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The entanglement negativity is a versatile measure of gtgarent that has numerous applications in quan-
tum information and in condensed matter theory. It can nét efficiently be computed in the Hilbert space
dimension, but for non-interacting bosonic systems, omecompute the negativity efficiently in the number of
modes. However, such an efficient computation does not caewto the fermionic realm, the ultimate reason
for this being that the partial transpose of a fermionic Garsstate is no longer Gaussian. To provide a remedy
for this state of affairs, in this work we introduce efficisrtomputable and rigorous upper and lower bounds to
the negativity, making use of techniques of semi-definitggpmming, building upon the Lagrangian formula-
tion of fermionic linear optics, and exploiting suitableogucts of Gaussian operators. We discuss examples in
guantum many-body theory and hint at applications in thdystd topological properties at finite temperature.

I. INTRODUCTION states of non-interacting models, the negativity can ewen b
efficiently computed in the number of modés ﬁ% 41, 42].

This is possible because the partial transpbse [43] on which
The entanglement negativity is based, reflects partial tiere
theory. Undeniably playing a pivotal role in quantum infarm vgrsal [44], which maps bosonic Gaussian states to Gaus-
tion théory in notions of key distribution, quantum comipgt sian operators. _Th|s is in sharp contrast to t_he situation fq

’ ' fermionic Gaussian systems, where the partial transpose is

and simulation, it is increasingly becoming clear that oiagi . — :
' . .in general, no longer a fermionic Gaussian operator [45].
of entanglement have the potential to add a fresh persgectiv 9 9 peratof [45]

1o the studv of svstems of condensed matter phvsics. Notio Consequently, there is still no efficiently calculable foren
y ot sy . er pnysics. Rhown for the negativity. This is unfortunate, since Gaaissi
of entanglement entropies and spectra are increasingtitase

?r free) fermionic systems are specifically rich. For exam-

capture properties of quantum systems with many degrees _ . .
freedom [158]. The entanglement entropy based on the von- e, some well-known models showing featuredagologi

Neumann entropy plays here presumably the most importarhtal properties such as Kitaev's honeycomb lattice model are

role [1,12]. However, it makes sense as an entanglement meaon-mteractmgl_[_AIG]. Also one of the most paradigmatic-one

imensional models exhibiting edge states in a topololyical
sure only for pure states. Hence, early on, computable mea.

. on-trivial phase, the Su-Schrieffer-Heeger (SSH) m |
sures of entanglement such as the entanglement neg@mty[iS a non-intperacting (or quasi-free) fermignic(systgm. I

tum many-body systems. In fact, one of the earliest studies The lack of a formula for negativity of fermionic Gaussian

on entanglement properties of ground states of local Ham“states has stimulated a concerted research activity otiiden

tonians considered this entanglement meaﬁhrtcaéS , whigh Wafymg good bounds|[48, 48]. In this work, we make a fresh

followed by a series of works on harmonic latti —14]. attempt at proving tight bounds to the entanglem(_ent negativ
ity. Each bound considered here depend exclusively on the

Recent years have seen a revival of interest in studies of e@pyariance matrix of the Gaussian state at hand, and thus is
tanglement negativity, and the problem has been attacked ugfficiently computable in the number of modes. In particular
ing a number of different approaches. Numerical studiegwerthe jower bound makes use of a pinching transformation of the
performed for various spin chains via tensor network calcuzovariance matrix, while the first of two upper bounds reegiir
lations [15-18], Monte Carlo simulations where the replicaechniques of semi-definite programming. The second upper
trick comes into play [19, 20] or via numerical linked cluste pound was already proposed in a CFT context [48], which
gxpansmnlﬁl]. On the analytical side, major developmentgs now elaborated and closed form expressions for arbitrary
include the conformal field theory (CFT) approathl [22, 23]fermionic Gaussian states are given. We also test our bounds
which has also been extended to finite tem eratut 4, 25hy estimating the negativity between adjacent segmentzein t
non-equilibrium [24] 26-28] and off-critical [29] scenasi  SSH model and the XX chain, both in the ground state and at
For some particular spin chains, there are even exact sesulfjpite temperatures.

available @53] Studies of negativity have also been car 1he paper is structured as follows: In Sectidn Il we intro-
ried out for two-dimensional lattices [34.135] with a padiar  ;ce the notation used in the rest of this work and define the
emphasis on topologically ordered phases|[35-39] negativity, followed by some basic examples given in Sectio
The entanglement negativity — first proposed in Ref. [4][IT The lower bound is constructed in Sectibnl IV, whereas
elaborated upon in Ref._[40], and proven to be an entangleSectiorl Y and Ml deal with two different upper bounds, based
ment monotone in Refd./[5] 6] — can be computed efficientlyon semi-definite programming and products of Gaussian op-
in the Hilbert space dimension for spin systems. For Gauserators, respectively. Numerical checks of the boundsrare p
sian bosonic systems, as they occur as ground and thermsénted in Sectidn M, followed by our concluding remarks in

Entanglement is the distinct feature that makes quantu
mechanics fundamentally different from a classical siatib
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Sectior V1. with z; € [—1, 1] corresponding to the presence or absence of
a fermion in the normal mode decomposition.
A Gaussian state is called particle-number conserving if

Il PRELIMINARIES it commutes with the particle-number operalo),_, f] f;.
In this case the expectation values of the pairing operators
A. Fermionic quantum systems vanish, i.e. <fjfl> — (f;ff) — 0. Thus, the2k x 2k
covariance matrixy can be completely recovered from the
Throughout this work, we consider quantum systems conk x k correlation matrixC;,; = <fJTfl ). Moreover, such a

sisting of a set of fermionic modes; the annihilation and cre state remains particle-number conserving and Gaussiar und

ation operator§f,, f{, ... f. f} associated with the modes 5 mode-transformations of the forat’ st %5t/ 7i (where
generates the CAR algebra, i.e., the algebra of operaters rg; js 3 Hermitian matrix), and the corresponding map on the

specting the canonical anti-commutation relations. Inynan correlation matrix level, analogue of Ef] (6), is given by
context it is convenient to refer rather to Majorana fernsion

than to the original ones, by defining C s UgCUL, 8)
major =[]+, may=i(f] = f;) @) wheret,, = e~ € U(k).
forj = 1,..., k. Given a state, the second moments of the

