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SAMPLE VARIANCE IN FREE PROBABILITY

WIKTOR EJSMONT AND FRANZ LEHNER

Abstract. Let X1, X2, . . . , Xn denote i.i.d. centered standard normal random variables, then
the law of the sample variance Qn =

∑
n

i=1
(Xi −X)2 is the χ2-distribution with n− 1 degrees

of freedom. It is an open problem in classical probability to characterize all distributions with
this property and in particular, whether it characterizes the normal law. In this paper we
present a solution of the free analogue of this question and show that the only distributions,
whose free sample variance is distributed according to a free χ2-distribution, are the semicircle
law and more generally so-called odd laws, by which we mean laws with vanishing higher order
even cumulants. In the way of proof we derive an explicit formula for the free cumulants of Qn

which shows that indeed the odd cumulants do not contribute and which exhibits an interesting
connection to the concept of R-cyclicity.

Dedicated to our friend and mentor Marek Bożejko on the occasion

of his 70-th birthday

1. Introduction

Many questions in classical statistics involve characterization problems, which usually are in-
stances of the following very general question:

Problem 1.1. Let X1, X2, . . . , Xn be independent random variables with common unknown
distribution function F , and T := T (X1, X2, . . . , Xn) a statistic, based on X1, X2, . . . , Xn, with
distribution function G. Can F be recovered from G?

Problems of this kind are the central leitmotiv of the fundamental work of Kagan, Linnik and
Rao [17]. In the present paper we solve the free version of the following problem, which is still
open in classical probability and might be called χ2-conjecture, see [17, p. 466]:

Conjecture 1.2. If X1, X2, . . . , Xn are non-degenerate, independently and identically dis-
tributed classical random variables with finite non-zero variance σ2, then a necessary and suf-
ficient condition for X1 to be normal is that

∑n
i=1(Xi −X)2/σ2 be distributed as classical chi-

square distribution with n− 1 degrees of freedom.

The classical χ2-conjecture was studied previously by several authors. The first result is due
to Ruben [28], who proved the conjecture under the assumption that either n = 2 or X1 is
symmetric. It is not known whether the symmetry hypothesis can be dropped for n ≥ 3. In
a later paper [29] Ruben used combinatorial tools to show that the symmetry condition can
be dropped provided the sum of squares of the sample observations about the sample mean,
divided by σ2, is distributed as chi-square for two distinct sample sizes m 6= n and m,n ≥ 2.
The proof given by Ruben is based on the cumulants of the sample variance and is somewhat
complicated. Shortly later a simpler and more direct proof based on the moments of the sample
variance was presented by Bondesson [5].
The original problem was solved recently by Golikova and Kruglov [13] under the additional
assumption that X1, X2, . . . , Xn are independent infinitely divisible random variables.
The following related characterization problem was solved by Kagan and Letac [18]: Let
X1, X2, . . . , Xn be independent and identically distributed random variables and assume that
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the distribution of the quadratic statistic
∑n

i=1(Xi −X + ai)
2 depends only on

∑n
i=1 a

2
i . Then

each Xi have distribution N(0, σ).
In the present paper we answer analogous questions in free probability. Free probability and free
convolution was introduced by Voiculescu in [37] as a tool to study the von Neumann algebras
of free groups. Free probability is now an established field of research with deep connections
to combinatorics, random matrix theory, representation theory and many analogies to classical
probability. Let us restrict our discussion to two specific ones, which are relevant to the problems
discussed in the present paper. On the analytic side the Bercovici-Pata bijection [4] provides
a one-to-one correspondence between infinitely divisible measures with respect to classical and
free convolution. For example, the analogue of the normal law is played by Wigner’s semicircle
distribution which features as the limit law in the free central limit theorem.
On the combinatorial side we will make heavy use of free cumulants introduced by Speicher [31].
Roughly speaking, any result about classical cumulants can be translated to free probability
by replacing the lattice of set partitions by the lattice of noncrossing partitions. Our standard
reference for free cumulants is the book [27].
We are concerned here with free analogues of characterization theorems in the spirit of [17].
The study of free analogues of classical theorems has witnessed increasing interest during the
last decade, see, e.g., [6, 12, 15, 22, 35, 33, 34]. Many properties of free random variables are
analogous to those of their classical counterparts, in particular when they are picked according
to the Bercovici-Pata bijection. There are, however, exceptions, mostly due to the failure
of Marcinkiewicz’ and Cramér’s theorems in free probability. In particular, Bercovici and
Voiculescu [3] showed that there exist free random variables with a finite number of nonvanishing
free cumulants which are not semicircular, see [7] for a characterization of such distributions.
This class of distributions appears in some (but not all) free characterization problems which
are analogues of classical characterizations of the normal law, cf. [21, 7].
In the present paper we show that Conjecture 1.2 also falls in this class of problems and instead
of Wigner laws we obtain the class of odd laws, i.e., laws with vanishing even cumulants. Such
laws do not exist in classical probability, but can be constructed in free probability using the
results of [7]. On the way we encounter a remarkable cancellation phenomenon: odd cumulants
do not contribute to the distributions of certain quadratic statistics.
The paper is organized as follows. In section 2 we review basic free probability and the statement
of the main result. Next in the subsection 2.2 we quote complementary facts, lemmas and
indications. In the third section we prove our main results. Finally, in section 4 we look more
closely at the relation between the sample variance, the free commutator, R−cyclic matrices
and free infinite divisibility.

2. Free probability and statement of the main result

2.1. Basic Notation and Terminology. A tracial noncommutative probability space is a
pair (A, τ) where A is a von Neumann algebra, and τ : A → C is a normal, faithful, tracial
state, i.e., τ is linear and continuous in the weak* topology, τ(XY ) = τ(Y X), τ(I) = 1,
τ(XX∗) ≥ 0 and τ(XX∗) = 0 implies X = 0 for all X, Y ∈ A.
The (usually taken to be self-adjoint) elements X ∈ Asa are called (noncommutative) random
variables. Given a noncommutative random variable X ∈ Asa, the distribution of X in the
state τ is the unique probability measure µX on R (given by the spectral theorem) such that
τ(f(X)) =

∫

R
f(λ) dµX(λ) for any bounded Borel function f on R.

2.2. Free Independence, Free Convolution and Free infinite Divisibility. A family of
von Neumann subalgebras (Ai)i∈I of A are called free if τ(X1 . . .Xn) = 0 whenever τ(Xj) = 0
for all j = 1, . . . , n and Xj ∈ Ai(j) for some indices i(1) 6= i(2) 6= · · · 6= i(n). Random variables
X1, . . . , Xn are freely independent (free) if the subalgebras they generate are free. Free random
variables can be constructed using the reduced free product of von Neumann algebras [37]. For
more details about free convolutions and free probability theory, the reader can consult [27, 36].
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It can be shown that the joint distribution of free random variables Xi is uniquely determined
by the distributions of the individual random variables Xi and therefore the operation of free
convolution is well defined: Let µ and ν be probability measures on R, and X, Y self-adjoint
free random variables with respective distributions µ and ν, The distribution of X+Y is called
the free additive convolution of µ and ν and is denoted by µ⊞ ν.
In analogy with classical probability, a probability measure µ on R is said to be freely infinitely
divisible (or FID for short) if for each n ∈ {1, 2, 3, . . .} there exists a probability measure µn

such that µ = µn ⊞ · · ·⊞ µn
︸ ︷︷ ︸

n−times

.

2.3. The Cauchy-Stieltjes Transform and Free Convolution. The analytic approach to
free convolution uses the Cauchy transform

Gµ(z) =
∫

R

1

z − y
µ(dy).(2.1)

of a probability measure µ. It is analytic on the upper half plane C+ = {x+ iy|s, t ∈ R, y > 0}
and takes values in the closed lower half plane C− ∪ R. The Cauchy transform has an inverse
at a neighbourhood of infinity which has the form

G−1
µ (z) =

1

z
+Rµ(z)

where Rµ(z) is analytic in a neighbourhood of zero and is called R-transform. Then free
convolution is defined (see [38]) via the identity

Rµ⊞ν = Rµ +Rν .(2.2)

The coefficients of the R-transform

RX(z) =
∞∑

n=0

Kn+1(X) zn.(2.3)

are called free cumulants of the random variable X .
The Cauchy transform is related to the moment generating function MX as follows:

MX(z) =
∞∑

n=0

τ(Xn) zn =
1

z
GX

Ç
1

z

å
.(2.4)

2.4. Some probability distributions. Let us now recall basic properties of some specific
probability distributions which play prominent roles in the present paper.

