
21st Computer Vision Winter Workshop
Luka Čehovin, Rok Mandeljc, Vitomir Štruc (eds.)
Rimske Toplice, Slovenia, February 3–5, 2016

Solving Dense Image Matching in Real-Time using Discrete-Continuous
Optimization

Alexander Shekhovtsov, Christian Reinbacher, Gottfried Graber and Thomas Pock
Institute for Computer Graphics and Vision, Graz University of Technology

{shekhovtsov,reinbacher,graber,pock}@icg.tugraz.at

Abstract. Dense image matching is a fundamental low-
level problem in Computer Vision, which has received
tremendous attention from both discrete and continuous
optimization communities. The goal of this paper is to
combine the advantages of discrete and continuous op-
timization in a coherent framework. We devise a model
based on energy minimization, to be optimized by both
discrete and continuous algorithms in a consistent way.
In the discrete setting, we propose a novel optimization
algorithm that can be massively parallelized. In the con-
tinuous setting we tackle the problem of non-convex reg-
ularizers by a formulation based on differences of convex
functions. The resulting hybrid discrete-continuous algo-
rithm can be efficiently accelerated by modern GPUs and
we demonstrate its real-time performance for the applica-
tions of dense stereo matching and optical flow.

1. Introduction
The dense image matching problem is one of the most

basic problems in computer vision: The goal is to find
matching pixels in two (or more) images. The applica-
tions include stereo, optical flow, medical image registra-
tion, face recognition [1], etc. Since the matching problem
is inherently ill-posed, typically optimization is involved
in solving it. We can distinguish two fundamentally dif-
ferent approaches: discrete and continuous optimization.
Whereas discrete approaches (see [14] for a recent com-
parison) assign a distinct label to each output pixel, con-
tinuous approaches try to solve for a function using the
calculus of variations [6, 8, 21]. Both approaches have
received enormous attention, and there exist state-of-the-
art algorithms in both camps: continuous [23, 24, 28] and
discrete [18, 30]. Due to the specific mathematical tools
available to solve the problems (discrete combinatorial op-
timization vs. continuous calculus of variations), both ap-
proaches have distinct advantages and disadvantages.

In this paper, we argue that on a fundamental level the
advantages and disadvantages of discrete and continuous
optimization for dense matching problems are comple-
mentary as summarized in Figure 1. The previous work
combining discrete and continuous optimization primar-
ily used discrete optimization to fuse (find the optimal

Input

Discrete

Continuous

Combined

data term Large motion Parallelization
Discrete Arbitrary (sampled) Easy Difficult

Continuous Convex (linearized) Difficult Easy

Figure 1: Optical flow problem solved by a purely discrete
method, a purely continuous method and the combined method.
All methods are as described in this paper, they use the same data
term and are run until convergence here. In the discrete solu-
tion we can see small scale details and sharp motion boundaries
but also discretization artifacts. The continuous solution exhibits
sub-pixel accuracy (smoothness), but lacks small details and has
difficulties with large motions. The combined solution delivers
smooth flow fields while retaining many small scale details.

ar
X

iv
:1

60
1.

06
27

4v
1

 [
cs

.C
V

]
 2

3
Ja

n
20

16

crossover) of candidate continuous proposals, e.g. [36, 30]
(stereo) and [25] (flow). The latter additionally per-
forms local continuous optimization of the so-found solu-
tion. Many works also alternate between continuous and
discrete optimizations, addressing a Mumford-Shah-like
model, e.g., [5]. Similarly to [25] we introduce a continu-
ous energy which is optimized using a combined method.
However, we work with a full (non-local) discretization of
this model and propose new parallel optimization meth-
ods.

The basic difference in discrete and continuous ap-
proaches lies in the handling of the data term. The data
term is a measure how well the solution (i.e. value of a
pixel) fits the underlying measurement (i.e. input images).
In the discrete setting, the solution takes discrete labels,
and hence the number of labels is finite. Typically the
data cost is precomputed for all possible labels. The dis-
crete optimization then uses the data cost to find the opti-
mal label for each pixel according to a suitable model in
an energy minimization framework. We point out that due
to the sampling in both label space and spatial domain, the
discrete algorithm has access to the full information at ev-
ery step. I.e. it deals with a global optimization model and
in some lucky cases can find a globally optimal solution to
it or provide an approximation ratio or partial optimality
guarantees [27].

In the continuous setting, the solution is a continuous
function. This means it is not possible to precompute the
data cost; an infinite number of solutions would require
infinite amount of memory. More importantly, the data
cost is a non-convex function stemming from the similar-
ity measure between the images. In order to make the
optimization problem tractable, a popular approach is the
linearization of the data cost. However, this introduces
a range of new problems, namely the inability to deal
with large motions due to the fact that the linearization is
valid only in a small neighborhood around the lineariza-
tion point. Most continuous methods relying on lineariza-
tion therefore use a coarse-to-fine framework in an attempt
to overcome this problem [4]. One exception is a recent
work [16], which can handle piece-wise linear data terms
and truncated TV regularization.

Our goal in this paper is to combine the advantages of
both approaches, as well as real-time performance, which
imposes tough constraints on both methods resulting in a
number of challenges:

Challenges The discrete optimization method needs to
be highly parallel and able to couple the noisy / ambigu-
ous data over large areas. The continuous energy should
be a refinement of the discrete energy so that we can evalu-
ate the two-phase optimization in terms of a single energy
function. The continuous method needs to handle robust
(truncated) regularization terms.

Contribution Towards the posed challenges, we pro-
pose: i) a new method for the discrete problem, working in
the dual (i.e. making equivalent changes of the data cost
volume), in parallel on multiple chains; ii) a continuous

optimization method, reducing non-convex regularizers to
a primal-dual method with non-linear operators [31]; iii)
an efficient implementation of both methods on GPU and
proof of concept experiments showing advantages of the
combined approach.

2. Method
In this section we will describe our two-step approach

to the dense image matching problem. To combine the
previously discussed advantages of discrete and continu-
ous optimization methods it is essential to minimize the
same energy in both optimization methods. Starting from
a continuous energy formulation in § 2.1, we first show
how to discretize the energy in § 2.2 and subsequently
minimize it using a novel discrete parallel block coordi-
nate descent, described in § 2.3. The output of this algo-
rithm will be the input to a refinement method which is
posed as a continuous optimization problem, solved by a
non-linear primal-dual algorithm described in § 2.4.

2.1. Model

Let us formally define the dense image matching prob-
lem to be addressed by the discrete-continuous optimiza-
tion approach. In both formulations we consider that the
image domain is a discrete set of pixels V . The continuous
formulation has continuous ranged variables u = (uki ∈
R | k = 1, . . . d, i ∈ V), where d = 1, 2 for stereo / flow,
respectively. The matching problem is formulated as

min
u∈U

[
E(u) = D(u) +R(Au)

]
, (1)

where U = Rd×V ; D is the data term and R(Au) is a
regularizer (A is a linear operator explained below). The
discrete formulation will quantize variable ranges.

Data Term We assume D(u) =
∑
i∈V Di(ui), where

Di : Rd → R encodes the deviation of ui from some un-
derlying measurement. A usual choice for dense image
matching are robust filters like Census Transform or Nor-
malized Cross Correlation, computed on a small window
around a pixel. This data term is non-convex in u and
piecewise linear. In the discrete setting, the data term is
sampled at discrete locations, in the continuous setting,
the data term is convexified by linearizing or approximat-
ing it around the current solution. The details will be de-
scribed in the respective sections.

