
PHYSICAL REVIEW B 94, 155131 (2016)

Charge self-consistency in density functional theory combined with dynamical mean field theory:
k-space reoccupation and orbital order
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We study the effects of charge self-consistency within the combination of density functional theory (DFT;
WIEN2K) with dynamical mean field theory (DMFT; W2DYNAMICS) in a basis of maximally localized Wannier
orbitals. Using the example of two cuprates, we demonstrate that even if there is only a single Wannier orbital
with fixed filling, a noteworthy charge redistribution can occur. This effect stems from a reoccupation of the
Wannier orbital in k-space when going from the single, metallic DFT band to the split, insulating Hubbard bands
of DMFT. We analyze another charge self-consistency effect beyond moving charge from one site to another: the
correlation-enhanced orbital polarization in a freestanding layer of SrVO3.
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I. INTRODUCTION

Density functional theory (DFT) [1,2] is highly successful
in predicting various material properties, such as crystal
structures, ionization energies, and electrical, magnetic, and
vibrational properties. Indeed, DFT is the de facto standard
for calculating the physical properties of materials. But even
the best approximations for the DFT exchange-correlation
functional fail to describe one class of materials, known as
strongly correlated systems. In these materials, the interaction
between electrons is insufficiently screened to be amenable
to the available functionals. One might add a static Coulomb
correction within the so-called DFT+U formalism [3]. This
often yields an improved description, in particular of strongly
correlated insulators, but it has its own limitations: DFT+U is
essentially a Hartree-Fock-like treatment with a single-Slater-
determinant ground state. In this situation, the energy cost of
the Coulomb interaction can only be avoided by symmetry
breaking, which is hence largely overestimated.

Dynamic, albeit local, correlations can be taken into
account by dynamical mean field theory (DMFT) [4–6],
which has been merged with DFT for realistic calculations
of correlated materials [7–10]. Here electrons can stay on or
leave lattice sites dynamically so as to greatly suppress double
occupation and the cost of the Coulomb interaction, even in
a paramagnetic phase without any symmetry breaking. If one
has a three-dimensional material at elevated temperatures, say
room temperature, and if there is no magnetic or other phase
transition close by [11], these local DMFT correlations prevail.
Already the first applications showed that DFT+DMFT
well describes transition metals [8], their oxides [12], and
f -electron systems [13,14].

In these early papers, so-called one-shot DFT+DMFT
was used. That is, following a DFT calculation, the rele-
vant correlated orbitals and the corresponding single-particle
Hamiltonian were identified. This DFT Hamiltonian was
supplemented by local Coulomb interactions for the d- or
f -orbitals and solved with DMFT. Physical properties such
as the spectral function, susceptibility, or magnetization were
calculated from this “one-shot” DMFT solution.
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Since the DMFT correlations change the site and orbital
occupation and consequently the charge density, a natural next
step is to do a “charge self-consistent” (CSC) DFT+DMFT
calculation [15–22]. That is, from the DMFT Green’s function,
a new charge distribution is calculated, which in turn serves as
input for the DFT potential. This leads to a new DFT Kohn-
Sham Hamiltonian, and subsequently a new DMFT Green’s
function, etc. This cycle is repeated until convergence. While
it has been pointed out in the literature [15–22] how the DMFT
spectral function, the double counting, and the d (f ) energy
level changes due to CSC for specific materials where charge
is moved from one site to another, little attention has been paid
to the redistributed charge itself, its spatial arrangement, and
more.

The aforementioned change of double counting and d-level
shift can be understood as follows: In a typical situation,
say for a transition-metal oxide, the dominant d states
crossing the Fermi energy have some oxygen p admixture;
conversely, the oxygen states below the Fermi level have
some d contribution. Including electronic correlations in a so
called d + p DMFT calculation will reduce the d occupation
somewhat, and increase the p occupation on the oxygen sites.
In the next DFT step, the larger p occupation will increase
the p (Hartree) energy and decrease the d (Hartree) energy.
This counteracts the first shot DMFT to have fewer d and
more p electrons, dampening the charge redistribution of the
“first-shot” DFT+DMFT.

In this paper, we study the effects of CSC beyond this
gross effect of a p-d orbital and site reoccupation. In Sec. II,
we recapitulate the CSC DFT+DMFT approach and outline
our implementation thereof. In Secs. III A and III B, we show
that even in a single-orbital, d-only DMFT calculation, there
is a charge redistribution akin the d-p reoccupation effect
mentioned above. This runs counter to the naive expectation
that there can be no charge redistribution in this situation
since the number of electrons in the single, predominately
d-like orbital centered around the transition-metal site is fixed.
The two materials studied, where a restriction to a single d

band is justified, are Sr2CuTeO6 and HgBa2CuO4 (Secs. III A
and III B, respectively). In Sec. III C, we study the effect of
correlation-induced orbital order on the charge redistribution
and self-consistent DFT+DMFT results. Specifically, we
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consider an ultrathin layer of the cubic perovskite material
SrVO3, where breaking of the cubic symmetry stabilizes the
in-plane xy orbital against the xz and yz orbitals. This orbital
ordering is strongly enhanced in DMFT because of electronic
correlations. Finally, Sec. IV summarizes our main findings.

II. METHODOLOGY

We now present the formalism and our implementation
of CSC DFT+DMFT, which is in a basis of maximally
localized Wannier functions (MLWFs). For these, the measure
of localization introduced by Marzari and Vanderbilt [23]
is the spread in real space. This allows for a very flexible
approach that can be adapted to any band-structure method.
Moreover, MLWFs allow more general initial projections,
e.g.,, bond-centered orbitals. They are also more well-defined
through the localization procedure. Our starting point is
the WIEN2WANNIER [24] interface between WIEN2K [25] and
WANNIER90 [26], and the W2DYNAMICS [27] continuous-time
quantum Monte Carlo [28] DMFT implementation.