2.4.1. Wigner semicircular distribution. A non-commutative random variable X is said to be
free normal variable (i.e. have Wigner semicircular distribution) if the Cauchy-Stieltjes trans-
form is given by the formula

Gµ(z) =
z −

√
z2 − 4

2
,(2.5)

where |z| is big enough, where the branch of the analytic square root should be determined by
the condition that ℑ(z) > 0 ⇒ ℑ(Gµ(z)) 6 0 (see [30]). Equation (2.5) describes the family of
distributions with mean zero and variance one (see [11, 30]). This measure has density

√
4− x2

2π
,

on −2 ≤ x ≤ 2. The Wigner semicircular distribution have cumulants Ki = 0 for i > 2.
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2.4.2. Free Poisson distribution. A non-commutative random variable X is said to be free-
Poisson variable if it has Marchenko-Pastur (or free-Poisson) distribution ν = ν(λ, α) defined
by the formula

ν = max{0, 1− λ} δ0 + ν̃,(2.6)

where λ ≥ 0 and the measure ν̃, supported on the interval (α(1 −
√
λ)2, α(1 +

√
λ)2), α > 0

has the density (with respect to the Lebesgue measure)

ν̃(dx) =
1

2παx

»
4λα2 − (x− α(1 + λ))2 dx.

The parameters λ and α are called the rate and the jump size, respectively. It is worth to note
that a non-commutative variable with Marchenko-Pastur distribution arises also as a limit in
law (in non-commutative sense) of variables with distributions ((1− λ

N
)δ0+

λ
N
δα)

⊞N as N → ∞,
see [27]. Therefore, such variables are often called free-Poisson. It is easy to see that if X is
free-Poisson, ν(λ, α), then Kn(X) = αnλ. Therefore its R-transform has the form

R(z) =
λα

1− αz
.

2.4.3. Free chi-square distribution. Let X1, . . . , Xn be free identically distributed random vari-
ables from the Wigner semicircular distribution with non-zero variance σ2 and mean zero, and
δ =

∑n
i=1m

2
i (mi ∈ R). We call the distribution of the random variable

∑n
i=1(Xi +mi)

2 the
free chi-square distribution with n degrees of freedom and noncentrality parameter δ, and we
denote this distribution χ2(n, σ, δ) (a first version of this definition was introduced in [15]). In
terms of R-transforms, a random variable Y has distribution χ2(n, σ, δ) if and only if

RY (z) =
nσ2

1− σ2z
+

δ

(1− 2z)2
.(2.7)

If δ = 0, the free chi-square distribution is called central, otherwise non-central and then we
will write χ2(n, σ) and from (2.7) we see that χ2(n, σ) has the Marchenko-Pastur distribution
ν(n, σ2). Moreover, we will use the notation χ2(n) := χ2(n, 1). It was shown in [15] that these
distributions form a semigroup, namely χ2(n1, σ, δ1)⊞ χ2(n2, σ, δ2) = χ2(n1 + n2, σ, δ1 + δ2).

2.4.4. Even elements. We call an element X ∈ A even if all its odd moments vanish, i.e.
τ(X2i+1) = 0 for all i ≥ 0. It is immediately seen that the vanishing of all odd moments is
equivalent to the vanishing of all odd cumulants, i.e., K2i+1(X) = 0 and thus the even cumulants
contain the complete information information about the distribution of an even element. The
sequence αn = K2n(X) is called the determining sequence of X .

2.4.5. Odd elements. We call an element X ∈ A odd if K2(X) > 0 and all its even free
cumulants of order higher than two vanish, i.e. if K2i(X) = 0 for all i ≥ 2.
The basic example of such a law is Wigner’s semicircular distribution. The classical analogue
of odd elements only include the normal distribution because otherwise we could construct a
normal random variable which is the sum of independent non-normal random variables (see
below for the free case). This contradicts Cramér’s decomposition theorem. However the free
analogues of Marcinkiewicz’ and Cramér’s theorems fail. Bercovici and Voiculescu [3] showed
that there exist probability distributions µǫ with free cumulants K1(X) = 0, K2(X) = 1,
K3(X) = ǫ and Ki(X) = 0 for i ≥ 4 if ǫ is small enough. This is an odd element and
thus an explicit counterexample to the free analogue of Marcinkiewicz’ theorem. To invalidate
Cramér’s theorem, take free copies X1 and X2 of random variables with distribution µǫ, then
the difference X1 − X2 is semicircular. Chistyakov and Götze [7] gave a detailed description
of laws with finitely many free cumulants of arbitrary order. Thus an abundance of odd laws
exists.
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2.5. The main result. The main result of this paper is the following characterization of odd
elements in terms of the sample variance. The proof of this theorem is given in Section 3.
The sample variance of a finite sequence of random variables Xi is the quadratic form

(2.8) S2
n =

1

n

n∑

i=1

(Xi −X)2 =
1

n

Å
1− 1

n

ã n∑

i=1

X2
i −

1

n

n∑

i,j=1, i 6=j

XiXj =
1

n2

∑

1≤i<j≤n

(Xi −Xj)
2.

However in order to simplify notation in the present paper we chose to consider and call “sample
variance” the rescaled quadratic form Qn = nS2

n =
∑n

i=1(Xi −X)2.
Our main result resolves the free analogue of χ2-conjecture.

Theorem 2.1. Let X1, X2, . . . , Xn ∈ Asa be free copies of a random variable with finite non-
zero variance σ2. Then Qn is distributed according to χ2(n − 1, σ) if and only if X is odd.

Depending on the point of view it can be interpreted both as a positive and a negative solution.
Taking into account the failure of Marcinkiewicz theorem this confirms the free analogue of the
χ2-conjecture in the broad sense.
If we suppose in addition that the distribution is even, then the above theorem gives a positive
answer to the free analogue of Ruben’s first theorem [28].

Proposition 2.2. Let X1, X2, . . . , Xn be free identically distributed random variables with fi-
nite non-zero variance σ2, and assume that the distribution of X1 is symmetric. Then Qn is
distributed as χ2(n− 1, σ) if and only if X1 has Wigner semicircular law.

On the other hand, the free analogue of Ruben’s second theorem [29] (see also [5]) does not
hold:

Proposition 2.3. Let X1, X2, . . . denote independently and identically distributed random vari-
ables with finite non-zero variance σ2. Let m,n denote distinct integers not less than 2. Then
for Qn/σ

2 and Qm/σ
2 to be distributed as χ2(n − 1) and χ2(m − 1), respectively, it is not

necessary that X1 is semicircular.

Proof of Proposition 2.2. If Qn is distributed as χ2(n − 1, σ) then X1 is odd, but taking into
account that X1 is symmetric we have that its odd central moments vanish, and therefore its
odd cumulants higher than the first vanish, so X1 has Wigner semicircular distribution.
Proof of Proposition 2.3. Assume that K1(X1) = 0, K2(X1) = σ2, K3(X1) = ǫ and Ki(X1) = 0
for i ≥ 4 where ǫ is small enough. By Theorem 2.1 we see that Qn and Qm have χ2(n − 1, σ)
and χ2(m− 1, σ) distribution respectively.

�

Remark 2.4. In this paper we assume that the involved random variables are bounded, that
is Xi ∈ A, as was common practice for a long time. Recently however unbounded random
variables, i.e., operators affiliated with the von Neumann algebra in question, came into the
focus of research. This happened in particular in connection with certain characterization
problems, see, e.g., [8, 10, 9]. It follows from the following result Chistyakov and Goetze that
for the characterization problems pertinent to the present paper the question of boundedness
is unessential.

Lemma 2.5 ( [7, Lemma 3.10]). Assume that µ = µ1⊞µ2, where µ has compact support. Then
µ1 and µ2 have compact support as well.

In terms of operators this means that if X, Y ∈ ‹Asa are free random variables such that
X + Y ∈ Asa, i.e., X + Y is bounded, then X, Y ∈ Asa. Now we will show that Theorem 2.1
is true under weaker conditions.

Corollary 2.6. Let X1, X2, . . . , Xn ∈ ‹Asa be selfadjoint free random variables and assume
Qn = 1

n

∑

i<j(Xi −Xj)
2 is bounded. Then all Xi are bounded.
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Proof. Since Xi are self-adjoint and nQn =
∑

1≤i≤j≤n(Xi − Xj)
2 is bounded, it follows that

(Xi − Xj)
2 is bounded and hence also Xi − Xj. By Lemma 2.5 we deduce that all Xi are

bounded. �

The proof of Ruben’s theorem [28] heavily relies on the symmetry of random variables. Is
it possible to drop the hypothesis that the random variables are symmetric? Golikova and
Kruglov [13] give a partial answer to this question – instead of symmetry of X1 they assume
infinite divisibility. The following is a free version of their result which characterizes the classical
normal law by the sample variance. We drop the assumption thatXi have the same distribution,
because with this assumption the result follows directly from Theorem 2.1 (we cannot use the
Bercovici-Pata bijection to prove it because it does not map classical chi-square to free chi-
square distributions).

Proposition 2.7. Let X1, X2, . . .Xn denote free independent, infinitely divisible random vari-
ables with finite non-zero variance σ2 with mean τ(X1) = τ(X2) = · · · = τ(Xn) and Var(X1) =
Var(X2) = · · · = Var(Xn) = 1. Then if Qn is distributed as free χ2(n − 1) if and only if
X1, ..., Xn are identically distributed Wigner semicircular random variables.

