ρ(e, t) = 1 (G exists by construction of F and by
definition of COT |F). We construct then a sequence (Gn)n∈N of TVGs as follows. We set G0 = G.
Assume that we have already Gi = (V,E, T , ρ′, ζ, φ) for a given i ∈ N such that Gi ∈ COT |F ,
UGi = UG, and ∃αi−1 > 0,∀e ∈ E,∀t > αi, ρ

′(e, t) = ρ(e, t). Then, we define inductively Gi+1 as
follows:

1. Consider the execution of A over Gi and let ηi ∈ T be the smallest time strictly greater than
αi−1 from which the set of processes that output true is constant (ηi exists by assumption on
A since Gi ∈ COT |F);

2. Let Mi be the maximal matching computed by A on Gi (i.e. the set of processes of Gi
outputting true after ηi). As UGi = UG, we know by assumption on UG that UGi does not

39

The Next 700 Impossibility Results in Time-Varying Graphs

admit a matching containing only bridges. In particular, there exists a non-bridge edge ei in
Mi;

3. Let G′i = Gi 	 {(ei, T ∩]ηi,+∞[)}.

4. Remark that UG′
i

= UGi = UG (by construction of G′i since ηi > 0) and that UωG′
i

is connected

(since ei is not a bridge). Hence, G′i ∈ COT |F and we can consider the execution of A over
G′i. Let αi ∈ T be the smallest time strictly greater than ηi from which the set of processes
that output true is constant. Let M ′i be the maximal matching computed by A on G′i (i.e. the
set of processes of G′i outputting true after αi). Note that M ′i 6= Mi since ei does not belongs
to UωG′

i
by construction;

5. Let Gi+1 = Gi 	 {(ei, T ∩]ηi, αi])}.

It is straightforward to check that this construction ensures that, if there existsGi = (V,E, T , ρ′, ζ,
φ) for a given i ∈ N such that Gi ∈ COT |F , UGi = UG, and ∃αi−1 > 0,∀e ∈ E,∀t > αi, ρ

′(e, t) =
ρ(e, t), then Gi+1 satisfies the same property. Moreover, as G0 = G, this property is naturally
satisfied for i = 0 with any α−1 > 0. Hence, the sequence (Gn)n∈N is well-defined. Note that, for
any i ∈ N, ηi < αi and αi < ηi+1 (by construction).

That allows us to define the following TVG: Gω = G	{(ei, T ∩]ηi, αi])|i ∈ N}. Note that UGω =
UG and then that Gω belongs to COT |F . Observe that, for any k ∈ N∗, we have dΓ(Gk, Gω) = 2−ηk

by construction of (Gn)n∈N and Gω. Thus, (Gn)n∈N converges in COT |F to Gω.

We are now ready to apply Theorem 1 that states that the (A, Gω)-output is the limit of the
sequence of the (A, Gn)-outputs. In other words, the (A, Gω)-output shares a prefix of length ηi
with the (A, Gi)-output for any i ∈ N (recall that the sequence of the (A, Gn)-outputs is Cauchy
since it converges). That means that, for any i ∈ N∗, the set of processes that output true in Gω at
ηi is Mi and the set of processes that output true in Gω at αi is M ′i . As we know that Mi 6= M ′i
for any i ∈ N, we obtain that the set of processes that output true in Gω never converges, that
contradicts the fact that A satisfies the maximal matching specification for COT |F and ends the
proof. �

5 Conclusion

We gave a general framework for providing impossibility results in time-varying graphs. This frame-
work is useful to legitimate informal arguments about convergence of sequences of objects in this
context. We then used the above result to prove several impossibility results related to long-lived
time-varying graphs with minimal assumptions to show the effectiveness of our framework.

Namely, we proved first that it is impossible to compute deterministically the eventual underlying
graph (i.e. the set of edges that appear infinitely often) thenceforth the underlying graph is not
a tree. Second, we proved that there exists no deterministic algorithm to compute a minimal
dominating set on the time-varying graph if the underlying graph of this latter does not admit a
robust minimal dominating set (defined as a minimal dominating set that have the property to be
a minimal dominating of any spanning connected subgraph of the underlying graph). Finally, we
showed the impossibility of deterministically build a maximal matching of a time-varying graph
unless its underlying graph admits a maximal matching containing only bridges.

Note that we provide in this paper the proof that these conditions are necessary to the existence
of a solution. The sufficiency of these conditions is not studied in the context of this work but is
derivable from algorithms proposed in [7]. This work opens some research perspectives. It would
be interesting to characterize the set of topologies that corresponds to the conditions identified as
necessary in this problem for both the minimal dominating set problem and maximal matching
problem. It would be also attractive to study whether our general result can be applied to other
problems, including non-cover problems.

40

International Journal of Networking and Computing

References

[1] Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin. Al-
gorithms on evolving graphs. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference (ITCS’12), pages 149–160. ACM, 2012.

[2] B. Awerbuch and S. Even. Efficient and reliable broadcast is achievable in an eventually con-
nected network. In Proceedings of the Third Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 1984), pages 278–281, 1984.

[3] Nicolas Braud Santoni, Swan Dubois, Mohamed Hamza Kaaouachi, and Franck Petit. A generic
framework for impossibility results in time-varying graphs. In IEEE 29nd International Sym-
posium on Parallel and Distributed Processing (IPDPS 2015), 17th Workshop on Advances in
Parallel and Distributed Computational Models (APDCM 2015), pages 483–489. IEEE, 2015.

[4] A. Casteigts and P. Flocchini. Deterministic algorithms in dynamic networks: Problems, anal-
ysis, and algorithmic tools. Technical report, Defence Research and Development Canada,
2013-020, 2013.

[5] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, 2012.

[6] A. Casteigts, B. Mans, and L. Mathieson. On the feasibility of maintenance algorithms in
dynamic graphs. Technical report, arXiv – abs/1107.2722, 2011.

[7] Swan Dubois, Mohamed Hamza Kaaouachi, and Franck Petit. Dominating set in highly dynamic
distributed systems. In 17th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2015), volume to appear of Lecture Notes in Computer Science
(LNCS), Edmonton, Canada, 2015. Springer Berlin / Heidelberg.

[8] A. Ferreira. Building a reference combinatorial model for manets. IEEE Network, 18(5):24–29,
2004.

[9] J. Schneider and R. Wattenhofer. Coloring unstructured wireless multi-hop networks. In Pro-
ceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing (PODC
2009), pages 210–219, 2009.

[10] J. Schneider and R. Wattenhofer. An optimal maximal independent set algorithm for bounded-
independence graphs. Distributed Computing, 22(5-6):349–361, 2010.

[11] J. Whitbeck, M. Dias de Amorim, V. Conan, and J.-L. Guillaume. Temporal reachability
graphs. In The 18th Annual International Conference on Mobile Computing and Networking
(MobiCom’12), pages 377–388, 2012.

[12] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. International Journal of Foundations of Computer Science, 14(02):267–285,
2003.

41