Regularization Term The regularizer encodes prop-
erties of the solution of the energy minimization like local
smoothness or preservation of sharp edges. The choice of
this term is crucial in practice, since the data term may be
unreliable or uninformative in large areas of dense match-
ing problems. We assume

R(Au) =
∑
ij∈E

ωij

d∑
k=1

r((Auk)ij), (2)

where E ⊂ V × V is the set of edges, i.e., pairs of
neighboring pixels; linear operator A : RV → RE : uk 7→

(uki − ukj ∈ R | ∀ij ∈ E) essentially computes gradients
along the edges in E for the solution dimension k; the gra-
dients are penalized by the penalty function r : R → R
and ωij are image dependent per-edge strength weights,
reducing the penalty around sharp edges. Our particular
choice for the penalty function r is depicted in Fig. 2. We
chose to use a truncated norm which has shown to be ro-
bust against noise that one typically encounters in dense
matching problems. It generalizes truncated Total Vari-
ation in the continuous setting. In the discrete setting it
generalizes the P1-P2 penalty model [11], Potts model
and the truncated linear model.

δ
εδ

C

−4 −2 0 2 4
0

2

4
r+(t)

r−(t)
r(t)

Figure 2: Regularizer function r. In our continuous optimiza-
tion method it is decomposed into a difference of convex func-
tions r+−r−. For the discrete optimization it is sampled at label
locations depicted as dots.

2.2. Discrete Formulation

In the discrete representation we will use the following
formalism. To a continuous variable ui we associate a
discrete variable xi ∈ L. The discrete label space L can
be chosen to our convenience as long as it has the desired
number of elements, denoted K. We let L to be vectors
in {0, 1}K with exactly one component equal 1 (the 1-hot
encoding of natural numbers from 1 to K). For fi ∈ RK
we denote fi(xi) = 〈fi, xi〉 = fTi xi and for fij ∈ RK×K
we denote fij(xi, xj) = xTi fijxj . Let f = (fw |w ∈
V ∪E) denote the energy cost vector. The energy function
corresponding to the cost vector f is given by

f(x) =
∑
i∈V

fi(xi) +
∑
ij∈E

fij(xi, xj). (3)

Whenever we need to refer to f as a function and not as
the cost vector, we will always use the argument notation,
e.g. f(x) ≥ g(x) is different from f ≥ g.

Energy function f that can be written as
∑
i fi(xi) =

〈f, x〉 is called modular, separable or linear. Formally,
all components fij of f are identically zero. If fij is non-
zero only for a subgraph of (V, E) which is a set of chains,
we say that f is a chain.

The discrete energy minimization problem is defined as

min
x∈LV

f(x). (4)

Stereo We discretize a range of disparities and let
u(x) ∈ RV denote the continuous solution correspond-
ing to the labeling x. We set fi(xi) = Di(u(xi)) and
fij(xi, xj) = ωijr((Au(x))ij).

Flow Discretization of the flow is somewhat more
challenging. Since ui is a 2D vector, assuming large dis-
placements, discretizing all combinations is not tractable.
Instead, components u1

i and u2
i can be represented as sep-

arate discrete variables xi1 , xi2 , where (i1, i2) is a pair
of nodes duplicating i, leading to the decomposed formu-
lation [26]. To retain the pairwise energy form (3), this
approach assigns the data terms Di(ui) to a pairwise cost
fi1i2(xi1 , xi2) and the regularization is imposed on each
layer of variables (xi1 | i ∈ V) and (xi2 | i ∈ V) sepa-
rately. To this end, we tested a yet simpler representation,
in which we assign optimistic data costs, given by

fi1(xi1) = minxi2
Di(xi1 , xi2), (5a)

fi2(xi2) = minxi1
Di(xi1 , xi2), (5b)

where Di(xi1 , xi2) is the discretized data cost, and reg-
ularize in each layer individually. This makes the two
layers fully decouple into, essentially, a two indepen-
dent stereo-like problems. At the same time, the cou-
pled scheme [26], passing messages between the two lay-
ers, differs merely in recomputing (5) for a reparametrized
data costs in a loop. Our simplification then is not a prin-
cipled limitation but an intermediate step.

2.3. Discrete Optimization

In this section we give an overview of a new method
under development addressing problem (4) through its
LP-relaxation dual. In real-time applications like stereo
and flow there seem to be a demand in methods per-
forming fast approximate discrete optimization, prefer-
ably well-parallelizable. It has motivated a significant re-
search. The challenge may sound as “best solution in a
limited time budget”.

Well-performing methods, from local to global, range
from cost volume filtering [12], semi-global match-
ing (SGM) [11] (has been implemented in GPU and
FPGA [2]), dynamic programming on spanning trees ad-
justing the cost volume [3] and more-global matching
(MGM) [10] to the sequential dual block coordinates
methods, such as TRW-S [15]. Despite being called se-
quential, TRW-S exhibits a fair amount of parallelism in
its computation dependency graph, which is exploited in
the parallel GPU/FPGA implementations [7, 13]. At the
same time SGM has been interpreted [9] as a single step
of parallel TRW algorithm [32] developed for solving the
dual. MGM goes further in this direction, resembling even
more the structure of a dual solver: it combines together
more messages but in a heuristic fashion and introducing
more computation dependencies, in fact similar to TRW-
S. It appears that all these approaches go somehow in the
direction of a fast processing of the dual.

We propose a new dual update scheme, which: i) is a
monotonous block-coordinate ascent; ii) performs as good

as TRW-S for an equal number of iterations while having a
comparable iteration cost; and iii) offers more parallelism,
better mapping to current massively parallel compute ar-
chitectures. Thus it bridges the gap between highly paral-
lel heuristics and the best “sequential” dual methods with-
out compromising on the speed and performance.

On a higher level, the method is most easily presented
in the dual decomposition framework. For clarity, let us
consider a decomposition into two subproblems only (hor-
izontal and vertical chains). Consider minimizing the en-
ergy function E(x) that separates as

E(x) = f(x) + g(x), (6)

where f, g : LV → R are chains.
Primal Majorize-Minimize Even before introducing

the dual, we can propose applying the majorize-minimize
method (a well-known optimization technique) to the pri-
mal problem in the form (6). It is instructive for the subse-
quent presentation of the dual method and has an intrigu-
ing connection to it, which we do not yet fully understand.

Definition 2.1. A modular function f̄ is a majorant (up-
per bound) of f if (∀x) f̄(x) ≥ f(x), symbolically
f̄ � f . A modular minorant

¯
f of f is defined similarly.1

Noting that minimizing a chain function plus a modu-
lar function is easy, one could straightforwardly propose
Algorithm 1, which alternates between majorizing one of
f or g by a modular function and minimizing the result-
ing chain problem f̄ + g (resp. f + ḡ). We are not aware
of this approach being evaluated before. Somewhat novel,
the sum of two chain functions is employed rather than,
say, difference of submodular [19], but the principle is the
same. To ensure monotonicity of the algorithm we need
to pick a majorant f̄ of f which is exact in the current pri-
mal solution xk as in Line 1. Then f(xk+1) + g(xk+1) ≤
f̄(xk+1) + g(xk+1) ≤ f̄(xk) + g(xk) = f(xk) + g(xk).
Steps 3-4 are completely similar. Algorithm 1 has the fol-
lowing properties:
• primal monotonous;
• parallel, since, e.g., minx(f̄ + g)(x) decouples over

all vertical chains;
• uses more information about subproblem f than

just the optimal solution (as in most primal block-
coordinate schemes: ICM, alternating lines, etc.).