We conclude with a free version of a the following result of Kagan and Letac [18]: Fix an integer
n ≥ 3 and letX1, X2, . . . , Xn be independent identically distributed random variables. Consider
the linear subspace E = 1⊥ of Euclidean space Rn , i.e., the hyperplane E = {(a1, a2, · · · , an) :
a1 + a2 + · · ·+ an = 0}. Then the following characterizations hold:

(i) If the distribution of the E-valued random variable

V = (X1 −X, . . . , Xn −X)

is invariant under all rotations of the Euclidean space E, then the Xi’s are normally
distributed.

(ii) If the distribution of the random variable

n∑

i=1

(Xi −X + ai)
2

does not change as the real parameters ai vary on a sphere (i.e., the euclidean length
‖a‖2 = a21 + a22 + · · ·+ a2n remains constant), then the Xi’s are normally distributed.

A key ingredient of the proof of these classical results is played by Marcinkiewicz’ theorem. As
we discussed above, Marcinkiewicz’ theorem has no analogue in free probability and we will
use different methods to prove the following free version of [18]. This method also works in
classical probability if we assume that all moment exists.

Proposition 2.8. Let n be a fixed integer n ≥ 3. Let X1, X2, . . . , Xn be free identically dis-
tributed random variables.

(1) If for all a ∈ E ⊂ Rn the distribution of the random variable

n∑

i=1

(Xi −X + ai)
2

depends only on ‖a‖2 = a21 + a22 + · · ·+ a2n, then the Xi’s obey the semicircle law.
(2) If the distribution of the E-valued random variable

V = (X1 −X, . . . , Xn −X)

is invariant under all rotations of the Euclidean space E, then the Xi’s obey the semi-
circle law.
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2.6. Noncrossing Partitions. Let S be finite subset of N. A partition of S is a set of mutually
disjoint subsets (also called blocks)B1, B2, . . . , Bk ⊆ S whose union is S. Any partition π defines
an equivalence relation on S, denotes ∼π, such that the equivalence classes are the blocks π.
That is, i ∼π j if i and j belong to the same block of π. A partition π is called noncrossing if
different blocks do not interlace, i.e., there is no quadruple of elements i < j < k < l such that
i ∼π k and j ∼π l but i 6∼π j.
The set of non-crossing partitions of S is denoted by NC (S), in the case where S = [n] :=
{1, . . . , n} we write NC (n) := NC ([n]). NC (n) is a poset under refinement order, where we
say π ≤ ρ if every block of π is contained in a block of ρ. It turns out that NC (n) is in fact a
lattice, see [27, Lecture 9].
The maximal element of NC (n) under this order is denoted by 1̂n. It is the partition consisting
of only one block. On the other hand the minimal element 0̂n is the unique partition where
every block is a singleton.
Sometimes it is convenient to visualize partitions as diagrams, for example 1̂n = · · · and
0̂n = · · · .

2.7. Some Special Notations. We will be concerned with certain special classes of noncross-
ing partitions. If n is even we denote by NCE (n) the subset of even noncrossing partitions,
where we say that a partition is even if all its blocks have even cardinality. Even more specific
we denote by NC 2(n) is the set of all noncrossing pair partitions, i.e., partitions where every
block has size 2.
Two specific minimal pair partitions will play a particularly important role, namely 1̂r2 =

· · · ∈ NC (2r), which is a kind of blow up of 1̂r and its shift ν0r = · · · ∈ NC (2r).
In the proof of Theorem 2.1 we will use telescoping argument and put a filtration on NC (n) by
avoiding certain blocks. For this purpose we introduce the following notation.
For a subset B ⊆ N let NCB(n) := {π ∈ NC (n) : B ∈ π}, i.e., the collection of noncrossing
partitions which contain B as a block. On the other hand, for a family B1, B2, . . . , Bm ⊆ N

of subsets let NCB1,...,Bm
(S) := {π ∈ NC (S) : π ∩ {B1, . . . , Bm} = ∅}, i.e., the collection of

noncrossing partition which do not contain any Bi as a block. Finally, combining the two
notations we define NCB

B1,...,Bm
(n) := NCB(n) ∩ NCB1,...,Bm

(n).

2.8. Kreweras Complements. Kreweras [20] discovered an interesting antiisomorphism of
the lattice NC (n), now called the Kreweras complementation map, of which we will need two
variants. Given a noncrossing partition π of {1, 2, . . . , n}, the left Kreweras complement ↼π is the
maximal noncrossing partition of the ordered set {1̄, 2̄, . . . , n̄} such that π ∪↼π is a noncrossing
partition of the interlaced set {1̄, 1, 2̄, 2, . . . , n̄, n}. Similarly, the right Kreweras complement
⇀π is the maximal noncrossing partition of the ordered set {1̄, 2̄, . . . , n̄} such that π ∪ ⇀π is a
noncrossing partition of the interlaced set {1, 1̄, 2, 2̄, . . . , n, n̄}. It is then clear that ⇀◦↼=id and
it can be shown that

(2.9) |⇀π | = |↼π | = n + 1− |π|.
Finally we define the extended Kreweras complement Êπ to be the maximal noncrossing partition
of the ordered set {0̄, 1̄, . . . , n̄} such that π ∪ Êπ is a noncrossing partition of the interlaced set
{0̄, 1, 1̄, 2, 2̄, . . . , n, n̄}. The extended Kreweras complement is always irreducible, i.e., 0̄ and n̄
are in the same block of Êπ. In fact it is obtained by joining 0̄ to the last block of ⇀π , i.e., the
block containing n̄, or by joining n + 1 to the first block of ↼π . The following observation is
useful for recursive proofs involving the Kreweras complement(s).

Lemma 2.9. Let π ∈ NC (n) and B = {j1, j2, . . . , jp = n} be its last block. Let π1, π2, . . . , πp
be the restrictions of π to the maximal intervals of {1, 2, . . . , n} \ B as shown in the following
picture:

π1 π2 π3 · · ·
· · ·

πp
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Then the left Kreweras complement of π is the concatenation of the extended Kreweras comple-
ments of the subpartitions πj:

↼π = Ëπ1 Ëπ2 · · ·Ëπp.
2.9. Free Cumulants. Let C〈X1, . . . , Xn〉 denote the non-commutative ring of polynomials
in variables X1, . . . , Xn ∈ A. The free cumulants are multilinear maps Kr : Ar → C defined
implicitly by the relation (connecting them with mixed moments)

τ(X1X2 . . .Xn) =
∑

π∈NC (n)

Kπ(X1, X2, . . . , Xn),(2.10)

where

Kπ(X1, X2, . . . , Xn) := ΠB∈πK|B|(Xi : i ∈ B)(2.11)

and NC (n) is the set of all non-crossing partitions of {1, 2, . . . , n} (see [27]). Sometimes we will
write Kr(X) = Kr(X, . . . , X).
Free cumulants provide the most important technical tool to investigate free random variables.
This is due to the basic property of vanishing of mixed cumulants. By this we mean the fact
that

Kr(X1, X2, . . . , Xn) = 0

for any family of random variablesX1, X2, . . . , Xn which can be partitioned into two free subsets.
For free sequences this can be reformulated as follows. Let (Xi)i∈N be a sequence of free random
variables and h : [r] → N a map. We denote by ker h the set partition which is induced by the
equivalence relation

i ∼ker h j⇐⇒h(i) = h(j).

Using this notation, we have that

(2.12) Kπ(Xh(1), Xh(2), . . . , Xh(r)) = 0 unless ker h ≥ π.

Our main technical tool is the free version, due to Krawczyk and Speicher [19] (see also [27,
Theorem 11.12]), of the classical formula of James/Leonov and Shiryaev [16, 23] which expresses
cumulants of products in terms of individual cumulants.

Theorem 2.10. Let r, n ∈ N and i1 < i2 < · · · < ir = n be given and let

ρ = {(1, . . . , i1), . . . , (ir−1 + 1, . . . , ir)} ∈ NC (n)

be the induced interval partition. Consider now random variables X1, . . . , Xn ∈ A. Then the
free cumulant of the products can be expanded as follows:

Kr(X1 . . .Xi1 , . . . , Xir−1+1 . . .Xn) =
∑

π∈NC (n)

π∨ρ=1̂n

Kπ(X1, . . . , Xn).(2.13)

In the special case of products of pairs of free elements this yields the following formula for
multiplicative free convolution.

Theorem 2.11 ([27, Theorem 14.4]). Let {X1, X2, . . . , Xr} and {Y1, Y2, . . . , Yr} be two mutually
free sets of random variables, then

Kr(X1Y1, X2Y2, . . . , XrYr) =
∑

π∈NC (r)

Kπ(X1, X2, . . . , Xr)K⇀π(Y1, Y2, . . . , Yr)

This motivates the following definition.

