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Abstract

We present a systematic benchmark study of the nested sampling algorithm on the basis of the Potts model. This
model exhibits a first order phase transition for q > 4 at the critical temperature. The numerical evaluation of the
partition function and thermodynamic observables, which involves high dimensional sums of sharply structured multi-
modal density functions, represents a major challenge to most standard numerical techniques, such as Markov Chain
Monte Carlo. Nested sampling, on the other hand, is particularly suited for such problems. In this paper we will employ
both, nested sampling and thermodynamic integration to evaluate the partition function of the Potts model. In both
cases individual moves are based on Swendsen-Wang updates. A autocorrelation time analysis of both algorithms shows
that the severe slowing down of thermodynamic integration around the critical temperature does not occur in nested
sampling. In addition we show, how thermodynamic variables can be computed with high accuracy from the results
of a single nested sampling run, without numerical derivatives. Results for the internal energy are compared to known
results obtained by means of a multi-canonical simulation. Eventually an approach for a parallel implementation of
nested sampling is presented and analysed in detail.

Keywords: Nested sampling, Potts model, Thermodynamic integration, Multi-canonical simulation, Parallel nested
sampling, Partition function

1. Introduction

Monte Carlo (MC) simulations are the most important
instruments when it comes to evaluating integrals in a
high dimensional phase space. For such problems diverse
methods, for example simulated tempering [1] or multi-
canonical simulations [2], [3], are available. Basically they
are trying to enhance the efficiency of the MC algorithm
by flattening relevant probability distributions. A con-
ceptual completely new approach, named nested sampling

(NESA), has been suggested by Skilling in 2004 [4]. It is
a promising way for estimating high dimensional, multi-
modal integrals and is based on the idea of Lebesgue in-
tegration. Since its development it has already found its
way into various fields of research. Especially for solving
problems in statistics and Bayesian inference many appli-
cations already exist [5, 6, 7, 8, 9]. A first application
in the field of statistical physics, in particular the Potts
model, has been presented by Murray et al. [10]. The
Potts model provides, despite its simple structure, a wide
variety of physically interesting properties and the analyti-
cal availability of certain quantities of the two dimensional
model makes it an optimal playground for testing new ap-
proaches in simulation techniques. For parameters, where
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the model exhibits a first order phase transition, the eval-
uation of the partition function poses a severe difficulty for
standard MC algorithms, because at first order phase tran-
sitions the autocorrelation times can become huge even in
small systems. Moreover, such systems are characterized
by a double-peak structure in the probability density for
the energy with a pronounced minimum in between, which
is exponentially suppressed due to the interface tension.
This causes severe mixing problems in most Monte-Carlo
techniques [11]. In this case two well separated phase space
regions need to be explored. Transitions between these re-
gions are possible but very improbable and therefore the
relative weights of the maxima will be not sampled cor-
rectly.

In his original paper [4] Skilling already mentioned the
possibility of a faster exploration of the phase space via a
parallel implementation of nested sampling. This idea has
recently been picked up in various publications ([6, 12, 13,
14]).

In the present work the performance of nested sampling
for evaluating the partition function of the Potts model is
investigated in more detail. The performance of thermo-
dynamic integration (TI), an alternative way of computing
the partition function, is used to benchmark nested sam-
pling. The paper is organized as follows: In Sec. 2 the
Potts model is introduced. The MC methods employed by
us to compute the partition function of the Potts model,
namely thermodynamic integration, multi-canonical sim-
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ulation and nested sampling are introduced in Sec. 3.1,
Sec. 3.2 and Sec. 3.3 respectively. Being in the focus of our
investigation nested sampling is treated in a more elabo-
rate way. A parallel implementation of this algorithm is
presented in Sec. 4.4. Results for the Potts model, as well
as a performance comparison of thermodynamic integra-
tion and nested sampling are compiled in Sec. 4. Further
it is outlined how thermodynamic variables can be eval-
uated from a single nested sampling run. Subsequently
an analysis of the capability of parallel nested sampling
is given. Finally the results are discussed and potential
generalizations are outlined.

2. Potts model

One of the most investigated models in statistical
physics is the Potts model [15]. Its Hamiltonian, without
any external field, reads as follows

H(s) = −J
∑

〈i,j〉

(
δsi,sj − 1

)
= −J

(
Neq(s)−Np

)
.

(1)

The dynamic variables si of the model, referred to as spin
or colour, can assume the integer values between 1 and
q. In Eq. (1) Neq(s) =

∑

〈i,j〉 δsi,sj is the number of near-
est neighbour pairs with equal spin, and Np is the total
number of nearest neighbour pairs in the lattice under con-
sideration. Here the exchange coupling J is positive and
site independent. The lattice indices are denoted by i and
j, ranging from 1 to the number of sites N . The sum only
includes nearest neighbour interactions which is denoted
by 〈i, j〉. The sought-for partition function reads

ZP (β) =
∑

s

eβJ
∑

〈i,j〉

(
δsi,sj−1

)

. (2)

Two limiting cases can easily be determined

Z(β) −→
β→0

qN , Z(β) −→
β→∞

q , (3)

which will be of interest later on. Our investigations are
restricted to 2d square lattices with periodic boundary
conditions. The infinite square lattice exhibits for q ≤ 4
(q > 4) a second (first) order phase transition. The exact
critical inverse temperature for the Potts model on a two
dimensional infinite square lattice follows from self-duality
of the low and high temperature region [16]