Majorana fermions can be collected in the covariance matrix ) .
= R2k%2k with entries B. Partial transpose and negativity
Let us now turn to the definition of entanglement nega-
tivity. Consider a bipartite fermionic system composed of
two subsystemsl and B corresponding to Majorana modes
{mi,...map} and{mayp 41, ... max }, respectively. Follow-
v =T iy < 1. (3)  ing the literature, we will refer to such a set-up as a bigarti
system ofn x (k—n) modes. Given a bipartite fermionic state
We will denote the set of such covariance matrices fodes ~ p, the entanglement negativity is defined as
asC), C RZFx2k,
A fermionic Gaussian state is completely defined by its N = E(HPTB 1 — 1), 9)
covariance matrix, as one can express the expectationoglue 2
any Majorana monomial through the Wick expansion

150 = St(plmg, mi)). @

It is easy to see that this matrix satisfies

wherel||.||; is the trace norm and the superscfipf denotes

P partial transposition with respect to subsyst8m The loga-
tr(pmj,my, ...mj,, )=(—i)” Z sgn(m) H Vin(at—1yrnaty rithmic negativity as a derived quantity is
™ =1
4) E=n|p™ . (10)

where the indices of the Majorana operators are differedt an
the sum runs over all pairings (with sgn(7) denoting the Both quantities have their significance, and the latter isran

sign of the pairing). tanglement monotone despite not being con\éx [7], as well
Considering a Gaussian (or quasi-free, as it is also calledds an upper bound to the distillable entanglement. Since at
unitary the heart of the problem under consideration here is the as-
_ sessment of p”2 |1, a bound to the latter gives immediately a
Ve=e i 20 Kiamym (5)  bound to both the negativity and the logarithmic negativity

To proceed, we first need to represent the action of the par-
(whereK e R***2F with K = —K”) and a Gaussian state tial transposition on the density operator. Using the rioiat
the evolved statp’ = Vp VT remains Gaussian. On the level 1,0 — 1 andm! = m;, a fermionic state can be written as
of the covariance matrices, this mapping can be represented'7 ’

by the transformation p= Z wem]! ok (11)

Comy
v = Oy O, (6)

ik . where the summation runs over all bit-strings =
whereOg = e € SO(2k). In this context, a commonly (71,...,72) € {0,112 of length2k[] The partial trans-

used tool is that a covariance matrix can be broughtto a nogiose ofy with respect to to subsysteRiis the transformation
mal form by means of such a special orthogonal mode trans-

formation@,

k
676T _ @ T 0 -1 , (7) 1 Note that a phyQSkicaI fermionic state must also cglrcnmut_e With darity
' operatorP = JT5%, mj;, i.e., one has-=0 when}_ % ; 7; is odd.
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that leaves thel Majorana modes invariant and acts as a transHence, the negativity of this state can be computed in closed
positionR on the operators built up from modesBfi.e. form solving a simple quadratic problem. It is given by

P =D weml L mErR(mE L m) . (12) J\/:%(HpTBlll—l):%(h(v)—l), (20)

As shown in Ref. |_[_A15], the action @ in a suitable basis \where we defined the function
can be written as

11
R( Tantl m;ik) _ (_1)f(-r)m'r2n+1 ) 'm;?ck7 (13) h(’y):i =+ 5 max{l, \V (a+d)2+(b—c)2_(ad+bc)

Mopt1 - 2n+1 -
where .V (a—d)2+(b+c)2+(ad+bc)}. (21)
0 if Z?izn+1 7; mod 4 € {0, 1}, »
() = 1 if Z?ﬁznﬂ 7; mod 4 € {2,3}. (14) A. Fermionic Gaussian pure-state entanglement

As a main consequence one finds that, in sharp contrast to , . ssian state is pure if2 = —1. Inal x 1 set-up

?he|fr bo.sor)chcount.erpa{tst, th de partlatl transposz operall implies that by conjugating with a local mode transfor-
,\?r e;hm'?n'c ; aussu_atnsl abes . Otis no ?r??erve autajslanl ationO4 @ Op (whereO 4,05 € SO(2)), one can bring it
onetheless, in a suitable basis the partial transposetitlan s; . '~ Bardeen-Cooper-Schrieffer (BCS) form

be decomposed as the linear combination of two Gaussian op-

erators([45]. 0 a 0 —b
—a 0 =b 0
ll. BASIC INSTANCES b 0 —a 0

When discussing the negativity of Gaussian states, the siwith b := (1 — a?)'/2. Thus, the state depends on a single
uation of two fermionic modes is particularly instructiveda  parameten € [—1, 1], and its negativity is given by
and will be made use of later extensively. We hence treat this

case in significant detail. N = l(HpTB 1 —1) = l(g(a) —-1), (23)
Any two-mode covariance matrix can be brought into the 2 2
form where we defined
0 0 —b
—ag ¢ 0 gla) =1+ V1 —ad? (24)
Y= 0 ¢ 0 d |- (15)

For a multi-mode fermionic Gaussian pure state, this gives
b 0 -d 0 rise to an explicit simple expression for the negativityjabh

referred to as normal form, upon conjugatingwith @ Op,  We state in the following lemma.