Definition 2.12 ([27, Ch. 17]). Let f(z) =
∑∞

n=1 anz
n and g(z) =

∑∞
n=1 bnz

n be two formal
power series. Their boxed convolution is defined as f ⋆ g(z) =

∑∞
n=1 cnz

n, where

cn =
∑

π∈NC (n)

aπb⇀π =
∑

π∈NC (n)

a↼πbπ.
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As examples, consider the univariate case of Theorem 2.11, which can be rewritten as RXY (z) =
RX ⋆ RY (z), or [27, Proposition 11.25], which states that the R-transform of an even element
X can be written as

RX2(z) = α ⋆ ζ(z)

where α(z) =
∑∞

n=1K2n(X)zn is the determining series of X and ζ(z) =
∑∞

n=1 z
n is the so-called

Zeta-series. Combinatorially this means

(2.14) Kr(X
2) =

∑

π∈NC (r)

απ =
∑

π∈NC (r)

∏

B∈π

K2|B|(X).

The next result follows from [15, Proposition 2.2]; see Corollary 4.11 below for a generalization.

Proposition 2.13. Let X1, X2, . . . , Xn be free identically distributed Wigner semicircular ran-
dom variables with mean zero and variance σ2. Then the cumulants of Qn are given as follows:

Kr(Qn) = (n− 1) σ2r.(2.15)

The following lemma connects Theorem 2.10 with Definition 2.12 and is the key to the main
result. Its proof is contained in the proof of Proposition 11.25 in the book [27].

Lemma 2.14. Let r ∈ N and π ∈ NCE (2r), then π ∨ 1̂r2 = 1̂2r if and only if π ≥ ν0r, i.e., 1
and 2r lie in the same block of π and elements 2i and 2i+ 1 also lie in the same block of π for
i ∈ [r − 1]. Consequently

{π : π ∨ 1̂r2 = 1̂2r} ∩ NCE (2r) = [ν0r, 1̂2r],

is a lattice isomorphic to NC (r).

Corollary 2.15. There is only one non-crossing pair partition π such that π∨ 1̂r2 = 1̂2r, namely
ν0r = · · · = {(1, 2r), (2, 3), . . . , (2r − 2, 2r − 1)}.
Definition 2.16. Let B1, . . . , Bm be subsets of N and random variables X1, . . . , Xn ∈ A, be
given. Then for an interval partition ρ = {(1, . . . , i1), (i1 + 1, . . . , i2), . . . , (ir−1 + 1, . . . , ir)} we
define the partial cumulant functional

Kρ
B1,...,Bm

(X1, X2, . . . , Xn) =
∑

π∈NCB1,...,Bm(n)

π∨ρ=1̂n

Kπ(X1, . . . , Xn),(2.16)

Usually we will abuse notation and abbreviate this expression as

Kr
B1,...,Bm

(X1 . . .Xi1 , . . . , Xir−1+1 . . .Xir) =
∑

π∈NCB1,...,Bm (n)

π∨ρ=1̂n

Kπ(X1, . . . , Xn).(2.17)

Lemma 2.17. Let P = P (X1, X2, . . . , Xn) be a polynomial of degree at most two in noncom-
muting variables X1, X2, . . . , Xn. Then τ(P (X1, X2, . . . , Xn)) = 0 for every i.i.d. free family
Xi if and only if

∑

σ∈Sn

P (Xσ(1), Xσ(2), . . . , Xσ(n)) = 0.

Proof. Clearly by symmetry the second condition is stronger than the first condition.
In order to show that it is also necessary, we first note that by a simple scaling argument we may
assume without loss of generality that the polynomial in consideration is homogeneous. Clearly
such a polynomial cannot have a constant term and we start with a linear polynomial P =
∑n

i=1 αiXi. By evaluating a distribution with nonzero first moment it follows that
∑n

i=1 αi = 0.
But then we have

∑

σ∈Sn

P (Xσ(1), Xσ(2), . . . , Xσ(n)) =
n∑

i=1

αi(n− 1)!
n∑

k=1

Xk = 0.
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Let us now turn to a homogeneous polynomial of second order

P =
n∑

i,j=1

αijXiXj .

Evaluating at a distribution with first moment µ1 and second moment µ2 we obtain
∑

i 6=j

αijµ
2
1 +

∑

i

αiiµ2 = 0

and it follows that
∑

i 6=j

αij =
∑

i

αii = 0.

Now consider the symmetrization
∑

σ∈Sn

P (Xσ(1), Xσ(2), . . . , Xσ(n)) =
∑

i,j

∑

σ

Xσ(i)Xσ(j)

=
∑

i 6=j

αij(n− 2)!
∑

k 6=l

XkXl +
∑

i

αii(n− 1)!
∑

k

X2
k

= 0.

�

Remark 2.18. (1) Our typical example of a centered linear statistic will be Xi −X.
(2) The example P = X1X2X1 − X2

1X2 shows that in the present formulation the lemma
cannot be extended beyond degree 2.

In the following a polynomial P (X1, X2, . . . , Xn) in noncommuting variables is called symmetric
if it is invariant under permutations, i.e., P (Xσ(1), Xσ(2), . . . , Xσ(n)) = P (X1, X2, . . . , Xn) for
any permutation σ ∈ Sn. For a linear form L =

∑n
i=1 αiXi we denote the permuted form by

Lσ =
∑n

i=1 αiXσ(i).

Lemma 2.19. Let X1, X2, . . . , Xn ∈ Asa be free identically distributed random variables, L =
∑n

i=1 αiXi a linear form such that τ(L) = 0 and Pj = Pj(X1, X2, . . . , Xn) symmetric polynomials
for j ∈ {1, 2, . . . , r} \ {k}. Then

Kr
B1,...,Bm

(P1, . . . , Pk−1, L, Pk+1, . . . , Pr) = 0.

Proof. Let us first observe that for i 6= j we have

Kr
B1,...,Bm

(P1, . . . , Pk−1, Xi, Pk+1, . . . , Pr) = Kr
B1,...,Bm

(P1, . . . , Pk−1, Xj, Pk+1, . . . , Pr),

for all i, j ∈ [n], and r ≥ 1. This follows from the argument that Xi are free i.i.d. and Pj are
symmetric polynomials in the n variables X1, . . . , Xn. It follows by multilinearity that

Kr
B1,...,Bm

(P1, . . . , Pk−1, L, Pk+1, . . . , Pr) = Kr
B1,...,Bm

(P1, . . . , Pk−1, Lσ, Pk+1, . . . , Pr),

for every permutation σ ∈ Sn and taking the average, we have

Kr
B1,...,Bm

(P1, . . . , Pk−1, L, Pk+1, . . . , Pr) =
1

n!

∑

σ∈Sn

Kr
B1,...,Bm

(P1, . . . , Pk−1, Lσ, Pk+1, . . . , Pr) = 0,

again by multilinearity and taking into account Lemma 2.17.
�

Corollary 2.20. Let X1, X2, . . . , Xn ∈ Asa be free identically distributed random variables then

Kr
B1,...,Bm

(Qn, . . . , Qn, Xi −X,Qn, . . . , Qn) = 0.
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3. Proof of the main theorem

Continuing Lemma 2.17 we establish a curious cancellation result for symmetrized squares
of centered linear statistics. A similar phenomenon was observed by Nica and Speicher [26,
Theorem 1.2] in the case of the free commutator. We postpone the investigation of a possible
common pattern between these phenomena to future work.

Lemma 3.1. Let X1, X2, . . . , Xn be free identically distributed copies of a random variable X
and L =

∑n
i=1 αiXi a linear form with τ(L) = 0. Then the distribution of the quadratic statistic

P =
∑

σ∈Sn

L2
σ,

does not depend on the odd cumulants of X.

Proof. We show by induction that the cumulants of P can be expressed in terms of the even
cumulants of X . First we apply the product formula of Theorem 2.10 and obtain

Kr(P ) =
∑

σ1,...,σr∈Sn

Kr(L
2
σ1
, L2

σ2
, . . . , L2

σr
)

=
∑

σ1,...,σr∈Sn

∑

π∈NC (2r)

π∨1̂r
2
=1̂2r

Kπ(Lσ1
, Lσ1

, Lσ2
, Lσ2

, . . . , Lσr
, Lσr

)

=
∑

π∈NC (2r)

π∨1̂r
2
=1̂2r

K̃π(L)

where for π ∈ NC (2r) we write

(3.1) K̃π(L) =
∑

σ1,σ2,...,σr∈Sn

Kπ(Lσ1
, Lσ1

, Lσ2
, Lσ2

, . . . , Lσr
, Lσr

).

We claim that in this decomposition the contributions of non-even partitions cancel each other.
To see this, we proceed by induction and use Lemma 2.19. Let B1, B2, . . . , Bm be an enumera-
tion of all odd subsets of [2r], then we can split off the sum (3.1) the even part and decompose
the rest in a “telescope” fashion as

(3.2) Kr(P ) =
∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

K̃π(L) +
m∑

k=1

∑

π∈NC
Bk
B1,B2,...,Bk−1

(2r)

π∨1̂r
2
=1̂2r

K̃π(L).

