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Abstract
In this paper, we present an idea for a sparse approach to calculate camera poses from RGB images
and laser distance measurements to perform subsequent facade reconstruction. The core idea is
to guide the image recording process by choosing distinctive features with the laser range finder,
e.g. building or window corners. From these distinctive features, we can establish correspondences
between views to compute metrically accurate camera poses from just a few precise measurements. In
our experiments, we achieve reasonable results in building facade reconstruction with only a fraction
of features compared to standard structure from motion.

1. Introduction

Structure from motion (SfM) has been an active research area in computer vision for decades as it is

of interest in a wide range of practical applications such as robotic navigation and augmented reality.

Common SfM approaches exploit a huge number of feature correspondences and finding suitable

starting views poses a challenge, which is not necessarily simplified by the abundance of features.

Often, this is tackled by assuming a set of ordered images or incorporating additional measurements

for camera pose initialization. In a subsequent step, all the views are merged into a common global

coordinate system, where the whole scene structure in 3D is calculated and refined together with the

camera poses. The optimization of the final scene structure is computationally demanding due to the

large amount of correspondences over multiple camera views.

Figure 1: Our proposed sparse SfM approach, where we take RGB images and laser distance measures

to estimate camera poses and a sparse point cloud.
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In this work, we present an idea to estimate metrically correct camera poses with just a small number

of features (see Fig. 1). Our hardware setup consists of an RGB camera and a laser range finder (LRF)

(see Fig. 2 (a)). The LRF allows us to select highly distinctive features for pose estimation while at the

same time obtaining their accurate distance. We focus on the reconstruction of facades, enabling us

to utilize homographies instead of fundamental matrices for correspondence computation. For pose

estimation, we use laser points with known distance from the camera and their respective matches in

other views.

Finally, we compare our approach to the freely available SfM framework OpenMVG [10] and show

that we achieve reasonable results for the camera poses with just a fraction of correspondences. This

is of special interest for metric reconstruction on devices with constraints on computational power,

e.g. mobile devices or UAVs.

2. Related Work

Most of the work related to the task of calibrating the extrinsic relationship of an LRF to a projective

camera consider a setup with either a 2D [18, 7] or 3D LRF [14, 2]. Further, they rely on user input

to establish correspondences between the laser measurements and the images taken by the camera.

We on the other hand want to solve the task of extrinsic calibration of a 1D LRF to a camera without

user interaction. We require the 3D world position of the plane whose distance is measured to be

inferable from the images as well as the laser point produced by the LRF to be visible within the

image. In contrast to [13], where they jointly perform geometric camera and LRF calibration, we do

not refine the intrinsic calibration of the camera using the LRF measurements but expect the intrinsic

calibration to be done beforehand and to be of sufficient quality.

SfM algorithms for 3D reconstruction and camera pose estimation from unstructured data usually only

capture the scene up to scale. In [1, 15] the authors perform large scale 3D scene reconstruction from

Internet photos. Their work examines 3D modeling from unstructured data, yet the reconstruction

can be only performed up to scale due to inherent lack of metric information. In [3], the authors first

solve the relative motion on a local scale among just a few images, and then use these local relations

as initialization for the global solution.

Methods solving the metric reconstruction problem with the SfM paradigm often rely on either an

underlying structure of data (sequential image capturing, constant acquisition frame rate) in connec-

tion with registered motion estimations using GPS or inertial measurements as in [16, 3] or rely on

direct geometry measurements with 3D LRFs and subsequent registration of the resulting point clouds

[6, 7].

The approach presented in [12] is the one most similar to ours. However, in addition to 1D laser mea-

surements corresponding to images of the scene, they leverage motion estimations between images

through IMU data as well as interactive gestures for semantic cues aiding in reconstruction.

We propose an approach for metric camera pose estimation from unstructured images. Instead of

searching for dense point correspondences among all images, we restrict ourselves to a sparse wire-

frame model with each image contributing just a single point (the location of the laser distance mea-

surement). This allows us to ensure robust reconstruction by choosing distinct and easily matchable

locations on the facade during data acquisition.
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Figure 2: Left: The setup of the DSLR and laser range finder on the carbon panel. Right: The schemat-

ics of the camera and laser range finder setup and the idea behind calibration.