with O4,0p € SO(2), reflecting a local mode transforma-

tion in subsystems labelled and B. Such local mode trans-

formation do not change the entanglement content of the, stat

and for a Gaussian state with a covariance matrix given by

Eq. (39), one can easily compute the negativity. This isiposs 1 = .
N =3 7[[19(%)—1 : (25)

Lemma 2 (Pure fermionic Gaussian states)The negativity
of a pure fermionic Gaussian stateofx n modes is

ble because one can identify the two-qubit system that tsflec

this Gaussian state, by virtue of the Jordan-Wigner transfo

mation. This two-qubit quantum state is given by the fo”OW'where{imj} is the spectrum of 4.

ing expression:

Proof. It is known that for any covariance matrix satisfying

Lemma 1 (Negativity of two modes)Let y € C; be a co- ~2 = —1 can be brought into a multi-mode BCS form|[49]

variance matrix in normal form. The negativity of the quan-

tum state is that of the state (04 ® 0B)Y(04®0p)T =&'_ 7(a;) =
J=

Mi; O 0 Mia

o 1 1 0 M272 M273 0 n 0 aj n 0 —bj
P=7 + 4 0 Mso M3z O ’ (16) D)= —a; 0 D= —b; 0
M4,1 0 0 ]\/[474 , (26)
of two qubits, where @ 0 b, @ 0 aq
M, 1=—(a+d)+(ad+bc), My o=(a—d)—(ad+bc), (17) = 0 =t —a; 0

M 3=—(a—d)~(ad+be), My4=(a+d)+(ad+be), (18) where® denotes a direct sum giving the above type of block
My 4=My1=b+ec, M2z=Ms2="b~—c. (19)  structure04,0p € SO(2n), {*ia;} is the spectrum of 4,
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andaf + bf = 1. In other words, one can decouple the modesTheorem 3 (Lower bound) An efficiently computable lower
in A and B such that there is entanglement only between thdound of the negativity of a fermionic Gaussian siaté n x
corresponding pairs. Thus, we can write (after rearrangingg modes with covariance matrix is for everyO,,0p €
the modes) the state as a product of these pairwise entangléd(2n) provided by

1 x 1-mode states. Using the multiplicativity of the trace norm

and and the negativity formulas Eqs.}(23) ahd (24) for each 1 (&

of the decoupled x 1 mode pairs, we arrive immediately at N(p) = 9 H h(mj(Oa ® 03703 © Op)) =1 . (30)

Eq. (25). O j=1
Let us also note that as for general pure states Proof. In particular,04 = Op = 1 is a legitimate choice
in this bound. The above statement follows from the fact that
lpT2 || = tr(pz/Q)Z’ (27)  making use of random phases, one can group twirl the conju-

gate covariance matrix := O4 & 0370£ @ og into

holds true, the negativity could anyway efficiently be com- "
puted via standard formulas for Rényi entropies of Gaussia I .
states|[50, 51], yielding the same formula as Eq] (25). . JG:?WJ @), (1)

For the sake of completeness, we mention that one can gen- ) o .
eralize the above results for any Gaussian state that can @ Which the negativity can be readily computed as stated
brought by a local mode transformation into a state with the2bove. The group twirl amounts to a map
following type of covariance matrix:

1< ”

LI = ~ Z 0,10! (32)

n 0 a; n 0 —b7 Jj=1

EBj:l N @j:l ’ . .

—a; 0 —¢ 0 on the level of covariance matrices, where
(28) Oj = diag(Hj) ® ]].4. (33)
n |0 ¢ n 0 d; . . .
D b 0 Dj— —d 0 In this expressiorf{;, j = 1,...,n, is thej-th row of a real
J J i
Hadamard matrix
For states with such properties (e.g., for the isotropitesta H e {-1,1}"*" € O(n), (34)
[49]), the negativity can be calculated using the general tw ) _ ) )

mode formula Eq[{20), the final result being so an orthogonal matrix the entries of which aré. This

is to show that blocks of four Majorana operators each are
L equipped with signs, so that the resulting covariance matri
N = 5 H h(v) =1, (29)  has the desired pinched form. The above group twirl can be
e performed with local operations and classical commuroceati
hence it provides a lower bound, making use of the fact that

whereh(v;) is defined as in Eq[{21) with the corresponding the negativity is an entanglement monotone. O
parameters;, b;, c;,d;. By choosing appropriate 4 andO (e.g., through an opti-
mization procedure), one may obtain useful bounds for the en
tanglement negativity. The case of particle-number conser
IV. LOWER BOUND ing Gaussian states is especially tractable.

We now turn to presenting bounds to the entanglement neg-
ativity for arbitrary fermionic Gaussian states. We firsé-di
cuss a lower bound, before proceeding to the more sophisti-
cated upper bounds. The lower bound will be derived from
a pinching transformation using the expression of two-modé&

B. The particle number conserving case

As discussed in Sectidnl Il, when treating particle-number
onserving Gaussian states, instead of the covariancématr

- . . ) J : - o gt
negativity reviewed in the previous section. 7, we can work with the correlation matrix;; = (/] f; ).
WhenC' is real, one has the very simple relation
Y2j—1,20 = —Yai,2j—1 = 2Cj 1 — 051, (35)

A. Lower bound from pinching ) ) )
with all the other entries of being zero.

Considering am x n set-up, we can divide the total corre-
tion matrix of a state 4 g with respect to the two subsys-
tems:

Using the pinching transformation, one can decouple th(?a
system into independentx 1 modes, and use for each of
these system the previously obtained expression for the-neg
tivity for the 1 x 1 case. In the obtained expressiondenotes Caal Cag
the4 x 4-submatrix associated with the respectjven 1 x 1 7 7
subsystems.