The performance of this method highly depends on the
strategy of choosing majorants. This will be also the main
question to address in the dual setting.

Dual Decomposition Minimization of (6) can be writ-
ten as

min
x1=x2

f(x1) + g(x2). (7)

Introducing a vector of Lagrange multipliers λ ∈ RL×V
for the constraint x1 = x2, we get the Lagrange dual prob-

1

¯
f reads “f underbar”.

Algorithm 1: Primal MM

Input: Initial primal point xk;
Output: New primal point xk+2;

1 f̄ � f , f̄(xk) = f(xk); /* Majorize */

2 xk+1 ∈ argmin
x

(f̄ + g)(x); /* Minimize */

3 ḡ � g, ḡ(xk+1) = g(xk+1); /* Majorize */

4 xk+2 ∈ argmin
x

(f + ḡ)(x); /* Minimize */

lem:

max
λ

[
min
x

(
f(x) + 〈λ, x〉

)
︸ ︷︷ ︸

D1(λ)

+ min
x

(
g(x)− 〈λ, x〉

)
︸ ︷︷ ︸

D2(λ)

]
. (8)

The so-called slave problems D1(λ) and D2(λ) have the
form of minimizing an energy function with a data cost
modified by λ. The goal of the master problem (8) is to
balance the data cost between the slave problems such that
their solutions agree. The slave problems are minima of
finitely many functions linear in λ, the objective of the
master problem (8) D(λ) = D1(λ) + D2(λ) is thus a
concave piece-wise linear function. Problem (8) is a con-
cave maximization. However, since xwas taking values in
a discrete space, there is only a weak duality: (7) ≥ (8). It
is known that (8) can be written as a linear program (LP),
which is as difficult in terms of computation complexity
as a general LP [22].

Dual Minorize-Maximize In the dual, which is a
maximization problem, we will speak of a minorize-
maximize method. The setting is similar to the primal.
We can efficiently maximize D1, D2 but not D1 + D2.
Suppose we have an initial dual point λ0 and let x0 ∈
argminx(f + λ0)(x) be a solution to the slave subprob-
lem D1, that is, D1(λ0) = f(x0) + λ0(x0).

Proposition 2.2. Let
¯
f be a modular minorant of f exact

in x0 and such that
¯
f + λ0 ≥ D1(λ0) (component-wise).

Then the function
¯
D1(λ) = minx(

¯
f+λ)(x) is a minorant

of D1(λ) exact at λ = λ0.

Proof. Since
¯
f(x) ≤ f(x) for all x it follows that

minx(
¯
f + λ)(x) ≤ minx(f + λ)(x) for all λ and there-

fore
¯
D1 is a minorant of D1. Next, on one hand we

have
¯
D1(λ0) ≤ D1(λ0) and on the other, D1(λ0) ≤

(
¯
f + λ0)(x) for all x and thus D1(λ0) ≤

¯
D1(λ0).

We have constructed a minorant of D1 which is itself
a (simple) piece-wise linear concave function. The maxi-
mization step of the minorize-maximize is to solve

max
λ

(
¯
D1(λ) +D2(λ)). (9)

Proposition 2.3. λ∗ = −
¯
f is a solution to (9).

Proof. Substituting λ∗ into the objective (9) we obtain

¯
D1(λ∗) + D2(λ∗) = minx(

¯
f −

¯
f)(x) + D2(−

¯
f) =

minx(
¯
f + g)(x). This value is the maximum because

Algorithm 2: Dual MM

Input: Initial dual point
¯
gk;

Output: New dual point
¯
gk+2;

1 xk ∈ argminx(f +
¯
gk)(x); /* Minimize */

/* Minorize */

2
¯
fk+1 � f ,

¯
fk+1(xk) = f(xk),

¯
fk+1 +

¯
gk ≥ f(xk) +

¯
gk(xk);

3 xk+1 ∈ argminx(
¯
fk+1 + g)(x); /* Minimize */

/* Minorize */

4
¯
gk+2 � g,

¯
gk+2(xk+1) = g(xk+1),

¯
fk+1 +

¯
gk+2 ≥

¯
fk+1(xk+1) + g(xk+1);

¯
D1(λ) +D2(λ) = minx(

¯
f +λ)(x) + minx(g−λ)(x) ≤

minx(
¯
f + λ+ g − λ)(x) = minx(

¯
f + g)(x).

Note, for the dual point λ = −
¯
f , in order to construct

a minorant of D2 (similarly to Proposition 2.2) we need
to find a solution to the second slave problem,

x1 ∈ argmin(g − λ)(x) = argmin(
¯
f + g)(x). (10)

We obtain Algorithm 2 with the following properties:
• It builds the sequence of dual points given by λ2t =

¯
g2t, λ2t+1 = −

¯
f2t+1 and the dual objective does not

decrease on each step;
• The minimization subproblems and minorants are

decoupled (can be solved in parallel) for all horizon-
tal (resp. vertical) chains;

• When provided good minorants (see below) the algo-
rithm has same fixed points as TRW-S [15];

• Updating only a single component λi for a pixel i is
a monotonous step as well, therefore the algorithm is
a parallel block-coordinate ascent.

Notice also that Dual MM and Primal MM are very sim-
ilar, nearly up to replacing minorants with majorants. The
sequence {E(xk)}k is monotonous in Algorithm 1 but not
in Algorithm 2.

Good and Fast Minorants The choice of the mino-
rant in Dual MM is non-trivial as there are many, which
makes it sort of a secrete ingredient. Figure 3 illustrates
two of the possible choices. The naive minorant for a
chain problem f +λ is constructed by calculating its min-
marginals and dividing by chain length to ensure that the
simultaneous step is monotonous (c.f . tree block update
algorithm of Sontag and Jaakkola [29, Fig. 1]). The uni-
form minorant is found through the optimization proce-
dure that tries to build the tightest modular lower bound,
by increasing uniformly all components that are not yet
tight. The details are given in §A. In practice, we build
fast minorants, which try to approximate the uniform one
using fast message passing operations. Parallelization of
decoupled chains allowed us to achieve an implementa-
tion which, while having the same number of memory ac-
cesses as TRW-S (including messages / dual variables),
saturates the GPU memory bandwidth, ∼ 230GB/s.2 This

2This is about 10 times faster than reported for FPGA implementa-
tion [7] of TRW-S.

0 2 4 6 8 10 12 14 16 18 20
5500

6000

6500

7000

7500

8000

8500

9000

9500

TRW−S

TRW−S primal

DMM−uniform
DMM−uniform primal

DMM−naive

DMM−naive primal

Figure 3: Lower bounds and best primal solutions by TRW-S
and by Dual MM with a naive and a uniform minorants. The
problem is a small crop from stereo of size 40×40, 16 labels,
truncated linear regularization. On the x-axis one iteration is
a forward-backward pass of TRW-S vs. iteration of Dual MM
(equal number of updates per pixel). With a good choice of mi-
norant, Dual MM can perform even better than the sequential
baseline in terms of iterations. Parallelizing it can be expected
to give a direct speedup.

allows to perform 5 iterations of Algorithm 2 for an image
512×512 and 64 labels at the rate of about 30 fps.

2.4. Continuous Refinement

In this section we describe the continuous refinement
method, which is based on variational energy minimiza-
tion. The goal of this step is to refine the output of the
optimization method described in § 2.3 which is discrete
in label-space.