The last formula is obtained using the following decomposition

NC (2r) \ NCE (2r) = NCB1(2r) ∪NCB2

B1
(2r) ∪NCB3

B1,B2
(2r) ∪ · · · ∪NCBm

B1,...,Bm−1
(2r).

Directly from the definition we have NCBi

B1,...,Bi−1
(2r)∩NCBj

B1,...,Bj−1
(2r) = ∅, for i 6= j, with the

convention that NCBi

B0
(2r) := NCB1(2r). We will show ⊆ only because the opposite inclusion

is obvious. Given π ∈ NC (2r) \ NCE (2r), let k be the smallest index such that Bk ∈ π then

π ∈ NCBk

B1,...,Bk−1
(2r) for the blocks B1, B2, . . . , Bk−1 do not appear in π.

It remains to show that each individual sum

(3.3)
∑

π∈NC
Bk
B1,B2,...,Bk−1

(2r)

π∨1̂r
2
=1̂2r

K̃π(L)

vanishes. Every π in this sum contains the odd block Bk and splits the complement [2r] \ Bk

into intervals I1, I2, . . . , Il, interpreted in a circular manner, see Fig. 1. Then at least one
of these intervals must be odd. To simplify the discussion we may assume that either I1 is
odd and 2r ∈ Bk or Il is odd and 1 ∈ Bk; this may always be achieved by applying an
even rotation, which does not change the values of the cumulants because of traciality. We
are now in one of the situations depicted in Fig. 1. We concentrate on the first case, i.e.,
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· · ·

j1 j2 jl

· · ·
I1

· · ·
I2

· · ·
I3 · · ·

· · ·
Il

· · ·

j1 j2 jl
I1 I2 · · · Il−1 Il

Figure 1. Two types of partitions with an odd block

I1 = {1, 2, . . . , j1 − 1} and Bk = {j1, j2, . . . , jl} where j1 is even, and jl = 2r. Observe that

every partition π ∈ NCBk

B1,B2,...,Bk−1
(2r) is the concatenation of some noncrossing partition

π′ ∈ NCB1,B2,...,Bk−1
(j1 − 1) and π′′ ∈ NCBk

B1,B2,...,Bk−1
({j1, . . . , 2r}). Now π ∨ 1̂r2 = 1̂2r if and

only if π′ ∨ · · · = 1̂j1−1 and π′′ ∨ · · · = 1̂{j1,...,2r}. Thus we may unfold (3.1)
and factor the sum (3.3) to obtain

∑

π∈NC
Bk
B1,B2,...,Bk−1

(2r)

π∨1̂r
2
=1̂2r

K̃π(L) =
∑

π′∈NCB1,B2,...,Bk−1
(j1−1)

π′∨ · · · =1̂j1−1

K̃π′(L)
∑

π′′∈NC
Bk
B1,B2,...,Bk−1

({j1,...,2r})

π′′∨ · · · =1̂{j1,...,2r}

K̃π′′(L)

=
∑

σ1,σ2,...,σr∈Sn

∑

π′∈NCB1,B2,...,Bk−1
(j1−1)

π′∨ · · · =1̂j1−1

Kπ′(Lσ1
, Lσ1

, . . . , Lσj′
1
−1
, Lσj′

1
−1
, Lσj′

1

)

×
∑

π′′∈NC
Bk
B1,B2,...,Bk−1

({j1,...,2r})

π′′∨ · · · =1̂{j1,...,2r}

Kπ′′(Lσj′
1

, Lσj′
1
+1
, . . . , Lσr

, Lσr
)

=
∑

σj′
1
,σj′

1
+1

,...,σr∈Sn

K
j′
1

B1,B2,...,Bk−1
(P, P, . . . , P, Lσj′

1

)

×
∑

π′′∈NC
Bk
B1,B2,...,Bk−1

({j1,...,2r})

π′′∨ · · · =1̂{j1,...,2r}

Kπ′′(Lσj′
1

, Lσj′
1
+1
, . . . , Lσr

, Lσr
)

.

And by Lemma 2.19 the factor

K
j′
1

B1,B2,...,Bk−1
(P, P, . . . , P, Lσ),

vanishes for every σ. Here we use the notation j′i = j⌈i/2⌉ where ⌈·⌉ is the ceiling function which
rounds up to the nearest integer. �

Remark 3.2. (1) Note that in the case of sample variance we have to assume identical
distribution of the involved random variables for the cancellation phenomenon to take
place; in the case of the free commutator this requirement is not necessary.

(2) The argument put forward in the previous proof is not valid in classical probability
except in the case where Bk is an interval block. For example if r = 3 and B = {1, 3, 6}
then the block B alone ensures that π ∨ = and thus

∑

π∈PB(6)
π∨ =

Kπ(T1, T1, T2, T2, T3, T3) = K3(T1, T2, T3) τ(T1T2T3),

where the sum runs over all set partitions.

Proof of Theorem 2.1. Let X1, . . . , Xn be free copies of a fixed random variable X . We apply
Lemma 3.1 for L = X1 −X and P =

∑

σ∈Sn
L2
σ = (n− 1)!Qn to conclude from (3.2) that

Kr(Qn) =

Ç
1

(n− 1)!

år
∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

K̃π(L).
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Now the fact that Xi are free identically distributed implies that in the sum (3.1) every term
either vanishes or is a multiple of Kπ(X). Therefore we may write

(3.4) Kr(Qn) =
∑

π∈NCE0(2r)

cn(π)Kπ(X)

where NCE 0(2r) = {π ∈ NCE (2r) | π ∨ 1̂r2 = 1̂2r} and cn(π) ∈ R. We will derive an explicit
formula for these coefficients in Section 4 below. Using identity (3.4) we will show that all
even cumulants of higher order vanish, i.e., K2i(X) = 0 for i ≥ 2. First let us compute the
parameters cn(π) in the extreme cases π = ν0r and π = 1̂2r.
For ν0r = · · · only the second cumulant contributes to cn(ν0r) and the value of the
latter does not change if we replace X with a centered semicircular variable of variance σ2. In
this case Corollary 2.15 implies that

Kr(Qn) = cn( · · · ) σ2r,

and from Proposition 2.13 we infer that cn( · · · ) = n− 1.
To compute the value of cn(1̂2r) it is convenient to switch to tensor notation and to identify
the multilinear cumulant functional Kr : An → C with its linear extension Kr : A⊗n → C. Let
us now assume without loss of generality that σ = 1. We have to evaluate

K̃1̂2r
(L) =

n∑

i1,i2,...,ir=1

K2r(Xi1 −X,Xi1 −X,Xi2 −X,Xi2 −X, . . . , Xir −X,Xir −X)

= K2r

ÇÇ n∑

i=1

(Xi −X)⊗ (Xi −X)

å⊗rå

= K2r

ÇÇ n∑

i=1

Xi ⊗Xi − nX ⊗X

å⊗rå
.

Expanding this power yields cumulants of the form

K2r

ÅÅ n∑

i=1

Xi ⊗Xi

ã⊗k

⊗
Å
−nX ⊗X

ã⊗(r−k)ã
= nK2r

ÅÅ
X1 ⊗X1

ã⊗k

⊗
Å
−1

n
X1 ⊗X1

ã⊗(r−k)ã

= n

Ç
−1

n

år−k

K2r(X),

and in total

K̃1̂2r
(L) = n

r∑

k=0

(

r

k

)Ç
−1

n

år−k

K2r(X) = n

Ç
1− 1

n

år

K2r(X).

Next, to evaluate even cumulants, equate the r-th cumulants of Qn and χ2(n− 1), i.e.,

Kr(Qn) = Kr(χ
2(n− 1)) = n− 1.

Denote NCE ′
0(2r) = NCE 0(2r) \ { · · · , 1̂2r}, then we have

(3.5)

n− 1 =
∑

π∈NCE0(2r)

cn(π)Kπ(X)

=
∑

π∈NCE
′
0(2r)

cn(π)Kπ(X) +
∑

π∈NC2(2r)

π∨1̂r
2
=1̂2r

cn(π)Kπ(X) + cn(1̂2r)K2r(X)

=
∑

π∈NCE
′
0(2r)

cn(π)Kπ(X) + cn( · · · ) +
(n− 1)r

nr−1
K2r(X)

=
∑

π∈NCE
′
0(2r)

cn(π)Kπ(X) + n− 1 +
(n− 1)r

nr−1
K2r(X).
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This yields

(3.6)
∑

π∈NCE
′
0
(2r)

cn(π)Kπ(X) +
(n− 1)r

nr−1
K2r(X) = 0.

and the blocks of any π ∈ NCE ′
0(2r) have size strictly smaller than 2r, it follows by induction

that K2r(X) = 0 for r ≥ 2.
Conversely, suppose that Xi’s are odd, then from Lemma 3.1 we get

Kr(Qn) =
∑

π∈NCE0(2r)

cn(π)Kπ(X) =
∑

π∈NC 2(2r)

π∨1̂r
2
=1̂2r

cn(π)Kπ(X)

= cn( · · · ) = n− 1.