; (36)
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whereC4, 4 andC'p, g are Hermitian, and?LB = Cp,a. Let  root states from which the desired state can be prepared. As i
us choose the particle-number conserving local mode wansf turns out, this gives rise to a problem that can be tackled wit
mationU4 @ Ug such thaUACA,BU; is a positive diagonal the machinery of convex optimization. The bound as such will
matrix, i.e.,U4 andU}, provide the singular value decompo- r€quire some preparation, however. We start by stating how
sition of C'4. 5. Applying now a pinching transformation on fermionic Gaussian maps, so not necessarily trace-priegerv

the mode-rotated state, we obtain a Gaussian gtate, for completely positive maps that send Gaussian states to Gaus-
which sian states, act on the level of covariance matrices.

M . 7 Theorem 4 (Structure of fermionic Gaussian maps.[52])
! ! An arbitrary fermionic Gaussian operation acts on covari-
ance matricesy € C,, as

20/ . _ Qp, d Cp, ’ (37) v — B("yil +D)71BT 4 A, (40)
C1 1

where

A B

C d
L n n | .=
—Bz D

€ Com (41)

where the non-diagonal elements of the block matrices are
all zero, anda;,d; and c; denote the diagonal elements is a fermionic covariance matrix on a doubled mode space.
of the matrice§2U4Ca 4U} 1), (2UsCp UL, —1), and
2UACA_BUT , respectively. Now, using Lemnia 3, we obtain
the following lower bound for the negativity for the origina
Gaussian stateaup

We now turn to an observation that is helpful in this con-
text: That all outcomes in a selective fermionic Gaussiap ma
are related with each other upon conjugating the input with a
diagonal matrixP from P,,, with

1 m
N(paus) > 5 [Tre) -1, (38) Pp = P=zils, z; € {-1,1} ;. (42)
j=1 j=1
where This feature mirrors a similar property in the Gaussian baso
setting, where with an appropriate shift in phase spaceieond
0 a 0 ¢ tioned on the measurement outcome, an arbitrary Gaussian
o | W 0 —¢ 0 (39) Mapcan be made trace-preserving [53, 54].
0 ¢ 0 4 Lemma 5 (Selective fermionic Gaussian operationsiyor
—¢; 0 —d; 0 any selective fermionic Gaussian operation, one outcome

being described by a map_(40), the other measurement

In SectiorL VIl we will use this procedure to numerical calcu- outcomes are reflected by covariance matrices of the form

late lower bounds for the negativity in the ground and thérma
states of various many-body systems. v+ B(Py™'P + D)*13T + A, (43)

whereP € P,,.

V. UPPER BOUND VIA CONVEX OPTIMIZATION . . .
Proof. This means that all outcomes of a selective fermionic

Gaussian map are on the level of covariance matrices reflecte

ii v hard b dth X h . géy the same transformation, upon conjugating the input by a
nificantly harder to come by, and they constitute the main rég, iy p P,,. This can be seen by acknowledging the fact
sult of this paper. This section presents the first of our tw

Ghat any post-selected fermionic completely positive IMeRp C
novel strategies to arrive at upper bounds. It is rootedéasd yp P yD

AR ._be written as a concatenation of a fermionic Gaussian chianne
of convex optimization and the structure theorem of Gauss'aacting as

maps obtained from the Lagrangian formulation of fermionic
linear optics. v XvXT +Y, (44)

withY = - Y7, XXT <1 andiY <1 - XX, inaddition

A. Upper bounds via convex optimization to dilations
/ T

The basic idea of this bound is to make use of the fact that 7= Oy @7)07, (49)
the negativity is an entanglement monotone, meaning that bwyith v € Cj,, O € SO(2(m + k)), followed by a fermion
means of local transformation, the entanglement content ca number measurement on the additiokainodes. This fol-
not increase on average. In this way, an upper bound can Bews from Ref. [52], mirroring the situation for bosonic pos
identified once one is in the position to identify those Garss selected Gaussian completely positive maps$ [58, 54]. For



different outcomes of that fermionic measurement, the abovsubject to
map is being replaced byl ® P)I'(1 ® P), P € P,,. This

means that for different measurement outcomes, the map in v; = [tr(Gn;)|, (51)
Eq. (40) is being replaced by B
R ) (52)
s BP(y"' + PDP)"'PBT + A (46) —5 n+D
7 7 ' A= Ae B, (53)
This is identical with B =519 B, (54)
D = D; @ D, (55)
— B(Py'P+ D) 'BT + A 47 T
7 BBy ) “n =@ (56)
j=1
(I
0 Qa; 0 —ﬂj
This structure can be uplifted to the level of local fermoni —a; 0 —B; 0
Gaussian operations, which seems helpful in its own right. nj= - 0 ! 3 0 ! w1 (57)
J J
ﬂj 0 —Qy 0
Lemma 6 (Local fermionic Gaussian operations)Each in > 1, (58)
outcome of a selective local fermionic Gaussian operation o =7, (59)
ann x n system gives rise to a covariance matrix of the form
il 4 Bl<n (60)
v B(Py"'P+ D) 'BT + A, (48) -B" D
) . where
where A, B,D € R?"*2" are submatrices of a covariance
matrix as in Eq.[[@1) withn = 2n andA = A @ B, B = N
Bl@BQ,D:Dl@DQ,andPePM. G:@ ~10 ’ (61)
j=1
. . . as
Proof. This structure follows immediately from the above
characterisation of fermionic Gaussian maps. O N < (_5 n §(16 _ ”.72')1/2> . (62)
j=1

Proof. The logic of this argument is that the entanglement
content of the Gaussian state described by the covariance ma
trix £ must be larger than that of, invokin%the fact that the

Wi i th ition to develon the idea for th negativity is an entanglement monotohke![5, 6]. We can build
€ are now in the position to develop Ihe idea for the Up'upon the above characterization of fermionic Gaussian maps
per bound. The basic idea is that we would like to identify

a . .
. . . What is more, each other outcome is related to the above upon
simple¢ € Csy,, constituted of blocks of x 4-matrices that P

floct entanaled pairs of fermioni d h that conjugating with a P of the above form.
refiect entangied pairs ot fermionic modes, such tha We start from & € (', constituted of blockg; of 4 x 4