To that end, it is important to minimize the same en-
ergy in both formulations. Considering the optimization
problem in (1), we are seeking to minimize a non-convex,
truncated norm together with a non-convex data term. For
clarity, let us write down the problem again:

min
u∈U

D(u) +R(Au). (11)

Non-Convex Primal-Dual Efficient algorithms exist
to solve (11) in case both D(u) and R(Au) are convex
(but possibly non-smooth), e.g. the primal-dual solver of
Chambolle and Pock [6]. Kolmogorov et al. [16] solves
(11) for a truncated total variation regularizer using a split-
ting into horizontal and vertical 1D problems and applying
[6] to the Lagrangian function. Here we will use a recently
proposed extension to [6] by Valkonen [31]. He considers
problems of the form minx G(x) + F(A(x)), i.e. of the
same structure as (11), where G and F are convex, G is
differentiable and A(u) is a twice differentiable but pos-
sibly non-linear operator. In the primal-dual formulation,
the problem is written as

min
x

max
y

[
G(x) + 〈A(x), y〉 − F∗(y)

]
, (12)

where ∗ is the convex conjugate. Valkonen proposes the

following modified primal-dual hybrid gradient method:

xk+1 =(I + τ∂G)−1(xk − τ
[
∇A(xk)

]T
yk) (13a)

yk+1 =(I + σ∂F∗)−1(yk + σA(2xk+1 − xk)). (13b)

Reformulation In order to apply method [31], we will
reformulate the non-convex problem (11) to the form (12).
We start by formulating the regularizer R(Au) as a differ-
ence of convex functions: R(Au) = R+(Au)−R−(Au),
where R+ and R− are convex. The primal-dual formula-
tion of (11) then reads

min
u

[
max
p

(〈Au, p〉 −R∗+(p)) (14)

+ max
q

(〈Au, q〉 −R∗−(q)) +D(u)
]
.

Because minx−f(x) = −maxx f(x), (14) equals

min
u

[
max
p

(〈Au, p〉 −R∗+(p))+ (15)

+ min
q

(−〈Au, q〉+R∗−(q)) +D(u)
]
.

Grouping terms we arrive at

min
u,q

max
p

[
〈Au, p−q〉−R∗+(p)+R∗−(q)+D(u)

]
. (16)

The problem now arises in minimizing the bilinear term
〈Au, q〉 in (16) in both u and q. We thus move this term
into the nonlinear operator A(x) and rewrite (16) as

min
u,q︸︷︷︸
x

max
p,d=1︸ ︷︷ ︸
y

〈[
Au

−〈Au, q〉

]
︸ ︷︷ ︸
A(x)

,

[
p
d

]〉
+R∗−(q) +D(u)︸ ︷︷ ︸

G(x)

−R∗+(p)︸ ︷︷ ︸
F∗(y)

(17)

by introducing a dummy variable d = 1.
Implementation Details The gradient ofA needed by

iterates (13) is given by

∇A(x) =

[
A 0
−ATq −Au

]
. (18)

The regularization function r is represented as a difference
of two convex functions (see Figure 2):

r(t) = rε,δ(t)− r0,(C+δ−εδ)(t), (19)

where

rα,β(t) =

{
α|t| if |t| ≤ β
|t| − β(1− α) else

(20)

is convex for α ≤ 1. Convex functions R+(Au) and
R−(Au) are defined by decomposition (19) and (2).

To compute the proximal map (I + σ∂F∗)−1(ŷ) we
first need the convex conjugate of ωijrα,β(t). It is given
by (ωijrα,β)∗(t∗) ={

max(0, β|t∗| − ωijαβ) if α < |t∗| < ωij

∞ else
. (21)

The proximal map for (ωijrα,β)∗ at t∗ ∈ R is given by
t̄ = clamp(±ωij , t′), where clamp(±ωij , ·) denotes a
clamping to the interval [−ωij , ωij] and

t′ =

{
t∗ if |t∗| ≤ αωij
max(αωij , |t∗|−βσ) sign(t∗) else.

(22)

Proximal map (I+σ∂F∗)−1(ŷ) is calculated by applying
expression (22) component-wise to ŷ. The proximal map
(I+τ∂G)−1 depends on the choice of the data termD(u)
and will thus be defined in § 3.

3. Applications
3.1. Stereo Reconstruction

For the problem of estimating depth from two images,
we look at a setup of two calibrated and synchronized
cameras. We assume that the input images to our method
have been rectified according to the calibration parameters
of the cameras. We aim to minimize the energy (1) where
u encodes the disparity in x-direction. The data term mea-
sures the data fidelity between images I1 and I2, warped
by the disparity field u. As a data term we use the Census
Transform [37] computed on a small local patch in each
image. The cost is given by the pixel-wise Hamming dis-
tance on the transformed images. D(u) is non-convex in
the argument u which makes the optimization problem in
(1) intractable in general.

We start by minimizing (1) using the discrete method
(§2.3) in order to obtain an initial solution ů. We approx-
imate the data term around the current point ů by a piece-
wise linear convex function D̃(u) =

D(̊u) + δ[̊u−h,̊u+h](u) +

{
s1(u− ů) if u ≤ ů
s2(u− ů) otherwise

(23)

with s1 = D(ů+h)−D(ů)
h and s2 = D(ů)−D(ů+h)

h for a
small h. To ensure convexity, we set s1 = s2 = s1+s2

2 if
s2 < s1. The indicator function δ is added to ensure that
the solution stays within ů ± h where the approximation
is valid. We then apply the continuous method (§2.4). The
proximal map ū = (I + τ∂G)−1(û) needed by the algo-
rithm (13) for the approximated data term expresses as the
pointwise soft-thresholding

ūi = clamp

ůi ± h, ûi −

τs1,i if ûi > ůi + τs1,i

τs2,i if ûi < ůi + τs2,i

0 otherwise


In practice, the minimization has to be embedded in a
warping framework: after optimizing for n iterations, the
data term is approximated anew at the current solution u.

3.2. Optical Flow

The optical flow problem for two images I1, I2 is posed
again as model (1). In contrast to stereo estimation, we
now have ui ∈ R2 encoding the flow vector. For the

discrete optimization step (§2.3) the flow problem is de-
coupled into two independent stereo-like problems as dis-
cussed in §2.2.

For the continuous refinement step, the main prob-
lem is again the non-convexity of the data term. In-
stead of a convex approximation with two linear slopes
we build a quadratic approximation, now in 2D, follow-
ing [34]. The approximated data term reads D̃i(ui) =
δ[̊ui−h,̊ui+h](ui)+

Di(̊ui) +LT
i (ui − ůi) +

1

2
(ui − ůi)TQi(ui − ůi), (24)

where Li ∈ R2 and Qi ∈ R2×2 are finite difference ap-
proximations of the gradient and the Hessian with step-
size h. Convexity of (24) is ensured by retaining only
positive-semidefinite part of Qi as in [34]. The proximal
map ū = (I + τ∂G)−1(û) for data term (24) is given
point-wise by

ūki = clamp

(
ůki ± h,

ûki + τ(Qiůi − Li)k
1 + τLki

)
. (25)

Optimizing (1) is then performed as proposed in §2.4.

4. Experiments
4.1. Stereo Reconstruction

We evaluate our proposed real-time stereo method on
datasets where Ground-Truth data is available as well as
on images captured using a commercially available stereo
camera.

