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Abstract

We prove existence of asymptotic entropy of random walks on regular languages over
a finite alphabet and we give formulas for it. Furthermore, we show that the entropy
varies real-analytically in terms of probability measures of constant support, which
describe the random walk. This setting applies, in particular, to random walks on
virtually free groups.
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1 Introduction

Let A be a finite alphabet and let A∗ be the set of all finite words over the alphabet
A, where o denotes the empty word. Consider a transient Markov chain (Xn)n∈N0 on
A∗ with X0 = o such that at each instant of time the last K ∈ N letters of the current
word may be replaced by a word of length of at most 2K and the transition probabilities
depend only on the last K letters of the current word and on the replacing word. For
better visualization and ease of presentation, we also consider the random walk on A∗
as a random walk on an undirected graph G. Denote by πn the distribution of Xn. We
are interested whether the sequence 1

nE[− log πn(Xn)] converges, and if so to describe
the limit. If it exists, it is called the asymptotic entropy, which was introduced by Avez
[1]. The aim of this paper is to prove existence of the asymptotic entropy, to describe it
as the rate of escape w.r.t. the Greenian distance and to prove its real-analytic behaviour
when varying the transition probabilities of constant support.

We outline some background on this topic. Random Walks on regular languages
have been studied by e.g. Lalley [16] and Malyshev [19] amongst others. Concerning
asymptotic entropy it is well-known by Kingman’s subadditive ergodic theorem (see
Kingman [15]) that the entropy exists for random walks on groups if E[− log π1(X1)] <∞.
In contrast to this fact existence of the entropy on more general structures is not known
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Asymptotic entropy of random walks on regular languages

a priori. In our setting we are not able to apply the subadditive ergodic theorem since
we neither have subadditivity nor a global composition law of words if the random walk
is performed on a proper subset of A∗ (that is, not every word w ∈ A∗ can be reached
from o with positive probability). This forces us to use other techniques like generating
functions techniques. These generating functions are power series with probabilities as
coefficients, which describe the characteristic behaviour of the underlying random walks.
The technique of our proof of existence of the entropy was motivated by Benjamini and
Peres [2], where it is shown that for random walks on groups the entropy equals the
rate of escape w.r.t. the Greenian distance; compare also with Blachère, Haïssinsky and
Mathieu [3]. In particular, we will also show that the asymptotic entropy h is the rate of
escape w.r.t. a distance function in terms of Green functions, which in turn yields that h
is also the rate of escape w.r.t. the Greenian distance. Moreover, we prove convergence
in probability and convergence in L1 of the sequence − 1

n log πn(Xn) to h, and we show
also that h can be computed along almost every sample path as the limes inferior of the
aforementioned sequence. The question of almost sure convergence of − 1

n log πn(Xn)

to some constant h, however, remains open. Similar results concerning existence
and formulas for the entropy are proved in Gilch and Müller [9] for random walks on
directed covers of graphs and in Gilch [8] for random walks on free products of graphs.
Furthermore, we give formulas for the entropy which allow numerical computations and
also exact calculations in some special cases. The main idea in our proofs is to fix a priori
a sequence of nested cones in the associated graph G and to track the random walk’s way
to infinity through these cones. Similar ideas have been used independently by Woess
[23] for context-free pairs of groups. The techniques in our proofs are restricted to the
case of bounded range random walks: in the case of unbounded range the situation gets
much more complicated since Martin and Gromov boundaries may differ even under
assumption of some exponential moments to be finite; compare with Gouëzel [10].

Kaimanovich and Erschler asked whether drift and entropy of random walks vary
continuously (or even analytically) when varying the probabilities of the random walk
with keeping the support of single step transitions constantly. In view of this question
we also show in this article that h is real-analytic in terms of the parameters describing
the random walk on A∗. This fact applies, in particular, to the case of bounded range
random walks on virtually free groups, which goes beyond the scope of previous results
related to the question of analyticity. Ledrappier [17] showed that the entropy varies
real-analytically for finitely supported random walks on free groups; with the help of
“barriers” (that is, nested sequences of subsets which have to be passed successively)
and the study of Martin kernels he identifies the entropy as the boundary entropy. The
present article uses also some kind of barriers (called “cones”) to track the random
walk’s path to infinity, but the approach is different: here, we identify the entropy as
the Shannon entropy of a hidden Markov chain (see Theorem 2.5), which arises from
splitting up the random walk into pieces between the entries of these nested cones. For
some special cases (e.g., free groups) we even give a formula (see Theorem 7.4) for the
entropy of the hidden Markov chain, which allows numerical calculations. A similar idea
for proving existence of the entropy has also been used in Gilch [8] for random walks on
free products of graphs by cutting the random walk into pieces; Theorem 7.4 applies
also to free products of finite graphs, but not necessarily for free products of infinite
graphs. The important difference between [8] and the present article is that analyticity
of the entropy in [8] follows directly from the formulas for the entropy, while we have to
make much more effort to show this property in the present context of regular languages.
Finally, let us remark that random walks on regular languages do not only extend results
from free groups or free products to the next general case like virtually free groups but
also to a wider class like context-free graphs (see Subsection 2.2).
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At this point let us summarize further papers concerning continuity and analyticity
of the drift and entropy that have been published recently: Ledrappier [18] showed
that the drift and entropy of finitely supported random walks on hyperbolic groups are
Lipschitz, while Mathieu [20] showed that the entropy of symmetric, finitely supported
random walks in hyperbolic groups are differentiable; Haïssinsky, Mathieu and Müller
[11] proved analyticity of the drift for random walks on surface groups. The recent
survey article of Gilch and Ledrappier [6] collects several results about analyticity of
drift and entropy of random walks on groups.

The basic reasoning of our proofs follows a similar argumentation as in [9] and [8],
but since a straight-forward adaption is not possible we have to do more effort in the
present setting: we will show that the entropy equals the rate of escape w.r.t. some
special length function, and we deduce the proposed properties analogously. For the
proof of analyticity of the entropy we will extract a hidden Markov chain from our
random walk and we will apply a result of Han and Marcus [12]. The plan of the paper
is as follows: in Sections 2 and 3 we define the random walk on A∗ and the associated
generating functions. Section 4 explains the construction of cones in the present context.
In Sections 5 and 6 we prove existence of the asymptotic entropy and give a formula for
it, while in Section 7 we give estimates and a more explicit formula in some special case.
Section 8 shows real-analyticity of the entropy.

2 Random walks on regular languages

2.1 Definitions and main results

Let A be a finite alphabet and denote by A∗ the set of all finite words over A. We write
o for the empty word and An, n ∈ N, for the set of all words over A consisting of exactly
n letters. For two words w1, w2 ∈ A∗, w1w2 denotes the concatenated word. A random
walk on a regular language is a Markov chain (Xn)n∈N0

on the set A∗ =
⋃
n≥1An ∪ {o},

whose transition probabilities obey the following rules:

(i) Only the last two letters of the current word may be modified.
(ii) Only one letter may be adjoined or deleted at one instant of time.

(iii) Adjunction and deletion may only be done at the end of the current word.
(iv) Probabilities of modification, adjunction or deletion depend only on the last two

letters of the current word and on the substitute letters.

Compare with Lalley [16] and Gilch [7]. In other words, at each step the last two letters
of the current word may be replaced by a non-empty word of length of at most 3 and the
transition probabilities depend only on the last two letters of the current word and the
replacing word of length of at most 3. More formally, the transition probabilities of the
Markov chain (Xn)n∈N0

can be written as follows, where w ∈ A∗, a1, a2, b1, b2, b3 ∈ A:

P[Xn+1 = wb1b2 | Xn = wa1a2] = p(a1a2, b1b2),

P[Xn+1 = wb1b2b3 | Xn = wa1a2] = p(a1a2, b1b2b3),

P[Xn+1 = wb1 | Xn = wa1a2] = p(a1a2, b1),

P[Xn+1 = b1 | Xn = a1] = p(a1, b1), (2.1)

P[Xn+1 = b1b2 | Xn = a1] = p(a1, b1b2),

P[Xn+1 = o | Xn = a1] = p(a1, o),

P[Xn+1 = b1 | Xn = o] = p(o, b1),

P[Xn+1 = o | Xn = o] = p(o, o).

Not all of these probabilities need to be strictly positive. Initially, we set X0 := o. If
we start the random walk at w ∈ A∗ instead of o, we write Pw[ · ] := P[ · | X0 = w].
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The n-step transition probabilities are denoted by p(n)(w1, w2) := Pw1
[Xn = w2] for any

w1, w2 ∈ A∗. The set of accessible words from o is given by

L =
{
w ∈ A∗ | ∃n ∈ N : P[Xn = w | X0 = o] > 0

}
.

We will also think of the random walk (Xn)n∈N0
as a nearest neighbour random walk on

an undirected graph G, where the vertices are the elements of L and undirected edges
are between two vertices if and only if one can walk from one word to the other one in a
single step. For this purpose, we need the following assumption:

Assumption 2.1 (Weak symmetry). For all u, v ∈ A∗ we assume that Pu[X1 = v] > 0

implies Pv[X1 = u] > 0. We call this property weak symmetry.

In particular, Assumption 2.1 yields irreducibility of the random walk on L. Moreover,
this assumption will be necessary for the construction of a sequence of cones in the
graph G which track the random walk’s way to infinity. As the interested reader will
see, weak symmetry can obviously be weakened in some way but for reason of better
readability we keep this natural assumption; for a discussion on this assumption, we
refer to Appendix A.2.

Since the purpose of the paper is the investigation of the asymptotic behaviour of
transient random walks, we obviously need that L is infinite in our setting. It is an easy
exercise to check that the set L is a regular language over the alphabet A, that is, the
words are accepted by a finite-state automaton. For more details on regular languages,
we refer e.g. to Hopcraft and Ullman [13]. Since we make no further use of the theory of
languages, we will not discuss this in more detail but we remark the recursive structure
of regular languages. Let us note that bounded range random walks on virtually free
groups constitute a special case of our setting, and our results directly apply; see e.g.
Lalley [16]. Thus, our results apply directly to a large class of random walks on groups
and go beyond recent results for random walks on groups.

Remark 2.2. Observe that the assumption that transition probabilities depend only on
the last two letters of the current word and that changes of the current word involve
only the last two letters may be weakened to dependence and changes of the last K ∈ N
letters of the current word and replacements of the last K letters by words of length of at
most 2K. This is done by blocking words of length of at most K to new single letters; see
[16, Section 3.3] for further details and comments. If we make further assumptions on
our random walk in the following, we will show that it does not depend on the fact if we
use the “blocked letter language” (that is, dependence on the last two letters as given by
(2.1) after an application of the “recoding trick”) or the general case (dependence on the
last K letters as given by (B.1)), that is, no required properties are lost when switching
from the K-dependent case to the “blocked letter language”; for further comments, see
Appendix B. It will turn out that the K-dependent case works completely analogously
as the “blocked letter language” case; however, the derived equations and formulas
are much more complex, so we restrict ourselves onto the case where the random
walk is defined as at the beginning of this section via (2.1). In particular, there is no
additional gain in the techniques and proofs when investigating the K-dependent case.
Finally, let us note that it is not sufficient to consider the case where the transition
probabilities/changes of words involve only the last letter in order to be able to apply
this recoding trick!

We introduce some notation. The natural word length of any w ∈ A∗ is denoted by
|w|. If w ∈ A∗ and k ∈ N with |w| ≥ k then w[k] denotes the k-th letter of w, and [w]

denotes the last two letters of w when w 6= o is not a single letter.
Malyshev [19] proved that the rate of escape w.r.t. the natural word length exists for

irreducible random walks on regular languages, that is, there is a non-negative constant
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` such that

lim
n→∞

|Xn|
n

= ` almost surely.

Here, ` is called the rate of escape. Furthermore, by [19] follows that ` is strictly positive
if and only if (Xn)n∈N0 is transient. In [7] there are explicit formulas for the rate of
escape w.r.t. more general length functions.

Another characteristic number of random walks is the asymptotic entropy. Denote by
πn the distribution of Xn. If there is a non-negative constant h such that the limit

h = lim
n→∞

− 1

n
E
[
log πn(Xn)

]
exists, then h is called the asymptotic entropy. Since we only have a partial composition
law for concatenation of two words (if L ⊂ A∗) and since we have no subadditivity and
transitivity of the random walk, we are not able to apply – as in the case of random walks
on groups – Kingman’s subadditive ergodic theorem in order to show existence of h. It
is, however, easy to see that the entropy equals zero if the random walk is recurrent (see
Corollary 7.2). Therefore, from now on we will only consider transient random walks
(Xn)n∈N0

.

Remark 2.3. Observe that limn→∞− 1
n log πn(Xn) is not necessarily deterministic: take

two homogeneous trees of different degrees d1, d2 ≥ 3; identify their root with one single
root which becomes o and consider the simple random walk on this new inhomogeneous
tree with starting point o. Obviously, this random walk can be modelled as a random
walk on a regular language. Then the limit limn→∞− 1

n log πn(Xn) depends on the fact
in which of the two subtrees the random walks goes to infinity. Hence, the sequence
− 1
n log πn(Xn) converges with probability d1/(d1 + d2) to log(d1 − 1) and with probability

d2/(d1 + d2) to log(d2 − 1); this can, e.g., be calculated by the formulas given in [8].

We have to make another assumption on the transition probabilities:

Assumption 2.4 (Suffix-irreducibility). We assume that the random walk on L is suffix-
irreducible, that is, for all w = w0a0b0 ∈ L with w0 ∈ A∗, a0b0 ∈ A2 and for all ab ∈ A2

there is n ∈ N and w1 ∈ A∗ such that

P
[
Xn = w0w1ab,∀k ≤ n : |Xk| ≥ |w|

∣∣∣X0 = w
]
> 0.

This assumption excludes degenerate cases and will guarantee existence of `; com-
pare with [7, End of Section 2.1]. We remark that famous previous papers about random
walks on regular languages (in particular, the basic ones of [19] and [16]) require
stronger assumptions than this non-degeneracy assumption. Later on it will be clear
that one can relax this condition in some way without needing additional techniques or
ideas for the proofs. Hence, for purpose of ease and better readability, we keep this
assumption until further notice. We will give further comments on this assumption in
Appendix A.1.

The main idea behind our proofs will be the construction of an a priori fixed sequence
of cones (that is, special subsets of L), from which we extract a subsequence of nested
cones which gives the information how the random walk tends to infinity. This extraction
will be done via a hidden Markov chain (Yk)k∈N with an underlying positive recurrent
Markov chain: the asymptotic entropy H(Y) of the process (Yk)k∈N is given by (5.6).
The average distance between two nested cones will be denoted by λ which is given by
(5.8): if Xek

denotes the word (i.e., the vertex in G) where the k-th nested subcone is
finally entered with no further exits of this cone, then λ = E[|Xe2

|− |Xe1
|]. Our first main

result concerns existence of the asymptotic entropy, which is finally proven in Section 6:
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Theorem 2.5. Consider a transient random walk (Xn)n∈N0
on a regular language, which

satisfies Assumptions 2.1 and 2.4. Then the asymptotic entropy h of (Xn)n∈N0
exists and

equals

h =
` ·H(Y)

λ
,

where H(Y) is given by (5.6) and λ by (5.8).

Recall that the random walk is described by the values in (2.1). A natural question is
whether the entropy varies regularly if the parameters in (2.1) are varied slightly and if
positive transition probabilities remain positive by this variation. The following result
gives an answer to this question, where the proof is given in Section 8:

Theorem 2.6. For transient random walks on regular languages satisfying Assumptions
2.1 and 2.4, the entropy h varies real-analytically under all probability measures of
constant support.

Moreover, we can also describe the asymptotic entropy in the following way:

Corollary 2.7. We have the following types of convergence:

1. For almost every trajectory of the random walk (Xn)n∈N0
,

h = lim inf
n→∞

− 1

n
log πn(Xn).

2. Convergence in probability:

− 1

n
log πn(Xn)

P−→ h.

3. Convergence in L1:

− 1

n
log πn(Xn)

L1−−→ h.

The Greenian distance between two words w1, w2 ∈ L is defined as

dGreen(w1, w2) := − logP[∃n ∈ N0 : Xn = w2 | X0 = w1].

Analogously to the situation for random walks on groups, we get the following result,
which is finally proven at the end of Section 6:

Corollary 2.8. The entropy is the rate of escape with respect to the Greenian distance,
that is,

h = lim
n→∞

− 1

n
dGreen(o,Xn) almost surely.

Further results are given in Section 7, where we show that h > 0 (Corollary 7.1) for
non-degenerate transient random walks, give an inequality between entropy, drift and
growth (Theorem 7.3) and give an exact formula in some special case (Theorem 7.4).

2.2 Examples

We give three classical examples for regular languages.