3. Camera Setup and Calibration

Our hardware setup consists of a standard DSLR mounted onto a rigid carbon panel next to a 1D

LRF (see Fig. 2), which we control remotly via USB and Bluetooth for easy acquisition of images

and distance measurements. We perform intrinsic calibration with a modified version of the Bouguet

toolbox and a custom target as proposed in [4]. In the remaining part of the paper we expect the

camera to be calibrated and the geometric distortions introduced by the camera and lens assembly to

be removed from the images. This enables us to infer the real world line of sight llos with respect to

the center of projection of the camera of any given pixel in an image Ii as:

llos,i = K−1 · l2D,i,i, (1)

where K denotes the camera matrix and l2D,i,i = [x, y, 1]T is the 2D position of the laser point i in Ii
in homogeneous coordinates.

In theory, provided an intrinsic camera calibration K and a known plane in 3D, the rotation RLRF

and translation tLRF of the laser range finder relative to the camera can be estimated using two mea-

surements only. Yet, in order to obtain a more robust estimation, we take several measurements

M = {di, Ii}N1 of distances di with corresponding images Ii. Since the application is 3D facade

reconstruction and we expect the facade measurements to be taken nearly fronto-parallel to the image

sensor, we restrict the extrinsic calibration sequence to a fronto-parallel movement of the target rela-

tive to the camera, ensuring that the position at which the LRF takes its measurement is well within

the calibration target.

In a first step, we detect the target position and orientation in 3D relative to the camera’s center of

projection, as well as the target position in 2D within the image. We detect the laser point as brightest

object on the calibration target using adaptive thresholding and then take its center of mass as the 2D

position l2D,i,i = [xi, yi, 1]
T of the laser point i in Ii. We then calculate the position l3D,i in 3D of a

laser point by intersecting the line of sight llos,i, on which the laser point lies, with the target plane.

When holding the camera positions fixed and moving the calibration target plane relative to it, all

points l3D,i, i ∈ {1, . . . , N} lie on a straight line. This line corresponds to the viewing direction

lLRF of the LRF, which we calculate by fitting a line to the measurements using singular value de-

composition on the 3D points stacked to a matrix L3D = [l3D,1, · · · , l3D,N ]. The right-singular vectors

obtained by SVD correspond to the orthogonal directions of maximum variance within the data. Thus,

the right-singular vector corresponding to the largest singular value of L3D coincides with the viewing

direction of the LRF, provided that the uncertainty of the estimation of the LRF’s origin is sufficiently

smaller than the relative movement of the calibration target.
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We obtain several noisy estimates for the position tLRF of the LRF through the correspondence

tLRF,i = l3D,i − di · lLRF , (2)

where lLRF has been normalized to unit length. We obtain the final estimate for the position tLRF of

the LRF by taking the median of all noisy estimates. The rotation RLRF is given by the angle between

the viewing direction lLRF of the laser range finder and the cameras optical axis in the plane spanned

by the optical axis of the camera and lLRF .

4. Sparse Pose Estimation and 3D Scene Reconstruction

The proposed approach is structured in steps typical to SfM pipelines: image recording, preprocess-

ing, relative pose and motion estimation between views and ultimately 3D reconstruction. Since it is

aimed at the reconstruction of building facades, which can to a large extent be modeled as a set of

flat surfaces, it is sufficient to reconstruct the building as a wire-frame model using surface vertices

together with a few supporting points on the walls. We compute SIFT matches to estimate homo-

graphies between image pairs (Ii, Ij), which can be used to establish correspondences based on the

known laser point l3D,i in Ii and its respective 2D position l2D,i,j in Ij .

Using an initial set of 4 images with full correspondences and the laser measurements, we are able

to initialize and calculate an early estimate for our model and the relative camera poses. Then we

iteratively add the remaining cameras and distance measurements and finally refine the poses with a

global bundle adjustment. Since we know the respective distance information to each camera pose,

this estimation is accurate in its scale.