4.1.1 Influence of Truncated Regularizer

We begin by comparing the proposed method to a sim-
plified version that does not use a truncated norm as reg-
ularizer but a standard Total Variation. We show the ef-
fect of this change in Fig. 4, where one can observe much
sharper edges, when using a robust norm in the regulariza-
tion term. On the downside it is more sensitive to outliers,
which however can be removed in a post-processing step
like a two-side consistency check.

4.1.2 Live Dense Reconstruction

To show the performance of our stereo matching method
in a real live setting, we look at the task of creating a
live dense reconstruction from a set of depth images. To
that end, we are using a reimplementation of KinectFusion
proposed by Newcombe et al. [20] together with the out-
put of our method. This method was originally designed
to be used with the RGBD output of a Microsoft Kinect
and tracks the 6 DOF position of the camera in real-time.
For the purpose of this experiment we replace the Kinect
with a Point Grey Bumblebee2 stereo camera. KinectFu-
sion can only handle relatively small camera movements
between images, so a high framerate is essential. We set
the parameters to our method to achieve a compromise

(a) Input (b) Groundtruth

(c) TV regularization (d) Proposed Method

Figure 4: Influence of the robust regularizer in the continuous
refinement on stereo reconstruction quality.

(a) Refinement (b) No Refinement

Figure 5: Influence of continuous refinement on the reconstruc-
tion quality of KinectFusion.

between highest quality and a framerate of ≈ 4 − 5 fps:
camera resolution 640× 480, 128 disparities, 4 iterations
of Dual MM, 5 warps and 40 iterations per warp of the
continuous refinement.

Influence of Continuous Refinement The first stage
of our reconstruction method, Dual MM, already delivers
high quality disparity images that include details on fine
structures and depth discontinuities that are nicely aligned
with edges in the image. In this experiment we want to
show the influence of the second stage, the continuous re-
finement, on the reconstruction quality of KinectFusion.
To that end we mount the camera on a tripod and collect
300 depthmaps live from our full method and 300 frames
with the continuous refinement switched off. By switch-
ing off the camera tracking, the final reconstruction will
show us the artifacts produced by the stereo method. Fig-
ure 5 depicts the result of this comparison. One can easily
see that the output of the discrete method contains fine de-
tails, but suffers from staircasing artifacts on slanted sur-
faces due to the integer solution. The increase in qual-
ity due to the refinement stage can be especially seen on
far away objects, where a disparity step of 1 pixel is not
enough to capture smooth surfaces.

Timing To show the influence of the individual steps
in our stereo method on runtime, we break down the total
time of ≈ 140 ms per frame in Table 1. Those timings
have been achieved using a PC with 32 GB RAM with a
NVidia 980GTX, running Linux.

Qualitative Results To give an impression about the
quality of the generated depthmaps and the speed of our

Cost Vol. Discrete Cont. Ref. Total

27 ms 73 ms 39 ms 139 ms

Table 1: Runtime analysis of the individual components of our
stereo matching method. Details regarding computing hardware
and parameters are in the text. In case of the full left-right check
procedure the total computation time doubles.

(a) Input (b) Reconstruction

Figure 6: Qualitative result of reconstructing a desktop scene
using KinectFusion3.

method, we run our full algorithm and aim to reconstruct
a desktop scene with a size of 1× 1× 1 meters and show
some renderings in Fig. 6. To better visualize the quality
of the geometry, the model is rendered without texture3.

4.2. Optical Flow

In this section we show preliminary results of our
algorithm applied to optical flow. A further improve-
ment in quality can be expected by exploiting the coupled
scheme [26] in the discrete optimization, as discussed in
§ 2.2. As depicted in Figure 7, our method is able to de-
liver reasonable results on a variety of input images. We
deliberately chose scenes that contain large motion as well
as small scale objects, to highlight the strengths of the
discrete-continuous approach. For comparison, we use a
state-of-the-art purely continuous variational optical flow
algorithm [33]. The runtime of our method is 2s for an
image of size 640× 480.

5. Conclusion
The current results demonstrate that it is feasible to

solve dense image matching problems using global op-
timization methods with a good quality in real time. We
have proposed a highly parallel discrete method, which
even when executed sequentially, is competitive with the
best sequential methods. As a dual method, we believe,
it has a potential to smoothly handle more complex mod-
els in the dual decomposition framework and is in theory
applicable to general graphical models. When the solu-
tion is sufficiently localized, continuous representation in-
creases the accuracy of the model as well as optimization
speed. In the continuous optimization, we experimented
with non-convex models and showed a reduction allowing
to handle them with the help of a recent non-linear primal-

3We point the interested reader to a video that shows the reconstruc-
tion pipeline in real-time: http://gpu4vision.icg.tugraz.
at/videos/cvww16.mp4

Inputs

Werlberger [33] Combined

Figure 7: Subjective comparison of variational approach [33]
(left) with our combined method (right). Top row show input
images, one from a pair. Both methods use the same data term.
Parameters of both algorithms have been tuned by hand to de-
liver good results. Note that for [33] it is often impossible to get
sharp motion boundaries as well as small scale details, despite a
very strong data term (e.g. artifacts in left image, first row).

dual method. This in turn allowed to speak of a global
model to be solved by a discrete-continuous optimization.

Ideally, we would like to achieve a method, which,
when given enough time, produces an accurate solution,
and in the real time setting gives a robust result. We plan
further to improve on the model. A vast literature on the
topic suggest that modeling occlusions and using planar
hypothesis can be very helpful. At the same time, we are
interested in a tighter coupling of discrete and continuous
optimization towards a globally optimal solution.

Acknowledgements
This work was supported by the research initiative

Mobile Vision with funding from the AIT and the Aus-
trian Federal Ministry of Science, Research and Economy
HRSM programme (BGBl. II Nr. 292/2012).

References
[1] Arashloo, S. R. and Kittler, J. (2014). Fast pose invariant

face recognition using super coupled multiresolution Markov
random fields on a GPU. Pattern Recognition Letters, 48.

[2] Banz, C., Hesselbarth, S., Flatt, H., Blume, H., and Pirsch,

http://gpu4vision.icg.tugraz.at/videos/cvww16.mp4
http://gpu4vision.icg.tugraz.at/videos/cvww16.mp4

P. (2010). Real-time stereo vision system using semi-global
matching disparity estimation: Architecture and FPGA-
implementation. In ICSAMOS.

[3] Bleyer, M. and Gelautz, M. (2008). Simple but effective tree
structures for dynamic programming-based stereo matching.
In VISAPP.

[4] Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004).
High accuracy optical flow estimation based on a theory for
warping. In ECCV.

[5] Brox, T., Bruhn, A., and Weickert, J. (2006). Variational
motion segmentation with level sets. In ECCV, volume 3951.

[6] Chambolle, A. and Pock, T. (2011). A first-order primal-
dual algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vision, 40(1).

[7] Choi, J. and Rutenbar, R. A. (2012). Hardware implementa-
tion of MRF MAP inference on an FPGA platform. In Field
Programmable Logic.

[8] Combettes, P. L. and Pesquet, J.-C. (2011). Proximal split-
ting methods in signal processing. In Fixed-Point Algorithms
for Inverse Problems in Science and Engineering.

[9] Drory, A., Haubold, C., Avidan, S., and Hamprecht, F.
(2014). Semi-global matching: A principled derivation in
terms of message passing. In Pattern Recognition, volume
8753.

[10] Facciolo, G., de Franchis, C., and Meinhardt, E. (2015).
MGM: A significantly more global matching for stereovision.
In BMVC.

[11] Hirschmuller, H. (2011). Semi-global matching-
motivation, developments and applications.