βcJ = ln(1 +
√
q). (4)

3. Evaluation of the partition function

Quite generally, the partition function Z associated to
the thermodynamic potential (Helmhotz free energy) con-
tains the entire thermodynamic information of a system in
the canonical ensemble. It can be expressed as

Z =
∑
∫

dx L(x) π(x), (5)

where x describes a point in a multidimensional phase
space, which can either be continuous or discrete. In the
following L(x) is denoted as likelihood function and π(x)
as prior function. Assuming the likelihood function L(x)
shows a strong variation, then a classical Markov Chain
MC needs a huge sample size to yield reasonable variances
[17]. For the evaluation of Z special methods exist. Three
of them will be presented in the following subsections.

3.1. Thermodynamic integration

For the derivation of thermodynamic integration (see
[17]) an inverse temperature β is introduced as an an aux-
iliary parameter

Z(β) =

∫

dx L(x)β π(x), (6)

where Z(0) = 1, due to the normalized prior. In statistical
physics application the inverse temperature is already part
of the likelihood and needs not to be introduced artificially.
The derivative of ln[Z(β)] with respect to β leads to

d

dβ
ln[Z(β)] =

∫

dx
π(x)

Z(β)
L(x)β

︸ ︷︷ ︸

pβ(x)

ln[L(x)]

= 〈 ln[L(x)] 〉β . (7)

Here 〈ln[L(x)]〉β denotes the expectation value of ln[L(x)]
under the distribution pβ(x). In statistical physics we have
the relation ln[L(x)] = −U(β), where U(β) is the inter-
nal energy. Evaluating 〈ln[L(x)]〉β by MC simulation (e.g.
Swendsen-Wang SW [18]) one can compute ln[Z(β)] using

ln[Z(1)]− ln[Z(0)] =

∫ 1

0

dβ 〈 ln[L(x)] 〉β . (8)

This integral can be approximated by a sum over discrete
inverse temperature values βi.

ln(Z) ≈
M∑

i=1

∆β 〈 ln[L(x)] 〉βi
, (9)

where ∆β = βi−βi−1 and β0 = 0. The integrand turns out
to be rather smooth and the integral can be approximated
reliably by a modest number of β-values.
Comparing Eq. (6) with the definition of the partition

function Z =
∑

s
e−βH(s) we find for the Potts model

L(x)β → e−βH(s) , (10)

with the Hamiltonian given in Eq. (1), we can retrieve

ln[L(x)]→ −J (Neq(s)−Np), (11)

where Neq(s) denotes the number of nearest-neighbour
pairs with the same spin-value. Employing Eq. (9) the
estimate of ln(Z) for the Potts model is given by

ln(Z) = −J
M∑

i=1

(
〈Neq〉βi

−Np

)
∆β (12)

with 〈Neq〉βi
being the expectation value of D(s) at a cer-

tain inverse temperature βi.
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3.2. Multi-canonical simulation

Multi-canonical simulation (MUCA) is a method intro-
duced by Berg and Neuhaus [2]. The underlying idea is to
tune the weights of the Monte Carlo sampling in a way to
flatten a certain distribution function such that the whole
phase space can be reached (see [19]). In principle the dis-
tribution can be a function of any order parameter of the
system [19], but as we want to obtain the partition func-
tion the energy is our order parameter of interest. The
Boltzmann weight ωcan(H) ∝ e(−βH) leads to the follow-
ing canonical probability distribution for the energy

pcan(H) =
1

Zcan
n(H)e(−βH), (13)

where n(H) is the probability distribution of the en-
ergy and Zcan is the partition function. For the multi-
canonical probability distribution an additional weight
function ωmuca(H) is introduced that defines a new prob-
ability distribution

pmuca(H) ∝ pcan(H)ωmuca(H) , (14)

which is used in the MC simulation. The goal is obtain a
flat distribution pmuca(H) within a relevant energy window
ensuring perfect mixing. The simulation with the modi-
fied weights allows to evaluate expectation values for ob-
servables under the multi-canonical distribution. Canoni-
cal expectation values are then retrieved via re-weighting.
More details can be found in[2, 3], and for the estimation
related to Potts models in [19]. Including the value of the
partition function Z(β = 0) it is possible to retrieve Z for
arbitrary β.

3.3. Nested sampling

A sound introduction of NESA and its application to
basic problems is presented in [20]. Skilling suggested to
rewrite the integral in Eq. (5) as

Z =

∫

dλ X(λ) , (15)

X(λ) :=
∑
∫

dx π(x) Θ[L(x) > λ]. (16)

The prior mass X(λ) accumulates the prior π(x) over
the parameter space x, which is subject to a constraint
on the likelihood. X(λ) is constrained to values in the
range from 0 to 1, due to the positive and normalized prior
π(x). Furthermore, Eq. (16) ensures a monotonic decrease
of X(λ) with an increasing threshold λ. The implemen-
tation for the Potts model is outlined below. Instead of
integrating over phase space x, we integrate over the prior
mass X , which leads to the simplified form of Eq. (5)

Z =

∫ 1

0

dX L(X) . (17)

The same symbol L is used for L(x) and L(X), since the
meaning is clear from the context. Details of the trans-
formation can be found in [20]. Finally, the integral in

Eq. (17) is approximated by a Riemann sum

Z =

∞∑

n=1

L(Xn)∆Xn , ∆Xn = Xn −Xn+1 . (18)

The monotonicity of L(X) ensures that the sum yields a
lower bound for the integral value. Equivalent

Z =

∞∑

n=1

L(Xn) (Xn−1 −Xn) (19)

represents an upper bound. Skilling proposed the following
algorithm to compute the L(Xn) values.