4.1. Image Recording

Since we perform sparse camera pose estimation and reconstruction, the accuracy of the solution

depends upon a few, yet highly significant features which are easily found in images taken from

different perspectives. For a good reconstruction, the significant features should be chosen in a way

such that they lie on the facade and are well-distributed over its surface including the corner points,

e.g. vertices of walls and corners of windows. Figure 1 depicts the data recording process, where

we take RGB images from various view points while measuring the distance of a single point in the

respective image with the LRF.

4.2. Preprocessing and Feature Extraction

To keep our approach as flexible as possible and to reduce the complexity during manual data ac-

quisition, we assume no particular order of the images. Initially all possible image pairs are added

to a working set. We extract SIFT features [9] from gray-scale versions of the images and establish

point correspondences using a FLANN-based matcher [11] followed by Lowe’s ratio test to filter out-

liers. With these correspondences, we robustly estimate a homography between each image pair using

RANSAC [5] with a threshold of 1 px. We only want to keep image pairs with a certain overlap in the

working set, thus we filter out all with less than n = 10 inliers according to the RANSAC estimate

and a ratio of inliers to number of matches of < 50%. As a measure for the quality of the remain-

ing image correspondences, we define an error Ei,j for an image pair (Ii, Ij) using the 2D positions

PSIFT,i and PSIFT,j of their matched features as follows:

Ei,j = mean(||PSIFT,i − PSIFT,j||2), ∀i, j ∈ N, i �= j. (3)
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The idea is that the Euclidean distance between SIFT matches of an image pair taken spatially closer

together is lower than when taken from positions farther apart. E is used to find the images to initialize

the algorithm and to find subsequent images to iteratively extend the model.

4.3. Laser Point Correspondence Computation

With the image pairs (Ii, Ij) remaining in the working set (see Sec 4.2.), we establish correspondences

for the measurements of the LRF. We then compute the 2D laser point l2D,i,i by projecting l3D,i into

its respective image using the extrinsic calibration (see Sec. 3.). As we typically deal with planar

structures like facades, we estimate a homography and transform l2D,i,i into image Ij to get l2D,i,j .

This approach proves to be fairly robust in our experiments, however due to the highly repetitive

nature of many facades, false positives still pose challenge.

4.4. Structure from Motion (SfM)

Our structure from motion (SfM) approach consists of three successive steps: finding an initial set

for model initialization (i), iteratively adding one image at a time (ii) and one final bundle adjustment

over all pairs (iii).

Model Initialization
As for all iterative SfM systems, finding a good set of starting images is challenging. Due to the

many available features in common approaches, only one image pair is necessary to initialize camera

pose estimations. In contrast, our approach needs a larger initial set to account for its sparse nature.

Each camera has 6 degrees of freedom (3 for rotation, 3 for translation), hence we need at least 6

equations to estimate its pose. In the previous step we obtained for each image pair (Ii, Ij) two 3D-

2D correspondences l3D,i ⇔ l2D,i,j and l3D,j ⇔ l2D,j,i, i.e. 4 equations for each given image pair.

For a set of at least 4 images, the resulting equation system is solvable with 6 different image pairs

resulting in 4 equations each. The initial set Iinit is chosen as the set of 4 images with the smallest

sum of mutual errors Ei,j .

We solve the task of finding relative rotations Ri and translations ti in 3D for each camera by min-

imizing the reprojection error C(·) of a laser measurement l3D,i and its 2D correspondences l2D,i,j·
with bundle adjustment. The reprojection error is defined as:

C(Iinit) = min||π(Rj(R
−1
i l3D,i − ti) + tj)− l2D,i,j||22, ∀i, j ∈ Iinit, i �= j, (4)

with R and t the rotation and translation of each respective view and π(·) the projection. This for-

mulation first projects a laser measurement l3D,i in 3D from its respective camera coordinate system

i into a common world coordinate system and subsequently reprojects it to the camera coordinate

system j. We solve the minimization problem of bundle adjustment with a Levenberg-Marquardt [17]

least-squares solver. We denote the resulting set of rotations and translations of all camera views

currently involved as our current model Mcurr.

Iterative Bundle Adjustment
In the next step, we extend our model Mcurr by adding a new image Ik from the pool of candidates.