�

Proof of Proposition 2.7. Recall that as a consequence of the free Lévy-Khinchin formula (see
for example [27, Theorem 13.16]) the random variable Xi is infinitely divisible if and only if

Kn+2(Xi) =
∫

R

xndρi(x),

for some finite measure ρi(x) on R. For the semicircular distribution the measure is ρ = δ0 and
it suffices to show that

∫

x2dρi(x) = K4(Xi) = 0. Now if τ(Y1) = τ(Y2) = τ(Y3) = τ(Y4) = 0
then the product formula from Theorem 2.10 implies

(3.7) K2(Y1Y2, Y3Y4) = K2(Y1, Y4)K2(Y2, Y3) +K4(Y1, Y2, Y3, Y4).

We will apply this toQn, so let us first compute the cumulants which will appear after evaluation
of (3.7). By assumption K2(Xi) = 1 for all i and therefore the covariances are

K2(Xi −X,Xj −X) =







n−1
n

if i = j,

− 1
n

if i 6= j.

It remains to consider cumulants of order 4. First,

n∑

i=1

K4(Xi −X) =
n∑

i=1

ÇÇ
1− 1

n

å4

K4(Xi) +
∑

l 6=i

Ç
−1

n

å4

K4(Xl)

å

=

(Ç
1− 1

n

å4

+
n− 1

n4

)
n∑

i=1

K4(Xi),

second,

n∑

i,j=1
i 6=j

K4(Xi −X,Xi −X,Xj −X,Xj −X)

=
n∑

i,j=1
i 6=j

ÇÇ
1− 1

n

å2 Ç
−1

n

å2

(K4(Xi) +K4(Xj)) +
∑

l 6=i,j

Ç
−1

n

å4

K4(Xl)

å

=

(

2(n− 1)

Ç
1− 1

n

å2 Ç 1
n

å2

+
(n− 1)(n− 2)

n4

)
n∑

i=1

K4(Xi),

and thus
n∑

i,j=1

K4(Xi −X,Xi −X,Xj −X,Xj −X) =
(n− 1)2

n2

n∑

i=1

K4(Xi).



SAMPLE VARIANCE IN FREE PROBABILITY 15

Using these formulas we now proceed to (3.7) and obtain

n− 1 = K2(Qn, Qn)

=
n∑

i,j=1

K2((Xi −X)2, (Xi −X)2)

=
n∑

i,j=1

K2(Xi −X,Xj −X)K2(Xj −X,Xi −X)

+
n∑

i,j=1

K4(Xi −X,Xi −X,Xj −X,Xj −X)

=
n∑

i=1

[K2((Xi −X), (Xi −X))]2 +
n∑

i=1,j=1,i 6=j

[K2(Xi −X,Xj −X)]2

+
n∑

i=1

K4(Xi −X) +
n∑

i=1,j=1,i 6=j

K4(Xi −X,Xi −X,Xj −X,Xj −X)

=
(n− 1)2

n
+
n− 1

n
+

(n− 1)2

n2

n∑

i=1

K4(Xi).

So we see that
∑n

i=1K4(Xi) =
∑n

i=1

∫

R
x2dρi(x) = 0 and thus ρi(x) = δ0(x). Note that the above

measure is the free Lévy measure of the semicircle distribution with mean zero, and variance
one.

�

Proof of Proposition 2.8. Part (1). We write a = ‖a‖θ = ‖a‖(θ1, . . . , θn) where θ belongs to
the unit sphere of E, i.e.,

∑
θi = 0. Thus for ‖a‖ > 0, ai = ‖a‖θi and r ≥ 2 we have

(3.8)

Kr(
∑n

i=1(Xi −X + ai)
2)

‖a‖r = Kr

Å n∑

i=1

(Xi −X)2/‖a‖ −
n∑

i=1

2(Xi −X) θi + ‖a‖
ã

= Kr

Å n∑

i=1

(Xi −X)2/‖a‖ −
n∑

i=1

2(Xi −X) θi

ã

= Kr

Å n∑

i=1

(Xi −X)2/‖a‖ −
n∑

i=1

2Xiθi

ã
.

By the hypothesis the left hand side of (3.8) does not depend on θ, and thus the limit on the
right hand side

lim
‖a‖→+∞

Kr(
∑n

i=1(Xi −X + ai)
2)

‖a‖r = Kr

Å
−

n∑

i=1

2Xiθi

ã
,

does not depend on θ either. Now freeness implies that

Sr(θ1, . . . , θn) := Kr

Å n∑

i=1

Xiθi

ã
=

n∑

i=1

θriKr(Xi) =
Å n∑

i=1

θri

ã
Kr,(3.9)

is a constant function on the unit sphere of the space E. Thus we see S2(θ1, . . . , θn) = K2 and
Sr for r ≥ 3 is constant function on the unit sphere of the space E if and only Kr = 0 for r ≥ 3.
We now show part (2) of Proposition 2.8. It’s easy to observe that for θ ∈ E we have

Kr

Å n∑

i=1

(Xi −X) θi

ã
=

n∑

i=1

θriKr(Xi) =
Å n∑

i=1

θri

ã
Kr,(3.10)

is constant function on the unit sphere of the space E and from the above consideration we get
the statement.

�

Remark 3.3. The preceding proof is also valid in the general setting of [21].



16 WIKTOR EJSMONT AND FRANZ LEHNER

4. R-cyclic matrices and infinite divisibility of quadratic forms

In this section we show how the sample variance can be combined with the concept of R-
cyclicity and give a recipe for computing the coefficients cn(π) in equation (3.4). In particular
we also show that sample variance preserves free infinite divisibility.

4.1. R-cyclic matrices and the distribution of sample variance. The concept of R-
cyclicity was introduced by Nica, Shlyakhtenko and Speicher [24]. Our aim is now to exhibit its
relation to the sample variance and other quadratic forms. We show that the theory of R-cyclic
matrices can by used to compute the distribution of the sample variance and give a formula
for the cumulants of the sample variance in terms of the even cumulants, which generalizes and
unifies two types of results, namely cumulants of squares of even elements [27, Proposition 11.25]
and cumulants of quadratic forms in gaussian random variables [21, Proposition 4.4].
Here we consider matrices over a non-commutative probability space. Let (A, τ) be a non-
commutative probability space, and let n be a positive integer. The algebra Mn(A) of n × n
matrices over A is a noncommutative probability space with canonical expectation functional

τn(A) =
1

n

n∑

i=1

τ(ai,i),

where A = [ai,j ]
n
i,j=1 is a matrix in Mn(A). Then (Mn(A), τn) is itself a non-commutative

probability space. The definition of R-cyclicity is in terms of the joint R-transform of the
entries of the matrix: one requires that only the cyclic non-crossing cumulants of the entries
are allowed to be different from 0, see Definition 4.1 below. Equivalently, it was shown in
[24, Theorem 8.2] that R-cyclicity is equivalent to the fact that A is free from Mn(C) with
amalgamation over the algebra Dn of scalar diagonal matrices with respect to the conditional
expectation

(4.1)

ED :Mn(A) → Mn(C)

A 7→
n∑

i=1

Eiτ
(n)(A)Ei,

where by Ei we denote the projection matrix onto the i-th unit vector and τ (n)(A)ij = τ(ai,j)
is the entry-wise trace.

Definition 4.1. Let (Mn(A), τn) and n be as above, then a matrix X = [Xi,j]
n
i,j=1 ∈ Mn(A).

is said to be R-cyclic if for every r ≥ 1 and for every choice of indices 1 ≤ i1, j1, . . . , ir, jr ≤ n
the cumulant

Kr(Xi1,j1, Xi2,j2, . . . , Xir,jr) = 0,

unless the indices are cyclic in the sense that j1 = i2, j2 = i3, . . . , jr−1 = ir, jr = i1. In this case
the formal noncommutative power series

(4.2) fX(z1, z2, . . . , zn) =
∞∑

r=1

n∑

i1,i2,...,ir=1

Kr(Xir,i1 , Xi1,i2, . . . , Xir−1,ir) zi1zi2 · · · zir ,

is called the determining series of the entries of X.

The concept of R-cyclicity generalizes the concept of R-diagonality [27, Ex. 20.5] in the sense
that X is R-diagonal if and only if the matrix [ 0 X

X∗ 0 ] is R-cyclic.

Lemma 4.2. For scalar matrices A ∈Mn(C) we have

(i)
n∑

i=1

EiA1EiA2 · · ·EiArEi = ED(A1)E
D(A2) · · ·ED(Ar).

(ii) Let π ∈ NC (r), then
∑

ker i≥π

ED(A1Ei1A2Ei2 · · ·ArEirAr+1) = EDÊπ (A1, A2, . . . , Ar+1).
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Proof. Part (i) follows immediately from the expansion

n∑

k=1

EkA1EkA2 · · ·ArEk =
n∑

k=1

Eka
(1)
k,ka

(2)
k,k · · · a(r)k,k.