Algorithm 3.1: NESA algorithm(λ̂n, nmax)

input parameters: K, k, ǫλ
initialize λ̂0 = 0, n = 0,

draw K configurations {xi} at random from π(x|λ̂0)
sort likelihood values λi = L(xi) in increasing order

determine the kth smallest likelihood: λ̂n=1 := λk

while λ̂n+1 − λ̂n > ǫλ

do







n← n+ 1

discard configurations with λi ≤ λ̂n

replace them by new configurations
as follows:

parallel

{
start thread j = 1, 2, ..., k

draw xj
n from π(x|λ̂n)

determine the kth smallest likelihood λ̂n+1

of the the entire list of λ-values
set nmax = n

return (λ̂n, nmax)

In the initialization it is assumed that likelihood values
are not negative (hence λ̂0 = 0), which will be the case for
the Potts model. During the NESA simulation K bond
configurations b (walkers) are treated simultaneously. In
each step k of the walkers, those with the smallest likeli-
hood values are replace by new configurations, drawn from
the prior subject to the constraint L(b) > λ̂n. The re-
placement of k walkers is ideally suited for parallelization
(see Sec. 4.4). The nested sampling moves in configuration
space ensure that even well separated peaks of the likeli-
hood function in configuration space are sampled correctly
(see [20]). The crucial step for the nested sampling algo-
rithm is the draw from the constrained prior probability

π(x|λ̂n−1) =
π(x)

X(λ̂n−1)
Θ(L(x) > λ̂n−1) , (20)

which represents the normalized prior restricted to areas,
where L(x) exceeds the λ threshold. There exist various
ways to draw random configurations, also named walkers,
from this prior. In the approach employed by us, to get
new walker we clone valid ones by choosing k of the re-
maining K−k walkers at random and update these clones
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via MC steps. Given the nmax likelihood minima λ̂n, the
Riemann sum in Eq. (18) can be estimated by

Ẑ =

nmax∑

n=1

λ̂n∆X̂n. (21)

The prior masses X̂n are random variables, where

ln := − ln(X̂n), (22)

is Γ-distributed. The moments of X̂n can therefore be
computed easily. In particular for k = 1 (i.e. we omit one
walker per update) the mean is given by [20]

〈X̂n〉 = ξn , with ξ :=
K

K + 1
. (23)

In addition, when we omit k walkers per update, the mean
and variance of l1 are

〈 l1 〉 = (K − k + 1)−1 + (K − k + 2)−1...+K−1,
(24)

〈(∆l1)
2〉 = (K − k + 1)−2 + (K − k + 2)−2...+K−2.

(25)

Therefore, we can easily draw samples for Xn and com-
pute estimates for the mean and the variance of Z. Ac-
cording to Skilling, this approach becomes problematic for
extremely peaked likelihood functions, because the distri-
bution of Z will not be Gaussian any more, but rather the
distribution of ln(Z) [4]. In this case it necessary to base
the inference on ln(Z).
Then an estimate for the variance of ln(Z) can be de-

termined as follows [20]. First we employ the sample l̂n,
drawn from the Gamma distribution, to get an estimate
for ln(Ẑ). The respective mean of the logarithmic prior
masses after n steps, ln = n 〈 l1 〉, yields ln(Z̄). An esti-
mate for the variance of ln(Z) can then be computed via

〈[

ln(ẐK)− ln(Z̄K)
]2
〉

=

〈

ln

(∑nmax

n=1 e−l̂n∆λ̂n
∑nmax

n=1 e−ln∆λ̂n

)2〉

.

(26)

3.4. Application to the Potts model

In [10] the application of the NESA algorithm to the
Potts model in the representation of Fortuin and Kasteleyn
(FK) is introduced, where the spin variables are replaced
by bond variables bij defined between each pair of neigh-
bouring sites i and j. A bond variable bij is either active
(1) or inactive (0). We denote the entire bond configu-
ration on the lattice by b. For a graphical representation
each active bond bij is represented by a line connecting the
sites i and j. The set of sites, connected by lines forms a
cluster. An isolated site, to which no line is attached, also
qualifies as cluster. In the FK representation two proper-
ties of a bond configuration b are of central importance,
the number of active bonds

D(b) =
∑

〈i,j〉

bij (27)

and the number of clusters C(b). In the FK model the
distribution function for the bond variables b reads

P (b) =
e−JβNp

ZP
eκ D(b) qC(d) , (28)

where Np is the number of pairs in the lattice, which
is given by Np = 2N for the 2d square lattice and
κ = ln(eβJ − 1). The probability that nearest neighbours
with equal spin value form an active bond is defined as

pb = 1− e−βJ . (29)