B. Upper bound

for j = 1,...,n. These covariance matrices are taken to be
y=DB( '+ D) 'BT + 4, (49)  ofthe form
. . . . . . 0 CLj 0 —bj
reflecting a local fermionic Gaussian operation. Using the
monotonicity of the negativity, this gives rise to a tightpep & = —a; 0 —b; 0 , (63)
bound. 0 b 0 a4
bj 0 —aj 0

with a2 4 b? < 1. If a local fermionic Gaussian operation can
be found, then for some suitable= A & B, B = B; & B>,
D = Dy ® D,, and aP € P,,, one has

Theorem 7 (Upper bound for the negativity) An efficiently
computable upper bound of the negativity of a fermionic
Gaussian state of n x n modes with covariance matrix

is given by the solution of the semi-definite problem

iy =iB(P¢'P+ D) 'BT 4 A, (64)
n which can be relaxed into an inequality
minov := Zvj (50) . ' . o
= iy >iB(P¢ P+ D) B' +iA, (65)



The inverse is hard to handle in this expression, which is whyvhere
we continue to incorporate the inverse directly into theveon
program. Defining; := ¢!, the constrainté < 1 becomes G- @ [ 0 1 ] (79)

> 1. (66) j=1

We can now make use of a Schur complement [55] to relat@roof. The inverse of) is easily identified to be
(69) to a positive semi-definite constraint: The validity of

. 0 o 0 —p
y—A B — —
i >0 (67) “1_ (o242t | @0 B 0 80
—-BT PnP+D | n (a” + %) 08 0 a | (80)
also implies the validity of[(85). At this point, the relaxed B 0 —a 0

constraints become ) ] ] o
i If in > 1, thenn~! is a covariance matrix id. It follows

| y-A BP >0 (68) immediately that
—PBT n+PDP |~ 7
: |tr(Gn)| = 4lal. (81)
A=A®B, (69)
B =B, @ Bs, (70) The value of«| clearly gives rise to an upper bound for
D = Dy @ Do, (71) lof (o + )7L (82)
n= @ njs (72)  This in turn gives rise to a bound to the negativity, acknowl-
j=1 edging again the connection of covariance matric&simnd
> 1 73)  Spin states of two spins or qubits(ifi*)®2. For the first qubit,
in =1, (73) T :
a value of|«| implies that in
n=-n", (74)
Al0)(O] + (1 = A)[1)(L]- (83)
A Bl _q (75) o
-BT D|~ one has that|a| + 1)/2 = A. This gives an upper bound to

) . the negativity, making use of its convexity. Asserting that
We can impose the explicit form

0 a 0 -8 E?2 00 EF
— Oj =B OJ p=| 0 00 0 (84)
n = - : (76) 0 00 O
0 B 0 o EF 0 F2

ﬂj 0 —Qy 0

of the inverses withy;, 3, € R. The negativity cannot be di- With £, F' € R satisfyingE” + F* = 1, one finds that
rectly cast into a convex problem. However, we can make use

of yet another convex relaxation, in order to arrive at an effi N < AYV2(1— )12 - L (85)
ciently computable upper bound. As this involves some steps 2
this is separately laid out in Lemnha 8. The final statemenfrom this the above statement follows. O

follows from the fact that thé” € P,,, has no significance in
the bound, and hence we can optimise/foe 14,. This ends
the argument. O VI. UPPER BOUND FROM PRODUCTS OF GAUSSIAN

As an example, let us discuss what this negativity upper OPERATORS

bound gives for two-mode systems.
We now turn to a second upper bound to the entangle-

Lemma 8 (Upper bound to two-mode entanglement] et ment negativity, which complements the previous one ard tha
-~ serves a quite different aim. It can again efficiently coneplut
0 a O I5) . g
0 0 and allows for bounding the entanglement negativity indarg
n=—1"¢ =B , (77)  systems. We now consider a systermafodes, where now
08 0 «a the modes are separated into subseend B. We no longer
8 0 —a 0 require A and B to have the same cardinality, but can also

allow for arbitrary cuts into a system and its complement.

For any such division, we can define the operatOrs
as the Gaussian operators — which do not necessarily reflect
guantum states — that have the fermionic covariance matrix

with in > 1. Then the inversg—! € C, is a fermionic co-
variance matrix and the negativity of the fermionic Gaussia
state is upper bounded by

1 1 —1\2\1/2
N < —5+ g(16—tr(Gn )7)E, (78) e =TE~TE, (86)



where

(87)

75 = P 1. P(+i) L.

jEA  jEB

and the normalization factors are given by
Zy = det(1 + exp(W,)). (96)

Here the symbalet denotes that the double degenerate eigen-

In other words(,. are defined as the Gaussian operators satvalues of the corresponding matrix have to be counted only

isfying

gtr (O [mj,ma]) = (74) - (88)

Using this definition, the partial transpose of a Gaussiatest

can be written in the for 5]

1—1
2

1474
2

T

ple = O, +—"0_. (89)

The main difficulty in evaluating the trace norm of the par-

tial transpose is that its constituent Gaussian operétorand

once, i.e. it is the square root of the determinant up to aiposs
ble sign factor. Using Eqs[_(94) arld [95), the solution+or
can be found after simple algebra as [56]

—iy =1 — (L 4iy7-)(1 —y47=) " (L +iy4).  (97)

With the multiplication rule at hand, we are now ready to eval

uate the trace norm

104111 = t:(0+.0-)"/? = tx(px) /2 <—

O_ do not commute in general, and thus one has no direct a@Ppearing in the upper bounds{91) and (92). Using (95) and
cess to the spectrum pf 7. Nevertheless, the simple form of (986), the ratio of the normalization factors can be rewnitis