[12] Hosni, A., Rhemann, C., Bleyer, M., Rother, C., and
Gelautz, M. (2013). Fast cost-volume filtering for visual cor-
respondence and beyond. PAMI, 35(2).

[13] Hurkat, S., Choi, J., Nurvitadhi, E., Martınez, J. F., and
Rutenbar, R. A. (2012). Fast hierarchical implementation of
sequential tree-reweighted belief propagation for probabilis-
tic inference. In Field Programmable Logic.

[14] Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C.,
Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J.,
Komodakis, N., and Rother, C. (2013). A comparative study
of modern inference techniques for discrete energy minimiza-
tion problem. In CVPR.

[15] Kolmogorov, V. (2006). Convergent tree-reweighted mes-
sage passing for energy minimization. PAMI, 28(10).

[16] Kolmogorov, V., Pock, T., and Rolinek, M. (2015). Total
variation on a tree. CoRR, abs/1502.07770.

[17] Lawler, E. (1966). Optimal cycles in doubly weighted di-
rected linear graphs. In Intl Symp. Theory of Graphs.

[18] Menze, M., Heipke, C., and Geiger, A. (2015). Discrete
optimization for optical flow. In GCPR.

[19] Narasimhan, M. and Bilmes, J. (2005). A supermodular-
submodular procedure with applications to discriminative
structure learning. In Uncertainty in Artificial Intelligence.

[20] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S.,
and Fitzgibbon, A. (2011). Kinectfusion: Real-time dense
surface mapping and tracking. In ISMAR.

[21] Ochs, P., Chen, Y., Brox, T., and Pock, T. (2014). ip-
iano: Inertial proximal algorithm for non-convex optimiza-
tion. SIAM JIS, 7(2).

[22] Prusa, D. and Werner, T. (2015). Universality of the local
marginal polytope. PAMI, 37(4).

[23] Ranftl, R., Bredies, K., and Pock, T. (2014). Non-local
total generalized variation for optical flow estimation. In
ECCV.

[24] Ranftl, R., Gehrig, S., Pock, T., and Bischof, H. (2012).
Pushing the limits of stereo using variational stereo estima-
tion. In Intelligent Vehicles Symposium.

[25] Roth, S., Lempitsky, V., and Rother, C. (2009). Discrete-
continuous optimization for optical flow estimation. In Statis-
tical and Geometrical Approaches to Visual Motion Analysis,
volume 5604.

[26] Shekhovtsov, A., Kovtun, I., and Hlaváč, V. (2008). Effi-
cient MRF deformation model for non-rigid image matching.
CVIU, 112.

[27] Shekhovtsov, A., Swoboda, P., and Savchynskyy, B.
(2015). Maximum persistency via iterative relaxed inference
with graphical models. In CVPR.

[28] Sinha, S. N., Scharstein, D., and Szeliski, R. (2014).
Efficient high-resolution stereo matching using local plane
sweeps. In CVPR.

[29] Sontag, D. and Jaakkola, T. S. (2009). Tree block coordi-
nate descent for MAP in graphical models. In AISTATS.

[30] Taniai, T., Matsushita, Y., and Naemura, T. (2014). Graph
cut based continuous stereo matching using locally shared la-
bels. In CVPR.

[31] Valkonen, T. (2014). A primal-dual hybrid gradient method
for nonlinear operators with applications to MRI. Inverse
Problems, 30(5).

[32] Wainwright, M., Jaakkola, T., and Willsky, A. (2005).
MAP estimation via agreement on (hyper)trees: Message-
passing and linear-programming approaches. IEEE Trans-
actions on Information Theory, 51(11).

[33] Werlberger, M. (2012). Convex Approaches for High Per-
formance Video Processing. PhD thesis, Institute for Com-
puter Graphics and Vision, Graz University of Technology,
Graz, Austria.

[34] Werlberger, M., Pock, T., and Bischof, H. (2010). Motion
estimation with non-local total variation regularization. In
CVPR.

[35] Werner, T. (2007). A linear programming approach to max-
sum problem: A review. PAMI, 29(7).

[36] Woodford, O., Torr, P., Reid, I., and Fitzgibbon, A. (2009).
Global stereo reconstruction under second-order smoothness
priors. PAMI, 31(12).

[37] Zabih, R. and Woodfill, J. (1994). Non-parametric local
transforms for computing visual correspondence. In ECCV,
volume 801.

A. Details of Dual MM
In this section we specify details regarding computa-

tion of minorants in Dual MM. The minorants are com-
puted using message passing and we’ll also need the no-
tion of min-marginals.

A.1. Min-Marginals and Message Passing

Definition A.1. For cost vector f its min-marginal at
node i is the function mf : L → R given by

mf (xi) = min
xV\i

f(x). (26)

Function mf (xi) is a min projection of f(x) onto xi
only. Given the choice of xi, it returns the cost of the best
labeling in f that passes through xi. For a chain problem
it can be computed using dynamic programming. Let us
assume that the nodes V are enumerated in the order of
the chain and E = {(i, i+ 1) | i = 1 . . . |V| − 1}. We then
need to compute: left min-marginals: ϕi−1,i(xi) :=

min
x1,...i−1

∑
i′<i

fi′(xi′) +
∑

i′j′∈E | i′<i
fi′j′(xi′ , xj′); (27)

and right min-marginals: ϕi+1,i(xi) :=

min
xi+1,...|V |

∑
i′>i

fi′(xi′) +
∑

i′j′∈E | i′≥i
fi′j′(xi′ , xj′). (28)

These values for all ij ∈ E , xi, xj ∈ L can be computed
dynamically (recursively). After that, the min-marginal
mf (xi) expresses as

mf (xi) = fi(xi) + ϕi−1,i(xi) + ϕi+1,i(xi). (29)

TRW-S method [15] can be derived as selecting one
node i at a time and maximizing (8) with respect to λi
only. For the two slave problems in (8) TRW-S needs
to compute min-marginals mf+λ(xi) and mg−λ(xi). A
(non-unique) optimal choice for λi would be to ensure that

mf+λ(xi) = mg−λ(xi) ∀xi ∈ L (30)

by setting

λi := λi + (mg−λ(xi)−mf+λ(xi))/2. (31)

If i and j are two nodes in a chain f+λ then performing
the update of λi changes the min-marginal at j and vice-
versa. The updates must be implemented sequentially or
otherwise one gets a non-monotonous behavior and the
method may fail to converge (see [15]).

TRW-S gains its efficiency in that after the update (31),
the min-marginal at a neighboring node can be recom-
puted by a single step of dynamic programming. Let the
neighboring node be j = i + 1. The expression for the
right min-marginal at j remains correct and the expres-
sion for left min-marginal is updated using its recurrent
expression ϕij(xj) :=

min
xi

[
ϕi−1,i(xi) + fi(xi) + fij(xi, xj)

]
, (32)

also known as message passing. Then min-marginal at j
becomes available through (29).

It is possible to perform update (31) in parallel by scal-
ing down the step size by the number of variables (or
the length of the chain). This is equivalent to decom-
posing a chain f into n copies with costs f/n so that
they contribute one for each node i with a min-marginal
mf (xi)/n. Confer to the parallel tree block update algo-
rithm of Sontag and Jaakkola [29, Fig. 1]). However, the
gain from the palatalization does not pay off the decrease
in the step size.