2.2.1 Stacks

In computer science theory stacks play an important role for modelling algorithms. In
this setting letters represent different procedures and words are lists of procedures,
which are called randomly. The last letter of the current word is the actual running
procedure which may produce more subprocedures or will finish some open procedures,
which in turn yields that the stack is getting larger or smaller randomly. Thus, this
setting can be encoded by regular languages. Compare also with Lalley [16].
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2.2.2 Virtually free groups

An important class of examples is given by virtually free groups, that is, groups which
contain a free group as a subgroup of finite index. Let Γ be a virtually free group which
contains the free group Fd with d generators as a subgroup of index [Γ : Fd] = k. Let Fd
be generated by the elements a1, a

−1
1 , . . . , ad, a

−1
d , and let h1, . . . , hk be representants of

the k different left co-sets of Γ. That is, each element x ∈ Γ can be written as

x1x2 . . . xmhj ,

where m ∈ N0, j ∈ {1, . . . , k} and x1, . . . , xm ∈ {a1, a
−1
1 , . . . , ad, a

−1
d } such that x−1

i 6= xi+1

for all i ∈ {1, . . . ,m − 1}. Now it is clear that each group invariant, finitely supported
random walk on Γ can be considered as a random walk on a regular language with
alphabet A = {a1, a

−1
1 , . . . , ad, a

−1
d , h1, . . . , hk} since multiplication from the right changes

only a bounded number of letters at the end of the current word. Compare also with the
detailed example of free products with amalgamation in [7, Section 3.1]

2.2.3 Context-free graphs

Another important class is given by context-free graphs, and in particular by certain
Schreier graphs, which can also be considered as random walks on regular languages.
This class justifies the study of random walks on regular languages in its own right
and not only as an extension of free groups or free products. We sketch the concept of
context-free graphs: consider a labelled, symmetric graph G with root r. Consider the
connected components of G after removing all vertices (and adjoint edges) which are
at distance less or equal than some n ∈ N to r. If there are only finitely many different
isomorphism types as labelled graphs of these connected components then the graph
is called context-free; see Muller and Schupp [22]. We give a short explanation why
these graphs fit into the setting of regular languages: later the mindful reader will notice
that our random walks are performed on some graph with finitely many different cone
types (that is, finitely many different isomorphism classes of connected components after
removal of all vertices at distance less or equal than n to r). Since there are only finitely
many different cone types one can deduce a finite-state automaton from the context-free
graph, which accepts just the words which describe the different vertices of G. As a
specific example, consider a virtually free group, a finitely generated free subgroup
and an associated Schreier graph: by Woess [23, Theorem 2.10], the Schreier graph
satisfies all needed irreducibility requirements. For further details, we refer to Muller
and Schupp [21], [22] and Ceccherini-Silberstein and Woess [4] and [23].

3 Generating functions

For w1, w2 ∈ A∗, z ∈ C, the Green function is defined as

G(w1, w2|z) :=
∑
n≥0

p(n)(w1, w2) · zn

and the last visit generating function as

L(w1, w2|z) :=
∑
n≥0

P
[
Xn = w2,∀m ∈ {1, . . . , n} : Xm 6= w1

∣∣X0 = w1

]
· zn.

By conditioning on the last visit to w1, an important relation between these functions is
given by

G(w1, w2|z) = G(w1, w1|z) · L(w1, w2|z). (3.1)
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In the following we introduce further generating functions, which also have been used
analogously in [7]. Define for a, b, c, d, e ∈ A and real z > 0

H(ab, c|z) :=
∑
n≥1

P
[
Xn = c,∀m < n : |Xm| > 1

∣∣X0 = ab
]
· zn

and

L̄(ab, cde|z) :=
∑
n≥1

P
[
Xn = cde, |Xn−1| = 2,∀m ∈ {1, . . . , n} : |Xm| ≥ 2,

∣∣X0 = ab
]
· zn,

G(ab, cd|z) :=
∑
n≥0

P
[
Xn = cd,∀m ∈ {1, . . . , n} : |Xm| ≥ 2

∣∣X0 = ab
]
· zn.

We write L̄(ab, cde) := L̄(ab, cde|1). These generating functions can be computed in two
steps: first, one solves the following system of equations which arises by case distinction
on the first step:

H(ab, c|z) = p(ab, c) · z +
∑
de∈A2

p(ab, de) · z ·H(de, c|z)

+
∑

def∈A3

p(ab, def) · z ·
∑
g∈A

H(ef, g|z) ·H(dg, c|z); (3.2)

compare with [16] and [7]. The system (3.2) consists of equations of quadratic order, and
therefore the functions H(·, ·|z) are algebraic, if the transition probabilities are algebraic.
We now get the functions G(ab, cd|z) by solving the following linear system of equations
which also arises by case distinction on the first step:

G(ab, cd|z) = δab(cd) +
∑

c1d1∈A2

p(ab, c1d1) · z ·G(c1d1, cd|z) +

+
∑

c1d1e1∈A3

p(ab, c1d1e1) · z ·
∑
f∈A

H(d1e1, f |z) ·G(c1f, cd|z).

Finally, we get
L̄(ab, cde|z) =

∑
a1b1∈A2

G(ab, a1b1|z) · z · p(a1b1, cde). (3.3)

Obviously, it is sufficient to consider only those functions H(ab, ·|z), G(ab, ·|z) and
L(ab, ·|z) such that there exists some w0 ∈ A∗ with w0ab ∈ L; the remaining func-
tions do not play a role for our random walk. Moreover, one can compute the Green
functions of the form G(o, w|z), w ∈ L with |w| ≤ 3, by solving

G(w1, w2|z) = δw1(w2) +
∑

w3∈A∗:|w3|≤3

p(w1, w3) · z ·G(w3, w2|z) +

+13(w1) ·
∑

cde∈A3

p(w1[2]w1[3], cde) · z ·
∑
f∈A

H(de, f |z) ·G(w1[1]cf, w2|z),

where w1, w2 ∈ A∗ with |w1|, |w2| ≤ 3 and 13(w1) := 1, if |w1| = 3, and 13(w1) := 0

otherwise.
We also define for ab ∈ A2:

ξ(ab) := P
[
∀n ≥ 0 : |Xn| ≥ 2

∣∣X0 = ab
]

= 1−
∑
f∈A

H(ab, f |1).

When starting at a word wab ∈ L, where w ∈ A∗, ξ(ab) is the probability that the process
(Xn)n∈N0

will not visit any words of length |wab| − 1 or smaller. In this case the prefix
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w will remain constant for the rest of the process. Observe that, for transient random
walks, ξ(ab) > 0 for all ab ∈ A2 due to Assumption 2.4. We define a “length function” on
L by

l(w) := − logL(o, w|1) for w ∈ L. (3.4)

For n ≥ 2 and a1, . . . , an ∈ A, the functions L(o, a1 . . . an|z) can be rewritten as

∑
b,b0,c0∈A

L(o, b|z) · z · p(b, b0c0)
∑

b1,...,bn−2∈A,
c1,...,cn−2∈A

n−2∏
i=1

L̄(bi−1ci−1, aibici|z) ·G(bn−2cn−2, an−1an|z);

(3.5)
each path from o to a1 . . . an is decomposed to the last times when the setsA,A2, . . . ,An−1

are visited, that is, the factor L̄(bi−1ci−1, aibici|z) corresponds to the parts of the paths
from o to a1 . . . an between the final exits of the sets Ai and Ai+1.

4 Cones

4.1 Definitions of cones and properties

In this section we introduce the structure of cones in our setting. A path in A∗ is a
sequence of words 〈w0, w1, . . . , wm〉, m ∈ N, in A∗ such that Pwi−1

[X1 = wi] > 0 for all
1 ≤ i ≤ m. By weak symmetry, we have that, for each such path, the reversed sequence
of words 〈wm, wm−1, . . . , w0〉 is also a path. For n ∈ N, define A∗≥n :=

{
w ∈ A∗

∣∣|w| ≥ n}.
For any w0 ∈ A∗≥2, we define the cone rooted at w0 as

C(w0) :=

{
w ∈ A∗≥|w0|

∣∣∣∣∣ ∃m ∈ N0 ∃ path 〈w0, w1, . . . , wm−1, w〉
with w1, . . . , wm−1 ∈ A∗≥|w0|

}
.

In other words, when we consider the associated graph G then the cone C(w0) can be
viewed as the subgraph of G which is the connected component containing w0 after
removing all vertices w′ ∈ A\A∗≥|w0| and the adjacent edges to these w′. In particular, we
have w0 ∈ C(w0). If w1 ∈ C(w0) then we have C(w1) ⊆ C(w0): indeed, let be w2 ∈ C(w1);
therefore, |w2| ≥ |w1| ≥ |w0| and there are paths 〈w0, w

′
1, . . . , w

′
k, w1〉 through words

w′1, . . . , w
′
k ∈ A∗≥|w0| and 〈w1, w

′′
1 , . . . , w

′′
l , w2〉 through words w′′1 , . . . , w

′′
l ∈ A∗≥|w1| ⊆ A

∗
≥|w0|.

Hence, there is a path 〈w0, w
′
1, . . . , w

′
k, w1, w

′′
1 , . . . , w

′′
l , w2〉 through words in A∗≥|w0|, that

is, w2 ∈ C(w0) yielding C(w1) ⊆ C(w0). The cone C(w1) is then called a subcone of
C(w0).

Observe that each element w ∈ C(w0) has the form w = a1 . . . am−2w̄, where w0 =

a1 . . . am with m ≥ 2, a1, . . . , am ∈ A and where w̄ ∈ A∗≥2: indeed, by definition each
w ∈ C(w0) can be reached from w0 by a path through words of length bigger or equal
than |w0|. Thus, the first m− 2 letters are not changed along such a path.

By the suffix-irreducibility Assumption 2.4, we have the following important property
for cones: let be w ∈ A∗ and ab, cd ∈ A2; then the cone C(wab) has a proper subcone
C(wxcd) ⊂ C(wab) with a suitable choice of x ∈ A∗ \ {o}.

Recall that [w] denotes the last two letters of a word w ∈ A∗≥2. We say that two cones
C(w1) and C(w2), w1, w2 ∈ A∗, are isomorphic if C([w1]) = C([w2]). The following lemma
explains why we call these cones “isomorphic”. Since the proof of the following lemma
is elementary, we omit the proof at this place and hand it in later in Appendix C.

Lemma 4.1. Let be w1 = a1 . . . am, w2 = b1 . . . bn ∈ A∗≥2 with a1, . . . , am, b1, . . . , bn ∈ A
such that C(w1) and C(w2) are isomorphic. Then:

1. The mapping ϕ : C(w1)→ C(w2) defined by

ϕ(a1 . . . am−2w̄) = b1 . . . bn−2w̄ for w̄ ∈ A∗≥2 with a1 . . . am−2w̄ ∈ C(w1)
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is a bijection which preserves the adjacency relation, that is, p(w′, w′′) > 0 if and
only if p

(
ϕ(w′), ϕ(w′′)

)
> 0 for all w′, w′′ ∈ C(w1).

2. The cones are isomorphic as subgraphs of G.

The lemma says implicitly that the words of two isomorphic cones differ only by dif-
ferent prefixes. Moreover, there is a natural 1-to-1 correspondence of paths inside C(w1)

and paths in an isomorphic cone C(w2) where obviously each such path in C(w1) and the
corresponding path in the other isomorphic cone C(w2) have the same probability: let be
〈w′0, w′1, . . . , w′m〉 a path in C(w1); then 〈ϕ(w′0), ϕ(w′1), . . . , ϕ(w′m)〉 is a path in C(w2) and

P
[
X1 = w′1, . . . , Xm = w′m

∣∣X0 = w′0] = P
[
X1 = ϕ(w′1), . . . , Xm = ϕ(w′m)

∣∣X0 = ϕ(w′0)].

We remark that C(w) and C(w′), w,w′ ∈ A∗≥2, with C([w]) 6= C([w′]) can still be iso-
morphic as subgraphs of G but we will still distinguish them as elements of different
isomorphism classes according to our definition of isomorphism of cones.

Our construction of cones ensures that different cones are either nested in each other
or disjoint as the next lemma will show; the elementary proof of the next lemma is again
omitted and will be handed in later in the Appendix C.

Lemma 4.2. Let be w1, w2 ∈ A∗≥2. Then the cones C(w1) and C(w2) are either nested
in each other, that is, C(w1) ⊆ C(w2) or C(w2) ⊆ C(w1), or they are disjoint, that
is, C(w1) ∩ C(w2) = ∅. If we even have |w1| = |w2| then we have C(w1) = C(w2) or
C(w1) ∩ C(w2) = ∅.

At this point let us mention that the weak symmetry Assumption 2.1 is crucial here:
if this assumption is dropped then two cones C(w1) and C(w2), where w1, w2 ∈ A∗≥2 with
|w1| = |w2| and C(w1) ∩ C(w2) 6= ∅ may be non-isomorphic. This case makes everything
much more difficult in our proofs since the property of cones from the last lemma (either
nestedness or disjointness) is lost and since we want to track the random walk’s way to
infinity by distinguishing which of the (disjoint) cones are successively finally entered on
its way to infinity. The author is however confident that one can adapt the situation if
weak symmetry does not hold but this would need much more effort with loss of good
readability of our proofs and no additional gain of the techniques; for further comments
see Appendix A.2.

Since isomorphism of cones depends only on the last two letters of their roots,
we have obviously only finitely many different isomorphism classes of cones. These
isomorphism classes can be described by two-lettered words ab ∈ A2: first, for each
isomorphism class of cones we fix some ab representing the class of C(ab). Let J ⊆ A2

be a system of representants of the different isomorphism classes of cones. Thus, for
every w ∈ A∗≥2 there is some unique ab ∈ J such that C([w]) = C(ab). Then we write
τ
(
C(w)

)
:= ab for the cone type (or isomorphism class) of the cone C(w). . The boundary

of C(w) is given by the set

∂C(w) =
{
w0 ∈ C(w)

∣∣ |w0| = |w|,∃w′ ∈ A∗ \ C(w) : p(w,w′) > 0
}
.

We have {[w] | w ∈ ∂C(w1)} = {[w] | w ∈ ∂C(w2)} for two ismorphic cones C(w1) and
C(w2) with w1, w2 ∈ A∗≥2, which follows from the following fact: if x1 ∈ ∂C(w1) and
w′ ∈ A∗ \ C(w1) with p(x1, w

′) > 0, then there is, due to 4.1.(1), some x2 ∈ C(w2) with
[x1] = [x2] and p([x2], a) = p([x1], a) > 0, where a ∈ A is the last letter of w′. This implies
existence of some w′′ ∈ A∗ \ C(w2) with p(x2, w

′′) > 0.
We say that the graph G is expanding if each cone C(w0), w0 ∈ L, contains two proper

disjoint subcones, that is, if there exist subcones C(w1), C(w2) ( C(w0), w1, w2 ∈ L, with
C(w1) ∩ C(w2) = ∅. We call the random walk expanding if the associated graph G is
expanding. The results below do not depend on whether the random walk is expanding
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or not. At the end, however, we will see that the non-expanding case leads to zero
entropy.

Finally, let us remark that in the case of K-dependent random walks on A∗ suffix-
irreducibility can be defined analogously and cones can be defined in the exactly same
way; the different cone types would be defined by words of length K. In Appendix B we
will check that suffix-irreducibility and the the “expanding” property are inherited by
the blocked letter language if these properties are satisfied for the K-dependent random
walk.

4.2 Covering of cones by subcones

The next task is to cover (up to a finite complement) any cone C(w), w ∈ L, by a finite
set of pairwise disjoint subcones C1, . . . , Cn(w) ⊂ C(w) such that

{
τ(C1), . . . , τ(Cn(w))

}
= J and

∣∣∣C(w) \
n(w)⋃
i=1

Ci

∣∣∣ <∞,
that is, every cone type appears among these subcones and the subcones cover C(w)

up to finitely many words. We then call C1, . . . , Cn(w) a covering of C(w). In the next
subsection we show how to construct this covering when G is expanding; in Subsection
4.2.2 we consider the case when G is not expanding.

4.2.1 Covering for expanding random walks

Suppose we are given a cone C(w) with w = w0a0b0 ∈ L, where w0 ∈ A∗ and a0b0 ∈ A2.
Inside this cone we can find subcones of the form C(w0w

′ab) for each ab ∈ A2 with
suitable w′ ∈ A∗ \ {o} depending on ab due to suffix-irreducibility. Now we want to find
subcones of each type ab ∈ J which are even pairwise disjoint. We proceed as follows
to find these pairwise disjoint cones of all types: since we assume in this subsection
that G is expanding there are paths from w = w0a0b0 inside A∗≥|w| to words w0w1a1b1 and

w0w2a2b2, where w1, w2 ∈ A∗ \ {o}, a1b1, a2b2 ∈ A2 and C(w0w1a1b1) ∩ C(w0w2a2b2) = ∅.
Then we have found a subcone of type τ(C(a1b1)), and we search for other cone types in
the subcone C(w0w2a2b2) in the same way. Obviously, a subcone in C(w0w2a2b2) does not
intersect C(w0w1a1b1). Iterating this step leads to a finite set {C1, . . . , C|J |} of subcones
of C(w) such that {τ(C1), . . . , τ(C|J |)} = J and Ci∩Cj = ∅ for i, j ∈ {1, . . . , |J |}with i 6= j.
After we have found these non-intersecting subcones of all types in C(w) we cover the

cone C(w) by further disjoint subcones: let be D = 1 + max{|w′| | w′ ∈
⋃|J |
i=1 ∂Ci}; define

MD = {w′ ∈ C(w) | |w′| = D}. Then we can choose a subset M := {w′1, . . . , w′k} ⊆ MD

such that for all i, j ∈ {1, . . . , k}with i 6= j and all n ∈ {1, . . . , |J |}we have: C(w′i)∩Cn = ∅,
C(w′i) ∩ C(w′j) = ∅ and

C(w) \
( |J |⋃
m=1

Cm ∪
k⋃

n=1

C(w′n)

)
is finite. This is done as follows: write MD := {x1, . . . , xN} and set M0 := ∅. For every i ∈
{1, . . . , N}, perform the following steps with increasing i: if xi ∈

⋃|J |
j=1 Cj ∪

⋃
x∈Mi−1

C(x),
then drop xi and set Mi := Mi−1. Otherwise, set Mi := Mi−1 ∪ {xi}. In the latter case
we cannot have Cj ⊂ C(xi) for some j ∈ {1, . . . , |J |} due to the choice of D (words in
∂Cj have word length smaller than D and all words in C(xi) have length of at least
D) and also not C(xi) ⊂ Cj , which would lead to the contradiction xi ∈ Cj otherwise.
We also cannot have C(xj) ⊂ C(xi) for j < i because this implies, by Lemma 4.2,
C(xi) = C(xj) and therefore xi ∈ C(xj). At the end of this procedure we get some MN

and set M := MN . Since every path from w to infinity inside C(w) has to pass through a
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word of length D we have ensured that each w′ ∈ C(w) with |w′| = D lies in one of the

cones C1, . . . , CJ , C(x), x ∈M . Thus, the set C(w) \
⋃|J |
m=1 Cm ∪

⋃
x∈M C(x) is finite and

the covering of C(w) is given by the subcones

C1, . . . , C|J |, C(x), x ∈M.

