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Figure 1: The tiled display in our visualization laboratory is build from 24 monitors (50” diameter, 1920x1080 resolution.)

ABSTRACT

Inexpensive displays make large, tiled displays attractive for visual
analysis and collaborative investigation. Especially in multi-user
environments, the increased space allows to better organize the find-
ings and results and, therefore, helps to improve collaboration. One
important requirement is that all users can navigate seamlessly on
the whole display space, while employing the standard software
they are familiar with. In this paper, we present a seamless desktop
infrastructure for distributed cognition and collaboration. Our in-
frastructure only uses standard hardware and software. By choos-
ing a minimally invasive, web-centric approach, we can integrate
existing web applications and visual analysis software with little or
no effort into our system. We can even leverage existing synchro-
nization mechanisms built into many web applications today.
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1 INTRODUCTION

Large tiled displays can now be built at a reasonable cost. Con-
sequently, they have become popular for visual analysis, since they
provide space to think [2]: Digital information can be arranged spa-
tially on a large interactive surface. Relying on the layout of visual
information items to externalize one’s thought processes is consid-
ered an important part of distributed cognition [12]. Moreover, a
large display area naturally lends itself to collaborative work, since
it provides space for concurrent viewing by multiple users.

These considerations have led to a variety of frameworks for col-
laborative analysis [6, 32]. However, these frameworks have had
relatively little impact on visual analysis practice in the wild, since
they were designed for research and often lack many mundane fea-
tures which are important for everyday use. It is much more likely
that a typical user of professional analysis software employs two or
three large monitors, but always connected to a standard worksta-
tion running a standard graphical user interface (GUI). Neither the
application software nor the underlying hardware/software platform
supports large tiled displays or is designed for collaborative use.

With a GUI infrastructure that is able to span one seamless desk-
top across displays belonging to multiple computers, we could use
existing, unmodified applications for distributed cognition. How-
ever, existing seamless desktop solutions based on remote desktop
streaming, such as VNC [22] or Microsoft RDP, do not scale well.
And even if we could use these solutions, a seamless desktop per
se does not provide sufficient collaboration support, since only one



user can be active at a given time.

Clearly, we need an alternative approach to build a collaborative
seamless desktop. We build on the observation that visual analy-
sis software, like most types of information systems, is moving to-
wards a web-centric architecture. Today, an analyst or information
worker wishing to conduct everyday work entirely using web ap-
plications can do so with relatively few restrictions. There are even
dedicated platforms for this form of computing, such as Chrome-
books. A desirable side-effect of the move towards web applica-
tions is that the client-server model makes support for collabora-
tion significantly easier. As a consequence, many web applications,
such as Google Docs, automatically synchronize application state
between multiple users in real time.

In this paper, we describe how the combination of a seamless
desktop with web-centric applications yields an infrastructure for
collaborative distributed cognition. We build this infrastructure on
top of a standard GUI and a standard web-browser using a mini-
mally invasive approach: Installing a lightweight custom software
package on every involved computer is sufficient to add the new
capabilities. Existing applications do not require any modification
and continue to work normally, even if they are disconnected from
our infrastructure. To our knowledge, our system is the first to let
multiple users operate with multiple unmodified applications on a
seamless desktop.

2 RELATED WORK

Several special-purpose applications have been developed specifi-
cally with collaboration support in mind. These information sys-
tems include topics such as web search [1, 28], text analysis [15],
collaborative picture galleries [20] and network visualization [14].

Tools supporting co-located, synchronous user interactions do
not need to be built from scratch. Forlines et al. [10] built a wrap-
per for Google Earth to support viewport synchronization, multi-
user interaction, and annotations, without changing the applications
core implementation. Isenberg et al. [14] are following a similar
approach, by, for example, adding multiple color-coded mouse cur-
sors within an existing applications. Both tools still need modi-
fications to support collaboration and therefore can not easily be
combined with other groupware applications.

To overcome this limitations in conventional windowing sys-
tems, Hutterer and Thomas [13] created multi-pointer X (MPX),
an extension to the X Window System for multi-pointer interaction.
This is in line with the observations of Lauwers and Lantz [18]
which have already suggested using existing single-user applica-
tions in any windowing system with collaboration support. Though,
this approach does not support any more advanced collaboration
features, such as interaction histories, access control mechanisms
or any automated translation or communication between applica-
tions.