Eq. (89) allows one to apply a triangle inequality to boural th

trace norm ag [48]

1—1

5 O_

157 s < H 0,

141
iy
1

= v2]|04]|1, (90)
1

where we have used that the two terms in the linear combina-
tion are Hermitian conjugates of each other, hence thaietra

norms are equal. This gives for the negativity

N < % (\/itr(o+o_)1/2 — 1) : (91)

7 e e A
—det— = _ger—— 1 99
Z.7- 9T 9 T (99)

For the other term we can use the well-known trace formula
for Gaussian states

trp _détK]H%) +<]l_%) ] (100)

with & = 1/2. Hence, the upper bounds can be calculated
explicitly in terms of the covariance matriceg and-~.
Before moving to the study of concrete examples, let us

whereas the logarithmic negativity can be upper bounded ascomment about the spectral propertiesyof By a similarity

E<Intr(040_)/? +Inv2. (92)

The main advantage of these upper bounds is that they in-

volve only the product of Gaussian operatérsO_, which

is itself Gaussian and the traces of its powers can be exgatess

via appropriate covariance matrix formulas. To arrive &sth
expressions, itis useful first to introduce the normalized &
sian density operator

0,0_

Px = m, (93)

with corresponding covariance matryx . The rules of multi-
plication are simplest to obtain by considering the expdiaén
form of the various Gaussian operators

Z(Wg)k7lmkml/4 5 (94)

k.l

1
— eX
7, P

where the superscripts = +, — and x refer to the corre-
sponding operatab, O_ andp. The matrices in the expo-
nent are related to the covariance matrices via

1 —1ivs
eXp(Wg) = ﬁ, (95)

Ws
i tanh - = Yors

transformation one can permute the factors in the second ter
of (@7) to arrive at

Y = (1= vey=) " Hovs +7-), (101)

where~ denotes equivalence of the spectra. Furthermore, us-

ing the definition in Eq.[{86), one can write

(1—72>1 YR+ Ry
/YX: )

> . (102)

whereR = (T#)* = (Tg)? = Lyja| ® —1g g Thus the
second term il (102) becomes block diagonal

YR + Ry

. (103)

=74 D —B;
with the sign of the reduced covariance matrix of thenodes
being reversed. In particular, if the state 4 B is pure, i.e.
~% = —1, then the spectrum of is simply given by the
eigenvalues of 4 and—~g, respectively. Moreover, since the
spectrum ofy4 and~p are identical (up to trivial eigenvalues
+i if |A| # | B]) this just leads to a double degeneracy.

For the upper bound of the logarithmic negativity, it is use-
ful to define the quantity

£ =Intr(0,0_)'/? (104)
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such thatt < £ + Inv/2. Then using[[98)E{I00) can be  wherew;, and,(m) are the single-particle eigenvalues and

expressed via Renyi entropies as eigenvectors of the Hamiltonian (107).
1 Before presenting our data, let us comment on an obser-
&= 3 [S1/2(px) — S2(paus)] (105)  vation about the upper bound. Although the inequality reads
& < € +1n+/2, in all our numerics we observe that the bound
where for any statg is actually tighter, i.e. one has< & < £. This has also been
1 N conjectured in Ref[[48] but a rigorous proof is lacking.
Sal(p) = T4 ntre”. (106) In our first example we consider the ground state of a chain

with N = 8 and/ = 2. The data is shown in Fi§] 1 as a
function of the dimerization parametér Note that, since
N/2 = 4 is even, the hopping between the two subsystems

In particular, for pure states one h8s(paus) = 0, while
S1/2(px) = 2S1/2(pa) due to the double degeneracy of the

7% spectrum mentioned above, and hefice € = Sy/2(pa).  is given byl — §. Thus the entanglement vanishes for 1

In other words, for pure states the upper bound is tight witho while it is given byln 2 at the other extremé = —1, where
the additional constarh /2, since the operato@, andO_ g singlet is formed in the center. As expected from its con-
commute. struction, the lower bouné performs well only in the region

0 < 0, where one has a singlet-type dominant contribution to
the entanglement. Remarkably, the upper bodirgives an
overall good performance on both sides, with an almost per-
fect saturation fop > 0.2. However, approaching — —1,

In this section we will test the covariance-matrix basedthe entang|ement tends to Stay closer to its lower bound.
bounds introduced before on the concrete example of a dimer-

VIl. NUMERICAL EXAMPLES

ized XX chain. After Jordan-Wigner transformation, this is 0T
equivalent to a non-interacting fermionic chain with areglt o ANy & ——
nating hopping. = 1 £ 4, given by the Hamiltonian 0.6 g :
1 05}
H=—3 > (t+ Fyifoio o f foi + h-C-) , (107) o
j 4r
with dimerization parameter1 < § < 1. This is also called 03}
the SSH chain. In all our examples we consider an open chain o2l

with even sitegV at half filling, and calculate the entangle-

ment between the modes of two adjacent intervals, such that 0.1f

the spin- and fermion-chain negativity are indeed equivale 0 T

A further simplification occurs due to the fact, that the 1 -08 06 -04-02 0 02 04 06 08 1

Hamiltonian is particle-number conserving. On one harid, th 3

allows us to implement our simple construction for the lower

bound. On the other hand, it makes the calculations for thg|G. 1. Logarithmic negativity bounds vs. exact resultsiaground

upper bound easier, since all the information is encoded istate, as a function of the dimerizatiépwith N = 8 and/ = 2.

the fermionic correlation matrix elements,, , = (£ f.).