A.2. Slacks

In the following we will also use the term slack.
Shortly, it is explained as follows. The dual problem (8)
can be written as a linear program, see e.g., [35]. Dual in-
equality constraints in that program can satisfied as equal-
ities, in which case they are tight, or they can be satisfied
as strict inequalities in which case there is a slack. Equiv-
alent reparametrization of the problem (change of the dual
variables) can propagate a slack from one constraint (cor-
responding to a label-node pair) to another one. If all
constraints in a group becomes non-tight, their minimum
slack can be subtracted and increments the lower bound.
Since for a chain problem the LP relaxation is tight, the
maximum slack that can be concentrated in a label-node
equals the corresponding min-marginal.

A.3. Good Minoratns

Definition A.2. A modular minorant λ of f is maximal
if there is no other modular minorant λ′ ≥ λ such that
λ′(x) > λ(x) for some x.

Lemma A.3. For a maximal minorant λ of f all min-
marginals of f − λ are identically zero.

Proof. Since λ is a minorant, min-marginals mi(xi) =
minxV\i [f(x)− λ(x)] are non-negative. Assume for con-
tradiction that ∃i, ∃xi such that mi(xi) > 0. Clearly,
λ′(x) := λ(x) + mi(xi) is also a minorant and λ′ >
λ.

Even using maximal minorants, the Algorithm 2 can
get stuck in fixed points which do not satisfy weak tree
agreement [15], e.g. suboptimal even in the class of mes-
sage passing algorithms. Consider the following example
of a minorant leading to a poor fixed point.

Example A.4. Consider a model in Figure 8 with two la-
bels and strong Ising interactions ensuring that the optimal

labeling is uniform. If we select minorants that just takes
the unary term, without redistributing it along horizontal
or vertical chains, the lower bound will not increase. For
example, for the horizontal chain (v1, v2), the minorant
(1, 0) (displayed values correspond to λv(1) − λv(2)).
This minorant is maximal, but it does not propagate the
information available in v1 to v2 for the exchange with
the vertical chain (v2, v4).

+0.5

+1

Figure 8: Example minorize-minimize stucks with a minorant
that does not redistribute slack.

A.3.1 Uniform Minorants

Dual algorithms, by dividing the slacks between subprob-
lems ensure that there is always a non-zero fraction of it
(depending on the choice of weights in the scheme) prop-
agated along each chain. We need a minorant, which will
expose in every variable what is the preferable solution
for the subproblem. We can even try to treat all variables
uniformly. The practical strategy proposed below is moti-
vated by the following.

Proposition A.5. Let f∗ = minx f(x) and let Ou be the
support set of all optimal solutions x∗u in u ∈ V . Con-
sider the minorant λ given by λu(xu) = ε(1 − Ou) and
maximizing ε:

max{ε | (∀x) ε〈1−O, x〉 ≤ f(x)}. (33)

The above minorant assigns cost ε to all labels but
those in the set of optimal solutions. If the optimal so-
lution x∗ is unique, it takes the form λ = ε(1 − x∗).
This minorant corresponds to the direction of the subgra-
dient method and ε determines the step size which ensures
monotonicity. However it is not maximal. In f − λ there
still remains a lot of slack that can be useful when ex-
changing to the other problem. It is possible to consider
f − λ again. If we have solved (33), it will necessarily
have a larger set of optimal solutions. We can search for
a maximal ε1 that can be subtracted from all non-optimal
label-nodes in f −λ and so on. The algorithm is specified
as Algorithm 3.

The optimization problem in Line 6 can be solved us-
ing the minimum ratio cycle algorithm of Lawler [17]. We
search for a path with a minimum ratio of the cost given
by (f − λ)(x) to the number of selected labels with non-
zero min-marginals given by 〈1−O, x〉. This algorithm is
rather efficient, however Algorithm 3 it is still too costly

Algorithm 3: Maximal Uniform Minorant

Input: Chain subproblem f ;
Output: Minorant λ;

1 λ := 0;
2 while true
3 Compute min-marginals m of f − λ;
4 if m = 0 then return λ;
5 Let O := [[m = 0]], the support set of optimal

solutions of m− λ;
6 Find max{ε | (∀x) ε〈1−O, x〉 ≤ (f − λ)(x)};
7 Let λ := λ+ ε(1−O);

and not well-suited for a parallel implementation. We will
not use this method in practice directly, rather it estab-
lishes a sound baseline that can be compared to.

The resulting minorant λ is maximal and uniform in
the following sense.

Lemma A.6. Let m be the vector of min-marginals of f .
The uniform minorant λ found by Algorithm 3 satisfies

λ ≥ m/n, (34)

where n is the length of the longest chain in f .

Proof. This is ensured by Algorithm 3 as in each step the
increment ε results from dividing the min-marginal by
〈1−O, x〉 which is at most the length of the chain.

In fact, when the chain is strongly correlated, the mi-
norant will approach m/n and we cannot do better than
that. However, if the correlation is not as strong the mi-
norant becomes tighter, and in the limit of zero pairwise
interactions there holds λ = m. In a sense the minorant
computes “decorrellated” min-marginals.

The next example illustrates uniform minorants and
steps of the algorithm.

Example A.7. Consider a chain model with the following
data unary cost entries (3 labels, 6 nodes):

0 0 1 0 0 8
9 7 0 3 2 8
7 3 6 9 1 0

The regularization is a Potts model with cost
fuv(xu, xv) = 1[[xu 6= xv]]. Min-marginals of the
problem and iteration of Algorithm 3 are ilustrated in
Figure 9. At the first iteration the constructed minorant is

0 0 0 0 0 1
1 1 1 1 1 1
1 1 1 1 1 0

And the final minorant is:
0 0 0 0 0 7
8 7 1 2 2 7
6 4 6 7 1 0

The minorant follows min-marginals (first plot in Fig-
ure 9), because the interaction strength is relatively weak
and min-marginals are nearly independent. If we in-
crease interaction strength to 5, we find the following min-

Algorithm 4: Iterative Minorant

Input: Chain subproblem f ;
Output: Minorant λ;

1 λ := 0;
2 for s = 1 . . . max pass do
3 for i = 1 . . . |V | do
4 Compute min-marginal mi of f − λ at i

dynamically, equations (32) and (29);
5 λi += γsmi;

6 Reverse the chain;

marginals and minorant, respectively:
0 0 0 0 0 3
14 15 8 8 7 8
12 13 15 10 1 0
0 0 0 0 0 3
5.5 5.5 3 3 3 3
4.75 4.75 4.75 4.75 1 0

It is seen that in this case min-marginals are correlated and
only a fraction can be drained in parallel. The uniform
approach automatically divides the cost equally between
strongly correlated labels.

(a)

0

10

8

0

8

5

0

1

7

0

4

10

0

3

1

7

8

0

(b)

0

9

7

0

6

3

0

0

6

0

1

7

0

2

0

6

7

0

(c)

0

8

6

0

5

2

0

0

5

0

0

6

0

0

0

5

5

0

Figure 9: (a) Min-marginals (normalized by subtracting the
value of the minimum) at vertices and arrows allowing to back-
track the optimal solution passing through a given vertex. (b),
(c) min-marginals of f −λ after one (resp. two) iterations of Al-
gorithm 3 (ε1 = 1 and ε2 = 1). With each iteration the number
of vertices having zero min-marginal strictly increases.

A basic performance test of Dual MM with uniform
minorants versus TRW-S is shown in Figure 3. It demon-
strates that the Dual MM can be faster, when provided
good minorants. The only problem is that determining the
uniform minorant involves repeatedly solving minimum
ratio path problems, plus there is a numerical instability
in determining the support set of optimal solutions O.