Adding multi-input support to a single, shared display is com-
monly referred to as a single-display groupware (SDG) [25]. Typ-
ical examples for SDG systems are wall displays [5, 14] or table-
tops [15, 20, 27, 28]. One problem reported commonly is the mu-
tual distraction of users while performing individual work. For
example cursor movements by other users [31] and changes of
the spatial display layout [9] are often causes for disruption. As
a result multiple users often use their personal territories on a
high-resolution display to visualize a lot of information simulta-
neously [14, 28]. On large displays common problems include lo-
cating the cursor and items of interest within the whole informa-
tion space [26] and interacting with distant display locations [23].
Spotlights [17] have been introduced to guide the users attention to
individual regions on large screens. VisLink [7] and visual links
across applications [29] use visual line connections to guide users
to related elements (eg. text or map locations) inside distinct ap-
plication windows as well as outside the users visible field of view.

Visual links have also been shown useful in multi-user SDG sys-
tems to show relations between information in personal windows
and shared information [30].

Currently many visual analytics applications are adopting web
technologies. To handle multiple multiple devices and users, sev-
eral frameworks allow application developers distributing their web
applications across multiple displays. An early example is Multi-
browsing [16] which allows moving information to different de-
vices connected to the system. More recent systems, like Panel-
rama [33] and PolyChrome [3], allow splitting the user interface
across multiple devices, but require a deeper integration with the
individual applications. SAGE2 [19] also makes heavy use of mod-
ern web technologies, and provides a multi-user interaction capable
windowing system running in the browser.

3 SYSTEM OVERVIEW

Instead of building a monolithic framework, we stifch together in-
dividual desktops of multiple computers such that the users have
the illusion of working on a seamless desktop. This provides three
important advantages: First, the engineering effort for the stitching
is much smaller than development of a new monolithic framework,
which would have to duplicate many existing GUI functions. Sec-
ond, existing GUI functions, such as window management, do not
have to be duplicated. Third, existing application software does not
have to be re-written or ported to the new framework.

3.1 Requirements

What is required to successfully convey the illusion that users are
interacting together on a seamless desktop? The first group of
requirements concerns the users’ input devices. We assume one
mouse and one keyboard per user. Users should be able to use their
input devices as usual, without having to consider display bound-
aries or coordinate with other users. This implies the following
requirements:

R1 Multiple computers should be operated with one set of input
devices.

R2 Multiple sets of input devices should be usable on one com-
puter, including multiple mouse cursors.

R3 Multiple application foci should be provided, so that multiple
users can interact one-on-one with applications on a single
computer.

The second group of requirements concerns the applications:

R4 Multiple applications should run concurrently, either on the
same or on different computers.

R5 Multiple clones of one application window can be created and
linked to the state (e. e., viewport scrolling) of the master win-
dow.

R6 Multiple instances of a document, which are being modified
by multiple users, should be automatically synchronized.

We begin with an overview of the software architecture, and then
look at the important system components in the following sections.

3.2 Overall architecture

Before we discuss in detail how the requirements set forth in sec-
tion 3.1 are addressed, we give an overview of the overall software
infrastructure. It is intended for a cluster of computer nodes con-
nected over a local area network. The cluster driving our tiled dis-
play consists of eight nodes. Each node is a standard computer with
three displays (50, 1920 x 1080 resolution, arranged vertically), a
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Figure 2: (left) The network architecture combines hierarchical communication for system management and web applications with peer-to-peer
components for input redirection. (right) Standard software components (white) are extended with a minimal set of custom software components
(orange). The custom software extends, but does not restrict, standard desktop use.

keyboard and a mouse. Additional computers, such as notebooks,
can be added via Wifi at any time, even in the middle of a session.

Each node runs a standard GUI (Ubuntu Linux with Unity Desk-
top) and a standard browser (Mozilla Firefox) with custom exten-
sions. The extensions use only the standard API provided by the
operating system and browser. This approach differs from previous
seamless desktop infrastructures, which wrap all the physical com-
puting resources into a monolithic software framework, replacing
the standard API with a proprietary one.

Figure 2 illustrates the software architecture, with standard soft-
ware components shown in white. The standard components pro-
vide a conventional, self-contained GUI. By installing the propri-
etary software components (orange), we add additional capabilities.

On each node, a daemon must be started, which can work as only
as a client or — additionally — take on the function of a server. Ex-
actly one daemon in the local network must be configured as the
server. It advertises its address via periodic broadcasts. Client dae-
mons listen to the broadcasts and connect to the advertised server
address. After establishing the connections, the server brokers com-
munication among clients, using a protocol consisting of simple
JSON strings.

The server also maintains a list of connected clients. To facil-
itate a seamless desktop, the arrangement of the displays on each
client node is recorded in a spatial model maintained by the server.
A regular lattice of displays, such as in our laboratory, is trivially
recorded by hand. However, we have developed automatic tools
for detecting irregular display configurations and even movable dis-
plays such as notebooks [21]. In addition to the spatial model, the
server maintains a list of user records, indicating the node where
the user’s input devices are connected and assigning a distinct cur-
sor color for each user. A control GUI allows interactive setting of
these parameters.