To see part (ii) we single out the last block of π (i.e., the block containing r, see Lemma 2.9),
say B = {j1 < j2 < · · · < jp = r}, and group the remaining blocks into subpartitions, empty
partitions allowed, say π1 ∈ NC ([1, j1 − 1]), π2 ∈ NC ([j1 + 1, j2 − 1]), . . . , πp ∈ NC ([jp−1 +
1, jp − 1]). Then we have

ED

Ç
∑

ker i≥π

(A1Ei1A2Ei2 · · ·EirAr+1)

å
= ED

Ç
∑

i

A′
1EiA

′
2Ei . . . A

′
pEiAr+1

å
,

where

A′
k =

∑

ker i≥πk

Ajk−1+1Ei1Ajk−1+2Ei2 · · ·Ajk .

By part (i) this is

ED(A′
1E

D(A′
2) . . . E

D(A′
p)Ar+1),

and by induction this is

ED(A′
1E

DÁπ2
(Aj1+1, . . . , Aj2) · · ·EDÁπp

(Ajp−1+1, . . . , Ar)Ar+1) = EDÊπ (A1, A2, . . . , Ar+1),

where we used Lemma 2.9. �

Proposition 4.3. Let X1, X2, . . . , Xn ∈ A be a free family of even random variables and
A = [ai,j]

n
i,j=1 ∈Mn(C) a scalar matrix. Then the Schur product matrix

(4.3) Z = A ◦X = [ai,jXiXj]
n
i,j=1 =








a1,1X
2
1 a1,2X1X2 . . . a1,nX1Xn

a2,1X2X1 a2,2X
2
2 . . . a2,nX2Xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an,1XnX1 an,2XnX2 . . . an,nX

2
n







,

is R-cyclic.

Proof. We make use of the product formula of Theorem 2.10 and Lemma 2.14 to compute

(4.4)

Kr(Xi1Xi2 , Xi3Xi4 , . . . , Xi2r−1
Xi2r) =

∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

Kπ(Xi1 , Xi2, . . . , Xi2r)

=
∑

π∈NCE(2r)
π≥ν0r

Kπ(Xi1 , Xi2, . . . , Xi2r)

and by (2.12) these mixed cumulants vanish unless ker i ≥ ν0r, i.e., unless i1 = i2r and i2j =
i2j+1 for all j, which exactly means R-cyclicity. It is easy to see that the same holds for
Zi,j = ai,jXiXj . �

Remark 4.4. In some sense Proposition 4.3 is a generalization of the fact [27, Theorem 20.6]
that the product of two free even selfadjoint elements is R-diagonal. This fact is indeed a
consequence if we put A = [ 0 1

1 0 ] in the preceding theorem. In fact it was shown in [14] that
every R-diagonal element can be written as a product of two free even selfadjoint elements. It
is an interesting question what would be a natural factorization of R-cyclic matrices. While
it is necessary for a matrix to be R-cyclic that its entries form R-diagonal pairs, example [27,
Ex. 20.6] shows that the representation (4.3) in the preceding proposition does not cover all
R-cyclic matrices.

Proposition 4.5. Let X1, X2, . . . , Xn ∈ A be a free family of even random variables, X =
[XiXj]

n
i,j=1 and A = [ai,j ]

n
i,j=1 ∈Mn(C) a scalar matrix.
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(i) The determining series of the entries of the R-cyclic matrix A ◦X and the R-transform
of the quadratic form Tn =

∑n
i,j ai,jXiXj are related by

(4.5) fA◦X(z, . . . , z) = RTn
(z),

where RTn
(z) = zRTn

(z).
(ii) The cumulants of Tn are given by

Kr(Tn)

=
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir)
∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

Kπ(Xir , Xi1, Xi1 , Xi2, . . . , Xir−1
, Xir).(4.6)

(iii) If we assume in addition that Xi are identically distributed the previous formula simplifies
to the following convolution-like expression

(4.7) Kr(Tn) =
∑

π∈NC (r)

Tr(ED
↼π (A))

∏

B∈π

K2|B|(X).

Proof. From the definition of Tn we see that

Kr(Tn) =
∑

i1,i2,...,i2r∈[n]

Kr(Zi1,i2 , Zi3,i4, . . . , Zi2r−1,i2r)

=
∑

i1,i2,...,i2r∈[n]
ker i≥ν0r

∑

π∈NCE(2r)
π≥ν0r

ai1,i2ai3,i4 · · · ai2r−1,i2rKπ(Xi1 , Xi2, . . . , Xi2r),

where we used (4.4). Having eliminated the zero contributions we can apply Lemma 2.14 in
the reverse direction and obtain

=
∑

i1,i2,...,i2r∈[n]
ker i≥ν0r

Kr(Zi1,i2 , Zi3,i4, . . . , Zi2r−1,i2r)

=
∑

i1,i2,...,ir

Kr(Zir ,i1, Zi1,i2 , . . . , Zir−1,ir),

which after comparison with (4.2) yields (4.5). We now expand further and obtain

=
∑

i1,i2,...,ir∈[n]

air,i1ai1,i2 · · ·air−1,ir
Kr(XirXi1 , Xi1Xi2 , . . . , Xir−1

Xir)

=
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir)
∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

Kπ(Xir , Xi1, Xi1 , Xi2, . . . , Xir−1
, Xir),

which yields (4.6). Now denoting by π̂ the image of π ∈ NC (r) under the bijection introduced
in Lemma 2.14 we can rewrite this as

=
∑

π∈NC (r)

Ñ
∑

ker i≥π

Tr(AEi1AEi2 . . . AEir)

é
Kπ̂(X).

Finally we infer (4.7) from Lemma 4.2.
�

Remark 4.6. It was observed in [24, Rem. 4.1] that R-cyclicity is preserved under Hadamard
products with constant matrices. Moreover inspecting the preceding proof one can easily see
the that for an arbitrary R-cyclic matrix X = [Xi,j] and any scalar matrix A = [ai,j] the
determining series of the Hadamard product A ◦X = [ai,jXi,j] is given by

fA◦X(z1, z2, . . . , zn) = Tr(fX(AE1 ⊗ z1, AE2 ⊗ z2, . . . , AEn ⊗ zn)).

In fact we have proved the following slightly more general statement.
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Theorem 4.7. Let Xi be free copies of an even random variable X, X = [XiXj ]
n
i,j=1 be a

matrix of products as above and let A1, A2, . . . , Ar ∈Mn(C) be arbitrary scalar matrices. Then

(A1 ◦X, A2 ◦X, . . . , Ar ◦X) is an R-cyclic family and the joint cumulant of Tk =
∑

ij a
(k)
ij XiXj

is

Kr(T1, T2, . . . , Tr) =
∑

π∈NC (r)

Tr(ED
↼π (A1, A2, . . . , Ar))

∏

B∈π

K2|B|(X).

It was shown in [24, Section 8] that R-cyclicity of a matrix is equivalent to freeness from the
algebra of constant matricesMn(C) with amalgamation over the commutative subalgebra Dn of
constant diagonal matrices. Moreover, the cyclic scalar cumulants can be interpreted as entries
of the Dn-valued cumulants as follows.

Proposition 4.8 ([24, Theorem 7.2]). Let (X i) ⊆ Mn(A) be an R-cyclic family over some
noncommutative probability space (A, τ) and denote by KD

r the operator valued cumulant func-
tionals with respect to the conditional expecation (4.1). Then for any Λ1,Λ2, . . . ,Λr−1 ∈ Dn we
have

KD
r (X1Λ1,X2Λ2, . . . ,Xr−1Λr−1,Xr)

=
n∑

i1,i2,...,ir=1

λ
(1)
i1 λ

(2)
i2 · · ·λ(r−1)

ir−1
Kr(X

(1)
ir ,i1, X

(2)
i1,i2 , . . . , X

(r−1)
ir−2,ir−1

, X
(r)
ir−1,ir)Eir .

In our context this leads to an operator valued boxed convolution in the sense of [32, Defini-
tion 2.1.6] as follows.

Proposition 4.9. Let X1, X2, . . . , Xn ∈ A be free even copies of a random variable X and let
X = [XiXj]

n
i,j=1. Then for any scalar matrices A1, A2, . . . , Ar ∈Mn(C) and Λ1,Λ2, . . . ,Λr−1 ∈

Dn we have

KD
r (A1 ◦XΛ1, A2 ◦X2Λ2, . . . , Ar−1 ◦Xr−1Λr−1, Ar ◦Xr)

=
∑

π∈NC (r)

ED
↼π (A1Λ1, A2Λ2, . . . , Ar−1Λr−1, Ar)

∏

B∈π

K2|B|(X).