See Figure 1 for better visualization.
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Figure 1: Covering of cones by subcones: the numbers represent the four different
cone types; the cones with the solid boundary lines belong to the covering of C(w). The
construction of a covering is done as follows: e.g., we find three three cones in C(w)

whose union covers C(w) up to a finite set, say the cones C(w1) (type 1), C(w2) (type 1)
and C(w3) (type 2). We keep the cones C(w2) and C(w3) for the covering of C(w) and
search for cones of type 3 and 4 in the subcone C(w1). After having found cones of type
3 and 4 in C(w1) (for instance, the cones C(w4) and C(w5)) we take additional disjoint
cones in C(w1) (in the picture the innermost type-1 cone C(w6) only) into the covering
such that the complement of the union of all subcones in the covering is finite. That is,
the covering of C(w) consists of the cones C(w2), C(w3), C(w4), C(w5) and C(w6).

The crucial point now is that we fix a covering for each cone type such that the relative
positions of the subcones in the covering of some cone C(w) do not depend on the choice
of the specific root w ∈ L on the boundary of C(w) but only on τ(C(w)): first, for each
ab ∈ J , choose any wab ∈ A∗ such that wabab ∈ L and fix some covering for C(wabab),
say the cones C(wabv1), . . . , C(wabvk), where v1, . . . , vk ∈ A∗≥3. If w = w0a1b1 ∈ L
with w0 ∈ A∗, a1b1 ∈ A2 and τ(C(w)) = ab = τ(C(wabab)) then we set the covering
of C(w) as the one which is inherited from the covering of C(wabab) by the relative
location of the subcones, that is, we set the covering of C(w) as the set of subcones
C(w0v1), . . . , C(w0vk).

Lemma 4.3. The set of subcones C(w0v1), . . . , C(w0vk) is a covering of C(w).

Proof. First, C(w0v1), . . . , C(w0vk) are subcones of C(w) since ab ∈ C([w]) (yielding
w0ab ∈ ∂C(w)) and due to the following conclusion: for each i ∈ {1, . . . , k}, there is a
path from wabab to wabvi through words in A∗≥|wabab|, which implies that there is a path
from ab to vi through words in A∗≥2 yielding existence of a path from w = w0[w] via w0ab

to w0vi through words in A∗≥|w|. That is, C(w0vi) ⊂ C(w).
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Since J = {τ(C(v1)), . . . , τ(C(vk))} the set of subcones {C(w0v1), . . . , C(w0vk)} con-
tains all different types. The next step is to show disjointness of the cones C(w0v1),

. . . , C(w0vk). Assume w.l.o.g. that C(w0v1) ( C(w0v2). Then there exists a path from
w0v2 to w0v1 through words in A∗≥|w0v2|. This implies that there exists a path from v2 to v1

through words in A∗≥|v2| ⊆ A
∗
≥3, which implies that there exists a path from wabv2 to wabv1

through words in A∗≥|wabv2| yielding C(wabv1) ⊆ C(wabv2), a contradiction to the choice
of C(wabv1), C(wabv2) in the covering of C(wabab). Thus, the cones C(w0v1), . . . , C(w0vk)

are pairwise disjoint.
Analogously, we show that C(w) \

⋃k
i=1 C(w0vi) is finite. Assume that this set differ-

ence is not finite. Then for every N ∈ N with N ≥ 3, there exists some w̄N ∈ A∗ with

|w̄N | = N and w0w̄N ∈ A∗ ∩
⋃k
i=1 C(w0vi) such that there is a path from w = w0[w] to

w0w̄N through words in A∗≥|w|. Since [w] ∈ C(ab) there is a path from ab to [w] through

words in A∗≥2 implying that there exists a path from ab to w̄N ∈
⋃k
i=1 C(vi) through words

in A∗≥2. But this implies that there exists a path from wabab to wabw̄N ∈
⋃k
i=1 C(wabvi)

through words in A∗≥|wabab|. This gives a contradiction since C(wabab) \
⋃k
i=1 C(wabvi) is

finite and therefore N cannot be large. This yields the claim.

Hence, the covering of a cone depends only on its cone type, which describes the
relative location of its subcones in its interior.

We can also cover L (up to a finite set) by a finite number of non-intersecting subcones,
where each cone type appears. To this end, we just apply the algorithm explained above
and take pairwise disjoint cones of the form C(w) with w ∈ L and |w| ≥ 2. We denote

by C(0)
1 , . . . , C

(0)
n0 the covering of L, which contains all types in J and which satisfies∣∣L \⋃n0

i=1 C
(0)
i

∣∣ <∞.

4.2.2 Non-expanding random walks

Now we explain how to proceed if G is not expanding, that is, there is a cone C(w),
w ∈ L, which does not contain two proper disjoint subcones. Recall that due to suffix-
irreducibility there is, for every ab ∈ J , a subcone C(w1) ⊂ C(w) with [w1] = ab.
Thus, all cones do not have two proper disjoint subcones, because otherwise we get a
contradiction to the choice of w. This non-expanding case may, in particular, occur if
L is a proper subset of A∗. Take now disjoint cones C(a1b1), . . . , C(adbd), where d ∈ N,
a1b1, . . . , adbd ∈ A2 with C(aibi) ∩ C(ajbj) = ∅ for all i, j ∈ {1, . . . , d} with i 6= j and

L \
⋃d
k=1 C(akbk) is finite. As already mentioned above the cones C(aibi), i ∈ {1, . . . , d},

do not contain two proper disjoint subcones. Thus, we can then cover any cone C(w),
w ∈ A∗≥2, by the subcone C(w1) for any w1 ∈ C(w) with |w1| = |w|+ 1 and p(w,w1) > 0.

Example 4.4. In order to illustrate this situation we give a short example for this
case: let A = {a, b}, p(o, a) = p(a, o) = p(o, b) = p(b, o) = p(a, ab) = p(b, ba) = 1

2 and
p(ab, aba) = 2

3 , p(ba, b) = 1
3 , p(ba, bab) = 3

4 , p(ab, a) = 1
4 . The set L is then given by all

words of the form ababa . . . ba, ababa . . . bab, baba . . . bab and baba . . . baba. The random
walk is transient and satisfies the Assumptions 2.1 and 2.4. We have C(ab) ∩ C(ba) = ∅
and C(ab) = C(aba) ∪ {ab} and C(ba) = C(bab) ∪ {ba}.

The next step is to show that a non-expanding random walk converges to one of
finitely many infinite words. More precisely, since we consider transient random walks,
|Xn| tends almost surely to infinity. Therefore, we must have that the prefixes of arbitrary
length of Xn stabilize for n large enough, that is, for each N ∈ N there exists almost
surely some index nN ∈ N such that the prefixes of length N of XnN

, XnN+1, XnN+2, . . . ,
remain constant forever. Thus, (Xn)n∈N0

tends to some infinite (random) word X∞ ∈
AN.
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Lemma 4.5. If (Xn)n∈N0
is non-expanding, then the support of X∞ is finite.

Proof. First, assume that X∞ starts with positive probability with the letter a0 ∈ A.
Assume also that P[∀n ≥ 1 : Xn ∈ C(a0b0c0) | X0 = a0b0c0] > 0 for some b0c0 ∈ A2 with
a0b0co ∈ L. We denote by A the event that X∞ starts with the letter a0 and that the
random walk finally enters C(a0b0c0) on its way to infinity. Then P[A] > 0. On this event
A, assume now that the random walk tends with positive probability to some infinite
words with prefixes wa1 and wa2, where w ∈ A∗≥2 starts with the letter a0 and a1, a2 ∈ A
with a1 6= a2. Then there must be words wa1b1c1, wa2b2c2 ∈ C(a0b0c0), b1c1, b2c2 ∈ A2,
such that

P
[
∃n ∈ N : Xn = waibici,∀m ≥ n : Xm ∈ C(waibici)

∣∣A] > 0 for i ∈ {1, 2}.

Obviously, C(wa1b1c1)∩C(wa2b2c2) = ∅. But this leads to the contradiction that C(a0b0c0)

has two proper disjoint subcones. Therefore, C(wa1b1c1) ∩ L = ∅ or C(wa2b2c2) ∩ L = ∅,
yielding that the letter a1 (or a2) is deterministic on the event A. By induction, the
infinite limiting word X∞ is deterministic on the event A, and it depends only on a0 and
b0c0. Since there are only finitely many possibilities for a0 and b0c0, the limiting word
X∞ can only take finitely many values.

The last lemma and suffix-irreducibility directly imply that the support of the ran-
dom walk is a proper subset of A∗ if (Xn)n∈N0

is non-expanding. The limiting words in
Example 4.4 are ababab . . . and bababa . . ..

5 Last entry times

In this section we prove a law of large numbers, which turns out to describe the
asymptotic entropy in the later section. For this purpose, we define last entry times
(compare with [7]), for which we derive a law of large numbers. In this section we
will assume that (Xn)n∈N0 is transient and we will assume Assumptions 2.1 and 2.4,
where we make explicit comments when these assumptions are essential at some points.
Throughout this section, we will also use the following notations: w0, w1, w2 ∈ A∗ \ {o}
and a, b, c, d, a1, b1, a2, b2, . . . ∈ A.

5.1 Last entry time process

We define the following last entry times. Let e0 be the first time at which the random
walk visits

⋃n0

i=1 ∂C
(0)
i and stays in one of the cones C(0)

1 , . . . , C
(0)
n0 afterwards forever,

that is,
e0 := inf

{
m ∈ N0

∣∣∃i ∈ {1, . . . , n0} ∀n ≥ m : Xn ∈ C(0)
i

}
.

In particular, Xe0
∈
⋃n(0)
i=1 ∂C

(0)
i and Xe0−1 /∈

⋃n(0)
i=1 C

(0)
i . In other words, at time e0 the

random walk finally enters one of the cones C(0)
i with no further exits. Inductively, if

Xek
= w ∈ L for k ≥ 0 and if C(w) has the covering (determined only by the type of

C(w)) consisting of the subcones C(k)
1 , . . . , C

(k)
n(w) as explained in Section 4, then

ek+1 := inf
{
m > ek

∣∣ ∃i ∈ {1, . . . , n(w)} ∀n ≥ m : Xn ∈ C(k)
i

}
.

In particular, Xek+1
∈
⋃n(w)
i=1 ∂C

(k+1)
i and Xek+1−1 /∈

⋃n(w)
i=1 ∂C

(k)
i . Transience of (Xn)n∈N0

yields ek < ∞ for all k ∈ N0 almost surely. Observe that Xn, n ≥ ek, has the prefix w0

if Xek
= w0ab. Define the relative increments (Wk)k∈N0 between two last entry times

as follows: set W0 := Xe0
; for k ≥ 1: if Xek−1

= w0ab and Xek
= w0w1cd, then set

Wk := w1cd. Since we have only finitely many different cone types and the subcones of
the covering of any cone C are nested at uniformly bounded distance (w.r.t. minimal path
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lengths) to ∂C, the random variables Wk can take only finitely many different values.
Observe that we can reconstruct the values of the Xek

’s from the values of the Wk’s: if
Wl = wlalbl for l ≤ k then Xek

= w0w1 . . . wkakbk.

For w ∈ L, define

S(w) :=

n(w)⋃
i=1

∂Ci,

where C1, . . . , Cn(w) is the covering of C(w) according to Section 4. Observe that S(w1) =

S(w2) if C(w1) = C(w2). Define for x = a1 . . . ak ∈ A∗ and y = a1 . . . ak−2bk−1bk . . . bk+d ∈
C(x) with d ≥ 1 and d = d(x, y) := |y| − |x|:

L(x, y) :=
∑
n≥0

P
[
Xn = y,Xn−1 /∈ C(y),∀m ∈ {1, . . . , n} : Xm ∈ C(x)

∣∣∣X0 = x
]
.

If d = 1 then L(x, y) = L̄(ak−1ak, bk−1bkbk+1). If d ≥ 2 then L(x, y) can be rewritten as

∑
y1,...,yd−1∈A3:
yi[1]=bk−2+i

L̄(ak−1ak, y1) ·
d−2∏
j=1

L̄(yj [2]yj [3], yj+1) · L̄(yd−1[2]yd−1[3], bk+d−2bk+d−1bk+d);

(5.1)
the last equation follows from the fact that L(x, y) depends on x only by its last two
letters ak−1ak and by decomposition of the paths from x to y w.r.t the last times when
the sets Ak, Ak+1, . . . ,Ak+d−1 are visited on the way from x to y. That is, the l-th
factor in (5.1) corresponds to the part of the path from x to y between the last entry of
A∗≥k+l−1 at the word a1 . . . ak−2bk−1 . . . bk+l−3yl−1[2]yl−1[3] and the last entry to A∗≥k+l at
the word a1 . . . ak−2bk−1 . . . bk+l−2yl[2]yl[3] (with y0[2]y0[3] = ak−1ak and yd = bk−2bk−1bk).
Moreover, L(x, y) = L(ak−1ak, bk−1bk . . . bk+d).

If x1 ∈ L, x2 ∈ S(x1) and x3 ∈ S(x2) then

L(x1, x3) =
∑

y∈∂C(x2)

L(x1, y) · L(y, x3)

by decomposition w.r.t. the last visit of the set ∂C(x2) since C(x3) ⊂ C(x2) ⊂ C(x1). In
particular, if P[Xek

= x1, Xek+1
= x2, . . . , Xek+l

= xl+1] > 0 for x1, . . . , xl+1 ∈ L then we
have

P[Xek
= x1, Xek+1

= x2, . . . , Xek+l
= xl+1]

=
∑

x0∈L\C(x1)

G(o, x0|1) · p(x0, x1) · L(x1, x2) · . . . · L(xl, xl+1) · ξ([xl+1]) (5.2)

by decomposition on the final entries of the cones C(x1), . . . , C(xl+1). We obtain the
following important observation:

Proposition 5.1. The process
(
Wk

)
k≥1

is a Markov chain with transition probabilities

q(x, y) :=

{
ξ([y])
ξ([x])L(x, y), if y ∈ S(x),

0, otherwise.

Proof. Let be w0, . . . , wk+1 ∈ A∗ \ {o} such that w0 ∈
⋃n0

j=1 ∂C
(0)
j , wi+1 ∈ S(wi) for

all i ∈ {0, . . . , k} and P[W0 = w0, . . . ,Wk+1 = wk+1] > 0. For any such sequence
w = (w0, . . . , wk+1), we set x0(w) := w0 and inductively: if xk−1(w) = yk−1ak−1bk−1 with
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yk−1 ∈ A∗ and ak−1bk−1 ∈ A2 then set xk(w) := yk−1wk. That is, if Wk = wk then
Xek

= xk(w). Then:

P
[
W1 = w1, . . . ,Wk = wk

]
=

∑
w0∈

⋃n0
j=1 ∂C

(0)
j

P
[
W0 = w0, . . . ,Wk = wk

]
=

∑
w0∈

⋃n0
j=1 ∂C

(0)
j

P
[
Xe0 = w0, Xe1 = x1(w), . . . , Xek

= xk(w)
]

=
∑

w0∈
⋃n0

j=1 ∂C
(0)
j

∑
w′∈L\C(w0)

G(o, w′|1) · p(w′, w0) ·
k∏
i=1

L(xi−1(w), xi(w)) · ξ([xk(w)])

=
∑

w0∈
⋃n0

j=1 ∂C
(0)
j

∑
w′∈L\C(w0)

G(o, w′|1) · p(w′, w0) ·
k∏
i=1

L(wi−1, wi) · ξ([wk]).

The last equation arises from (5.2) by decomposing the paths by the last entries to the
sets ∂Ci, where Ci denotes the cone with Xei

∈ ∂Ci. Now we obtain:

P
[
Wk+1 = wk+1 |W1 = w1, . . . ,Wk = wk

]
=
P
[
W1 = w1, . . . ,Wk = wk,Wk+1 = wk+1

]
P
[
W1 = w1, . . . ,Wk = wk

]
=

∑
w0∈

⋃n0
j=1 ∂C

(0)
j

∑
w′∈L\C(w0)G(o, w′|1) · p(w′, w0) ·

∏k+1
i=1 L(wi−1, wi) · ξ([wk+1])∑

w0∈
⋃n0

j=1 ∂C
(0)
j

∑
w′∈L\C(w0)G(o, w′|1) · p(w′, w0) ·

∏k
i=1 L(wi−1, wi) · ξ([wk])

= q(x, y).

Define the set

W0 :=
{
w ∈ A∗

∣∣∃w0 ∈ A∗, ab ∈ A2 with P[W0 = w0ab,W1 = w] > 0
}
⊆ A∗≥3.

The next lemma desribes the support of the random variables Wk; since the proof
contains only elementary, tedious calculations, we omit it at this place and hand it in
later in Appendix C.

Lemma 5.2. For all k ≥ 1, supp(P[Wk = ·]) =W0.