We combine and extend these methods to include CSC. For
the sake of completeness, and given the sparse presentation in
the literature, we will recapitulate here the CSC DFT+DMFT
approach and discuss the peculiarities of our implementation.
Readers only interested in the physical applications and effects
of CSC can safely skip the rest of this section.

The CSC DFT+DMFT method relies on the simultaneous
convergence of two local observables: the electronic density as
the central quantity of DFT, and the local Green’s function as
the central quantity of DMFT. Both mutually affect each other
in the CSC cycle. The charge density at position r is given by

ρ(r) = 1

β

∑
n

G(r,r; iωn)eiωn0+
, (1)

while the local DMFT Green’s function is

Gmm′ (iωn) =
∫

dr dr′χ∗
m(r)χm′(r′)G(r,r′; iωn) (2)

in the basis of localized Wannier orbitals χm. Here, m,m′
enumerate orbitals on a site, β is the inverse temperature,
and the factor eiωn0+

ensures the convergence of the sum over
Matsubara frequencies ωn = (2n + 1)π/β.

In both expressions, there appears the full Green’s function
of the solid, which can be written as

G(r,r′; iω) = 〈r|
[
iωn + μ + ∇2

2
− V̂KS − ��̂

]−1

|r′〉 ,

(3)
with −∇2

2 , VKS, and μ being the kinetic energy operator,
Kohn-Sham (KS) effective potential, and chemical potential,
respectively. The effective local self-energy ��̂ = �̂ − �̂dc

is determined from the DMFT self-energy �̂ by subtracting a
double-counting correction term �̂dc, which, as far as possible,
accounts for electronic correlations already included in DFT.
In all our calculations, we have used fully localized limit (FLL)
double counting. For the single-band cases, i.e., HgBa2CuO4

and Sr2CuTeO6, it plays no role except for shifting the
chemical potential. The KS potential depends on r and consists
of the external potential Vext due to the nuclei, a Hartree
potential VH describing part of the electron-electron Coulomb
repulsion, and an exchange-correlation potential Vxc. The latter
is obtained here within the generalized gradient approximation
(GGA) [29], but other functionals are possible as well, e.g.,
hybrid functionals to improve on the exchange contribution.

In DFT, the effective potential is obtained from a charge
self-consistent procedure, shown in the upper left part of
Fig. 1. This DFT cycle starts with an initial choice for the
electron density, from which the effective potential VKS is

FIG. 1. Schematic representation of the DFT+DMFT approach. In a non-CSC or “one-shot” DFT+DMFT calculation, the step labeled
“density update” is not performed; both the DFT and DMFT cycles are closed separately. By contrast, in CSC DFT+DMFT, neither DFT nor
DMFT is iterated individually; instead, both of them are closed together. In terms of the schematic, a one-shot calculation follows the orange
arrows, which close the individual cycles. A CSC calculation follows the blue arrows instead, which close the CSC cycle. (The green arrows
are followed in either case.)
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constructed. Incorporating VKS, the Kohn-Sham equation is
solved to obtain a new density, and so forth until convergence.
The DFT cycle closes with a converged charge density and
provides a reasonable electronic structure as a starting point
for DMFT calculations.

There is, however, an important step between DFT and
DMFT, identifying a localized basis (upper right part in Fig. 1)
since DMFT treats only local correlations. To this end, we
employ Wannier functions that are constructed by Fourier
transform of the DFT Bloch waves |ψνk〉:

|wαR〉 = �

(2π )3

∫
BZ

dk e−ik·R
C∑

ν=1

Uνα(k) |ψνk〉 . (4)

Here, Û (k) is a unitary matrix, � denotes the volume of
the unit cell, and ν and α are the band indices of the Bloch
waves and Wannier functions, respectively. We assume here
that we can restrict ourselves to a band window with only C
Bloch waves. In the scheme of maximally localized Wannier
functions [23], Û (k) is obtained by minimizing the spread of
the Wannier functions.

Equation (4) works for isolated bands. However, in most
cases, the target bands are “entangled” with further bands
at least at some k-points. These additional bands might be
less important for the physics, but they need to be projected
out by a so-called “disentanglement” procedure. At each k-
point, there is a set of Co(k) Bloch functions that is larger than
or equal to the number of target bands, i.e., Co(k) � C. The
disentanglement transformation takes the form

|wαR〉 = �

(2π )3

∫
BZ

dk e−ikR
C∑

ν ′=1

Co(k)∑
ν=1

Vνν ′(k)Uν ′α(k) |ψνk〉 .

(5)
Here, the band index ν belongs to the “outer window” with

Co(k) Bloch wave functions, while ν ′,α label the C target
bands. Hence, V̂ (k) is a rectangular Co(k) × C matrix. A
Fourier transformation of |wαR〉 leads to the Wannier orbitals
in k-space whose occupation will be the focus of the physics
discussed below:

|wαk〉 =
∑

R

eikR |wαR〉 =
∑
ν ′ν

Vνν ′ (k)Uν ′α(k) |ψνk〉 . (6)

The Hamiltonian in Wannier space, W , is defined in terms
of the |wαk〉 and obtained by a unitary transformation for
isolated bands and with an additional projection (“downfold”)
in the case of entangled bands, i.e.,

ĤW
KS(k) = Û †(k)ĤKS(k)Û (k), (7)

ĤW
KS(k) = Û †(k)V̂ †(k)ĤKS(k)V̂ (k)Û (k), (8)

respectively.
In DMFT, this Hamiltonian is now supplemented with the

local Coulomb interactions, and the lattice problem defined in
this way is mapped onto an auxiliary impurity problem that
is solved self-consistently [5,6]. The noninteracting Green’s
function Ĝ(iωn) of the impurity problem can be considered as
a dynamical mean field. The DMFT algorithm (see the lower
right part of Fig. 1) consists of the following:

(i) Applying the lattice Dyson equation for the local
interacting Green’s function Ĝ(iωn),

Ĝ(iωn) = 1

nk

∑
k

[
iωn + μ − ĤW

KS(k) − �̂ + �̂dc
]−1

. (9)

To enhance convergence, one normally starts with �̂ = �̂dc,
i.e., using the Hartree energy as a first guess for the self-energy.
A total number of k-points, nk, is considered in the reducible
Brillouin zone.