Every daemon, including the server, manages activities on the
local node:

1. The daemon starts a local instance of the input redirection
software (see section 4) and controls it via a local connection.

2. The daemon accepts local connections from web-browser in-
stances or other applications that have been extended to com-
municate with the daemon. The web-browser communicates
via a WebSocket opened by a plug-in written in JavaScript.

This approach effectively establishes a two-tier communica-
tion architecture, with daemons forming the first level and
web-browsers forming the second level.

3. The daemon opens a glass-sheet, a transparent window cover-
ing the entire desktop, used to display visualizations and user
interface elements for collaboration.

4 INPUT DEVICE MANAGEMENT

We address basic input redirection (R1) with the open-source soft-
ware Synergy !. Events from the physical input devices are inter-
cepted and injected into the event manager of the destination com-
puter. On the destination computer, the input events appear to be
coming from virtual input devices, while the events are actually re-
ceived over the network.

We have modified Synergy to use a peer-to-peer architecture [8],
rather than the standard client-server architecture. The standard ver-
sion of Synergy installs a a device server on the computer where
the physical input devices are attached and device clients on the re-
mote controlled computers. Our modified version installs the same
software component on each computer, which combines the capa-
bilities of Synergy server and client (R2): On the one hand, every
computer injects events from the attached input devices into the net-
work, tagged with one particular user’s identity. On the other hand,
every computer receives events from all other computers and deter-
mines if they concern the desktop area managed by that computer,
based on the spatial model we provide.

Moreover, we install the X-Window System [24] with support
for Multi-Pointer X (MPX), which allows using multiple sets of
input devices on one computer [13]. MPX supports multiple con-
current window foci (R3), as long as the applications running un-
der MPX correctly distinguish events from different input devices.
Fortunately, this is — mostly — the case for contemporary Linux soft-
ware, in particular, the Firefox web-browser, which is used as the
main application platform in our system. Since a standard window
manager cannot render multiple mouse cursors without flickering,
we use the glass-sheet to render multiple cursors in distinct colors.

MPX was originally intended for use with multiple physical in-
put devices connected to the same computer. However, we have

Uhttp://synergy-project.org/



Figure 3: Cloning a web-browser on another desktop. An icon in the browsers toolbar indicates that it is synchronized to another browser
(red circle in the upper image). After moving the viewport in the source browser (left), the viewport of the synchronized browser (right) has
automatically been updated.

extended it to accept the virtual input devices provided by our input
redirection component. Consequently, we arrive at the combined
effect of being able to control any application on any display con-
nected to any computer using any input device. Per default, we
make all displays accessible. However, if a user desires privacy for
a personal display, such as a notebook computer, the users allowed
to enter the personal display can be restricted.

Of course, using multiple input devices in the same application
instance only works with applications designed for multi-user op-
eration, which is rarely the case. Fortunately, this restriction turns
out to be of little practical consequence. Concurrent operation in-
side one application instance is rarely an important requirement for
analysis work. Collaborators mostly take turns between working
in parallel with separate documents and discussing common find-
ings, with one user being active at a time [11]. With ample display
space, joint inspection and manipulation of the same document can
be carried out in two synchronized windows, as we will explain in
the next section.

5 WEB APPLICATION MANAGEMENT

Support for multiple concurrent applications on one computer (R4)
is trivially fulfilled by a multi-tasking system such as Linux. Each
computer in the cluster runs arbitrary native application, so that
users can keep using their favorite tools.

However, our main application platform is the web-browser. It
puts an additional level of indirection between applications and the
operating system. For example, applications and data in web ap-
plications are loaded on demand, avoiding the need to install appli-
cations before use. This makes it easy to migrate application state
across computers.

Conventional static web pages and server-side technologies such
as REST encode the user’s document view in the URL. Feeding this
URL into a web-browser on another computer results in displaying
a clone of the same web page, i. e., a document view with the same
content.

We exploit this fact by letting the user invoke a cloned web-
browser instance with the same URL on any computer in the clus-
ter. The clone can be coupled to the master instance (Figure 3), so
that any viewport manipulation (scrolling, resizing, scaling) or page
change of the master instance is reflected by the clone (RS5). This
is useful for “teleporting” information across large display areas to
make them better readable for a collaborating user [4]. We also al-
low to reserve the roles of master and clone or enable bi-directional
synchronization, as long as only one user at a time manipulates the
browser.

By combining input redirection and web-browser cloning, the

illusion of a seamless desktop, which behaves like a conventional
desktop, is achieved, include a migrate operation: Assume that the
user wants to drag a web-browser window from a location on the
source node’s desktop to a location on the target node’s desktop.

While traversing the source node’s desktop, normal dragging is
carried out by the local window manager. As soon as the mouse
moves to the target node’ desktop, an event in the input redirection
component is triggered. A preview picture of the web-browser win-
dow is rendered and transmitted to the daemon on the target node,
along with the current URL of the dragged web-browser (Figure 4).