With the last lemma we can show:

Lemma 5.3. The Markov chain (Wk)k∈N is positive recurrent and aperiodic.

Proof. SinceW0 is finite it suffices to show that the process (Wk)k∈N is irreducible and
aperiodic. First we show irreducibility. Let be w1 = w′a1b1, w2 ∈ W0. Then there is some
w0a0b0 ∈

⋃n0

j=1 ∂C
(0)
j such that

P[W1 = w2] ≥ P[Xe0 = w0a0b0,W1 = w2]

=
∑

w′∈L\C(w0a0b0)

G(o, w′)p(w′, w0a0b0)L(w0a0b0, w0w2)ξ([w2]) > 0.

In particular, L(a0b0, w2) = L(w0a0b0, w0w2) > 0. By construction of coverings, C(a1b1)

has a subcone of type τ(C(a0b0)) in its covering, say the cone C(w̃) with w̃ ∈ C(a1b1)∩W0

and L(a1b1, w̃) > 0. Then:

P[W3 = w2 |W1 = w1] ≥ q(w1, w̃) · q(w̃, w2) (5.3)

= L(a1b1, w̃)L([w̃], w2)
ξ([w2])

ξ(a1b1)
> 0,

EJP 21 (2016), paper 8.
Page 16/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4180
http://www.imstat.org/ejp/


Asymptotic entropy of random walks on regular languages

which follows from the fact that L([w̃], w2) > 0 due to [w̃] ∈ C(a0b0) and L(a0b0, w2) > 0

(recall the remark before Lemma 5.2). This proves irreducibility and thus positive
recurrence of (Wk)k∈N.

In order to see aperiodicity of the process (Wk)k∈N choose in the proof above w1 = w2,
which yields that the period of (Wk)k∈N is either 1 or 2. Now let be w ∈ W0 and take
any ŵ ∈ W0 with q(w, ŵ) > 0. Then according to (5.3) we get

P[W4 = w,W2 = ŵ |W1 = w] = q(w, ŵ) · P[W3 = w |W1 = ŵ] > 0,

which implies aperiodicity.

For sake of better identification of the cones, we now switch to a more suitable
representation of cones and coverings. We identify the different cone types by numbers
I := {1, . . . , r} ⊂ N. If C(w) is a cone of type i ∈ I, then the covering of C(w) (according
to Subsection 4.2) has n(i, j) subcones of type j ∈ I. We denote these subcones of type j
by Cji,k = Cji,k(w) ⊂ C(w) with 1 ≤ k ≤ n(i, j) or we just identify them by ji,1, . . . , ji,n(i,j),
which correspond to the subcones of type j with different locations inside C(w). In
particular, we choose this enumeration of the subcones of type j in a consistent way: if
C(wabvm) belongs to the covering of C(ab), i = τ(C(ab)), with C(wabvm) being the k-th
cone of type j in the covering of C(ab) (identified by ji,k w.r.t. ab), then the k-th subcone
of type j in the covering of any cone C(w0ab) is the subcone C(w0vm); compare with the
construction of the covering of any cone C(w) starting from the covering of the cone
C(wabab) in Subsection 4.2. That is, by this enumeration of subcones we ensure that the
relative position of Cji,k(w) in the interior of C(w) is always the same for any w ∈ L with
i = τ(C(w)). We will sometimes omit the root w in the notation of the subcones when it
will be clear from the context and when only the relative position of a subcone in some
given cone will be of importance.

We now track the random walk’s way to infinity by looking which of the cones are
finally entered successively. For this purpose, define ik := ji,l if τ(C(Xek−1

)) = i and
Xek

∈ ∂Cji,l(Xek−1
). If we set additionally i0 := C(Xe0), then the sequence (ik)k∈N0

tracks the random walk’s way to infinity.

At this point we recall the relation between Wk and Xek
: if Xe0

= W0 = w0a0b0 and
W1 = w1a1b1 then Xe1

= w0w1a1b1; in general, if Xek−1
= wak−1bk−1 and Wk = wkakbk

then Xek
= wwkakbk. That is, there is a natural bijection of trajectories of (Wk)k∈N0

and (Xek
)k∈N0

. In particular, the values of the Wk’s determine the values of the ik’s
uniquely, since the last two letters of Wk−1 describe τ(C(Xek−1

)) and Wk describes
τ(C(Xek

)) and the corresponding number in the enumeration of subcones. For a better
visualization of the values of ik, see Figure 2.

In other words, the random variables ik collect the information of the different cones
which are entered successively by the random walk (Xn)n∈N0 on its way to infinity,
while the Wk’s keep, in addition, the information where the single subcones are finally
entered.

Define

W :=

(jm,n, x)

∣∣∣∣∣
x ∈ W0,∃w0 ∈ L : P[W0 = w0,W1 = x] > 0,

τ(C([w0])) = m, τ(C([x])) = j, 1 ≤ n ≤ n(m, j)

with x ∈ ∂Cjm,n
([w0])

 .

In other words, (jm,n, x) ∈ W if x ∈ W0 with τ(C(x)) = j and if there is w0a0b0 ∈ L such
that τ(C(a0b0)) = m, P[Xe0

= w0a0b0, Xe1
= w0x] > 0 and C(x) being the n-th subcone

of type j in the covering of C(a0b0).
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11,1

21,1

1

1

m,n

21,1

1,1

12,4

2,1

1

1

2

2,1

2,2

2,31

Figure 2: Numbering of subcones: the cones with the solid boundary belong to the
covering while the cone with the dotted line does not.

Proposition 5.4. The process
(
(ik,Wk)

)
k∈N is a positive recurrent, aperiodic Markov

chain on the state space W. Moreover, for (im,n, w1), (js,t, w2) ∈ W, the transition
probabilities are given by

P
[
(ik,Wk) = (js,t, w2)

∣∣∣(ik−1,Wk−1) = (im,n, w1)
]

=

{
q(w1, w2), if s = i,

0, if s 6= i.
(5.4)

Proof. Since the values of the ik’s are uniquely determined by the values of the Wk’s
and since the process (Wk)k∈N is a Markov chain, we also have that

(
(ik,Wk)

)
k∈N is

Markovian with the proposed transition probabilities.
It remains to prove that supp(P[(ik,Wk) = ·]) =W for k ≥ 1 and that

(
(ik,Wk)

)
k∈N

is positive recurrent and aperiodic. Since both proofs consist of tedious calculations
analogously to the proofs of Lemmas 5.2 and 5.3 we omit these proofs here and refer to
Appendix C, where we will hand in them later.

Let us recall that the values of the ik’s are uniquely determined by the values of
the Wk’s; however, we will explicitely keep the values of the ik’s in the notation of the
process for sake of convenience. Observe that the process (ik)k∈N is, in general, not
Markovian. This relies on the fact that (ik)k∈N can be seen as a function of the process
(Wk)k∈N: the values of the Wk’s determine the values of the ik’s but not vice versa.

Define the following projection for (ik,l, w1), (jm,n, w2) ∈ W:

π
(
(ik,l, w1), (jm,n, w2)

)
:=

{
(i, ji,n) =: (i, jn), if m = i,

(i, ji,1) = (i, j1), if m 6= i.
(5.5)

Here, jl represents the l-th subcone of type j in the covering of a cone of type i, namely
the cone represented by ji,l. We now define the hidden Markov chain (Yk)k∈N by

Yk := π
(
(ik,Wk), (ik+1,Wk+1)

)
.

In other words, (Yk)k∈N traces once again the random walk’s way to infinity in terms
of which subcones are entered successively without distinguishing which of the cone
boundary points are the last entry time points Xek

. At this point let us mention that
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the second branch in the definition of π(·, ·) is not used for defining Yk, but it will be of
interest in Section 8. Furthermore, observe that Xe0

and (Yk)k∈N allow to reconstruct
(ik)k∈N.

Define
Wπ :=

{
(s, tn)

∣∣s, t ∈ I, 1 ≤ n ≤ n(s, t)
}
.

That is, tn corresponds to the n-th subcone of type t in the covering of a cone of type s.

Lemma 5.5. For all k ≥ 1, supp(P[Yk = ·]) =Wπ.

Proof. The inclusion supp(P[Yk = ·]) ⊂ Wπ is obvious by definition of Yk andWπ. Now
we show the other inclusion. Let be (s, tn) ∈ Wπ. Take any wk−1ak−1bk−1 ∈ W0 with
P[Wk−1 = wk−1ak−1bk−1] > 0. Then there exists wkakbk ∈ W0 with τ(C(akbk)) = s and
q(wk−1ak−1bk−1, wkakbk) > 0 due to the construction of coverings. Moreover, there is
wk+1ak+1bk+1 ∈ W0 with q(wkakbk, wk+1ak+1bk+1) > 0 such that C(wk+1ak+1bk+1) is the
n-th cone of type t in C(akbk). Thus,

P[Yk = (s, tn)]

≥ P[Wk−1 = wk−1ak−1bk−1,Wk = wkakbk,Wk+1 = wk+1ak+1bk+1]

= P[Wk−1 = wk−1ak−1bk−1] · q(wk−1ak−1bk−1, wkakbk) · q(wkakbk, wk+1ak+1bk+1) > 0,

yielding (s, tn) ∈ supp(P[Yk = ·]).

Since the process (ik,Wk)k∈N is positive recurrent, it has an invariant probability

measure ν. Let (i
(ν)
k ,W

(ν)
k )k∈N be a Markov chain with transition probabilities given by

(5.4) but with initial distribution ν. The corresponding hidden Markov chain (Y
(ν)
k )k∈N is

given by
Y

(ν)
k := π

(
(i

(ν)
k ,W

(ν)
k ), (i

(ν)
k+1,W

(ν)
k+1)

)
.

In the next section we will link the hidden Markov chains (Yk)k∈N and (Y
(ν)
k )k∈N.

5.2 Entropy of the hidden Markov chain related to the last entry time process

In this subsection we derive existence of the asymptotic entropy of the hidden Markov
chains (Y

(ν)
k )k∈N and (Yk)k∈N.

First, consider the hidden Markov chain (Y
(ν)
k )k∈N: this process is stationary and er-

godic since the underlying Markov chain
(
i
(ν)
k ,W

(ν)
k

)
k∈N is stationary, positive recurrent

and aperiodic. Hence, there is a constant H(Y) ≥ 0 such that

lim
k→∞

−1

k
logP[Y

(ν)
1 = y

1
, . . . ,Y

(ν)
k = y

k
] = H(Y) (5.6)

for almost every realisation (y
1
, y

2
, . . . ) ∈ WN

π of (Y
(ν)
k )k∈N; see e.g. Cover and Thomas

[5, Theorem 16.8.1]. The number H(Y) is called the asymptotic entropy of the (positive

recurrent) process (Y
(ν)
k )k∈N. We now deduce an analogous statement for the process

(Yk)k∈N.

Proposition 5.6. For almost every realisation (y
1
, y

2
, . . . ) ∈ WN

π of (Yk)k∈N,

lim
k→∞

−1

k
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]
= H(Y).

Proof. The processes (Y
(ν)
k )k∈N and (Yk)k∈N differ only by the inital distributions of

(i
(ν)
1 ,W

(ν)
1 ) and (i1,W1). Moreover, there are constants c, C > 0 such that

c · P[(i1,W1) = (im,n, x)] ≤ ν(im,n, x) ≤ C · P[(i1,W1) = (im,n, x)]

for all (im,n, x) ∈ W. Denote by µ1 the distribution of (i1,W1). We now get for almost
every trajectory (y

1
, y

2
, . . . ) ∈ WN

π of (Yk)k∈N:
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H(Y) = lim
k→∞

−1

k
logP

[
Y

(ν)
1 = y

1
, . . . ,Y

(ν)
k = y

k

]
= lim

k→∞
−1

k
log

∑
w1,...,wk+1∈W:

π(wj ,wj+1)=y
j

for 1≤j≤k

ν(w1)P[(il,Wl) = wl for 2 ≤ l ≤ k + 1 | (i1,W1) = w1]

= lim
k→∞

−1

k
log

∑
w1,...,wk+1∈W:

π(wj ,wj+1)=y
j

for 1≤j≤k

µ1(w1)P[(il,Wl) = wl for 2 ≤ l ≤ k + 1 | (i1,W1) = w1]

= lim
k→∞

−1

k
log

∑
w1,...,wk+1∈W:

π(wj ,wj+1)=y
j

for 1≤j≤k

P
[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]

= lim
k→∞

−1

k
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]
.

As a consequence we obtain the next statement:

Corollary 5.7.

lim
k→∞

−1

k

∫
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]
dP(y

1
, y

2
, . . . ) = H(Y).

Proof. Since |W| <∞ by definition, there is ε0 > 0 such that, for all w1, w2 ∈ W,

P[(i2,W2) = w2 | (i1,W1) = w1] > 0 implies 1 ≥ P[(i2,W2) = w2 | (i1,W1) = w1] ≥ ε0.

If (y
1
, . . . , y

k
) ∈ Wk

π with P[Y1 = y
1
, . . . ,Yk = y

k
] > 0 then there are w1, . . . , wk+1 ∈ W

with π(wj , wj+1) = y
j

for 1 ≤ j ≤ k and P
[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]
> 0.

Therefore,

0 ≤ −1

k
logP

[
Y1 = y

1
, . . . ,Yk = y

k

]
≤ −1

k
logP

[
(i1,W1) = w1, . . . , (ik+1,Wk+1) = wk+1

]
≤ −1

k
log(c · εk0) = −1

k
log c− log ε0 ≤ − log c− log ε0,

where c = minw∈W P[(i1,W1) = w]. Therefore, we may exchange integral and limit,
which yields the claim together with Proposition 5.6.

Let be w ∈ L with |w| ≥ 2. Define

l̂(w) := − log
∑

w′∈∂C(w)

L(o, w′|1).

We obtain the following law of large numbers:

Proposition 5.8.

lim
k→∞

l̂(Xek
)

k
= H(Y) almost surely.

Proof. Let be k ∈ N and assume for the moment that Wl = ylalbl, where yl ∈ A∗ \ {o}
and albl ∈ A2 for 0 ≤ l ≤ k. That is, Xel

= y0y1 . . . ylalbl. Furthermore, assume that
Y1 = (j, t(1)), where j = τ(C(a1b1)), and Yl = (s(l), t(l)) for 2 ≤ l ≤ k, where the values
of s(2), . . . , s(k−1) and t(1), . . . , t(k−1) are determined by the values of Wl = ylalbl.
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One can show that, for almost every realisation (x1, y1
, y

2
, . . . ) of (Xe1

,Y1,Y2, . . . ),

H(Y) = lim
k→∞

−1

k
logP

[
C(Xe1

) = C(x1),Y1 = y
1
, . . . ,Yk = y

k

]
. (5.7)

This follows from the fact that there are only finitely many possibilities for C(Xe1
) which

do not affect the resulting limit. Since the proof of this equation consists of technical
reformulations of the involved probabilities we omit it at this place and give it in Lemma
C.1 in Appendix C.

Recall from Equation (3.1) that G(o, w|1) = G(o, o|1)L(o, w|1) for all w ∈ L and that
ξ(·) can only take finitely many (non-zero) values. We now can conclude as follows:

lim
k→∞

l̂(Xek
)

k
= lim
k→∞

−1

k
log

∑
w′∈∂C(y0y1...ykakbk)

L(o, w′|1)

= lim
k→∞

−1

k
log

∑
bc∈A2:bc∈∂C(akbk)

L(o, y0y1 . . . ykbc|1)

= lim
k→∞

−1

k
log

[ ∑
w1∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

∑
w′∈L:

w′ /∈C(w1)

L(o, w′|1)p(w′, w1)

k∏
i=2

L([wi−1], wi)

]

= lim
k→∞

−1

k
log

[ ∑
w1∈∂C(y0y1a1b1);
w2,...,wk∈W0:
wi∈∂C(yiaibi)
for all 2≤i≤k;
w′∈L\C(w1)

G(o, w′|1)p(w′, w1)ξ([w1]) ·
k∏
i=2

ξ([wi])

ξ([wi−1])
L([wi−1], wi)

]

= lim
k→∞

−1

k
log

[ ∑
w1∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

P[Xe1
= w1]q(y1[w1], w2)

k∏
i=3

q(wi−1, wi)

]

= lim
k→∞

−1

k
logP

[
Xe1
∈ C(y0y1a1b1),Y1 = (j, t(1)),

Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
= H(Y).

The last equation follows from (5.7). We remark that the first coordinate of Y1 describes
only the cone type of Xe1

but there may be several distinct cones of the same type j ∈ I
with j = τ(C(Xe1

)).

Recall the definition of l(w) = − logL(o, w|1) for w ∈ L.

Corollary 5.9.

lim
k→∞

l(Xek
)

k
= H(Y) almost surely.

Proof. It suffices to compare l̂(Xek
) with l(Xek

). Assume for a moment that Xek
= wk

with wk ∈ L and that Xek
is on the boundary of the cone Ck. Then, the probability of

walking inside Ck from any w′ ∈ ∂Ck to any w − k ∈ ∂Ck (or vice versa) can be bounded
from below by some constant ε0, because the probabilities depend only on [wk], [w′] ∈ A2:
that is,

Pw′ [∃n ∈ N : Xn = wk,∀m ≤ n : Xn ∈ C(w′)] ≥ ε0.

EJP 21 (2016), paper 8.
Page 21/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4180
http://www.imstat.org/ejp/


Asymptotic entropy of random walks on regular languages

Therefore,

L(o,Xek
|1) ≤

∑
w′∈∂Ck

L(o, w′|1) = l̂(Xek
),

l̂(Xek
) · ε0 ≤

∑
w′∈∂Ck

L(o, w′|1) · Pw′ [∃n ∈ N : Xn = wk,∀m ≤ n : Xn ∈ C(w′)]

≤ |A2| · L(o,Xek
|1).