The partition function ZP in the bond representation is
equivalent to the spin-representation and it reads

ZP = Zπ e−JβNp ZNESA , (30)

ZNESA :=
∑

b

L(b) π(b) . (31)

The likelihood function and the prior probability are de-
fined as

L(b) = eκ D(b) , π(b) =
qC(d)

Zπ
. (32)

In order to have a normalized prior π(b) in Eq. (30) we had
to introduce Zπ =

∑

b
qC(b) as prefactor. It is essential

that the unknown prior normalization Zπ is not a function
of β. To determine Zπ we can use one of the two limit
cases β1 = 0 or β2 = ∞, for which the partition function
is given in Eq. (3). First we note that Jβ = ln(2) splits
the temperature into two regimes, since for Jβ > ln(2)
(Jβ ≤ ln(2)) we have κ > 0 (κ < 0). Since nested sampling
requires monotonically increasing likelihood values, Jβ >
ln(2) (Jβ ≤ ln(2)) corresponds to increasing (decreasing)
D(b). We therefore have to perform separate NESA runs
for these two temperature regimes. We are, however, only
interested in Jβ > ln(2) as it includes the phase transition
and the low temperature regime. It also includes the limit
Jβ → ∞. For this limit the exact value of ZP is given in
Eq. (3), and we rewrite Eq. (30) as

ln
(
Zπ

)
= ln(q) + JβNp − ln

(
ZNESA(β →∞)

)
. (33)

Hence, the prior normalization can be determined if we
determine ZNESA(β →∞) within NESA. How this can be
done will be discussed later in Sec. 4.2.
Next we have a closer look at the likelihood defini-

tion in Eq. (32) and how it affects the NESA algorithm.
As mentioned before we restrict the NESA simulation to
Jβ > ln(2) for which the likelihood constraint has the form
D(b) > D∗. We want to discuss some technical details of
the NESA algorithm for the Potts model closely related to
the ideas outlined in [10]. First of all, we need a MC algo-
rithm to sample from the constrained prior. Interestingly,
for κ = 0, i.e. Jβ = Jβ3 = ln(2) the distribution function
of the Potts model (see Eq. (28)) coincides with the prior.
So we can simply apply Swendsen-Wang for that temper-
ature. The algorithm is then as follows. Starting from a
bond configuration b we perform the steps
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1. Identify the clusters

2. For each cluster draw a random colour ∈ {1, . . . , q}
that is assigned to all spins of the cluster

3. Identify the list L of nearest neighbour pairs with
equal spin values. Only elements of L can become
active bonds. Let Dc be the number of bond candi-
dates in L.

4. For each element in L assign an active bond with prob-
ability p = (1− e−Jβ3) = 1

2 .

The result yields a new bond configuration b′ drawn ac-
cording to the prior probability.
Before we can implement the likelihood constraint we

have to get rid of likelihood degeneracy, i.e. there are
many bond configurations with the same number of active
bonds. As outlined in [20] the degeneracy can be lifted by
augmenting the phase space by a single additional variable,
x say. The walkers now consist of the bond configuration
b and the value x. We introduce a modified likelihood
defined as

L(b, x) := eκ
(
D(b)+x 0+

)

, (34)

where 0+ is an infinitesimal positive real number. For the
joint distribution function we use

P (b, x) := P (b) p(x) with p(x) := pu(x|x0 = 0) ,
(35)

where pu(x|x0) is the PDF of a uniform random variable
from the interval (x0, 1], i.e.

pu(x|x0) :=
1

1− x0
Θ(x0 < x ≤ 1) . (36)

The additional variable x in the augmented likelihood in
Eq. (34) lifts the degeneracy and has otherwise no impact
on the likelihood values. The likelihood constraint in the
augmented phase space is equivalent to the condition

D(b′) + x′ > D(b∗) + x∗. (37)

The implementation of this constraint is now in princi-
ple an easy task. Given the threshold pair (D∗, x∗) we
draw from the prior at random a new walker configura-
tion (b′, x′). If it fulfils the likelihood constraint Eq. (37)
the new configuration is accepted and it is rejected oth-
erwise. The rejection step can become very time consum-
ing. There is, however, a much more efficient approach
to implement this very idea, by avoiding the rejection
steps. According to the above rules, bonds are indepen-
dently activated with probability p = 1/2. The number
of active bonds, therefore, follows a binomial distribu-
tion P (D′|Dc, p = 1

2 ). Due to the likelihood constraint
D′ ≥ D0, we need the truncated binomial

P̃ (D′|D0, Dc) :=
Θ(D ≥ D0)

ZB(D0, Dc)
P (D|Dc, p =

1

2
), (38)

where ZB(D0, Dc) is the corresponding normalization. Ac-
tually, from this distribution only PD>D∗ := P̃ (D >
D∗|D∗, Dc) is required. In addition we need Px<x∗ :=
P (x < x∗) = x∗. By the elementary rules of probability
theory we find easily that the probability that the next
accepted step in the brute-force approach corresponds to
D > D∗ is given by

P̃D>D∗ =
PD>D∗

1− (1− PD>D∗)Px<x∗

. (39)

Now, we can modify step 4 of the SW algorithm to incor-
porate the likelihood constraint in an rejection-less way:

4a. draw a random number r from pu(x|x0 = 0)

4b. if r < P̃D>D∗ (i.e. D′ > D∗)

• Determine at random the number of active bonds
according to P̃ (D′|D∗ + 1)

• draw at random x′ form pu(x
′|x0 = 0)

4c. if r ≥ P̃D>D∗ (i.e. D′ = D∗)

• draw at random x′ from pu(x|x0 = x∗)

• set D′ = D∗

4d. activate at randomD′ bonds from the list L, resulting
in the new bond configuration b′

4e. the new walker configuration is (b′, x′)

Finally it should be stressed that a single NESA run suf-
fices to compute the partition function for all temperatures
Jβ > ln(2). This is easily achieved by storing the number
of active bonds D̂n instead of the corresponding likelihood
minima λ̂n, introduced before. Based on Eq. (32) we can

determine the likelihood values λ̂n = eκD̂n for all temper-
atures and compute the partition function according to
Eq. (21).

4. Results

In this section results for the properties of nested sam-
pling applied to the Potts model are provided. The auto-
correlation times of successive bond configurations b, eval-
uated by the nested sampling algorithm, are computed.
The dependence of the partition function on the number of
NESA steps is illustrated. Results for the partition func-
tion and its derivatives are presented and compared to
data obtained via a MUCA simulation. An analysis of the
computation time required by thermodynamic integration
and nested sampling follows. Finally we assess the parallel
implementation of the NESA algorithm.

The CPU used in this work is an Intel Core i7-3770K
with 32GB RAM running at 3.5GHz. It is a quad-core
CPU with hyperthreading, thus providing eight effective
hardware threads.
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4.1. Autocorrelation times

Successive configurations drawn from the prior as de-
scribed in chapter 3.3 will exhibit autocorrelations. The
impact of these autocorrelations on the nested sampling re-
sults shall be analysed in this section for the temperature
range Jβ > ln(2). Given a time series of bond configu-
rations, b(n) for n = 1, 2, . . . , N , we compute the auto-
correlation in the number of active bonds Bn := D(b(n)),
i.e.

ρm :=
1

M

M∑

n=1

∆Bn+m ∆Bn , (40)

with M = N −mmax, and mmax being the maximum lag
m for which the autocorrelation is computed. An elemen-
tary NESA run starts from a given initial configuration
b(0) with the corresponding likelihood λ∗ := L(b(0)) and
generates a fixed number N of SW updates b(n) → b(n+1)

restricted to L(b(n+1)) ≥ λ∗. The threshold λ∗ is not mod-
ified during these steps. The sequence of bond configura-
tions b(n) generated during the run are used to compute
the corresponding sequence Bn = D(b(n)) of active bonds
and the autocorrelation defined in Eq. (40). Now, for one
and the same initial configuration we repeat the elemen-
tary NESA run L times (they only differ in the random
numbers) and average the individual autocorrelation func-
tions ρm resulting in ρm.
Next we determine the integrated autocorrelation time

τint by the following procedure. The average autocorre-
lation function ρm(t) is cut off at m∗, where either an
increase or a negative value in ρm(t) occurs. This is neces-
sary to get rid of the statistical noise in the data. Then we
append a single-exponential tail to ρm for m > m∗. The
parameters are determined from the second half of the re-
maining data (m∗/2 < m ≤ m∗). Finally the integrated
correlation time τint is computed by summing ρm(t) up to
the cut-off value and then adding the contribution of the
exponential tail, which can be expressed analytically by a
geometric sum [21].
Finally we analyse the impact of the initial configuration

b(0). To this end we perform L elementary NESA runs of
length 2N , all starting from the initial bond configuration
b0 with fixed threshold λ∗ (as before) and from all L final
configurations we pick the one with the least likelihood
and use it as new initial configuration b(0). For M dif-
ferent initial configurations thus determined we compute
individually the integrated autocorrelation times. The ac-
tual numbers used are N = L = 100 and M = 1000. The
histogram of the resulting M = 1000 integrated correla-
tion times τ int are shown in Fig. 1.
Obviously, the mean of the distribution is roughly 1.75

with a small standard deviation. For a smaller (3 × 3)
system the mean integrated correlation time yields for dif-
ferent q-values similar results

• 1.54 ± 0.26 for q = 2 ,

• 1.71 ± 0.03 for q = 5 .

1.2 1.4 1.6 1.8 2 2.2 2.4
0 

0.1 

0.2 

0.3 

τint

h
(τ

in
t)

Figure 1: Histogram of the integrated correlation times τ int corre-
sponding to the autocorrelation function in Eq. (40) for a 16 × 16
Potts model with q = 10.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

n/(KNp)

D̂
n
/N

p

 

 

4× 4
8× 8
12× 12
16× 16
20× 20
24× 24
28× 28
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Figure 2: D̂n for the Potts model with q = 10 and K = 100 for
various system sizes.

The small value for the correlation times τ̄int, almost inde-
pendent of the system size and q, gives reason to assume
that successive states of a walker during its evolution in
NESA are not significantly correlated. Moreover, as out-
lined above, there is no temperature dependence in the
values D̂n and consequently, the autocorrelation is also in-
dependent of temperature. It should be emphasized that
for NESA, i.e. the prior sampling, we employ Swendsen-
Wang only for the temperature Jβ = ln(2). That is why
we do not have to bother with critical slowing down, that
occurs near the critical temperature Jβc.