At the target node, the preview picture is attached to the mouse
cursor and rendered on the glass-sheet. When the user drops the
web-browser in the target location, the daemon on the target note
creates a new web-browser instance with the URL specified in the
input redirection event.

In a final step, the source web-browser is deleted to finish the
illusion that the web-browser has been migrated to the new location.
Alternatively, a copy operation retains both web-browser instances
and synchronizes their behavior.

Figure 4: Migrating a browser window to another desktop. The
source window is shown on the left, a preview while dragging in the
middle, and the target window on the right.

Since we allow arbitrary web applications, document manipula-
tions across browser instances are not automatically synchronized.
However, many web applications are able to synchronize with their
web server in real-time. Changes reported to the web server are
forwarded to other users viewing the same document, effectively
allowing shared work (R6).

One could serialize the full internal state of a master web-
browser and duplicate it in a clone. However, for the analysis sce-
narios investigated so far, we found it sufficient to rely on cloning
the URL and using shared web applications such as Google Docs
or Wikipedia.



2
: L

o8 Be¢

/
oBeso /0 Lo

4
og8ace oo soec8eot

oB6e08s ¢ B8 °/

& coo 8088
o s000e80

Figure 5: Visual links can span keyword instances across multiple physical desktops.

6 VISUAL LINKS

Visual links have been used to guide the users attention to impor-
tant information on large screen areas [29]. The same visualization
technique can also be used on our seamless desktop to increase the
level of collaboration (Figure 5).

Users can highlight a keyword or section in a web-browser and
invoke visual links to guide other users to other occurrences of
the search term. Occurrences are identified by searching the web-
browsers document object model (DOM). Since most web applica-
tions store its data in the DOM (including alt tags for images), this
approach yields good results without knowing details about the ap-
plications in advance. The search term is sent to the server daemon
and forwarded via client daemons to the web-browser instances.
Matches are returned to the server daemon, which computes the
global routing of the visual links. The routes are forwarded to the
client daemons, which display them by drawing colored curves on
the glass-sheets.

Extending web applications to provide support for other data
sources is rather straight forward using a small amount of custom
JavaScript that answers requests in JSON via the WebSocket inter-
face provided by the browser plug-in. For example, we have created
a mashup using the Google Maps API 2 to show geographic loca-
tions corresponding to a textual identifier, such as an address.

7 DiscussION

The conceptually closest work to ours is SAGE2 [19], which shares
many of the design objectives with our framework. The creators
of SAGE?2 state that among their key objectives are (1) integration
of multi-user applications, (2) enhanced real-time distance collab-
oration, and (3) a reduced barrier to entry. Like us, they choose
web technology to address the need for easy entry and for re-use of
legacy (web) applications.

However, their approach differs in key design decisions. SAGE2
turns the canvas of a browser displayed full-screen as a replacement

Zhttps://developers.google.com/maps/documentation/javascript/

for the desktop. By allowing the browser to monopolize all input
and output resources, any restrictions of the underlying operating
system concerning multi-user operation, screen size etc. are effec-
tively removed.

This comes at a price: SAGE2 must duplicate a substantial
amount of operating system functions, such as window manage-
ment, cursor and focus management, and encapsulation of web
page instances inside a browser window or browser tab. SAGE2
requires that web applications must be customized to fit inside a
JavaScript container class, and that animations can be synchronized
in lock-step by the server. Native legacy applications and web ap-
plications that cannot be modified must fall back to pixel streaming
from an application server.

In contrast, our framework does not monopolize input and out-
put resources. We extend native system components, such as the
window manager, web browser instances, mouse cursor and input
focus. All features and behaviors of these system components, in-
cluding enhancements from third-party desktop tools, are retained.
This improves the chances that users can continue with their estab-
lished work practices and adopt the new collaborative features as an
enhancement rather than as a replacement of existing features. We
believe that this deep integration with the underlying GUI is impor-
tant for minimizing disruptive changes in the user experience and
ensuring maximum productivity of the users. We plan on conduct-
ing a user study to verify these hypothesis.

8 CONCLUSION

We have presented the first infrastructure that spans a seamless
desktop across multiple computers without wrapping everything
into a monolithic software architecture without any real applica-
tions. Instead, we rely on existing, mature web applications to man-
age the content and provide content-level synchronization across
multiple computers and users. We achieve the illusion of a seam-
less desktop by the combination of software components for in-
put redirection and output “redirection”; the latter in the form of
web-browser instances that are manipulated by a custom software



component. Our infrastructure is easy to set up and maintain, and
leaves room for exploring new collaborative analysis strategies via
arbitrary web application software. We are currently preparing a
series of experiments on such collaborative work strategies.
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