As already noted in[[34], for a particle-conserving Gaus- It is very instructive to have a look also at the thermal case.

sian state with real’ one can replace the covariance matrix Here we consider the two halves of a chain with= 8 sites

—iv — G = 2C — 1 and define the matriceS4+ and G « as subsystems and vary the temperature. This scenario ex-

correspondingly. The formulas leading to the upper bouad arhibits a very rich physics, as depicted on Hilj. 2, where now

then completely analogous o {99) afd (1100), except that ththe symbols show the exact data, whereas the solid lines with

det symbols have to be replaced by ordinary determinants. matching colors give the respective bounds. In fact, in the
regimed < 0 where the couplings at the boundaries are weak,
the Hamiltonian[(1Q7) supports edge states. Consequhly,

A. Bounds vs. exact results ground state shows topological features which yields aitadd
tionalln 2 contribution to the entanglementéas+ —1. Since
First, we test both lower and upper bounds against exadhe state is pure, one hés= &, as discussed earlier. However,

calculations of the logarithmic negativity for small chaires  already a slight increase of the temperature (8ee 100)

N < 10. For simplicity, we consider two adjacent intervals seems to destroy this order, hence the topological cotititbu

of the same sizé, taken symmetrically from the center of the to the entanglement vanishes. Not surprisingly, for thege |

chain. We will consider both ground and thermal states of theemperatures the upper bound gives a very good overall es-

dimerized chain, for which the fermionic correlation matri timation. Nevertheless, for increasing temperaturesdtta

elements read gradually moves towards the lower bound. This improved per-
N formance can be understood by a simple argument. The con-
Con = Z M, (108)  struction of the lower bound erases all the correlationbiwit
R efwr +1 each subsyster and B. At higher temperatures, however,
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such correlations are already washed out and thus the approo the spectra, of G and(;* of G. Owing to the simple

imation is more valid. thermal form[(1ID) of the density operators, the calcufatib
Renyi entropies reduces to evaluating entropy formulasfor
1.4 ‘ Gs - Fermi gas. In fact, the leading contributions to the en&spi
12 Va =100 - | are delivered by the low-lying eigenvalues of the spectoa. F
// E;g the entanglement HamiltoniaH, these were studied before

1t 7 \\ . and, forln ¢ >> 1, are given approximately by [58,/59]
2
08 // \\ ] — (k—1/2—€)7 (112)
0.6} ] In(4¢0) —1(1/2)

with the digamma functiony(1/2) ~ —1.963. Thus the en-
tanglement Hamiltonian has a level spacing inversely propo
0.2} \ 1 tional toln ¢, or in other words, a logarithmic density of states.
In turn, this yields the celebrated result for the Renyiepits

0.4}

O L ul n
1 -05 0 05 1 1
5 Sa(paup) = 6(1 +a Y Inl + const. (113)
FIG. 2. Logarithmic negativity bounds vs. exact resultstf@rmal We shall now have a look at the spectra and their be-

states, as a function of the dimerizatiénand for various values of haviour as a function of, shown in Fig[B. Apart from the
B. The symbols represent the exact data, while the solid lvit'es  double degeneracy of the eigenvalues, the spectra show very
matching colors show the corresponding bounds. similar features to those af;,. In particular, one can ob-
serve the slow logarithmic variation of the spacing and the
approximate linear behaviour around zero. We thus propose
the ansatz
B. Upper bound for infinite homogeneous chain Wg(k —1/2-¢/2)

) E;k—l = E;k =a 1n(2£) A )

From now on we focus on the homogeneous chaia 0, o o o

and take the thermodynamic lim¥ — co. The Hamiltonian ~ With fitting parameters andb. Fitting the lowest-lying eigen-
is then diagonalized by a Fourier transform and the coicelat value as a function of, we obtaina = 1.325 ~ 4/3 and

(114)

matrix takes the simple form b = 1.655 where, for better fit results, we also included a sub-
- i(m—n) leading term proportional to/¢. Note that the higher part of
Conn = / dg e ) (109) the spectrum shows a slight upward bend which is again very
’ _x2meTFeosa ] similar to the behaviour of the, spectral[59].
Our main goal is to study the scaling of the upper bound as
a function of the inverse temperatuseand subsystem sizes 20
|A| = ¢, and|B| = ¢ and compare it to the predictions of 151
CFT [22]. ol
5 L
1. Ground state & 0

We start with the study of in the ground state and take
0y = £y = / for simplicity. Invoking Eq. [[I0b), one observes 107
that the upper bound can be written as the difference of two 15 |
Rényi entropies, with respect to Gaussian staiess andp .

Note that, while the former is just the reduced density ojpera 20 -
of an interval of size&/ in an infinite hopping chain, the latter k-1/2-¢
one has no particular physical interpretation.
To understand the scaling behaviour of the entropies, it is FIG. 3. Single-particle specteg for various.
useful to have a look at the corresponding free-fermionrenta
glement Hamiltoniang({ and# ., defined byl[57] From the ansatz in Eq_(1114) it is very easy to infer the lead-
o—H o—Hx ing scaling behaviour of the Renyi entropies. Indeed, thema
PAUB =~ Px =z (110)  difference from[(IIR) is the increased level spacing, legth

a decrease of the density of states by a factar df ~ 3/4.
Their single-particle spectra;, ande;’, respectively, are re- Taking into account also the double degeneracy of the spec-
lated via trum, one arrives at