A.3.2 Iterative Minorants

A simpler way to construct a maximal minorant would
be to iteratively subtract from f a portion of its min-

marginals and accumulate them in the minorant, until all
min-marginals of the reminder become zero. Algorithm 4
implements this idea. The portion of min-marginals
drained from the reminder f −λ to the minorant λ in each
iteration is controlled by γs ∈ (0, 1]. Reversing the chain
efficiently alternates between the forward and the back-
ward passes. For the last pass coefficient γs is set to 1
to ensure that the output minorant is maximal. Figure 10
illustrates that this idea can perform well in practice.

2 3 4 5 6 7 8 9 10

7200

7400

7600

7800

8000

8200

TRW−S
TRW−S primal
DMM−uniform
Primal
DMM−Iterative-s−3−frac−0.25
Primal
DMM−Batch-Iter−3−frac−0.25
Primal

Figure 10: Same setting as in Figure 3. The new plots show that
Iterative minorants are not as good as uniform but still perform
very well. Parameter max pass = 3 and γs = 0.25 were used.
The Batch Iterative method (Batch-Iter) runs forward-backward
iterations in a smaller range, which is more cache-efficient and
is also performing relatively well in this example.

A.3.3 Hierarchical Minorants

The idea of hierarchical minorants is as follows. Let f
be a one horizontal chain. We can break it into two sub-
chains of approximately the same size, sharing a variable
xi in the middle. By introducing a Lagrange multiplier
over this variable, we can decouple the two chains. The
value of the Lagrange multiplier can be chosen such that
both subchains have exactly the same min-marginals in
xi. This makes the split uniform in a certain sense. Pro-
ceeding so we increase the amount of parallelism and hi-
erarchically break the chain down to two-variable pieces,
for which the minorant is computed more or less straight-
forwardly. This is the method used to obtain all visual
experiments in the paper. Its more detailed benchmarking
is left for future work. We detail now the simplest case
when the chain has length two, i.e., the energy is given by
f1(x1)+f12(x1, x2)+f2(x2). The procedure to compute
the minorant is as follows:
• Compute mf

1 (x1) and let λ1 := mf
1 (x1)/2. I.e., we

subtract a half of the min-marginal in the first node.
• Recompute the new min-marginal at node 2: update

the message ϕ12(x2) := Msg12(f1 − λ1); Reassem-
ble mf−λ

2 (x2) = ϕ12(x2) + f2(x2).
• Take this whole remaining min-marginal to the mi-

norant: let λ2 := mf−λ
2 (x2).

• Recompute the new min-marginal at node 1: update
the message ϕ21(x1) := Msg21(f2−λ2); It still may
be non-zero. For example, if the pairwise term of f

Algorithm 5: Handshake
Input: Energy terms fi, fj , fij , messages ϕi−1,i(xi)

and ϕj,j+1(xj) ;
Output: Messages for decorrellated chains: ϕji(xi)

and ϕij(xj) ;
/* Message from j to i */

1 ϕji(xi) := Msgji(fj + ϕj,j+1);
/* Total min-marginal at i */

2 mi(xi) := ϕi−1,i(xi) + fi(xi) + ϕji(xi);
/* Share a half to the right */

3 ϕij(xj) := Msgij(mi/2− ϕji);
/* Bounce back what cannot be shared */

4 ϕji(xi) := Msgji(−ϕij);
5 Procedure Msgij(a)

Input: Unary cost a ∈ RK ;
Output: Message from i to j;

6 return ϕ(xj) := minxi∈L
[
a(xi) + fij(xi, xj)

]
;

is zero we recover the remaining half of the initial
min-marginal at node 1. Let λ1 += mf−λ

1 (x1).
Importantly, the computation has been expressed in terms
of message passing, and therefore can be implemented
as efficiently. The procedure fro the two-node case is
straightforwardly generalized to longer chains. Let ij be
an edge in the middle of the chain. We compute left min-
marginal at i, right min-marginal at j and then apply the
Handshake procedure over the edge ij, defined in Algo-
rithm 5. The procedure divides the slack between nodes i
and j similarly to how it is described above for the pair.
The result of this redistribution is encoded directly in the
messages. The two subchains 1, . . . i and j, . . . |V| are
“decorrellated” by the Handshake and will not talk to
each other further during the construction of the minorant.
The left min-marginal for subchain j, . . . |V| at node j+ 1
is computed using update (32) and so on until the mid-
dle of the subchain where a new Handshake is invoked.
The minorant is computed at the lowest level of hierarchy
when the length of the subchain becomes two. The struc-
ture of the processing is illustrated in Figure 11. It is seen
that each level after the top one requires to send messages
only for a half of nodes in total. Moreover, there is only
a logarithmic number of level. It turns out that this pro-
cedure is not much more computationally costly than just
computing min-marginals. For example, to restore left
min-marginal for the subchain j, . . . |V |, in node i+ 1 we

We conjecture that while iterative minorants may trans-
fer only a geometric fraction of min-marginals in some
cases, the hierarchical minorant is only by a constant fac-
tor inferior to the uniform one.

A.4. Iteration Complexity

The bottleneck in a fast implementation of dual algo-
rithms are the memory access operations. This is simply
because there is a big cost data volume that needs to be
scanned in each iteration plus messages have to be red and
written in TRW-S as well as in out Algorithm 2 (dual vari-

[>>>>>>>>>>>>>>><<<<<<<<<<<<<<<]
[.......<<<<<<<][>>>>>>>.......]
[...<<<][>>>...][...<<<][>>>...]
[.<][>.][.<][>.][.<][>.][.<][>.]
[][][][][][][][][][][][][][][][]

Figure 11: Messages passed in the construction of the hier-
archical minorant for a chain of length 32. From top to bot-
tom: level of hierarchical processing. Symbols > and < denote
message passing in the respective direction. Brackets [] mark
the limits of the decorrellated sub-chains at the current level.
Dots denote places where the previously computed messages in
the needed direction remain valid and need not be recomputed.
Places where the two opposite messages meet correspond to the
execution of the Handshake procedure. The lowest level con-
sists of 16 decorrellated chains of length 2 each.

ables λ). We therefore will assess complexity in terms of
memory access operations and ignore the slightly higher
arithmetic complexity of our minorants.

For TRW-S the accesses per pixel are:
• read all incoming messages (4 access);
• read data term (1 access);
• write out messages in the pass direction (2 accesses).

The cache can potentially amortize writing messages and
reading them back in the next scan line, in which case
the complexity could be counted as 5 accesses per pixel.
However, currently only CPU cache is big enough for this,
while multiprocessors in GPU have relatively small cache
divided between many parallel threads.

For the iterative minorant we have 3 forward-backward
passes reading the data cost, the reverse message and writ-
ing the forward message (3*2*3 accesses), the last itera-
tion writes λ and not the message. Some saving is pos-
sible with a small cache set at a cost of more computa-
tions. Computing the hierarchical minorant as described
in Figure 11 for a chain of length 2048, assuming that
chunks of size 8 already fit in the fast memory (registers
+ shared memory) has the following complexity. Read-
ing data costs and writing messages until length 8 totals
to 2 + log2(2048/8)/2 = 6 accesses. Reading messages
is only required at Handshake points and needs to be
counted only until reaching length 8. Writing λ adds one
more access. These estimates are summarized in Table 2.

TRW-S Iterative Naive BCD Hierarchical
7(5) 18(8) 5(4) 7

Table 2: Memory accesses per pixel in TRW-S and Dual MM
with variants of minorants. Naive BCD here means just comput-
ing min-marginals.