In the second inequality chain we extended paths from o to w′ to paths from o to wk via
w′ such that each such path is counted at most |A2| times. Taking logarithms, dividing
by k and letting k tend to infinity yields the claim.

Now we come to an important law of large numbers. Denote by ν0 the invariant
probabilty measure of the positive recurrent Markov chain (Wk)k∈N and define

λ := E[|W(ν)
1 |]− 2 =

∑
w∈W0

ν0(w) ·
(
|w| − 2

)
. (5.8)

Then:

Proposition 5.10.

lim
k→∞

l(Xn)

n
= ` · λ−1 ·H(Y) almost surely.

Proof. Define
êk := inf

{
m ∈ N

∣∣∀n ≥ m : |Xn| = k
}
.

Observe that êk− 1 = sup
{
m ∈ N

∣∣|Xm| = k− 1
}

. Transience yields êk <∞ almost surely
for all k ∈ N. By [7, Proposition 2.3], k/(êk − 1) tends to the rate of escape ` as k →∞;
hence, k/êk → ` as k →∞. Define the maximal last entry times at time n ∈ N as

k(n) := max{k ∈ N | êk ≤ n},
t(n) := max{k ∈ N | ek ≤ n}.

Obviously, k(n) ≥ t(n) and each last entry time ek corresponds (depending on the
concrete realization) to exactly one êl with l ≥ k. First, we rewrite

l(Xn)

n
=
l(Xn)− l(Xet(n)

)

n
+
l(Xet(n)

)

t(n)
· t(n)

k(n)
· k(n)

êk(n)
·
êk(n)

n
. (5.9)

Let ε1 be the minimal occuring positive single-step transition probability. Define

D := max

{
|w2| − |w1|

∣∣∣∣ ∃ab ∈ A2 : C(ab) has covering C1, . . . , Cn(ab),

w1 ∈ ∂C(ab), w2 ∈
⋃n(ab)
i=1 ∂Ci

}
<∞.

Then we have êk(n) ≥ et(n) ≥ êk(n)−D and n/et(n) ≥ 1. This implies

1 ≤ n

et(n)
≤

êk(n)+1

êk(n)−D
=

êk(n)+1

k(n)

k(n)−D
êk(n)−D

n→∞−−−−→ 1

`
· ` = 1 a.s., (5.10)

which in turn yields (n − et(n))/n → 0 as n → ∞. Thus, the first quotient on the right
hand side of (5.9) tends to zero since

L(o,Xn|1) · εn−et(n)

1 ≤ L(o,Xet(n)
|1) (due to weak symmetry),

L(o,Xet(n)
|1) · εn−et(n)

1 ≤ L(o,Xn|1).
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Here we used the fact that one can walk from Xet(n)
to Xn (or vice versa) in n − et(n)

steps. By Corollary 5.9, l(Xet(n)
)/t(n) tends to H(Y). On the other hand side, êk/k tends

almost surely to 1/` and êk(n)/n tends to 1 almost surely since 1 ≤ n/êk(n) ≤ n/et(n) → 1

by (5.10). It remains to investigate the limit limk→∞ k(n)/t(n). Clearly,

k(n)

t(n)
=
|Xêk(n)

|
t(n)

=
1

t(n)

(
|Xe1
|+

t(n)−1∑
i=1

(|Xei+1
| − |Xei

|) + (|Xêk(n)
| − |Xet(n)

|)
)
.

Note that 0 ≤ |Xêk(n)
| − |Xet(n)

| ≤ D and 0 < |Xe1
| ≤ D1 almost surely for some suitable

constant D1. Thus, it is sufficient to consider

1

k

k∑
i=1

(|Xei+1 | − |Xei |) =
1

k

k∑
i=1

(
|Wi| − 2

)
.

Since (Wk)k∈N is positive recurrent, the ergodic theorem yields almost surely

lim
k→∞

1

k

k∑
i=1

(
|Wi| − 2

)
=
∑
w∈W0

ν0(w)
(
|w| − 2

)
= λ.

This finishes the proof and gives the proposed formula.

6 Existence of entropy

We now link Proposition 5.10 with the asymptotic entropy of the random walk
(Xn)n∈N0

. For this purpose, we follow the reasoning of [8]. First, we need the fol-
lowing lemma:

Lemma 6.1. There is R > 1 such that G(w1, w2|R) <∞ for all w1, w2 ∈ L.

Proof. A simple adaption of the proof of [16, Proposition 8.2] shows that, for w1, w2 ∈ L,
G(w1, w2|z) has radius of convergence R(w1, w2) > 1. At this point we also need the
suffix-irreducibility Assumption 2.4; see Subsection A.1 for a comment on how to weaken
this assumption. Since we assume the random walk (Xn)n∈N0

to be irreducible, the
radius of convergence is independent from w1 and w2; hence, G(w1, w2|R) < ∞ for all
w1, w2 ∈ L and R = R(w1, w2).

Let us remark that we have also L̄(ab, cde|R) <∞, G(ab, cd|R) <∞ and L(o, a|R) <∞
for all a, b, c, d, e ∈ A, since these generating functions are dominanted by Green functions.
In the following let be % ∈ [1, R).

Lemma 6.2. There are constants D1 and D2 > 0 such that for all m,n ∈ N0

p(m)(o,Xn) ≤ D1 ·Dn
2 · %−m.

Proof. Denote by C% the circle with radius % in the complex plane centered at 0. A
straightforward computation together with Fubini’s Theorem shows for m ∈ N0 and
w ∈ L:

1

2πi

∮
C%
G(o, w|z) z−m dz

z
= p(m)(o, w);

compare with [8, Lemma 3.4]. Since G(o, w|z) is analytic on C%, we have |G(o, w|z)| ≤
G(o, w|%) for all |z| = %. Thus,

p(m)(o, w) ≤ 1

2π
· %−m−1 ·G(o, w|%) · 2π% = G(o, w|%) · %−m.
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Set L := 1 ∨ max
{
L̄
(
ab, cde|%

)
| a, b, c, d, e ∈ A

}
, C0 := % · G(o, o|%) ·

∑
a∈A L(o, a|%) and

C1 = max{G(ab, cd|%) | ab, cd ∈ A2}. Equation (3.5) provides for all w ∈ L with |w| ≥ 2

G(o, w|%) = G(o, o|%) · L(o, w|%) ≤ C0 · |A|2(|w|−2) · L|w|−2 · C1.

Set C2 := C0 ∨max{G(o, w|%)|w ∈ L, |w| ≤ 2}. Since |Xn| ≤ n, we obtain the proposed
inequality by setting D1 := C1 + C2 and D2 := |A|2 · L:

p(m)(o,Xn) ≤ D1 · |A|2|Xn| · L|Xn| · %−m ≤ D1 · |A|2n · Ln · %−m = D1 ·Dn
2 · %−m.

The following technical lemma will be used in the proof of the next theorem:

Lemma 6.3. Let (An)n∈N, (an)n∈N, (bn)n∈N be sequences of strictly positive numbers
withAn = an+bn. Assume that limn→∞− 1

n logAn = c ∈ [0,∞) and that limn→∞ bn/q
n = 0

for all q ∈ (0, 1). Then limn→∞− 1
n log an = c.

Proof. A proof can be found in [8, Lemma 3.5].

Lemma 6.4. For n ∈ N, consider the function fn : L → R defined by

fn(w) :=

{
− 1
n log

∑n2

m=0 p
(m)(o, w), if p(n)(o, w) > 0,

0, otherwise.

Then there are constants d and D such that d ≤ fn(w) ≤ D for all n ∈ N and w ∈ L.

Proof. Let be w ∈ L and n ∈ N with p(n)(o, w) > 0. For w1 ∈ L and z > 0, define the first
return generating function as

U(w1, w1|z) :=
∑
n≥1

P
[
Xn = w1,∀m ∈ {1, . . . , n− 1} : Xm 6= w1

∣∣X0 = w1

]
· zn.

Recall the number R > 1 from Lemma 6.1. Then

G(w,w|1) ≤ 1

1− 1
R

; (6.1)

indeed, since G(w,w|z) =
(
1− U(w,w|z)

)−1
it must be that U(w,w|z) < 1 for all w ∈ L

and all z ∈ [0, R); moreover, U(w,w|0) = 0, U(w,w|z) is continuous, strictly increasing
and strictly convex for z ∈ [0, R), so we must have U(w,w|z) ≤ 1/R for all z ∈ [0, R),
providing (6.1).

Define F (o, w) :=
∑
n≥0 f

(k)(o, w), where f (k)(o, w) is the probability of starting at
o and with the first visit to w at time k. By conditioning on the first visit to w we get
G(o, w|1) = F (o, w)G(w,w|1). Therefore,

n2∑
m=0

p(m)(o, w) ≤ G(o, w|1) = F (o, w) ·G(w,w|1) ≤ 1

1− 1
R

,

that is,

fn(w) ≥ − 1

n
log

1

1− 1
R

≥ − log
1

1− 1
R

=: d.

For the upper bound, observe that w ∈ L with p(n)(o, w) > 0 can be reached from o in n
steps with a probability of at least εn0 , where

ε0 := min{p(w1, w2) | w1, w2 ∈ A∗, p(w1, w2) > 0} > 0

is independent from w. Thus, the sum
∑n2

m=0 p
(m)(o, w) has a value greater or equal to

εn0 . Hence, fn(x) ≤ − log ε0 =: D.
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Now we can finally prove:

Proof of Theorem 2.5. Recall Equation (3.1). We can rewrite ` · λ−1 ·H(Y) as

` ·H(Y)

λ
=

∫
` ·H(Y)

λ
dP =

∫
lim
n→∞

− 1

n
logL

(
o,Xn(ω)

∣∣1) dP(ω)

=

∫
lim
n→∞

− 1

n
log

G
(
o,Xn(ω)

∣∣1)
G(o, o|1)

dP(ω) =

∫
lim
n→∞

− 1

n
logG

(
o,Xn(ω)|1

)
dP(ω).

Recall that πn denotes the distribution of Xn. Since

G(o,Xn|1) =
∑
m≥0

p(m)(o,Xn) ≥ p(n)(o,Xn) = πn(Xn),

we have
` ·H(Y)

λ
≤
∫

lim inf
n→∞

− 1

n
log πn

(
Xn(ω)

)
dP(ω). (6.2)

The next aim is to prove that lim supn→∞− 1
nE
[
log πn(Xn)

]
≤ ` ·H(Y)/λ. We now apply

Lemma 6.3 by setting

An :=
∑
m≥0

p(m)(o,Xn), an :=

n2∑
m=0

p(m)(o,Xn) and bn :=
∑

m≥n2+1

p(m)(o,Xn).

By Lemma 6.2,

bn ≤
∑

m≥n2+1

D1 ·Dn
2 · %−m = D1 ·Dn

2 ·
%−n

2−1

1− %−1
.

Therefore, bn decays faster than any geometric sequence. Applying Lemma 6.3 together
with (3.1) gives almost surely

` ·H(Y)

λ
= lim
n→∞

− 1

n
logL(o,Xn) = lim

n→∞
− 1

n
logG(o,Xn) = lim

n→∞
− 1

n
log

n2∑
m=0

p(m)
(
o,Xn

)
.

Due to Lemma 6.4 we can apply the Dominated Convergence Theorem and get:

` ·H(Y)

λ
=

∫
` ·H(Y)

λ
dP =

∫
lim
n→∞

− 1

n
log

n2∑
m=0

p(m)(o,Xn) dP

= lim
n→∞

∫
− 1

n
log

n2∑
m=0

p(m)(o,Xn) dP = lim
n→∞

− 1

n

∑
w∈L

p(n)(o, w) log

n2∑
m=0

p(m)(o, w).

For w ∈ L, define the following distribution µ0 on L:

µ0(w) :=
1

n2 + 1

n2∑
m=0

p(m)(o, w).

Recall that the non-negativity of the Kullback-Leibler divergence (in this context also
called Shannon’s Inequality) gives

−
∑
w∈L

p(n)(o, w) logµ0(w) ≥ −
∑
w∈L

p(n)(o, w) log p(n)(o, w).

Therefore,
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` ·H(Y)

λ
≥ lim sup

n→∞
− 1

n

∑
w∈L

p(n)(o, w) log(n2 + 1)− 1

n

∑
w∈L

p(n)(o, w) log p(n)(o, w)

= lim sup
n→∞

− 1

n

∫
log πn(Xn) dP.

Now we can conclude with (6.2) and Fatou’s Lemma:

` ·H(Y)

λ
≤

∫
lim inf
n→∞

− 1

n
log πn(Xn)dP ≤ lim inf

n→∞

∫
− 1

n
log πn(Xn)dP

≤ lim sup
n→∞

∫
− 1

n
log πn(Xn)dP ≤ ` ·H(Y)

λ
.

Thus, the asymptotic entropy h := limn→∞− 1
nE
[
log πn(Xn)

]
exists and equals ` ·H(Y)/λ.

Finally, we can prove:

Proof of Corollary 2.7. The proofs of the statements in Corollary 2.7 are completely
analogous to the proofs in [8, Corollary 3.9, Lemma 3.10], where [8, Lemma 3.10] holds
also in the case h = 0.

Proof of Corollary 2.8. Recall the definition of F (o, w) from the proof of Lemma 6.4 and
the equation G(o, w|1) = F (o, w)G(w,w|1). This yields together with (3.1):

P[∃n ∈ N0 : Xn = w] = F (o, w) =
G(o, w|1)

G(w,w|1)
=

G(o, o|1)

G(w,w|1)
L(o, w|1).

Since 1 ≤ G(Xn, Xn|1) ≤ 1/(1 − 1
R ) with R from Lemma 6.1, we obtain the proposed

result due to Proposition 5.10.

7 Calculation of the entropy

In this section we collect several results about the asymptotic entropy. We show how
the entropy can be calculated numerically or even exactly in some special cases, and we
give some inequalities.

7.1 Numerical calculation and inequalities

In order to compute h = ` ·H(Y)/λ we have to calculate the three factors: while there
are formulas for ` (see [7, Theorem 2.4]) and λ (given by (5.8)), it remains to explain how
to calculate H(Y). For this purpose, define for random variables A1, . . . , An on a finite
state spaceWA the joint entropy as

H(A1, . . . , An) := −
∑

a1,...,an∈WA

P
[
A1 = a1, . . . , An = an

]
logP

[
A1 = a1, . . . , An = an

]
,

and let the conditional entropy H(An|A1, . . . , An−1) be defined as

−
∑

a1,...,an∈WA

P
[
A1 = a1, . . . , An = an

]
logP

[
An = an

∣∣A1 = a1, . . . , An−1 = an−1

]
.

Here, we set 0 · log 0 := 0, since x log x→ 0 as x→ 0+. By Cover and Thomas [5, Theorem
4.2.1], we have H(Y) = limn→∞

1
nH(Y

(ν)
1 , . . . ,Y

(ν)
n ). In general, the computation of

H(Y) is a hard task. But there is a simple way for a numerical calculation of H(Y),
which follows from the inequalities

H
(
Y(ν)
n

∣∣((i(ν)
1 ,W

(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )
)
,Y

(ν)
1 , . . . ,Y

(ν)
n−1

)
≤ H(Y) ≤ H(Y(ν)

n | Y(ν)
1 , . . . ,Y

(ν)
n−1)

(7.1)
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for all n ∈ N; see [5, Theorem 4.5.1]. In particular, it is even shown that

H(Y(ν)
n | Y(ν)

1 , . . . ,Y
(ν)
n−1)−H

(
Y(ν)
n

∣∣((i(ν)
1 ,W

(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )
)
,Y

(ν)
1 , . . . ,Y

(ν)
n−1

) n→∞−−−−→ 0.

Hence, one can calculate H(Y) numerically up to an arbitrarily small error. Obviously,
this numerical approach depends strongly on the ability to solve the system of equations
given by (3.2).

We now investigate whether the entropy is non-zero or not.

Corollary 7.1. If the random walk is expanding, then h > 0. Otherwise, h = 0.

Proof. Take any (ik,l, w1), (jp,q, w2) ∈ W with

P[(i
(ν)
1 ,W

(ν)
1 ) = (ik,l, w1), (i

(ν)
2 ,W

(ν)
2 ) = (jp,q, w2)] > 0.

The values (ik,l, w1), (jp,q, w2) determine the value of Y(ν)
1 uniquely. In the expanding case,

there are at least two elements (sj,m, w
′), (tj,n, w

′′) ∈ W such that w′, w′′ ∈ C([w2]) with
C(w′) ∩ C(w′′) = ∅ and q(w2, w

′) > 0 and q(w2, w
′′) > 0, yielding π

(
(jp,q, w2), (sj,m, w

′)
)
6=

π
(
(jp,q, w2), (tj,n, w

′′)
)
. Let w′ be in the m-th cone of type s in the covering of C([w2]).

Then set

P
(
(ik,l, w1), (jp,q, w2), (sj,m, w

′)
)

:= P
[
Y

(ν)
2 =

(
τ(C(w2)), sm

) ∣∣ (i(ν)
1 ,W

(ν)
1 ) = (ik,l, w1), (i

(ν)
2 ,W

(ν)
2 ) = (jp,q, w2)

]
≥ q(w2, w

′) > 0.