4.2. Partition function and other thermodynamic quanti-

ties

In statistical physics we are interested in the dependence
of the partition function on the inverse temperature β, as
it provides the entire thermodynamic information of the
system. As emphasized before, the dependence of ln(Z)
on β (for Jβ > ln(2), i.e. κ > 0) can be obtained from
a single NESA run, since the likelihood eκD(b) is a mono-
tonic function in the number of active bondsD(b). Instead
of generating the increasing sequence of likelihood values,
we can equally well generate the corresponding increas-
ing sequence of active bonds D̂n, from which the partition
function can be computed for all temperatures Jβ > ln(2).
The upper limit of active bonds Dmax is given by the num-

6



ber of pairs Np. In Fig. 2 we depict the fraction of active

bonds, i.e. D̂n/Np versus ξ := n/(KNp) for various system
sizes. Obviously, with increasing system size the results
rapidly converge towards a universal curve. An important
finding is that the number of NESA steps nmax it takes to
reach Dmax is proportional to the number of pairs and the
number of walkers.
A separate study for q-values between 1 and 10 yields

the following scaling behaviour

nmax = (a+ bq + cq2)KNp , (41)

with a = 0.606, b = 0.096, c = −0.003 for a 8 × 8 sys-
tem and a = 0.599, b = 0.089, c = −0.002 for a 16 × 16
system. We find that the q-dependent prefactor is nearly
independent of the system size and it is a very smooth
function in q. There is no distinction in the behaviour for
system that have a first or second order phase transition.
The key message so far is, however, that NESA needs at
most O(1)KNp steps. The importance of the various val-

ues D̂n for the partition function, however, is not clear
yet. In order to address this aspect, we discuss additional
aspects of Fig. 2. We see that D̂n represents a staircase
with steps that have an average height of ≈ 1 and average
width of ≈ K. We denote the position, at which the ν-th
step begins, by nν and the corresponding step height by
D̂nν

. Based on Eq. (23) we find 〈∆Xn〉 = ξn(1 − ξ) and
the mean partition function can then be written as

〈ZNESA〉 =
∑

ν

Sν

with Sν := eκD̂nν (ξnν − ξnν+1) . (42)

The summand Sν represents the contribution of the ν-th
step to the partition function, which clearly depends on
temperature. In Fig. 3 the normalized summands Sν/S

max

(Smax = maxµ Sµ) are plotted as function of the step po-
sition nν scaled by KNp for three inverse temperatures,
below, at, and above βc. For Jβ = 1 one observes that
only a small fraction of the staircase in Fig. 2 is sufficient
for a converged result. For Jβc already a significant frac-
tion is required and for Jβ = 4 the last summands clearly
dominate the partition function. Hence for low temper-
atures (large Jβ) an accurate estimate for the partition
function is only possible, if the NESA algorithm reaches
the maximal number of active bonds D̂n = Np. Therefore
the CPU-time scales like N2, because the number of re-
quired NESA steps is proportional to N , and each NESA
step involves one Swendsen-Wang update, which explains
the second factor N .
We are now in the position to determine the prior nor-

malization Zπ within a single NESA run. According to
Eq. (33) we need ZNESA(β → ∞). For Jβ → ∞ we have
κ = Jβ and Eq. (18) yields

ZNESA(β) =

∞∑

n=0

eJβD̂n∆Xn . (43)

For Jβ →∞ only the terms with the maximal value of D̂n

(i.e. D̂n = Np) survive, which is the case for n ≥ nmax.
We therefore have

ZNESA(β) → eJβ S(nmax) , (44)

S(nmax) :=

∞∑

n=nmax

∆Xn . (45)

The mean of ∆Xn is given by ∆Xn = ξn(1 − ξ) with
ξ = e−1/K (see [20]) and we find for Eq. (33)

ln
(
Zπ

)
= ln q +

nmax

K
.

Based on our finding, nmax = αNpK, we obtain

ln
(
Zπ

)

Np
=

ln q

Np
+ α ,

where α = O(1). We see that in the thermodynamic limit
ln
(
Zπ

)
→ αNp, which is consistent with the requirement

that ln
(
Zπ

)
is an extensive quantity, as it is proportional

to the free energy. Moreover, we observe that with in-
creasing system size the distribution of nmax approaches a
Poisson distribution. Consequently, Zπ can be determined
from a single NESA run with high accuracy.
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Figure 4: ln(Z)/N for a q=10 system versus Jβ evaluated via nested
sampling with K = 100 walkers. The inverse critical temperature
Jβc is marked by a vertical chain line and the exact limit value for
Jβ → ∞ (see Eq. (3)) is represented by a dashed line. System sizes
are 16× 16 (left panel) and 128 × 128 (right panel).