(ii) Applying the impurity Dyson equation, which relates
the noninteracting impurity Green’s function to the (lattice and
impurity) self-energy and interacting Green’s function,

Ĝ(iωn)−1 = �̂(iωn) + [Ĝ(iωn)]−1. (10)

(iii) Solving the Anderson impurity problem (AIM) defined
by the noninteracting Green’s function and the local Coulomb
interaction U , i.e., calculating its interacting Green’s function
Ĝimp(iωn),

Ĝ(iωn),U
AIM−→ Ĝimp(iωn). (11)

This is numerically the most involved step; we employ the
continuous-time quantum Monte-Carlo method [28] in the
W2DYNAMICS implementation [27].

(iv) Applying the impurity Dyson equation once again, this
time to calculate the self-energy as the difference between the
inverse noninteracting impurity Green’s function Ĝ(iωn) and
the interacting (lattice and impurity) Green’s function Ĝ(iωn),

�̂(iωn) = Ĝ−1(iωn) − Ĝ−1
imp(iωn). (12)

This self-energy is now used again in step (i) to calculate
a new local Green’s function. This procedure is referred to
as the “DMFT cycle” in Fig. 1. In a one-shot DFT+DMFT
calculation, we would stop after this DMFT calculation,
extracting the interacting Green’s function and further physical
quantities from the converged DMFT solution.

By contrast, in CSC DFT+DMFT calculations, we need
to determine the DMFT-modified electron density (lower left
segment in Fig. 1), recalculate from this the Kohn-Sham
potential and the Bloch waves without DFT self-consistency,
and redo for these a Wannier function projection, which is the
starting point for another DMFT step (see the green and blue
arrows in Fig. 1).

We still need to discuss how we calculate the DMFT-
modified electron density ρ(r) = ρDFT(r) + �ρ(r), which we
defined in terms of the Kohn-Sham or DFT ρDFT(r) and
the correlation-induced difference �ρ(r). The latter can be
calculated as [18]

�ρ(r) = ρDMFT(r) − ρDFT(r)

= 〈r| (Ĝ − ĜDFT) |r〉
= 〈r| ĜDFT[��̂ + (μDFT − μ)]Ĝ] |r〉 , (13)

where μDFT and μ are the DFT and DMFT chemical potentials,
respectively, and ĜDFT(iωn) = ∑

k[iωn + μDFT − ĤW
KS(k)]−1

is the DFT Green’s function. It is computationally convenient
to express �ρ(r) in momentum space, which can be deduced
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from Eq. (13) as

�ρ(r) = 1

nk

∑
k,αα′

〈r|wαk〉 �NW
αα′ (k) 〈wα′k|r〉, (14)

�N̂W (k) = 1

β

∑
n

ĜDFT(k,iωn)[��̂(iωn) + �μ]

× Ĝ(k,iωn) (15)

with ��̂ = �̂ − �̂dc and �μ = μDFT − μ. It should be noted
that no convergence factor in the frequency summation needs
to be used for �N̂W (k) because both Green’s functions decay
asymptotically as 1/ωn. Note that the change of occupation in
Wannier space, �NW

α,α′ , has an explicit k-dependence, which
will have significant consequences in the following section.

To update the DFT charge density, we need to transform
�N̂W (k) from the Wannier to the Bloch basis using the unitary
and disentanglement matrices, Û (k) and V̂ (k), that define this
transformation:

�N̂ (k) = Û (k)�N̂W (k)Û †(k), (16)

�N̂ (k) = V̂ (k)Û (k)�N̂W (k)Û †(k)V̂ †(k). (17)

Knowing the correlation-induced change of occupation in
the Bloch or Kohn-Sham basis, we can finally calculate the
modified density since we know the spatial density Dk

ν ′ν(r) =
ψkν(r)ψ∗

kν ′(r) of each Bloch wave:

�ρ(r) = 1

nk

∑
k

Co∑
νν ′=1

Dk
ν ′ν(r)�Nνν ′ (k). (18)

The full CSC DFT+DMFT hence consists of the following
work flow, schematically depicted in Fig. 1:

(i) A converged charge density is obtained within DFT to
have a reasonable electronic structure to start with (upper left
part of Fig. 1). The target bands are identified as a prelude for
the Wannier projection. In the following CSC DMFT cycle
(green and blue arrows in Fig. 1), a single DFT iteration is
performed to update the DFT Kohn-Sham Hamiltonian (i.e.,
without the orange arrow in the upper left part). We employ
the WIEN2K program package here.

(ii) Maximally localized Wannier functions are computed
within the target subspace as explained in Eqs. (4)–(6) (upper
right section of Fig. 1). The DFT Kohn-Sham Hamiltonian
is transformed into the Wannier basis following Eq. (7). We
employ WIEN2WANNIER [24] and WANNIER90 [26] to this end.

(iii) A single DMFT cycle is performed using W2DYNAMICS

[27] (lower right part of Fig. 1). This provides the self-energy
�̂, local Green’s function Ĝ, and the DMFT chemical potential
μ, which is fixed to the particle number. Let us note that, for
practical purposes, it is beneficial to start with a converged
“one-shot” DFT + DMFT calculation. Moreover, a mixing
(underrelaxation) between old and new DMFT self-energy is
employed.

(iv) For the correlated charge distribution (lower left part
of Fig. 1), first �NW (k) is calculated taking the difference
between DMFT and DFT Green’s functions, Ĝ and ĜDFT,
as in Eq. (14). As described in Eqs. (16)–(18), �NW (k) is
transformed back to the DFT eigenbasis and used to obtain

the correlation-induced change of density �ρ(r) and the total
density ρ(r) of the correlated solution.