We also have P
(
(ik,l, w1), (jp,q, w2), (tj,n, w

′′)
)
> 0 since q(w2, w

′′) > 0 and C(w′)∩C(w′′) =

∅. This implies P
(
(ik,l, w1), (jp,q, w2), (sj,m, w

′)
)
< 1. From (7.1) follows then

H(Y) ≥ H
(
Y

(ν)
2

∣∣((i(ν)
1 ,W

(ν)
1 ), (i

(ν)
2 ,W

(ν)
2 )
)
,Y

(ν)
1

)
≥ P

(
(ik,l, w1), (jp,q, w2), (sj,m, w

′)
)

logP
(
(ik,l, w1), (jp,q, w2), (sj,m, w

′)
)
> 0.

Thus, we have shown that h > 0 if (Xn)n∈N0
is expanding.

Now consider the case when the random walk on L is not expanding. Then each
cone has a covering consisting of only one single subcone. This implies that the value
τ(C(W

(ν)
1 )) = i

(ν)
1 determines uniquely the values τ(C(W

(ν)
k )) for k ≥ 2. Moreover, given

the value of τ(C(W
(ν)
1 )) the values of Y(ν)

k , k ≥ 1, are deterministic. That is, Y(ν)
n is

uniquely determined by Y
(ν)
1 , hence P[Y

(ν)
n = · | Y(ν)

1 = (s, tn)] ∈ {0, 1}. This implies

0 ≤ H(Y) ≤ H(Y(ν)
n | Y(ν)

1 , . . . ,Y
(ν)
n−1) ≤ H(Y(ν)

n | Y(ν)
1 ) = 0,

where the last inequality follows from [5, Theorem 2.6.5]. Thus, h = 0.

In order to get a complete picture, we show that the entropy is zero for recurrent
random walks:

Corollary 7.2. If (Xn)n∈N0
is recurrent then h = 0.

Proof. Clearly, − 1
nE
[
log πn(Xn)

]
≥ 0. Assume now that lim supn→∞− 1

nE
[
log πn(Xn)

]
=

c > 0. Then there is a (deterministic) sequence (nk)k∈N such that, for any ε1 ∈ (0, c),

− 1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1 > 0 (7.2)

for all k ∈ N. Denote by ε0 the minimal occuring positive single-step transition probability
of (Xn)n∈N0

. Then − 1
nk

log πnk
(Xnk

) ≤ − log ε0. Choose N ∈ N with 1/N < c− ε1. Then
there is some δ > 0 with

P
[
− 1

nk
log πnk

(Xnk
) ≥ 1

N

]
≥ δ ∀k ∈ N.
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To see this, assume that δ = δk depends on k with lim infk→∞ δk = 0: then we get with
(7.2)

(− log ε0) · δk + (1− δk)
1

N
≥ − 1

nk
E
[
log πnk

(Xnk
)
]
≥ c− ε1;

If δk tends to zero then we get a contradiction to the choice of N .
Choose now ε > 0 arbitrarily small with ε < δ. Since ` = 0 in the recurrent case,

there is some index K ∈ N such that for all k ≥ K:

δ − ε ≤ P
[
− log πnk

(Xnk
) ≥ nk/N, |Xnk

| ≤ εnk
]
≤ e−nk/N · |A|εnk

which yields the inequality

1

N
+

1

nk
log(δ − ε) ≤ ε log |A|.

But this gives a contradiction if we make ε sufficiently small since the right hand side
tends to zero, but the left hand side to 1

N as k →∞. Thus, lim supn→∞− 1
nE
[
log πn(Xn)

]
=

0, yielding h = 0.

Finally, we state an inequality which connects entropy, drift and growth. For this
purpose, define A∗≤n = {w ∈ A∗ | |w| ≤ n} for n > 0. The growth of A∗ is then given by
g := limn→∞

1
n log |A∗≤n|. Since |An| ≤ |A∗≤n| ≤ n|An|, we have g = log |A|. We get the

following connection between entropy, drift and growth:

Theorem 7.3. h ≤ ` · log |A|.

Proof. Let be ε > 0. By Corollary 2.7 (1), there is some Nε ∈ N such that for all n ≥ Nε:

1− ε ≤ P
[
− log πn(Xn) ≥ (h− ε)n, |Xn| ≤ (`+ ε)n

]
≤ e−(h−ε)n · |A∗≤(`+ε)n|.

Taking logarithms and dividing by n gives

(h− ε) +
1

n
log(1− ε) ≤ (`+ ε) · 1

(`+ ε)n
log |A∗≤(`+ε)n|.

Making ε arbirtraily small and sending n→∞ yields the proposed claim.

Let us remark that similar inequalities have been proved by Kaimanovich and Woess
[14] for time and space homogeneous random walks and in [8] for random walks on free
products.

7.2 Exact formula for unambiguous cone boundaries

In this subsection we give an exact formula for the asymptotic entropy in some special
case. We call ab ∈ A2 unambiguous if ∂C(ab) = {ab}. In other words, whenever the
random walk enters a subcone of type C(wab), w ∈ A∗, it must enter it through its single
boundary point wab. We call the cone type τ(C(ab)) also unambiguous. Existence of an
unambiguous cone allows us to “cut” the random walk into i.i.d. pieces and to obtain
a formula for the entropy H(Y). For n ∈ N, x2, . . . , xn ∈ W0 and unambiguous ab ∈ A2

define

w(ab, x2, . . . , xn) := P
[
W2 = x2, . . . ,Wn = xn, [Wn] = ab

∣∣[W1] = ab
]
,

w̃(ab, x2, . . . , xn) :=
∑

y2,...,yn∈W0:
yi∈∂C(xi)
for 2≤i≤n

P
[
W2 = y2, . . . ,Wn = yn, [Wn] = ab

∣∣[W1] = ab
]
,
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In particular, w̃(ab, x2) = P
[
W2 = x2, [W2] = ab

∣∣[W1] = ab
]
. Recall that ν denotes the

invariant probability measure of the process (ik,Wk)k∈N. For unambiguous ab ∈ A2, set

νab :=
∑

(im,n,x)∈W:[x]=ab

ν(im,n, x).

Then:

Theorem 7.4. If ab ∈ A2 is unambiguous, then

H(Y) = −νab
∑
n≥1

∑
x2,...xn−1∈W0:

[xi]6=ab for 2≤i≤n−1

∑
xn∈W0:
[xn]=ab

w(ab, x2, . . . , xn) log w̃(ab, x2, . . . , xn).

Proof. Write α := τ(C(ab)). By Proposition 5.6, we have

− 1

n
logP[Y1 = y

1
, . . . ,Yn = y

n
]
n→∞−−−−→ H(Y)

for almost every trajectory (y
1
, y

2
, . . . ) ∈ WN

π . For any such trajectory, we define

N0 := min
{
m ∈ N

∣∣τ(Wm+1) = α
}

and Nk := min
{
m ∈ N

∣∣m > Nk−1, τ(Wm+1) = α
}
.

Define d(n) := max{k ∈ N0 | Nk ≤ n}. Since YNj has the form (t, αt(n),m) for some cone
type t ∈ I, 1 ≤ m ≤ n(t, α), and [WNk+1] = ab for all k ∈ N we can use the strong Markov
property as follows for all n ≥ 1 and almost every trajectory (y

1
, y

2
, . . . ) ∈ WN

π :

P
[
YNj+1 = y

Nj+1
, . . . ,YNj+n = y

n
| Y1 = y

1
, . . . ,YNj

= y
Nj

]
= P

[
YNj+1 = y

Nj+1
, . . . ,YNj+n = y

n
| [WNj+1] = ab

]
.

In other words, the Yk’s collect only the information which cones are entered succes-
sively, but we know that the (Nj + 1)-th cone is entered through a boundary point with
last two letters ab; hence, one can restart the process at some word ending with ab in the
above equation without changing probabilities. Therefore, we can rewrite the following
probability P

[
Y1 = y

1
, . . . ,Yd(n) = y

d(n)

]
as

P
[
Y1 = y

1
, . . . ,YN0

= y
N0

] d(n)−1∏
i=0

P
[
YNi+1 = y

Ni+1
, . . . ,YNi+1

= y
Ni+1

∣∣[WNi+1] = ab
]
.

Observe that the terms logP
[
YNi+1 = ·, . . . ,YNi+1 = ·

∣∣[WNi+1] = ab
]
, i ∈ N, are i.i.d.,

since one can think of starting at some Wk with [Wk] = ab and stopping at the first
time l > k with [Wl] = ab. By the ergodic theorem for positive recurrent Markov chains,
d(n)/n tends almost surely to νab. Hence, if we consider only the subsequence where n
equals one of the Nk’s we obtain the following convergence for almost every trajectory
(y

1
, y

2
, . . . ) ∈ WN

π by classical ergodic theory:

− 1

n
logP

[
Y1 = y

1
, . . . ,Yd(n) = y

d(n)

]
= −d(n)

n

1

d(n)

[
logP

[
Y1 = y

1
, . . . ,YN0 = y

N0

]
+

d(n)−1∑
i=0

logP
[
YNi+1 = y

Ni+1
, . . . ,YNi+1

= y
Ni+1

∣∣[WNi+1] = ab
]]

n→∞−−−−→ −νab
∑
k≥1

∑
x2,...,xk−1∈W0:

[xi]6=ab
for 2≤i≤k−1

∑
x∈W0:
[x]=ab

w(ab, x2, . . . , xk−1, x) log w̃(ab, x2, . . . , xk−1, x).

This proves the claim.
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8 Analyticity of entropy

The random walk on A∗ depends on finitely many parameters which are described by
the transition probabilities p(w1, w2), w1, w2 ∈ A∗ with |w1| ≤ 2 and |w2| ≤ 3; see (2.1).

That is, each random walk on A∗ can be defined via a vector p ∈ R|B|+ , where

B :=
{

(w1, w2)
∣∣∣w1 ∈ A ∪A2 ∪ {o}, w2 ∈

3⋃
n=1

An ∪ {o},
∣∣|w1| − |w2|

∣∣ ≤ 1
}
.

In other words, the entry of p associated with the index (w1, w2) ∈ B describes the value
of p(w1, w2). The support supp(p) of p is the set of indices in B corresponding to non-zero

entries of p. Fix now any p
0
∈ R|B|+ such that p

0
describes a well-defined, transient

random walk on A∗, and let P(p
0
) be the set of vectors p ∈ R|B| with support supp(p

0
)

which allow well-defined, transient random walks on A∗. The set P(p
0
) can be described

by an open polygonal bounded convex set in Rd with some suitable d ≤ |B| − 1 which
depends on supp(p

0
); recall that ` > 0 if and only if (Xn)n∈N0

is transient, and from the
formula of ` in [7, Theorem 2.4] follows that ` varies continuously in p, yielding that
there is some open neighbourhood of p

0
in Rd where (Xn)n∈N0

remains still transient.
We now ask whether the entropy mapping p 7→ h = hp varies real-analytically on P(p

0
).

In the next subsection we will introduce a new Markov chain which is related to the
last entry time process and leads under the projection π(·, ·) to a hidden Markov chain
with same distribution as (Yk)k∈N. Afterwards we will be able to prove Theorem 2.6 in
Subsection 8.2.

8.1 Modified last entry time process

The aim of this subsection is the construction of a Markov chain related to the
last entry time process (ik,Wk)k∈N such that the transition matrix has strictly positive
entries and the modified process leads under π(·, ·) (see (5.5)) to a hidden Markov chain
with same asymptotic entropy.

Let be ab, a1b1, a2b2 ∈ A2, and let Cji,1 be the first cone of type j in the covering of
C(a1b1) with τ(C(a1b1)) = i and let Cjk,l

be the l-th subcone of type j in the covering
of C(a2b2) with τ(C(a2b2)) = k. Assume that y0 ∈ ∂Cjk,l

with [y0] = ab. Since Cji,1 and

Cjk,l
are isomorphic, there is some unique ȳ[i,j,ab]

0 ∈ A∗ such that ȳ[i,j,ab]
0 ab ∈ ∂Cji,1 ; see

Section 4.1. In the following we will sometimes omit the superindex [i, j, ab] and use the

notation ȳ0 = ȳ
[i,j,ab]
0 for describing this replacement.

For i, j ∈ I and ab ∈ A2 with τ(C(ab)) = j, we write

#{js,t | s 6= i, ab} :=
∣∣{(js,t, w) ∈ W

∣∣[w] = ab, s ∈ I \ {i}, 1 ≤ t ≤ n(s, j)
}∣∣.

It is not hard to see that #{js,t | s 6= i, a1b1} = #{js,t | s 6= i, a2b2} if τ(C(a1b1)) =

τ(C(a2b2)) but this will not be relevant for our proofs, so we omit further explanations.
Let be (ik,l, x), (jm,n, y) ∈ W with [y] = ab ∈ A2. This implies τ(C(x)) = i and y[i,j,ab] ∈
∂Cji,1 , where Cji,1 is the first cone of type j in the covering of C([x]). Define the following
transition probabilities onW:

q̂
(
(ik,l, x), (jm,n, y)

)
:=


1

#{js,t|s 6=i,ab}+1
ξ([y])
ξ([x])L(x, y), if m = i ∧ n = 1,

ξ([y])
ξ([x])L(x, y), if m = i ∧ n ≥ 2,

1
#{js,t|s 6=i,ab}+1

ξ([y])
ξ([x])L(x, ȳ[i,j,ab]ab), if m 6= i.

It is easy to see that these transition probabilities define a Markov chain (inherited from
the Markov chain (ik,Wk)k∈N): in the case m = i ∧ n ≥ 2 we just have

q̂
(
(ik,l, x), (jm,n, y)

)
= P

[
(i2,W2) = (jm,n, y) | (i1,W1) = (ik,l, x)

]
;
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otherwise we have, for (ji,1, y) ∈ W,

q̂
(
(ik,l, x), (ji,1, y)

)
+

∑
(js,t,w)∈W:
s6=i,[w]=ab,
1≤t≤n(s,j)

q̂
(
(ik,l, x), (js,t, w)

)

= P
[
(i2,W2) = (ji,1, y) | (i2,W2) = (ik,l, x)

]
since y = ȳ[i,j,ab]ab by definition. In other words, each step from (ik,l, x) to (jm,n, y)

either behaves according to (5.4) (case m = i and n ≥ 2) or the step from (ik,l, x)

to (ji,1, y) (when seen as a step of the process (ik,Wk)k∈N)) is split up into different
equally likely steps (ik,l, x) to (jm,n, ȳab) with m 6= i or m = i ∧ n = 1. Observe that the
transitions depend only on [x] in the first argument of q̂(·, ·). By Proposition 5.4, the
transition matrix Q̂ =

(
q̂((ik,l, x), (jm,n, y))

)
is stochastic and governs a positive recurrent,

aperiodic Markov chain (tk,xk)k∈N. In particular, Q̂ has strictly positive entries. The
initial distribution µ̂1 of (t1,x1) is defined as

µ̂1(im,n, x) := P[(i1,W1) = (im,n, x)] > 0

for (im,n, x) ∈ W.
The process

(
(tk,xk), (tk+1,xk+1)

)
k∈N is again a positive recurrent, aperiodic Markov

chain whose transition matrix is denoted by Q̂2 (arising from Q̂). We now define a new
hidden Markov chain (Zk)k∈N by

Zk := π
(
(tk,xk), (tk+1,xk+1)

)
.

Observe that at this point the second branch in the definition of π in (5.5) comes into
play for the definition of Zk. The crucial point is the following proposition:

Proposition 8.1. For all (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ,

P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n))

]
= P

[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n))

]
.

Since the proof of this proposition consists of an long induction with tedious calcula-
tions we omit it at this place and give it in Appendix C.

The statement of the last proposition can be formulated in other words: the process
governed by Q̂ can be seen as a last entry time process, where one has more subcones to
enter (namely, the subcones w.r.t. the indices jk,l, k 6= i, when being currently in a cone
of type i), but the projection π (in particular due to the second branch in its definition
in (5.5)) folds the process down to the same hidden Markov chain (Yk)k∈N in terms of
probability. With Propositions 5.6 and 8.1 we immediately obtain:

Corollary 8.2. For almost every realisation
(
(s(1), t(1)), (s(2), t(2)), . . .

)
∈ WN

π ,

H(Y) = lim
n→∞

− 1

n
logP

[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n))

]
.

The important difference between the underlying Markov chains
(
(tk,xk), (tk+1,xk+1)

)
k∈N

and
(
(ik,Wk), (ik+1,Wk+1)

)
k∈N is that the transition matrix Q̂2 has strictly positive en-

tries, while this must not necessarily hold for the transition matrix of the Markov chain(
(ik,Wk), (ik+1,Wk+1)

)
k∈N. This property will be important later.

8.2 Proof of theorem 2.6

The crucial point will be the following lemma:

Lemma 8.3. The transition probabilities q(w1, w2), w1, w2 ∈ W0, vary real-analytically
w.r.t. p ∈ P(p

0
).
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Proof. In order to show that q(w1, w2) varies real-analytically in p it suffices to show
analyticity of H(ab, c), ab ∈ A2, c ∈ A, and L̄(ab, cde), d, e ∈ A, due to Proposition 5.1.
The function z 7→ H(ab, c|z) has radius of convergence bigger than 1, which can be easily
deduced from Lemma 6.1. Thus, for δ > 0 small enough, we have

∞ > H(ab, c|1 + δ) =
∑
n≥1

Pab[Xn = c,∀m < n : |Xm| ≥ 2](1 + δ)n.

The probability Pab[Xn = c, ∀m < n : |Xm| ≥ 2] can be rewritten as∑
n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)p
n1
1 · . . . · p

nd

d , c(n1, . . . , nd) ∈ N0,

where p1, . . . , pd correspond to the non-zero entries of the vector p. Therefore,

H(ab, c|1 + δ) =
∑
n≥1

∑
n1,...,nd≥1:
n1+···+nd=n

c(n1, . . . , nd)(p1(1 + δ))n1 · . . . · (pd(1 + δ))nd <∞.