X
1
(i = tanh %C, ¢y = tanh % (1112) Salpx) = Z(l +a Y Inl + const. (115)
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That is, ignoring the subleading constant which is also mod- 1.6
ified due to the parametdr, the entropiesS,(px) and
Sa(paup) differ by a factor of3/2. This is indeed the result
we find numerically by fitting the data for various Finally,
inserting the appropriate Renyi entropies ihto (105), one i

mediately finds e
s 1
&= 1 In £ + const. (116)
Thus, the upper bound shows exactly the same scaling as
the logarithmic negativity predicted by CFT calculationghw 0.2 5 io 2‘0 3‘0 L‘m 5‘0 éo 7‘0 éo éo 100
central charge = 1 [22]. 2t tort
20
15 & FIG. 5. Upper bound against CFT scaling variable with- /o =
200 fixed and varying/1. For comparison, the solid line shows the
10r equal-segment resulf (1]16), with = /> = /.
5 L
g 0 e . —_ L
4 | the CFT calculation of the logarithmic negativity gives[24
= = —. 1 é
¢ 125?8,’%4(5)8 L =S m p tanh — + const. (118)
£,=20,(5=180 1 4 7 15}
‘ ‘ (1=10,(,=190 - o
45 10 5 0 5 10 15 Hence, for any finite temperatures ahg> 3, the negativity

K-L1/2-(0+0)12 satifies an area law. To compare it to the behaviour of the up-
per bound, one should first have a look at the corresponding
spectrae; , shown in Fig[6 as a function dfand for various

FIG. 4. Single-particle specteg’ for 1 + ¢> = 200 and varioug:. 3. One sees the thermal flattening of the spectra with increas-
ing temperatures, which signals a crossover from logaithm
It is instructive to have a look also at the case of unequalo linear density of states ih
adjacent segments of sizeand/s, where the CFT prediction
gives [22] 20
C 1212 15 ¢

&= 1 In e + const. (117) w0l

The corresponding spectig are shown in Fid.14, for a fixed
overall length/; + ¢5 = 200 and varying/;. The main feature
to be seen is the breaking of the degeneracies. Indeed, from
the analog of Eq[{102) to the present case, it is clear tleat th
spectrum of7, must somehow mix those ¢f4, G andG,
which is reflected on the corresponding single-particlaent
glement spectra. Unfortunately, however, it is very diffi¢co
separate the various contributions and, in contrast tode ¢
of a single length scale il {Il14), we have not been able to find k-1/2+4
a simple ansatz. Nevertheless, from evaluafinge find ex- _ ) _
actly the same scaling behaviolir (117) as obtained from CFETFIG. 6. Thermal single-particle spectra for= 100 and various3.
The results are plotted against the proper scaling variable
Fig.[3, finding a perfect collapse of the data. Furthermore, Asanimmediate consequence, the Renyi ent§ipy(px )
comparing to the result for equal intervals as a functiorneft becomes extensive. This, however, does not necessarily spo
segment size, we observe that the two functions match pethe tightness of our upper bound, since the contributiomfro
fectly. Sa(paup), which is itself extensive, has to be subtracted. In-
deed, as shown in Fiff] 7, we find numerically tHataturates
for large ¢ for any nonzero temperatures and hence the ex-
2. Thermal states tensive contributions from the two entropies exactly cance
Moreover, as shown on the inset, we confirm thatas ex-
As our final exmaple, we consider thermal states of the inactly the same scaling behaviouré&m (I18). Note, however,
finite hopping chain with adjacent equal-size segmentsrevhe that it is difficult to find an analytic argument to understand

15
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this type of scaling on the level of the specta, since one as the CFT prediction for the entanglement negativity, one
has to look for subleading effects. should also test its performance for the case of non-adjacen
intervals. Unfortunately, this setup is much more involved
since the analytic continuation from the moments of the par-
tial transpose is not known [60]. Another interesting ques-
tion is the negativity for non-adjacent intervals in the Xrs
chain, where the results in the spin and fermionic basiseatre n
equivalent/[611, 62], and thus the upper bound should also be
properly generalized.

14+

12 ¢

1t

-~ 08 L
¢ : 13 Regarding the lower bound, we observed that it performs
0.6 particularly well in case of strong singlet-type entangéein
041 o . 09f o 1 between the subsystems. This makes it a good candidate
0| B100 - to check the negativity scaling in random singlet phases
“| B=50 0.5 | ' ' i i
B=20 O @manhep) of disordered spin chains, where the available DMRG

0 results are not yet entirely conclusive [18]. Importantly,

the bounds presented here constitute an excellent starting
point for endeavors aimed at seeing topological signatures
at finite temperatures, as the numerics for comparably small
SSH chains already suggests. It is the hope that this work

stimulates such further research.

0 10 20 30 40 50 60 70 80 90 100
L

FIG. 7. Upper bound for thermal states with variguagainst. The
inset shows the data against CFT scaling variable.

Note added. Upon completion, we became aware of a re-

cent independent work [63], where an alternative definition
VIll. OUTLOOK of fermionic entanglement negativity is considered. Magkin

use of a freedom in the representation of the partial transpo

In conclusion, we have presented rigorous bounds to théition, the authors adopt a different convention is eqeival
entanglement negativity that are efficiently computable fo t0 partial time-reversal. In turn, their entanglement nivgg
fermionic Gaussian states. In particular, the definitiothef ~ coincides with our upper bourtlin Section VII.
lower bound and one of the upper bounds is a simple function
of the covariance matrices, allowing an efficient calcolatn

the number of fermionic modes. Furthermore, we have also IX. ACKNOWLEDGEMENTS
constructed an upper bound which makes use of semi-definite
programming techniques. We would like to thank discussions and correspondence

There are a number of questions left open for future rewith Hassan Shapourian, Shinsei Ryu, Ingo Peschel, Christo
search. First, in all our numerical examples, carried out fo pher Herzog, Yihong Wang, Vladimir Korepin, Erik Tonni,
adjacent intervals in a dimerized hopping chain, we obskrveAndrea Coser, and Pasquale Calabrese. J. E. and Z. Z. have
that the upper bound of the logarithmic negativity can dttua been supported by the DFG (CRC183, EI 519/9-1, EI 519/7-
be made more tight by neglecting an additive constant2. 1), the Templeton Foundation, and the ERC (TAQ). Z. Z.
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