(v) The DFT+DMFT charge density, ρ(r), is finally
compared with the old density. If the difference does not satisfy
the convergence criterion (i.e., the WIEN2K charge convergence
criterion with a value of 1 × 10−4e), the new density is mixed
with the old density and the result serves as the new density for
a new VDFT and a new solution of the Kohn-Sham equation,
etc., until convergence. At the same time, a convergence of
Ĝ(τ ) is also checked.

III. APPLICATIONS

In the following, fully CSC DFT+DMFT calculations
are employed to shed light on correlation-induced charge
redistribution beyond the gross effect of moving electrons from
a WF centered at one atom to a WF centered at another atom.
Two cuprates, Sr2CuTeO6 and HgBa2CuO4, whose physics
is dominated by a single band, are studied. The systems are
different in several aspects. First Sr2CuTeO6 exhibits a single
isolated band around the Fermi energy, while in HgBa2CuO4

the single d-band is entangled with other bands crossing it.
On the technical side, this requires disentanglement to project
onto a single Wannier d orbital for HgBa2CuO4, as discussed
in the previous section.

Next, a multiorbital situation is considered with a single,
free-standing layer of SrVO3 and t2g orbitals at the Fermi
energy that are well isolated from the other orbitals. Here,
the interplay between structural confinement, orbital ordering,
electronic correlations, and CSC is discussed in detail.

A. Sr2CuTeO6

To describe the physics of cuprates, an effective single-
band model can be derived where the contributing orbital is
predominantly of Cu dx2−y2 character, with some admixture
of O px/y . The compound, Sr2CuTeO6, exhibits square-
lattice Heisenberg antiferromagnetism [30] in a quasi-two-
dimensional plane, consisting of Cu and O atoms; see Fig. 2
(left). It is quite unique in the cuprate group that it has a
completely isolated and weakly dispersing band around the
Fermi energy; see the white band in Fig. 2 (right). Thus, no
disentanglement is needed in this material.

We take for our calculations the I4/m symmetry of the
lattice with the experimental lattice parameters [31], i.e., in-
plane lattice constant a = 5.4308 Å and out-of-plane lattice
constant c = 8.4664 Å. A slight complication of the lattice
structure is that the CuO6 octahedra in Sr2CuTeO6 are rotated
around the z-direction. In contrast to the CuO2 planes of other
cuprates, cf. Sec. III B, Sr2CuTeO6 has planes with four O per
Cu; no oxygen is shared, which explains the low itinerancy.

In DFT, Sr2CuTeO6 is a metal with a single half-filled
band crossing the Fermi energy, predominantly of Cu dx2−y2

character. Electronic correlations result, however, in an in-
sulating phase with two Hubbard bands separated by U .
This is captured in our DMFT calculations, performed with
U = 6.5 eV at inverse temperature β = 40 eV. During the
charge self-consistency cycle, the self-energy and density are
underrelaxed; 1000 k-points are considered in the reducible

155131-4



CHARGE SELF-CONSISTENCY IN DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 94, 155131 (2016)

FIG. 2. (a) Crystal structure of Sr2CuTeO6 with green, golden, and red balls representing Sr, Te, and O, respectively; the Cu sites are
in the center of the blue octahedra that are elongates along the c-axis. (b) Spectral function, A(k,w), as calculated by DFT+DMFT along a
high-symmetry path through the Brillouin zone. The white curve depicts a well-separated Wannier band; the Fermi energy is set at zero.

Brillouin zone for all the calculations. The half-filled DFT
band remains half-filled in DMFT.

Naively one might expect that for an unchanged d-electron
occupation (half-filling) there can be no CSC effect. However,
the occupation in k-space is altered. In DFT (white band in
Fig. 2), some k-points (in between X-N -�) are below the
Fermi level, and hence are filled with one electron, whereas
for all other k-points the occupation is zero.

In DMFT this half-filled band is split into two Hubbard
bands that are broadened because of the imaginary part of the
self-energy, namely the lifetime. This splitting means that now
every k-point is occupied with half an electron (lower Hubbard
band), whereas the remaining half electronic state (upper
Hubbard band) remains unoccupied. That is, we have a major
change of the occupation �N (k) in k-space, as calculated
from the differences between G and GDFT at each k-point in
Eq. (14). For the orbital occupation, the sum over the entire
Brillouin zone is taken, preserving the number of electrons in
the dx2−y2 orbital.

For the change of charge �ρ(r) in real space, however, each
�N (k) in Eq. (18) is weighted with the spatial distribution of
the corresponding Wannier functions. Hence, the splitting into
Hubbard bands results in a charge redistribution: the Wannier
functions have a different spatial dependence at each k-point.

This correlation-induced correction to the charge density
within the Cu-O plane is shown in Fig. 3. Here, the yellow
(cyan) color corresponds to a gain (loss) of electron density
in real space. As the single band of our consideration is
predominantly of dx2−y2 character, the contribution of each
sign has the same orbital symmetry; the total change in
density within the unit cell (shown as the black dashed box)
is zero. The charge redistribution around each Cu ion can
be understood easily for cubic crystal symmetry; see the
discussion on HgBa2CuO4 in Sec. III B. Here, with lower
symmetry, the charge redistribution around each Cu ion shows
eight lobes with positive and negative contributions. Each
Cu is surrounded by four oxygen atoms at the edges of the
dotted box. As one can clearly see, the positive contribution at
these O sites is larger than the negative one. That means that

even in our d-only model calculation, there is some charge
redistribution from Cu d to oxygen p. This is akin to the
situation in d-p models where charge is moved from d to
p orbitals as well. However, in our calculation this effect
occurs even though we have only a single orbital in the DMFT
calculation. This Wannier orbital is centered around the Cu
sites and is predominantly of dx2−y2 character. But it has some
admixture of oxygen p, i.e., it has some charge density at
the neighboring oxygen sites as well. This admixture requires
some k-dependence of the Wannier functions [Eq. (6)], and
the occupation is reduced, e.g., around the N point, while it
is increased in the remainder, eventually leading to the charge
distribution pattern of Fig. 3.