Next we turn to analysis of the partition function. Fig. 4
displays ln(Z)/N versus Jβ for 16× 16 and 128× 128 lat-
tices. For the 128×128 system the statistical uncertainties
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Figure 5: Internal energy U per site versus Jβ evaluated via nested
sampling and via multi-canonical sampling for the 20×20 and q = 10
Potts system. The inverse critical temperature Jβc is marked by a
vertical chain line.

are smaller than the line thickness. The inverse tempera-
ture of the phase transition for an infinite 2d square lat-
tice as given in Eq. (4) is indicated a by a vertical line.
Above Jβc, the curve approaches rapidly the limit value
of ln(Z)/N = ln(q)/N for Jβ = ∞, which is depicted by
a dashed horizontal line.
The partition function of a 10 state Potts model was

evaluated via nested sampling for grid-sizes up to of 256×
256. The total computational time for the largest system
was about 57 h. For an equivalent result for the same
system size the thermodynamic integration method would
take about 4 years.
Given ln(Z) as function of Jβ for a system in the

canonical ensemble, thermodynamic quantities like the
Helmholtz free energy F and the internal energy U as well
as the entropy S and heat capacity cV can be deduced
[22]. Starting from the estimate of the partition function
in Eq. (21), expressions for the first and second derivative
of ln(Z) with respect to β can be determined. Given these
expressions we can evaluate the physical quantities ana-
lytically, based on the sequence of active bonds D̂n from
a single NESA run and the sample of prior masses. Hence
we can avoid the determination of numerical derivatives
and the associated errors. From Eq. (32) we have

ln(L(b)) = κ D(b) . (46)

Given the sequence D̂n from a single NESA run and the
corresponding prior masses ∆Xn we can calculate the log-
arithm of the partition function

ln(ZNESA) = ln
(∑

n

eκD̂n ∆Xn

)
(47)

and the derivative with respect to β

∂

∂β
ln(ZNESA) =

J

1− e−Jβ

∑

n e
κD̂n D̂n ∆Xn

ZNESA
︸ ︷︷ ︸

:=〈D〉β

.

(48)

According to Eq. (30) we find e.g. for the internal energy

U = 〈H〉 = − ∂

∂β
ln(Z) = JNp −

J〈D〉β
1− e−Jβ

. (49)

The mean number of active spins is related to the
mean number of nearest neighbour pairs with equal spin
〈Neq(s)〉β via 〈D〉β = pb〈Neq〉β , where pb is the proba-
bility that nearest neighbour pairs of equal spin form an
active bond (see Eq. (29)). Therefore, the internal energy
can also be expressed as

U = −J
(
〈Neq〉β −Np

)
, (50)

which is in agreement with the relation U = − ∂
∂β 〈H〉 and

the definition of the Hamiltonian in Eq. (1). The second
derivative can be deduced similarly.
Fig. 5 shows the internal energy U versus Jβ for a 20×20

and q = 10 Potts system computed via NESA and a
MUCA simulation. For NESA K = 500 walkers have
been used. The values agree excellently. For the MUCA
simulation the Fortran code provided by Berg [3] is em-
ployed. For the comparison of the NESA results to the
MUCA results from [3] the different definitions of β and
the Hamiltonian have to be taken into account.

4.3. Performance comparison of thermodynamic integra-

tion and nested sampling

For a proper comparison of the two methods, NESA and
TI, some important points need to be considered. Ther-
modynamic integration yields the values of the partition
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Figure 7: For the q=10 Potts model at Jβ = 10, the logarithmic
time for computing ln(Z) versus the logarithmic grid size exhibits a
similar scaling for both methods.

function only at the values of the Jβ steps explicitly re-
quired in Eq. (9). Remembering Eq. (12), we find that only
terms contribute to the sum, if not all bonds are active.
It follows, that above a certain Jβ value, there will be
no relevant contributions to the sum anymore. Hence it
is sufficient to calculate the partition function ln(Z) with
thermodynamic integration up to a value of e.g. Jβ = 10
for the investigation of the q = 10 system. Above this
value no significant variation in the result of ln(Z) will
occur.

The most time consuming element of both methods is
the SW update. NESA requires, due to the negligible cor-
relations, only 1 SW update for each NESA step. When
employing thermodynamic integration, however, for each
Jβ value multiple SW updates are necessary to obtain a
reliable thermodynamic expectation value 〈ln(L(b))〉. For
the fair comparison of NESA and TI the number of SW
updates in TI has been chosen such that the resulting er-
ror bars of ln(Z) at Jβ = 10 are of approximately the
same size (see Fig. 6) in both methods. For system sizes
ranging from 4×4 to 32×32 the autocorrelation times are
computed for all Jβ values (for details on the τint compu-
tation see Sec. 4.1). This evaluation enables us to correct
the variances computed by thermodynamic integration at
each Jβ value. For NESA we used a sample of 100 walkers

and 50 prior masses in the following computations. The
results for ln(Z)/N computed by NESA and by TI are dis-
played in Fig. 6. For the q=10 Potts model at Jβ = 10, as
shown in Fig. 7, the logarithmic time for computing ln(Z)
versus the logarithmic grid size exhibits a quadratic scal-
ing for both methods. The quadratic behaviour for NESA
has already been explained in a previous section.
The agreement of the scaling laws appears stunning at

first sight, because nested sampling does not require to
increase the number of updates near the phase transi-
tion, there is no critical slowing down. As a matter of
fact, we use one and the same NESA run for all temper-
atures and the the phase transition is not special in any
respect. However, while TI needs to increase the number
of Swendsen-Wang updates for larger systems due to rising
correlation times, nested sampling needs more updates to
reach the maximum likelihood value (maximum number of
active bonds) necessary to compute the partition function
for large Jβ reliably, as is obvious from Fig. 3. This in-
crease with system size appears to scale similarly for both
methods. Eventually, the reason for the overall prefac-
tor in the performance is that for each expectation value
〈ln(L(x)〉β in the thermodynamic integration, we need to
evaluate multiple SW updates.