Proof. We use Proposition 4.8 and expand

KD
r (A1 ◦XΛ1, A2 ◦X2Λ2, . . . , Ar−1 ◦Xr−1Λr−1, Ar ◦Xr)

=
n∑

i1,i2,...,ir=1

a
(1)
ir ,i1λ

(1)
i1 a

(2)
i1,i2λ

(2)
i2 · · · a(r)ir−1,irKr(XirXi1 , Xi1Xi2, . . . , Xir−1

Xir)Eir

=
n∑

i1,i2,...,ir=1

a
(1)
ir ,i1λ

(1)
i1 a

(2)
i1,i2λ

(2)
i2 · · · a(r)ir−1,ir

∑

π∈NC (2r)
π≥ν0r

Kπ(Xir , Xi1 , Xi1, Xi2, . . . , Xir−1
, Xir)Eir

=
∑

π∈NC (2r)
π≥ν0r

∑

ker i≥π

a
(1)
ir ,i1λ

(1)
i1 a

(2)
i1,i2λ

(2)
i2 · · · a(r)ir−1,irEirKπ(X)

=
∑

π∈NC (r)

ED
↼π (A1Λ1, A2Λ2, . . . , Ar−1Λr−1, Ar)Kπ̂(X),

where π̂ is defined in the proof of Proposition 4.5. �

Remark 4.10. In fact it is easy to see that the matrix Ξ = diag(X1, X2, . . . , Xn) is free from
Mn(C) with amalgamation over Dn as well [24, Example 2.3]. We have shown above that
A ◦X = ΞAΞ has the same property although A has not.

As a final corollary we obtain the following formula for the cumulants of the sample variance.
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Corollary 4.11. Let X1, X2, . . . , Xn be free copies of a random variable X and Qn = nS2
n the

rescaled sample variance defined in (2.8). Let X̃ be the symmetrization of X, i.e., a formal
random variable with even distribution and cumulants K2r(X̃) = K2r(X). Then

(4.8) Kr(Qn) = (n− 1)Kr(Z
2),

where Z =
»

n
n−1

PX̃P is the free compression of the symmetrization X̃ of X by a projection P

of trace τ(P ) = n−1
n
.

Proof. By Lemma 3.1 the distribution of Qn does not change if we drop the odd cumulants
and replace X by its symmetrization X̃ . The symmetrization X̃ being even, it follows from
Proposition 4.5 that the information about the distribution of the sample variance is contained
in the R-cyclic matrix A ◦ X̃ = [aijX̃iX̃j]

n
i,j=1, where A = I − 1

n
1. This matrix is idempotent

with ED(A) = (1 − 1/n)I and therefore ED
π (A) = (1 − 1

n
)|π|I for every π ∈ NC (r). We insert

this into (4.7) and the cumulants of Qn evaluate to

Kr(Qn) = n
∑

π∈NC (r)

Ç
1− 1

n

å|↼π|
∏

B∈π

K2|B|(X̃)

This in turn by (2.9) is equal to

= n

Ç
1− 1

n

år+1
∑

π∈NC (r)

∏

B∈π

n

n− 1
K2|B|(X̃).

= (n− 1)
∑

π∈NC (r)

∏

B∈π

n

n− 1
K2|B|

Ñ 
1− 1

n
X̃

é
.

In view of (2.14) this is the same as the cumulant Kr(Z
2) where Z is an even random variable

with cumulants

Kr(Z) =
n

n− 1
Kr

Ñ 
1− 1

n
X̃

é
.

Such a random variable can be modeled as a free compression

Z =
n

n− 1
P

 
1− 1

n
X̃P =

 
n

n− 1
PX̃P,

with τ(P ) = n−1
n
, see [27, Corollary 14.13]. �

Remark 4.12. In the paper [25] of Nica and Speicher cited above, it was shown that for every
probability measure µ there is a convolution semigroup {µ⊞t | t ≥ 1}. Denote ψ(µ) = inf{t |
µ⊞t exists}. This can be seen as some kind of “measure of non-infinite divisibility” in the
sense that µ is ⊞-infinitely divisible if and only if ψ(µ) = 0. It is related to the ⊞-divisibility

indicator φ(µ) of [2] by the inequality ψ(µ) ≤ 1− φ(µ). If X̃ exists, the preceding proof shows
that ψ(Z) ≤ n−1

n
ψ(X̃) and in particular, if X̃ is ⊞-infinitely divisible, then so is Z. It then

follows from [1, Theorem 6.1] that Z2 is infinitely divisible as well and consequently also Qn.
However if X is not infinite divisible, the symmetrization X̃ constructed in Corollary 4.11 in
general cannot be realized as an operator, see [26, Remark 12 (2)].

We show in the final section that any quadratic form in free even random variables preserves
infinite divisibility.
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4.2. Preservation of free infinite divisibility. It is shown in [1] that the free commutator of
⊞-infinitely divisible random variables is also ⊞-infinitely divisible and the authors ask whether
there are other noncommutative polynomials which preserve free infinite divisibility. We show
here that for self-adjoint operators this is the case for any quadratic form in free random vari-
ables whose distribution does not depend on the odd cumulants of the original distribution.
This includes the free commutator and free sample variance. In the proof below we will use
compound free Poisson distributions µ with rate λ and jump distribution ν which is the unique
probability distribution with free cumulants Kn(µ) = λmn(ν). Compound free Poisson distri-
butions are ⊞-infinitely divisible, and moreover, any ⊞-infinitely divisible probability measure
is a weak limit distribution of a sequence of compound free Poisson random variables, see [1,
Proposition A.2].

Proposition 4.13. Let X1, X2, . . . , Xn ∈ Asa be a free family of even ⊞-infinitely divisible
random variables. Let A = [ai,j ]

n
i,j=1 ∈ Mn(C) be a selfadjoint matrix, then the distribution of

the quadratic form Tn =
∑n

i,j ai,jXiXj is also ⊞-infinitely divisible.

Proof. Suppose first that each Xi is a symmetric compound free Poisson variable with rate
λi and jump distribution νi. Let Yi be a free random variable, with compound free Poisson
distribution of rate λi and jump distribution ν2i , i.e., with cumulants given byKr(Yi) = K2r(Xi).
Using the equation (4.6) we have

Kr(Tn) =
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir)
∑

π∈NCE(2r)

π∨1̂r
2
=1̂2r

Kπ(Xir , Xi1, Xi1 , Xi2, . . . , Xir−1
, Xir),

under the bijection introduced in Lemma 2.14 and Kr(Yi) = K2r(Xi) we get

=
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir)
∑

π∈NC (r)
π≤ker i

Kπ(Yi1, Yi2, . . . , Yir)

=
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir)
∑

π∈NC (r)

Kπ(Yi1, Yi2, . . . , Yir)

=
∑

i1,...,ir∈[n]

Tr(AEi1AEi2 . . . AEir) τ
Å r∏

j=1

Yij

ã
= n× Trn⊗τ

[Å n∑

i=1

AEi ⊗ Yi

ãr]
.

Hence the cumulant sequence of Tn is the moment sequence of
∑n

i=1AEi⊗Yi in the probability
space Mn(C)⊗A, with state Trn⊗τ .
Suppose now that Xi has a more general symmetric distribution µi. Then the argument of the
proof of Proposition A.2. in [1] shows that µi can be approximated by symmetric compound
free Poissons, say µi = limk→∞ µi,k. It follows from the above argument that the distribution
Tn can be approximated by freely infinitely divisible distributions and since ID(⊞) is closed
under convergence in distribution, Tn is freely infinitely divisible as well. �

Putting together Lemma 3.1 and Proposition 4.13 we obtain the following corollary.

Corollary 4.14. Let X1, X2, . . . , Xn ∈ Asa be a free family of even ⊞-infinitely divisible random
variables. Let P be a selfadjoint symmectric polynomial of degree 2 in noncommuting variables
such that the distribution of the random variable Y = P (X1, X2, . . . , Xn) does not depend on
the odd cumulants. Then the distribution of Y is ⊞-infinitely divisible as well. In particular,
the commutator i(X1X2 −X2X1) of two ⊞-infinitely divisible random variables is ⊞-infinitely
divisible and the same is true of the sample variance of a free identically distributed family of
⊞-infinitely divisible random variables.

5. Concluding Remarks

In the present paper we have shown that the sample variance shares the following properties
with the free commutator:
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(1) Odd cumulants do not contribute to the distribution.
(2) Infinite divisibility is preserved.

This phenomenon raises the following problems and conjectures, some of which will be investi-
gated in forthcoming papers.

Problem 5.1. Characterize the class of selfadjoint polynomials P ∈ C〈X1, X2, . . . , Xn〉 in non-
commuting variables X1, X2, . . . , Xn with the property that the distribution of P (X1, . . . , Xn)
does not depend on the odd cumulants of X whenever X1, X2, . . . , Xn are free copies of a fixed
random variable X .

Conjecture 5.2. Whenever a homogeneous polynomial P has the properties described in Prob-
lem 5.1 and X1, X2, . . . , Xn are free copies of a ⊞-infinitely divisible random variable X, then
P (X1, . . . , Xn) is ⊞-infinitely divisible as well.
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