FIG. 3. Isosurface plot of the correlation-induced charge-density
difference, �ρ(r) = ρDMFT(r) − ρDFT(r), in Sr2CuTeO6. Yellow and
cyan correspond to positive and negative �ρ(r)’s at an isovalue of 4 ×
10−3 electrons/bohr3; the dashed and dotted lines represent the unit
cell and the (rotated) four O atoms around each Cu site, respectively.
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FIG. 4. (a) Crystal structure of HgBa2CuO4. Green, pink, blue,
and red balls represent Ba, Hg, Cu, and O atoms, respectively.
(b) k-dependence of �NW , i.e., the change of occupation of the
Wannier orbitals in k-space for the kz = 0 plane in the Brillouin zone.
The high-symmetry points �(0,0), X(π,0), and M(π,π ) are marked.
The cyan curve depicts the DFT Fermi surface, which separates
positive (yellow) and negative (blue) �NW contributions.

B. HgBa2CuO4

Let us now turn to HgBa2CuO4, a prototype of the high-
temperature cuprate superconductors [32]. The arrangement
of the CuO6 octahedra is distinctly different in undoped
HgBa2CuO4 compared to that of Sr2CuTeO6; see the crystal
structure in Fig. 4(a). The system belongs to the space group
P 4/mmm, with Hg, BaO, CuO2, and BaO layers stacked
vertically along the c-axis of a tetragonal unit cell. Each
oxygen atom in the CuO2 plane is shared by two Cu atoms,
resulting in a more direct hopping and a larger bandwidth
of the Cu dx2−y2 band compared to that of Sr2CuTeO6.
But the dx2−y2 bands of HgBa2CuO4 are no longer isolated.
This requires disentanglement for constructing an effective
single-band model.

Like Sr2CuTeO6, HgBa2CuO4 is metallic in DFT, but it is
insulating if electron correlations are included as well as in
experiment. For all the calculations, we use 845 k-points in
the full Brillouin zone; for the DMFT at β = 40, we employ
U = 6.5 eV. This splits the DFT band into two Hubbard bands
(see Fig. 5) and redistributes the k-space occupation of the
Wannier orbitals as in the case of Sr2CuTeO6 [Fig. 2(a)]. The

most remarkable difference from that material is the much
larger bandwidth in both DFT (white line) and DMFT (color).

Hence, for the very same reason as in the previous section,
�NW has a strong k-dependence. Since we have an effectively
two-dimensional model, we plot in Fig. 4(b) �NW (k) in the
plane kz = 0 of the Brillouin zone. The yellow section of the
plane represents the set of k-points that have positive �NW .
These states were unoccupied in DFT but get half-occupied in
DMFT due to the lower Hubbard band dispersing throughout
the Brillouin zone. The negative counterpart (blue) is around
the � point where all states were occupied in DFT. The
boundary between these two regions is exactly the DFT Fermi
surface marked with a cyan line.

In spite of the fact that both cuprates can be modeled using
only a single band, there is a significant correction to the
charge density by DMFT. In Fig. 5(b), the correlation-induced
charge redistribution �ρ(r) is depicted as an isosurface plot.
A negative sign of �ρ(r) (cyan) suggests electron loss from
the single band comprised of Cu dx2−y2 and O p orbitals, a
positive sign (yellow) electron gain. There are gains as well as
losses around both Cu and O sites; altogether some net charge
is transferred from Cu to O.

Let us hence focus on the O charge gain and Cu loss in
the following. Around the O sites, the gain has the form of a
px- and py-orbital density pointing to the Cu sites. It stems
from the admixture of these orbitals to our single band. On
the Cu site in turn there are blue dx2−y2 -like lobes of removed
charge pointing toward the neighboring oxygen sites. This
indicates that the redistribution �NW of Wannier orbitals in
k-space effectively reduces the level of admixture between
these orbitals when moving from the DFT metal to the DMFT
insulator. Even though one might naively assume that in a
single Wannier band with fixed occupation CSC effects are
minor, the density correction is significant for both cuprates.

C. SrVO3

SrVO3 crystallizes in a cubic perovskite lattice struc-
ture and has been the testbed material for DFT+DMFT
[33–39], DFT+DCA [40], and GW+DMFT [41–45] method
development. A strong interplay between the octahedral crystal
field in VO6 and electron correlation determines the properties

FIG. 5. (a) k-resolved DMFT spectral function A(k,ω) (color) in comparison with the DFT band structure (white line) for HgBa2CuO4.
The dashed horizontal line is the Fermi energy. (b) Isosurface plot of the DMFT charge redistribution �ρ(r). Yellow and cyan correspond to
positive and negative values of �ρ(r), at an isovalue of 1.5 × 10−3 electrons/bohr3).
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FIG. 6. DMFT (upper panel) and DFT (lower panel) density of
states projected onto the V t2g orbitals. Dashed lines correspond to
calculations without CSC; solid lines are with CSC. Inset: Top view
of the isosurface plot of charge redistribution, �ρ(r). Yellow and
cyan correspond to positive and negative contributions at an isovalue
of 6 × 10−3 electrons/bohr3.

of this material. Bulk SrVO3 exhibits robust metallicity also
upon chemical substitution, such as in Ca1−xSrxVO3 [46].
However, the material undergoes a metal-insulator transition
if its dimensionality is manipulated [47]. Oxide layers grown
on different substrates may, in principle, undergo a charge
redistribution at the interface. That is, charge is transferred
from one transition-metal ion to that of the neighboring layer.
This is, e.g.,, the case for the LaTiO3/LaFeO3 interface [48].
However, this is not an issue for SrTiO3/SrVO3, where the
crystal field plays the dominant role. That is, we have a charge
redistribution from one orbital to the other [49]. Ultrathin
layers (up to three monolayers) of SrVO3 are insulating, which
opens the possibility to control the metal-insulator transition
by applied electric field or strain, paving the way for a Mott
transistor [49].