Hence, p lies in the interior of the domain of convergence of H(ab, c|1) when considered
as a multivariate power series in the variables of supp(p) = {p1, . . . , pd}. This yields real-
analyticity of H(ab, c|1) in p. Analyticity of ξ(ab) follows now directly from its definition.
One can show completely analogously that the functions L̄(ab, cde|1) vary also real-
analytically in p since L̄(ab, cde|z) has also radius of convergence bigger than 1, which
can also be easily deduced from Lemma 6.1. This proves the statement of the lemma.

Now we can prove:

Proof of Theorem 2.6. The claim follows now via the equation h = ` ·H(Y)/λ. By Lemma
8.3, the invariant probability measure ν0 of the process (Wk)k∈N varies real-analytically
in some neighbourhood of p

0
, since ν0 is the solution of a linear system of equations in

terms of q(·, ·); hence, λ (given in (5.8)) varies analytically.
Moreover, the transition matrix Q̂2 of the process

(
(tk,xk), (tk+1,xk+1)

)
k∈N has

strictly positive entries. Therefore, we can apply the analyticity result for entropies
of hidden Markov chains of Han and Marcus [12, Theorem 1.1] on (Zk)k∈N and obtain
together with Corollary 8.2 that H(Y) is also real-analytic in some neighbourhood of p

0
;

at this point it is crucial that Q̂2 has strictly positive entries in order to be able to apply
[12, Theorem 1.1], which was our motivation for the definition of the process (tk,xk)k∈N
and (Zk)k∈N.

Real-analyticity of ` can be shown completely analogously to the proof of Lemma 8.3
with the help of the formula for ` given in [7, Theorem 2.4]. This finishes the proof.

A Remarks on Assumptions 2.1 and 2.4

A.1 Generalization of suffix-irreducibility

In this section we make a discussion on Assumption 2.4, where we show how to relax
this condition in some way and that it cannot be dropped completely. First, recall that
suffix-irreducibility leads to the fact that the process (Wk)k∈N is irreducible. One can
weaken the asssumption of suffix-irreducibility to the assumption that

P[∀n ∈ N : |Xn| ≥ |w| | X0 = w] > 0 ∀w ∈ L, (A.1)

or equivalently that H(ab, c|1) < 1 for all a, b, c ∈ A. This means that, for every w ∈ L,
there is some ab ∈ A2 such that
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P[∃n ∈ N : [Xn] = ab,∀k ≤ n : |Xk| ≥ |w| | X0 = w] > 0 and H(ab, ·|1) < 1.

In this case the process (Wk)k∈N is not necessarily irreducible any more, but it still has
a finite state space. Let C1, . . . , Cr be the essential classes of the state space of (Wk)k∈N.
Then (Wk)k∈N will almost surely take only values in one of these classes up to finitely
many exemptions for small k ∈ N; the class depends then on the concrete realization. If
we condition on the fact that (Wk)k∈N will finally enter the class Ci, then – on this event
– the entropy rate hi and the drift `i can be calculated as shown in the irreducible case
and as in [7]: we just have to replace (Wk)k∈N by (WT+k)k∈N, where T is the smallest
index with τ(WT ) ∈ Ci. The overall entropy rate and drift are then given by

h = lim
n→∞

1

n
E[− log π(Xn)] =

r∑
i=1

hi · P[(Wk)k∈N finally enters Ci],

` = lim
n→∞

1

n
E[|Xn|] =

r∑
i=1

`i · P[(Wk)k∈N finally enters Ci].

Since the probabilities P[(Wk)k∈N finally enters Ci] are the solutions of a finite system
of linear equations with coefficients q(·, ·), they vary also analytically. Hence, condition
(A.1) also implies our result on analyticity of the entropy.

If the property (A.1) does not hold, then the random walk may take some long
deviations between the last entry times ek−1 and ek such that E[ek − ek−1] = ∞; see
Example A.1 below. One can show that, in the case of infinite expectation, this leads
to limn→∞ k/ek = 0, implying lim infn→∞ |Xn|/n = 0; an analogous statement is shown
in [9], where the proof can be adapted easily to the present context. This allows no
conclusion on the entropy with our techniques, since l(Xn) = − logL(o,Xn|1) can not be
compared with − log πn(Xn) any more as it was done in the proof of Proposition 5.10.
But we underline that this setting with deviations of expected infinite length constitutes
a degenerate case.

Example A.1. Let be A = {a, b, c, d} and set

p(o, a1) = p(a1, o) =
1

4
∀a1 ∈ {a, b, c}, p(o, d) =

1

4
, p(d, o) =

1

2
,

p(a1, a1a2) = p(a1a3, a1) =
1

4
∀a1 ∈ {a, b, c}, a2 ∈ A \ {a1}, a3 ∈ A \ {a1, d},

p(a1a2, a1a2a3) =
1

4
∀a1, a2 ∈ {a, b, c}, a1 6= a2,∀a3 ∈ A \ {a2},

p(ad, add) = p(bd, bdd) = p(cd, cdd) =
1

2
,

p(d, dd) = p(dd, ddd) = p(dd, d) =
1

2
, p(ad, a) = p(bd, b) = p(cd, c) =

1

2
.

The associated graph G can be identified as follows: the vertex set is given by T3 ×N0,
where T3 = (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) = 〈a, b, c | a2 = b2 = c2 = 1〉, and the adjacency
relation is defined via (a1 . . . ak,m) ∼ (b1 . . . bl, n) if and only if

a1 . . . ak = b1 . . . bl ∧ |m− n| = 1 or

m = n = 0 ∧ k = l + 1 ∧ a1 . . . ak−1 = b1 . . . bl ∧ ak 6= ak−1 or

m = n = 0 ∧ k + 1 = l ∧ a1 . . . ak = b1 . . . bl−1 ∧ bl 6= bl−1.

The graph G can be visualized as follows: take a homogeneous tree of degree 3, where
the vertices are described by words over {a, b, c} such that two consecutive letters are
different; attach to each vertex a half-line N, where the steps on the half-line are made
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with equal probability of 1
2 ; the vertices (w, 0) correspond to the vertices of the tree

and one chooses with equal probability of 1
4 one of the four neighbour vertices for the

next step. This implies that the random walk will stay only for some finite time in each
half-line before making a step in the tree part of G. Moreover, it is not hard to see that
the random walk converges to some infinite word over the subalphabet {a, b, c}. But it
is well-known that the random walk needs in expectation infinite time to leave one of
the halflines, that is, the expected time for reaching “a” when starting at “ad” is infinite.
This implies that E[ek − ek−1] =∞.

A.2 Weak symmetry assumption

The purpose for introducing the weak symmetry assumption is that the random walk
becomes irreducible and that the cones become strongly connected subgraphs. A weaker
but still sufficient condition is given as follows: if w0 ∈ L and w1, w2 ∈ C(w0) with

P[∃n ∈ N : Xn = w2,∀m ≤ n : Xm ∈ C(w0) | X0 = w1] > 0

then P[∃n ∈ N : Xn = w1,∀m ≤ n : Xm ∈ C(w0) | X0 = w2] > 0. Under this weaker
condition the random walk still remains irreducible and the Green function’s radius of
convergence R is strictly bigger than 1. Also, the cones remain strongly connected and
C(w) = C(w′) if w′ ∈ ∂C(w).

If this connectedness of cones is not satisfied then the definition of cones and
coverings of cones by subcones gets more complicated. In that case the coverings
depend on the boundary point from which one constructs the covering yielding coverings
by possibly non-disjoint subcones. In particular, Lemma 4.2 does not necessarily hold.
This would lead to a more detailed and complicated case distinction in order to get
coverings by disjoint subcones. Since there will be no additional gain and the involving
techniques remain the same we used weak symmetry for ease of presentation.

B Switching from the K-dependent case to the blocked letter lan-
guage

In this section we make a discussion on the transition from the K-dependent case
(that is, the transition probabilities depend on the last K letters and between two steps
of the random walk only the last K letters may be replaced by a word of length of at most
2K) to the blocked letter language (that is, blocking words of length of at most K to new
single letters such that we are in the situation defined via (2.1)). In the K-dependent
case the general transition probabilities have the form

P
[
Xn+1 = wy | Xn = wx] = p(x, y), (B.1)

where w, x, y ∈ A∗ with x being a word consisting of K letters and y being a word
consisting of at most 2K letters.

Obviously, if the K-dependent random walk is weakly symmetric then the random
walk on the blocked letter language is weakly symmetric, too. Suffix-irreducibility in
the K-dependent case means that, for all w ∈ L and every w0 ∈ AK , the random walk
starting at w has positive probability to visit some word ending with w0 by only passing
through words in A≥|w|. However, suffix-irreducibility in the K-dependent case does, in
general, not necessarily yield suffix-irreducibility of the blocked letter language. But as
already explained in Appendix A.1 suffix irreducibility can be relaxed by the assumption
(A.1), and the blocked letter language inherits this assumption from the K-dependent
case.

Finally, we want to discuss the cases when the K-dependent random walk is expand-
ing or not. Define cones in the K-dependent case as at the beginning of Subsection 4.1.
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For any w ∈ A∗, denote by [w]K the last K letters. Two cones C(w1) and C(w2),
w1, w2 ∈ A∗ are then isomorphic if C([w1]K) = C([w2]K). The same properties of cones
and coverings (that is, nestedness or disjointness of cones, construction of coverings of
cones by subcones, etc.) from Section 4 can be transferred to the K-dependent case
analogously. If the graph G is not expanding in the K-dependent case then one can show
analogously as in Subsection 4.2.2 that the random walk converges to one out of finitely
many deterministic infinite words. In the following we will show that blocked letter
language random walk is expanding if G is expanding in the K-dependent case. Recall
that X∞ is the infinite limiting random word of our K-dependent random walk.

Lemma B.1. If the K-dependent random walk is expanding then the support of X∞ is
infinite.

Proof. Assume that X∞ has finite support. Choose N ∈ N large enough such that each
connected component of G \ {w ∈ L | |w| < N} (that is, remove from G all vertices w ∈ L
with |w| < N and their adjacent edges) contains in its closure only one point of the
support of X∞. Take any of these connected components and denote it by C, and take
any w0 ∈ C with |w0| = N . Then P[∀n ≥ 1 : |Xn| ≥ |w0| | X0 = w0] > 0. Since each cone
contains at least two proper subcones, we can find disjoint subcones C(w1), C(w2) of
C(w0) such that w1, w2 ∈ L with |w1| = |w2| > |w0|+K. Due to condition (A.1) we have
P[∀n ≥ 1 : |Xn| ≥ |wi| | X0 = wi] > 0 for each i ∈ {1, 2}. We remark that this follows also
from suffix-irreducibility. That is, if the random walk escapes to infinity inside C(w0)

then it can escape to infinity via the cone C(w1) or via the cone C(w2), which is disjoint
from C(w1). Thus, we have found two different boundary points of X∞, which lie in the
closure of C, a contradiction to our choice of N and C. Consequently, the support of X∞
cannot be finite.

Now we get:

Corollary B.2. If the K-dependent random walk is expanding then the associated
blocked letter language random walk is also expanding.

Proof. Assume that the blocked letter language random walk is not expanding. Denote
by X(B)

∞ the infinite limiting word w.r.t. the blocked letter language. Then X(B)
∞ is quasi-

deterministic, that is, its support is a finite subset of ANB, where AB is the blocked letter
language alphabet. But this yields that X∞ has also finite support in AN, and this in turn
implies by the previous lemma that the K-dependent case cannot be expanding.

Hence, concerning the property “expanding” we have shown that there is no gain
or loss when switching from K-dependent random walks to the blocked letter language
random walk.

C Proofs

In this section we give the missing proofs of some lemmas and propositions, which
we omitted earlier for sake of better readability.

Proof of Lemma 4.1.
Let be w1 = a1 . . . am, w2 = b1 . . . bn ∈ A∗≥2 with a1, . . . , am, b1, . . . , bn ∈ A such that C(w1)

and C(w2) are isomorphic.
Proof of (1): since C(w1) and C(w2) are isomorphic we have C([w1]) = C([w2]), and

thus [w1] = am−1am ∈ C([w1]) = C([w2]). Hence, there is a path 〈[w2], u1, . . . , uk, am−1am〉
through words u1, . . . , uk ∈ A∗≥2. If w′ = a1 . . . am−2w̄ ∈ C(w1) with w̄ ∈ A∗≥2 then there is
a path 〈w1, w

′
1, . . . , w

′
l, w
′〉 through words w′1, . . . , w

′
l ∈ A∗≥|w1|. This yields that w′i has the
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form w′i = a1 . . . am−2w
′′
i with some w′′i ∈ A∗≥2, that is, the path 〈am−1am, w

′′
1 , . . . , w

′′
l , w̄〉

has positive probability to be performed. But this implies that

〈w2 = b1 . . . bn−2[w2], b1 . . . bn−2u1, . . . , b1 . . . bn−2uk, b1 . . . bn−2am−1am,

b1 . . . bn−2w
′′
1 , . . . , b1 . . . bn−2w

′′
l , b1 . . . bn−2w̄〉

is a path through words in A∗≥|w2|, that is, b1 . . . bn−2w̄ ∈ C(w2). Thus, ϕ is well-defined.
Since any w ∈ C(w1) and its image ϕ(w) differ only by different (constant) prefixes

the mapping ϕ is obviously a bijection. Moreover, if w = a1 . . . am−2c1 . . . ck ∈ C(w1) with
c1, . . . , ck ∈ A, k ≥ 2, and ŵ = a1 . . . am−2c1 . . . ck−2w

′ ∈ C(w1) with w′ ∈ A∗, 1 ≤ |w′| ≤ 3,
and (k − 2) + |w′| ≥ 2 (otherwise ŵ /∈ C(w1)), then

p(w, ŵ) = p(ck−1ck, w
′) = p(b1 . . . bn−2c1 . . . ck, b1 . . . bn−2c1 . . . ck−2w

′) = p
(
ϕ(w), ϕ(ŵ)

)
.

This yields (1).
Proof of (2): this follows directly from (1) by the bijection ϕ and the fact that the

adjacency relation is given through positive single-step transition probabilities. Hence,
C(w1) and C(w2) are isomorphic as subgraphs of G.

Proof of Lemma 4.2.
Let be w1, w2 ∈ A∗≥2. W.l.o.g. assume that |w1| ≤ |w2|. Moreover, assume that the
cones C(w1) and C(w2) are not nested in each other and that C(w1) ∩ C(w2) 6= ∅.
Let be w0 ∈ C(w1) ∩ C(w2). Then there is a path 〈w1, w

′
1, . . . , w

′
k, w0〉 through words

w′1, . . . , w
′
k ∈ A∗≥|w1| and there is a path 〈w2, w

′′
1 , . . . , w

′′
l , w0〉 through words w′′1 , . . . , w

′′
l ∈

A∗≥|w2| ⊆ A
∗
≥|w1|. By weak symmetry, there is a path 〈w1, w

′
1, . . . , w

′
k, w0, w

′′
l , . . . , w

′′
1 , w2〉

through words in A∗≥|w1|, and hence w2 ∈ C(w1) which in turn implies C(w2) ⊆ C(w1), a
contradiction. This yields the first part of the lemma.

In order to prove the second part assume that |w1| = |w2| and w.l.o.g. C(w1) ⊆ C(w2).
It remains to show that we have then C(w1) = C(w2). Since w1 ∈ C(w2) there is a path
〈w2, w̄1, . . . , w̄m, w1〉 through words w̄1, . . . , w̄m ∈ A∗≥|w2|. If w ∈ C(w2) then there is a
path 〈w2, ŵ1, . . . , ŵn, w〉 through words ŵ1, . . . , ŵn ∈ A∗≥|w2|. Thus, there is a path

〈w1, w̄m, . . . , w̄1, w2, ŵ1, . . . , ŵn, w〉

though words in A∗≥|w2| = A∗≥|w1|. Hence, C(w2) ⊆ C(w1) which yields C(w2) = C(w1).

For the next proof we need the following properties: if a1b1, a2b2 ∈ A2 satisfy
τ(C(a1b1)) = τ(C(a2b2)) then we have C(a1b1) = C(a2b2) (see Lemma 4.2) and therefore
a2b2 ∈ C(a1b1). In this case we also have L(a1b1, w) > 0 for w ∈ A∗≥3 if and only if
L(a2b2, w) > 0. This follows from the simple fact that a2b2 ∈ C(a1b1) implies that there
are paths from a1b1 to a2b2 (and vice versa) through words in A∗≥2.

Proof of Lemma 5.2.
By definition, we obviously have supp(P[W1 = ·]) = W0. For k > 1 we show both

inclusions. Let be y ∈ W0. Then there are w0 ∈ A∗ and ab ∈ A2 with w0ab ∈
⋃n0

j=1 ∂C
(0)
j

and w0y ∈ S(w0ab) and

P[W0 = w0ab,W1 = y] =
∑

w′∈L\C(w0ab)

G(o, w′) · p(w′, w0ab) · L(w0ab, w0y) · ξ([y])

=
∑

w′∈L\C(w0ab)

G(o, w′) · p(w′, w0ab) · L(ab, y) · ξ([y]) > 0.
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Take now any w̄āb̄ ∈ supp(P[Xek−2
= ·]). Since the covering of every cone contains

subcones of all different types, the cone C(w̄āb̄) has in its covering a cone of type τ(C(ab)).
Hence, there are wk ∈ A∗, akbk ∈ A2 with w̄wkakbk ∈ S(w̄āb̄), τ(C(akbk)) = τ(C(ab)) and
mk ∈ N such that p(mk)(o, w̄wkakbk) > 0. Thus,

P[Wk = y] ≥ P[Xek−1
= w̄wkakbk,Wk = y]

=
∑

w′∈L\C(w̄wkakbk)

G(o, w′) · p(w′, w̄wkakbk) · L(w̄wkakbk, w̄wky) · ξ([y])

=
∑

w′∈L\C(w̄wkakbk)

G(o, w′) · p(w′, w̄wkakbk) · L(akbk, y) · ξ([y]).