We find Ik by summing up the error Ecurr,k of all possible image pairs (Icurr, Ik) and take the one

with the most correspondences and the lowest overall error. We also set the initial rotation Rk and

translation tk of the newly added camera equal to the parameters of the closest camera, i.e. the one

with the lowest Ei,k, i ∈ Mcurr. For each image pair, i. e. 3D-2D correspondence, we get two
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independent equations for the x- and y-position, thus we need at least 3 correspondences to solve the

6 degrees of freedom given by Rk and tk. As mentioned in Section 4.3., outliers (wrong matches) are

possible, thus in practice we use at least 4 correspondences.

In a first step, we compute the reprojection error of all correspondences C (4) using the initialized

camera pose and the mean reprojection error C̄. Then we take all correspondences with an error

smaller than 1.5C̄ or a threshold εC . We then optimize with the same cost function (4) as for the

initial bundle adjustment with the major difference that only the pose of the newly added camera

k is optimized, while the rest of the system Mcurr is fixed. After optimization, we again filter bad

correspondences with the same approach as described above and perform a second optimization,

which is usually very fast due to the already good estimation. We iterate through all images until no

more can be added, i.e. do not fulfill any of the conditions.

Global Bundle Adjustment
While keeping the camera system Mcurr fixed and only optimizing the new camera k is very fast

and gives an estimate of the model structure, it does not replace a global optimization approach. We

perform a final global bundle adjustment step, where all the camera poses are optimized. In this

case, we take all the correspondences used during the iterative bundle adjustment step and initialize

the camera poses with the previously computed rotation and translation. Here, we also use the cost

function presented in (4). Similar to the iterative bundle adjustment, we again filter outliers with the

reprojection error after optimization, but instead impose that the error must be smaller than < 1.2C̄.

After this final filtering step, we perform one last global bundle adjustment.

5. Results and Discussion

In this section, we present early results of our guided sparse camera pose estimation. We evaluate

our approach on two datasets from different buildings, one with a well-textured facade and one with

redundant structures. As reference, we use the open-source SfM framework OpenMVG, which can

achieve an accuracy of around 1 cm in ideal cases [10]. It utilizes SIFT features and many correspon-

dences to estimate camera poses and a point cloud. OpenMVG chooses the starting views randomly

and in our evaluation we had to start SfM multiple times to get a reconstruction. We evaluate the

distance between the camera centers generated by the two approaches. OpenMVG estimates the re-

construction up to scale, thus to metrically measure the distance between cameras, we transform its

world coordinate system to ours using a robust similarity transform.

Figure 3 shows a histogram, where the bins show the number of distances between camera centers in

the respective range in cm. Cameras in the first few bins are closer to OpenMVG, while the cameras in

the last bin are farther away. Especially in the first experiment we achieve reasonable results and that

with only 90 correspondences compared to OpenMVG’s 2969, which is a reduction by a factor of 30.

In the second experiment, we only use 56 correspondences compared to 1880 in the reference. The

histograms show that we are centimeters away from OpenMVGs reconstruction even though we still

achieve visually appealing results when reprojecting the laser points into the images (see Fig. 4). Due

to the sparse correspondences, even one unfiltered outlier can decrease the final result significantly.
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Figure 3: The two experiments and the distances between our camera positions and OpenMVG’s. The

bins of the histogram show the number of distances between camera centers in the respective range

[cm].

Figure 4: The reprojected laser point from the computed camera poses.

6. Conclusion and Outlook

In this paper, we presented a first evaluation of our idea to utilize a combination of RGB camera and

LRF for sparse camera pose estimation, where we can select significant features during the image

recording process with the LRF. We showed that metrically accurate camera pose estimation with

just a few correspondences is possible. In future work, we plan a more sophisticated way to redetect

significant features in the other views without the use of SIFT matches and homography estimation,

which would also enable the reconstruction of more complex 3D structures. Additionally, we plan to

improve the accuracy by robustifying our approach against outliers during bundle adjustment.

An interesting direction for future work is inspired by Li et al. [8], where they address the SfM

problem by estimating up-to-scale edge lengths of a rigid graph constructed from 3D features and

their respective image rays. We would like to investigate whether the laser range measurements can

be directly used as edge lengths for this approach.
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