In ultrathin layers, the bulk t2g symmetry is broken: the
out-of-plane dxz/yz orbitals have a reduced bandwidth, while
the in-plane dxy bandwidth remains almost unchanged. Given
the 3d1 electronic configuration of vanadium, ultrathin layers
hence favor the electrons being placed in the dxy orbital.
An orbital polarization develops. The orbital reoccupation is
quite dramatic in DFT+DMFT: from 1/3 for all t2g Wannier
orbitals in the metallic bulk to almost an occupation of
one electron in the dxy orbital for an one-layer film. Let
us note that DFT underestimates the orbital polarization,
which is strongly enhanced by electronic correlations: in
DFT, dxy and dxz/yz orbitals have 0.6 and 0.2 electrons,
respectively, for the ultrathin film, and it is metallic. Hence a
freestanding monolayer of SrVO3 is ideally suited to study the
CSC DFT+DMFT charge redistribution caused by an orbital
polarization.

In our calculation, we set the lattice constant (a = 3.92 Å)
to that of a single SrVO3 layer on SrTiO3 as this is the
experimental substrate [47]. Figure 6 (lower panel) shows the
DFT density of states (DOS), and the dashed lines represent the
DOS of the V t2g orbitals in DFT. Let us note that the position

and width of the dxy band (red) are significantly different
compared to that of the dxz/yz bands (blue). This leads to a first
tendency toward an orbital polarization already in DFT, giving
the aforementioned occupations.

For the DMFT calculations at inverse temperature β = 40,
we employ the Kanamori interaction parameters U ′ = 4.0 eV,
J = 0.75 eV from the literature [49]. The effect of electron
correlations in Fig. 6 (upper panel) is twofold: (i) the system
becomes a Mott insulator, and (ii) in the insulating phase, dxy

is half-filled while the other orbitals are essentially empty. This
kind of physics has been observed before [49], but let us now
turn to the effect of CSC.

The dashed curves represent the spectral function corre-
sponding to the one-shot DFT+DMFT calculation without
CSC, while the solid curves represent the full CSC results. Let
us note that the insulating energy gap is slightly reduced by
the CSC, which can be attributed to the charge redistribution
within the t2g manifold shown as an inset in Fig. 6. As is to
be expected, the charge redistribution has a positive dxy-like
shape as these orbitals become more occupied. Perpendicular
to the plane, shown in the inset, there is a reduced charge in a
dxz- and dyz-like shape.

This changed orbital occupation influences, in turn, the
DFT electronic structure; see the solid curves in Fig. 6 (lower
panel): The dxy orbital that is more occupied in DMFT is
shifted upward to higher energies in DFT and vice versa for
dxz/yz, as is to be expected already from the Hartree term.
That is, DFT partially compensates for the correlation effect
of DMFT, but a large net effect remains. This net effect is
shown in Fig. 6: the charge redistribution is shown in the inset,
and the CSC DFT and DMFT results are shown as solid lines
in the main panel.

One-shot DFT+DMFT has an almost filled dxy orbital and
almost empty dxz and dyz orbitals, while full CSC results in
a slight reduction of the dxy-orbital occupancy and vice versa
for dxz and dyz orbitals. To emphasize the CSC effect, we
have calculated �ρ∗(r) = �ρone-shot(r) − �ρCSC(r), which is
depicted in Fig. 7. The positive dxy lobe of �ρ∗(r) reflects the
reduction in occupancy of that orbital by CSC, and vice versa
for the dxz and dyz orbitals. The occupation of O p orbitals
is also reduced significantly. This shows that the effect of full
CSC is significant. This is also true for the reduction of the
band gap. In the case of the two cuprates (Secs. III A and
III B), CSC effects are somewhat less pronounced.

Let us note that all materials considered are essentially
two-dimensional so that nonlocal correlations beyond DMFT
become important at lower temperatures. These can be
described by cluster [50] and diagrammatic [51,52] extensions
of DMFT, which yield a k-dependent self-energy. In principle,
our approach and formalism can be extended to include such
a k-dependent self-energy in the CSC as well.

IV. SUMMARY AND CONCLUSIONS

We have implemented a fully charge self-consistent
DFT+DMFT method, using maximally localized Wannier
functions constructed with WANNIER90 [26], the WIEN2K

program package, WIEN2WANNIER as an interface, and
W2DYNAMICS as an impurity solver. We applied the method
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FIG. 7. Top view of the isosurface plot of the difference in
charge redistribution, �ρ∗(r), over the iterations. Yellow and cyan
correspond to positive and negative contributions at an isovalue of
6 × 10−3 electrons/bohr3.

to strongly correlated electron systems, and we discussed
different physical and technical aspects.

The cuprates, Sr2CuTeO6 and HgBa2CuO4, can be modeled
by a single Wannier orbital. In this situation, one might assume
that the charge self-consistency has no effect since this single
orbital must remain half-filled; there is no charge redistribution
to other orbitals. Nonetheless, the real-space charge density is
changed with full CSC DFT+DMFT.

In both cuprates, charge is removed from around the Cu
site and added around the O sites. Note that oxygen p-states
are mixed into the single, predominantly dx2−y2 orbital. The
reason for this change is a change of occupation of the Wannier
orbitals in k-space. While for the metallic DFT solution,
Wannier functions in some part of the Brillouin zone are singly

occupied, in DMFT the band splits into two Hubbard bands
and all k-points are occupied equally with half an electron.