By the remark before the lemma, we have L(akbk, y) > 0 and therefore P[Wk = y] > 0,
yieldingW0 ⊆ supp(P[Wk = ·]).

For the other direction, take any y ∈ supp(P[Wk = ·]). Then there is some wk−1ab ∈ L
such that

0 < P[Xek−1
= wk−1ab,Xek

= wk−1y]

=
∑

w′∈L\C(wk−1ab)

G(o, w′) · p(w′, wk−1ab) · L(wk−1ab, wk−1y) · ξ([y]).

In particular, L(ab, y) > 0. Since the initial covering of L contains a cone of type

τ(C(ab)) there are w0 ∈ A∗, a0b0 ∈ A2 and some m ∈ N such that w0a0b0 ∈
⋃n0

i=1 ∂C
(0)
i ,

τ(C(a0b0)) = τ(C(ab)) and p(m)(o, w0a0b0) > 0. Observe again that L(a0b0, y) > 0 by the
remark before the lemma. Therefore,

P[W1 = y] ≥ P[W0 = w0a0b0,W1 = y] = P[Xe0 = w0a0b0,W1 = y]

=
∑

w′∈L\C(w0a0b0)

G(o, w′) · p(w′, w0a0b0) · L(w0a0b0, w0y) · ξ([y])

=
∑

w′∈L\C(w0a0b0)

G(o, w′) · p(w′, w0a0b0) · L(a0b0, y) · ξ([y]) > 0.

This yields supp(P[Wk = ·]) ⊆ supp(P[W1 = ·]) = W0 and the claim of the lemma
follows.

Proof of Proposition 5.4.
It remains to show that the support of each (ik,Wk) equalsW and that

(
(ik,Wk)

)
k∈N is

positive recurrent and aperiodic.
First, we show that supp(P[(ik,Wk) = ·]) = W for k ≥ 1. For this purpose, let be

(ji,n, x) ∈ supp(P[(ik,Wk) = ·]). Then there is some wk−1ak−1bk−1 ∈ L with

P[Xek−1
= wk−1ak−1bk−1,Wk = x]

=
∑

w′∈L\C(wk−1ak−1bk−1)

G(o, w′)p(w′, wk−1ak−1bk−1)L(ak−1bk−1, x)ξ([x]) > 0,

τ(C(ak−1bk−1)) = i and C(x) being the n-th subcone of type j in the covering of the
cone C(ak−1bk−1). If k = 1 then (ji,n, x) ∈ W. In the case k > 1 take any w0a0b0 ∈ L
with P[W0 = w0a0b0] > 0 and τ(C(w0a0b0)) = i. Since ak−1bk−1 ∈ C(a0b0) we also have
L(a0b0, x) > 0 since L(ak−1bk−1, x) > 0 (recall the remark before Lemma 5.2). Then:

P[W0 = w0a0b0,W1 = x] =
∑

w′∈L\C(w0a0b0)

G(o, w′)p(w′, w0a0b0)L(a0b0, x)ξ([x]) > 0,

yielding (ji,n, x) ∈ W.
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For the other inclusion, let be (ji,n, x) ∈ W. Then there is some w0a0b0 ∈ L with

P[W0 = w0a0b0,W1 = x] =
∑

w′∈L\C(w0a0b0)

G(o, w′)p(w′, w0a0b0)L(a0b0, x)ξ([x]) > 0,

τ(C(a0b0)) = i and C(x) being the n-th subcone of type j in the covering of C(a0b0). If
k = 1 then (ji,n, x) ∈ supp(P[(i1,W1) = ·]). In the case k > 1 take any wk−2ak−2bk−2 ∈ L
with P[Xek−2

= wk−2ak−2bk−2] > 0. Then C(wk−2ak−2bk−2) has in its covering a subcone
C(wk−1ak−1bk−1) of type i. Since ak−1bk−1 ∈ C(a0b0) we have L(ak−1bk−1, x) > 0 due to
L(a0b0, x) > 0 (once again recall the remark before Lemma 5.2) and C(x) is the n-th
subcone of type j in the covering of C(ak−1bk−1) = C(a0b0). Hence,

P[(ik,Wk) = (ji,n, x)] ≥ P[Xek−1
= wk−1ak−1bk−1, Xek

= wk−1x]

≥
∑

w′∈L\C(wk−1ak−1bk−1)

G(o, w′)p(w′, wk−1ak−1bk−1)L(ak−1bk−1, x)ξ([x]) > 0,

yieldingW ⊆ supp(P[(ik,Wk) = ·]), and thereforeW = supp(P[(ik,Wk) = ·]).
The next task is to show irreducibility, which implies positive recurrence due to

finiteness ofW. Let be (im,n, w1), (js,t, w2) ∈ W. Take any w̄ ∈ W0 such that q(w1, w̄) > 0

and τ(C(w̄)) = s, which exists by construction of coverings. Then w2 ∈ ∂Cjs,t([w̄]), that
is, C(w2) is the t-th subcone of type j in the covering of C([w̄]), yielding q(w̄, w2) > 0.
Hence,

P[(i3,W3) = (js,t, w2) | (i1,W1) = (im,n, w1)] (C.1)

≥ P[W3 = w2,W2 = w̄ | (i1,W1) = (im,n, w1)]

= q(w1, w̄) · q(w̄, w2) > 0.

Here, we used the fact that i3 = js,t is uniquely determined by w1, w̄, w2 and that
this probability does not depend on m and n. This yields irreducbility of the process(
(ik,Wk)

)
k∈N.

It follows that the period of the process is at most 2. In order to see aperiodicity, take
any w1, w2 ∈ W with P[(i2,W2) = w2 | (i1,W1) = w1] > 0. Then we get analogously to
(C.1):

P[(i4,W4) = w1, (i2,W2) = w2 | (i1,W1) = w1]

= P[(i2,W2) = w2 | (i1,W1) = w1] · P[(i4,W4) = w1 | (i2,W2) = w2] > 0.

That is, the period of the process is 1. This finishes the proof.

The following lemma was used in the proof of Proposition 5.8:

Lemma C.1. For almost every realisation (x1, y1
, y

2
, . . . ) of (Xe1

,Y1,Y2, . . . ),

H(Y) = lim
k→∞

−1

k
logP

[
C(Xe1

) = C(x1),Y1 = y
1
, . . . ,Yk = y

k

]
.

Proof. We recall the notation from the proof of Proposition 5.8: let be k ∈ N and assume
for the moment that Wl = ylalbl, where yl ∈ A∗ \ {o} and albl ∈ A2 for 0 ≤ l ≤ k. That
is, Xel

= y0y1 . . . ylalbl. We write Y1 = (j, t(1)), where j = τ(C(a1b1)), and Yl = (s(l), t(l))

for 2 ≤ l ≤ k, where the values of s(2), . . . , s(k−1) and t(1), . . . , t(k−1) are determined
by the values of Wl = ylalbl. Vice versa, given Xe1 the values of s(2), . . . , s(k−1) and
t(1), . . . , t(k−1) determine uniquely the cones C(ylalbl): indeed, Xe1 and t(1) determine
uniquely C(Xe2

) and therefore also C(W2) = C(y2a2b2); inductively, given C(Xel
) of

type s(l) then t(l) determines uniquely C(Xel+1
) and C(Wl+1) = C(yl+1al+1bl+1). We

mark it by (∗) when we make use of this “transition”.
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Recall that the covering of L consists of n0 subcones C(0)
i , 1 ≤ i ≤ n0. Each C(0)

i has

again a covering consisting of n(τ(C
(0)
i ), j) subcones of type j. We enumerate all these

subcones of type j by C(1)
j,k with 1 ≤ k ≤ Nj :=

∑n0

i=1 n(τ(C
(0)
i ), j), that is, we enumerate

all subcones of type j which appear in the coverings of all C(0)
i , 1 ≤ i ≤ n0.

SinceW0 is finite, there is some constant c > 0 such that

c · P[Xe1
= x] ≤ P[Xe1

= y]

for all x, y ∈
⋃Nj

k=1 ∂C
(1)
j,k ⊆ supp(P[Xe1

= ·]).
In the following we will show that P

[
C(Xe1) = C(x1),Y1 = y

1
, . . . ,Yk = y

k

]
is

comparable with P
[
Y1 = y

1
, . . . ,Yk = y

k

]
, which proves the claim. First, we have for

k ≥ 2:

Nj · P
[
Xe1
∈ C(y0y1a1b1),Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
(∗)
= Nj ·

∑
x∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

P[Xe1 = x,Xe2 = y0y1w2, . . . , Xek
= y0 . . . yk−1wk]

= Nj ·
∑

x∈∂C(y0y1a1b1);
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

P[Xe1 = x]P[Xe2 = y0y1w2, . . . , Xek
= y0 . . . yk−1wk | Xe1 = x]

= Nj ·
∑

x∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

P[Xe1
= x]q(y1[x], w2)

k∏
i=3

q(wi−1, wi)

=

Nj∑
l=1

∑
x∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

P[Xe1
= x]P

[
W2 = w2

∣∣[Xe1
] = [x]

] k∏
i=3

q(wi−1, wi).

For a moment, let be ∂C(y0y1a1b1) = {y0y1c1d1, . . . , y0y1cκdκ}. Then for all l ∈ {1, . . . , Nj}
there is some vl ∈ A∗ such that ∂C(1)

j,l = {vlc1d1, . . . , vlcκdκ}. Therefore, for every

x ∈ ∂C(y0y1a1b1) and each l ∈ {1, . . . , Nj} there is exactly one x̂l ∈ ∂C(1)
j,l with [x̂l] = [x],

P[Xe1
= x] ≥ c · P[Xe1

= x̂l] and P
[
W2 = w2

∣∣[Xe1
] = [x]

]
= P

[
W2 = w2

∣∣[Xe1
] = [x̂l]

]
for

all w2 ∈ W0. The last equation follows from the fact that the probabilities depend on Xe1

only by its last two letters [Xe1
] in the condition. We write x̂l for this mapping (x, l) 7→ x̂l.

Hence,

Nj · P
[

Xe1
∈ C(y0y1a1b1),Y1 = (j, t(1)),

Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]

≥
Nj∑
l=1

∑
x∈∂C(y0y1a1b1)

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

cP[Xe1
= x̂l]P

[
W2 = w2 | [Xe1

] = [x̂1]
] k∏
i=3

q(wi−1, wi)

=

Nj∑
l=1

∑
w∈∂C(1)

j,l

∑
w2,...,wk∈W0:
wi∈∂C(yiaibi)

for all 2≤i≤k

c · P[Xe1
= w] · P

[
W2 = w2

∣∣[Xe1
] = [w]

]
·
k∏
i=3

q(wi−1, wi)

= c · P
[
Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
.

Vice versa, we obviously have

EJP 21 (2016), paper 8.
Page 39/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4180
http://www.imstat.org/ejp/


Asymptotic entropy of random walks on regular languages

P
[
Xe1
∈ C(y0y1a1b1),Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
≤ P

[
Y1 = (j, t(1)),Y2 = (s(2), t(2)), . . . ,Yk−1 = (s(k−1), t(k−1))

]
.

This proves the claim.

Proof of Proposition 8.1. Let be (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ. We prove the claim by
induction on n. First, let be j, s ∈ I and t(1) = jm with 2 ≤ m ≤ n(s, j), and let
a0b0, ab ∈ A2 with τ(C(a0b0)) = s and τ(C(ab)) = j. If Cj,m is the m-th cone of type

j in the covering of C(a0b0) then there is a unique word x̄0 = x̄
[s,j,m,ab]
0 ∈ A∗ with

x̄0ab ∈ ∂Cj,m. With this notation we get:

P
[
Y1 = (s, jm), [W2] = ab

]
=

∑
(uk,l,x)∈W:u=s

P[(i1,W1) = (sk,l, x)] · q(x, x̄0ab)

=
∑

(uk,l,x)∈W:u=s

µ̂1(sk,l, x)q̂
(
(sk,l, x), (js,m, x̄0ab)

)
= P

[
Z1 = (s, jm), [x2] = ab

]
.

Now we turn to the case t(1) = j1. Once again, if Cj,1 is the first cone of type j in the

covering of C(a0b0) then there is some unique x̄0 = x̄
[s,j,1,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,1. We

get:

P
[
Z1 = (s, j1), [x2] = ab

]
=

∑
(uk,l,x)∈W:u=s

µ̂1(sk,l, x)
[
q̂
(
(sk,l, x), (js,1, x̄0ab)

)
+

∑
(tp,q,y)∈W:

t=j,p 6=s,[y]=ab

q̂
(
(sk,l, x), (jp,q, y)

)]

=
∑

(uk,l,x)∈W:
u=s

µ̂1(sk,l, x)

[
q
(
(sk,l, x), (js,1, x̄0ab)

)
#{tκ1,κ2

| κ1 6= s, ab}+ 1
+

∑
(tp,q,y)∈W:
t=j,p 6=s,
[y]=ab

q
(
(sk,l, x), (js,1, x̄0ab)

)
#{tκ1,κ2

| κ1 6= s, ab}+ 1

]

=
∑

(uk,l,x)∈W:u=s

P
[
(i1,W1) = (sk,l, x)

]
· q(x, x̄0ab) = P

[
Y1 = (s, j1), [W2] = ab

]
.

Now, in both cases we obtain

P
[
Z1 = (s, t(1))

]
=

∑
ab∈A2

P
[
Z1 = (s, t(1)), [x2] = ab

]
=

∑
ab∈A2

P
[
Y1 = (s, t(1)), [W2] = ab

]
= P

[
Y1 = (s, t(1))

]
.

We now perform the induction step where we will use the induction assumption

P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = ab

]
(C.2)

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = ab

]
.

First, consider the case (s(n+1), t(n+1)) = (s, jm) with s, j ∈ I and 2 ≤ m ≤ n(s, j). This
implies that tn+1 has the form s∗,∗ and tn+2 = js,m. Let Cj,m be the m-th cone of type
j in the covering of C(a0b0), where a0b0 ∈ A2 with τ(C(a0b0)) = s. If ab ∈ A2 with

τ(C(ab)) = j then there is some unique x̄0 = x̄
[s,j,m,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,m. In this

case we obtain:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), jm), [xn+1] = a0b0, [xn+2] = ab

]
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=
∑

(uk,l,w0)∈W:
u=s,[w0]=a0b0

P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), tk+1 = uk,l,xn+1 = w0

]
· q̂
(
(sk,l, w0), (js,m, x̄0ab)

)
=P

[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)
ξ(a0b0)

L(a0b0, x̄0ab)

=P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)
ξ(a0b0)

L(a0b0, x̄0ab)

=P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), jm), [Wn+1] = a0b0, [Wn+2] = ab

]
.

Now we turn to the case (s(n+1), t(n+1)) = (s, j1). This implies again that tn+1 has the
form s∗,∗. Once again, if Cj,1 is the first cone of type j in the covering of C(a0b0) (of

type s) then there is some unique x̄0 = x̄
[s,j,1,ab]
0 ∈ A∗ with x̄0ab ∈ ∂Cj,1. We get by

distinguishing whether t(n+1) = j1 arises from tn+2 = js,1 or tn+2 = jk,l with k 6= s:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), j1), [xn+1] = a0b0, [xn+2] = ab

]
=

∑
(up,q,w0)∈W:
u=s,[w0]=a0b0

P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), tn+1 = up,q,xn+1 = w0

]

·
(
q̂
(
(sp,q, w0), (js,1, x̄0ab)

)
+

∑
(tk,l,y)∈W:

t=j,k 6=s,[y]=ab

q̂
(
(sp,q, w0), (jk,l, y)

))

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

]
·
[
ξ(ab)

ξ(a0b0)

L(a0b0, x̄0ab)

#{jk,l | k 6= s, ab}+ 1
+

∑
(tk,l,y)∈W:
t=j,k 6=s,
[y]=ab

ξ(ab)

ξ(a0b0)

L(a0b0, x̄0ab)

#{jκ1,κ2
| κ1 6= s, ab}+ 1

]

= P
[
Z1 = (s(1), t(1)), . . . ,Zn = (s(n), t(n)), [xn+1] = a0b0

] ξ(ab)
ξ(a0b0)

L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn = (s(n), t(n)), [Wn+1] = a0b0

] ξ(ab)
ξ(a0b0)

L(a0b0, x̄0ab)

= P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), j1), [Wn+1] = a0b0, [Wn+2] = ab

]
.

Hence,

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+2] = ab

]
=

∑
a0b0∈A2

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+1] = a0b0, [xn+2] = ab

]
=

∑
a0b0∈A2

P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+1] = a0b0, [Wn+2] = ab

]
= P

[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+2] = ab

]
.

This proves Equation (C.2) for all n ∈ N, all ab ∈ A2 and all (s(1), t(1)), . . . , (s(n), t(n)) ∈ Wπ.
Finally, we obtain:

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1))

]
=

∑
ab∈A2

P
[
Z1 = (s(1), t(1)), . . . ,Zn+1 = (s(n+1), t(n+1)), [xn+2] = ab

]
=

∑
ab∈A2

P
[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1)), [Wn+2] = ab

]
= P

[
Y1 = (s(1), t(1)), . . . ,Yn+1 = (s(n+1), t(n+1))

]
.
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This finishes the proof.
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