Besides this common ground, there are some differences
between Sr2CuTeO6 and HgBa2CuO4. The former has much
weaker p-d hybridization and itinerancy. Hence we do not
need disentanglement to Wannier project onto the single
orbital. As for the CSC, the changes at the oxygen are much
less pronounced because the O states admix to a much lesser
extent in Sr2CuTeO6. It also has a lower symmetry, which
results in a more complicated charge redistribution pattern.

A significant correlation-induced occupation redistribution
within the V t2g manifold is observed in a single layer of
SrVO3. Here, the interplay between crystal field and electron
correlation results in a pronounced orbital polarization. The
orbital polarization can be clearly identified in the charge redis-
tribution. The CSC has the tendency to counteract the DMFT
orbital polarization, which is reduced at self-consistency with
respect to one-shot DFT+DMFT.

In all the cases, using single or multiband models,
�NW (k) has a significant k-dependence that translates to
an r-dependence of �ρ(r). This shows that there are more
profound effects of CSC in DFT+DMFT than the gross effect
of charge redistribution from one site to another found in
previous studies.

ACKNOWLEDGMENTS

We thank Patrik Thunström, Rainer Bachleitner, Markus
Wallerberger, Oleg Janson, and Peter Blaha for valuable
discussions. Financial support from the European Research
Council under the European Union’s Seventh Framework
Program (FP/2007-2013)/ERC through Grant Agreement No.
306447 and by the Austrian Science Fund (FWF) through SFB
ViCoM project ID F4103 and I 1395, which is part of the DFG
research unit FOR 1346, as well as START project Y746, is
gratefully acknowledged. Calculations were done in part on
the Vienna Scientific Cluster (VSC).

[1] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
[2] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
[3] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:

Condens. Matter 9, 767 (1997).
[4] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).
[5] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[6] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[7] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,

and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).
[8] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884

(1998).
[9] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[10] K. Held, Adv. Phys. 56, 829 (2007).
[11] G. Rohringer, A. Toschi, A. A. Katanin, and K. Held, Phys. Rev.

Lett. 107, 256402 (2011).
[12] K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov,

Phys. Rev. Lett. 86, 5345 (2001).

[13] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature (London)
410, 793 (2001).

[14] K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404 (2001).

[15] S. Y. Savrasov and G. Kotliar, Phys. Rev. B 69, 245101
(2004).

[16] J. Minár, L. Chioncel, A. Perlov, H. Ebert, M. I. Katsnelson, and
A. I. Lichtenstein, Phys. Rev. B 72, 045125 (2005).

[17] H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 90,
235103 (2014).

[18] F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M.
Posternak, A. Yamasaki, and O. K. Andersen, Phys. Rev. B 74,
125120 (2006).

[19] L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges,
Phys. Rev. B 76, 235101 (2007).

[20] M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B 84,
054529 (2011).

[21] M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O.
Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys.
Rev. B 80, 085101 (2009).

155131-8

https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.107.256402
https://doi.org/10.1103/PhysRevLett.86.5345
https://doi.org/10.1103/PhysRevLett.86.5345
https://doi.org/10.1103/PhysRevLett.86.5345
https://doi.org/10.1103/PhysRevLett.86.5345
https://doi.org/10.1038/35071035
https://doi.org/10.1038/35071035
https://doi.org/10.1038/35071035
https://doi.org/10.1038/35071035
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.90.235103
https://doi.org/10.1103/PhysRevB.90.235103
https://doi.org/10.1103/PhysRevB.90.235103
https://doi.org/10.1103/PhysRevB.90.235103
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.76.235101
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101
https://doi.org/10.1103/PhysRevB.80.085101


CHARGE SELF-CONSISTENCY IN DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 94, 155131 (2016)

[22] K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107
(2010).

[23] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997).

[24] J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held,
Comput. Phys. Commun. 181, 1888 (2010).

[25] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka,
and J. Luitz, WIEN2k, An Augmented Plane Wave + Local
Orbitals Program for Calculating Crystal Properties (Karlheinz
Schwarz, Techn. Universitat Wien, Austria, 2001).

[26] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[27] N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, Phys.
Rev. B 86, 155158 (2012); M. Wallerberger et al. (unpublished).

[28] E. Gull, A. J. Mills, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer,
and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[29] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

[30] T. Koga, N. Kurita, M. Avdeev, S. Danilkin, T. J. Sato, and H.
Tanaka, Phys. Rev. B 93, 054426 (2016).

[31] D. Iwanaga, Y. Inaguma, and M. Itoh, J. Solid State Chem. 147,
291 (1999).

[32] S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezio,
Nature (London) 362, 226 (1993).

[33] A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S. I.
Uchida, K. Takegahara, H. Harima, Y. Saitoh, I. A. Nekrasov,
G. Keller, D. E. Kondakov, A. V. Kozhevnikov, Th. Pruschke,
K. Held, D. Vollhardt, and V. I. Anisimov, Phys. Rev. Lett. 93,
156402 (2004).

[34] E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A.
Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
(2004).

[35] A. Liebsch, Phys. Rev. Lett. 90, 096401 (2003).
[36] I. A. Nekrasov, G. Keller, D. E. Kondakov, A. V. Kozhevnikov,

T. Pruschke, K. Held, D. Vollhardt, and V. I. Anisimov, Phys.
Rev. B 72, 155106 (2005).

[37] I. A. Nekrasov, K. Held, G. Keller, D. E. Kondakov, T. Pruschke,
M. Kollar, O. K. Andersen, V. I. Anisimov, and D. Vollhardt,
Phys. Rev. B 73, 155112 (2006).

[38] Y. Nomura, M. Kaltak, K. Nakamura, C. Taranto, S. Sakai,
A. Toschi, R. Arita, K. Held, G. Kresse, and M. Imada, Phys.
Rev. B 86, 085117 (2012).

[39] M. Karolak, T. O. Wehling, F. Lechermann, and A. I. Lichten-
stein, J. Phys. Condens. Matter 23, 085601 (2011).

[40] H. Lee, K. Foyevtsova, J. Ferber, M. Aichhorn, H. O. Jeschke,
and R. Valenti, Phys. Rev. B 85, 165103 (2012).

[41] M. Casula, A. Rubtsov, and S. Biermann, Phys. Rev. B 85,
035115 (2012).

[42] J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and S.
Biermann, Europhys. Lett. 100, 67001 (2012).

[43] C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse,
A. Toschi, and K. Held, Phys. Rev. B 88, 165119 (2013).

[44] J. M. Tomczak, M. Casula, T. Miyake, and S. Biermann, Phys.
Rev. B 90, 165138 (2014).

[45] S. Choi, A. Kutepov, K. Haule, M. van Schilfgaarde, and G.
Kotliar, Quantum Mater. 1, 16001 (2016).

[46] I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and M. Ishikawa,
Phys. Rev. B 58, 4372 (1998).

[47] K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S.
Aizaki, A. Fujimori, and M. Oshima, Phys. Rev. Lett. 104,
147601 (2010).

[48] J. E. Kleibeuker, Z. Zhong, H. Nishikawa, J. Gabel, A. Muller, F.
Pfaff, M. Sing, K. Held, R. Claessen, G. Koster, and G. Rijnders,
Phys. Rev. Lett. 113, 237402 (2014).

[49] Z. Zhong, M. Wallerberger, J. M. Tomczak, C. Taranto, N.
Parragh, A. Toschi, G. Sangiovanni, and K. Held, Phys. Rev.
Lett. 114, 246401 (2015).

[50] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 (2005).

[51] A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75, 045118
(2007).

[52] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys.
Rev. B 77, 033101 (2008).

155131-9

https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/PhysRevB.86.155158
https://doi.org/10.1103/PhysRevB.86.155158
https://doi.org/10.1103/PhysRevB.86.155158
https://doi.org/10.1103/PhysRevB.86.155158
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.93.054426
https://doi.org/10.1103/PhysRevB.93.054426
https://doi.org/10.1103/PhysRevB.93.054426
https://doi.org/10.1103/PhysRevB.93.054426
https://doi.org/10.1006/jssc.1999.8273
https://doi.org/10.1006/jssc.1999.8273
https://doi.org/10.1006/jssc.1999.8273
https://doi.org/10.1006/jssc.1999.8273
https://doi.org/10.1038/362226a0
https://doi.org/10.1038/362226a0
https://doi.org/10.1038/362226a0
https://doi.org/10.1038/362226a0
https://doi.org/10.1103/PhysRevLett.93.156402
https://doi.org/10.1103/PhysRevLett.93.156402
https://doi.org/10.1103/PhysRevLett.93.156402
https://doi.org/10.1103/PhysRevLett.93.156402
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.92.176403
https://doi.org/10.1103/PhysRevLett.90.096401
https://doi.org/10.1103/PhysRevLett.90.096401
https://doi.org/10.1103/PhysRevLett.90.096401
https://doi.org/10.1103/PhysRevLett.90.096401
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.73.155112
https://doi.org/10.1103/PhysRevB.73.155112
https://doi.org/10.1103/PhysRevB.73.155112
https://doi.org/10.1103/PhysRevB.73.155112
https://doi.org/10.1103/PhysRevB.86.085117
https://doi.org/10.1103/PhysRevB.86.085117
https://doi.org/10.1103/PhysRevB.86.085117
https://doi.org/10.1103/PhysRevB.86.085117
https://doi.org/10.1088/0953-8984/23/8/085601
https://doi.org/10.1088/0953-8984/23/8/085601
https://doi.org/10.1088/0953-8984/23/8/085601
https://doi.org/10.1088/0953-8984/23/8/085601
https://doi.org/10.1103/PhysRevB.85.165103
https://doi.org/10.1103/PhysRevB.85.165103
https://doi.org/10.1103/PhysRevB.85.165103
https://doi.org/10.1103/PhysRevB.85.165103
https://doi.org/10.1103/PhysRevB.85.035115
https://doi.org/10.1103/PhysRevB.85.035115
https://doi.org/10.1103/PhysRevB.85.035115
https://doi.org/10.1103/PhysRevB.85.035115
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1209/0295-5075/100/67001
https://doi.org/10.1103/PhysRevB.88.165119
https://doi.org/10.1103/PhysRevB.88.165119
https://doi.org/10.1103/PhysRevB.88.165119
https://doi.org/10.1103/PhysRevB.88.165119
https://doi.org/10.1103/PhysRevB.90.165138
https://doi.org/10.1103/PhysRevB.90.165138
https://doi.org/10.1103/PhysRevB.90.165138
https://doi.org/10.1103/PhysRevB.90.165138
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1103/PhysRevB.58.4372
https://doi.org/10.1103/PhysRevB.58.4372
https://doi.org/10.1103/PhysRevB.58.4372
https://doi.org/10.1103/PhysRevB.58.4372
https://doi.org/10.1103/PhysRevLett.104.147601
https://doi.org/10.1103/PhysRevLett.104.147601
https://doi.org/10.1103/PhysRevLett.104.147601
https://doi.org/10.1103/PhysRevLett.104.147601
https://doi.org/10.1103/PhysRevLett.113.237402
https://doi.org/10.1103/PhysRevLett.113.237402
https://doi.org/10.1103/PhysRevLett.113.237402
https://doi.org/10.1103/PhysRevLett.113.237402
https://doi.org/10.1103/PhysRevLett.114.246401
https://doi.org/10.1103/PhysRevLett.114.246401
https://doi.org/10.1103/PhysRevLett.114.246401
https://doi.org/10.1103/PhysRevLett.114.246401
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1103/PhysRevB.77.033101