4.4. Parallel nested sampling

In this section we analyse the parallel NESA algorithm
(Alg. 3.1 for k > 1) as proposed by Henderson et al. [12] in
the frame of the Potts model. In the parallel NESA algo-
rithm k walkers with the smallest likelihood values are dis-
carded at each step. The update of each discarded walker
is calculated in parallel on separate cores of the CPU. Hen-
derson et al. derived the required scaling of the number
of live walkers Kk with respect to k, to ensure a constant
variance of ln(Z). The scaling is given by

Kk ≈
√
k K1. (51)

For the case of k = 1 we employed a sample of K1 = 100
walkers. For k > 1,Kn is scaled according to Eq. (51). The
computations for k = 1, 2, 4 are performed on a processor
with 4 cores. The evaluation of each ln(Z) value uses 100
independent sequences of prior samples Xn. The error of
ln(Z) is evaluated according to Eq. (26). Fig. 8 displays
the wall-clock time of the parallel NESA evaluations for
the analysed grid-sizes ranging from 4× 4 to 64× 64. The
wall-clock time depicts the real time, which passes by for
the user, while computing a task. It also includes the time
needed for e.g. input and output operations. The values
displayed in Fig. 8 are normalised with respect to the case
of k = 1. Each value is the mean of five independent
runs. For clarity the respective standard deviations are
only displayed for the measurements at k = 4. One can
observe that for increasing grid-sizes the increase in wall
clock time, over the number of cores, shrinks. For the
64× 64 system we find an increase of about 10 percent for
4 cores compared to the case of 1 core. The slight kink in
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the computation of ln(Z) for the q = 10 Potts model at Jβ = 10 for
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the plot is presumably caused by reaching the full capacity
of the processor, when employing all 4 cores. Although the
number of walkers in the NESA runs has been scaled to
yield constant variance, we find a slight decrease in the
error of ln(Z) for all system sizes.
Overall the parallel NESA algorithm does not yield a

distinct improvement for the evaluation of the partition
function of the 10 state Potts model at Jβ = 10. The de-
creasing trend in variance as well as the trend to constant
values for the wall-clock time for larger systems suggest
that for systems with a more structured likelihood func-
tion, the parallel NESA would clearly be advantageous,
since it involves more walkers within almost the same time.
This is advantageous for multi-modal likelihood functions,
where we need enough walkers per mode if we employ the
present clone approach (see Sec. 3.3).

5. Summary and conclusions

In this work we have benchmarked the nested sampling
algorithm in the frame of the Potts model on a 2d square
lattice for different sizes. As alternative method, the es-
tablished thermodynamic integration has been employed.
The correlation time of thermodynamic integration, dis-
plays a massive slowing down near the critical tempera-
ture. The determination of correlation times for nested
sampling yielded negligible values. Furthermore we have
deduced expressions to determine thermodynamic quanti-
ties from the results of a single nested sampling run, with-
out employing numerical derivatives.
Both methods exhibit a power law scaling of the compu-

tation time with increasing grid-sizes. Fits yielded roughly
a quadratic exponent for both methods. Though, due to
a much smaller prefactor, the nested sampling algorithm
is about three orders of magnitude faster than thermody-
namic integration. At first sight, it appears stunning that
the two algorithms have the same scaling law, because
nested sampling does not require to increase the number
of updates near the phase transition, due to the absence of
critical slowing down. However, while TI needs to increase
the number of Swendsen-Wang updates for larger systems

due to rising correlation times, nested sampling needs more
updates to reach the maximum likelihood value (maximum
number of active bonds) necessary to compute the parti-
tion function for large Jβ reliably. This increase appears
to scale similarly for both methods. Eventually, the rea-
son for the overall prefactor in the performance is that for
each expectation value 〈ln(L(x)〉β in the thermodynamic
integration, we need to evaluate multiple SW updates. An-
other important advantage of nested sampling is, that the
partition function for all temperatures is available from
the results of a single run. We have compared the internal
energy with results from a multi-canonical simulation [3]
and found excellent agreement. Finally a parallel version
of the nested sampling algorithm was investigated. We
have employed 1 to 4 cores for system sizes ranging from
4 × 4 to 64 × 64. The wall clock times as well as the re-
spective results for the partition function did not reveal
a relevant improvement for the application of the parallel
version of NESA for the Potts model. The reason being
that parallel NESA requires more walkers for the same
statistical error. On the other hand, more walkers lead
to a better exploration of phase space, which is important
for problems involving a multi-modal likelihood. In case
of the Potts model this aspect was of minor importance,
which is why parallel NESA was not really advantageous.
In summary we have found that nested sampling is able

to deal efficiently with problems that exhibit first order
phase transitions. The method is a promising alternative
to the multi-canonical and multi-bondic algorithms, which
are state of the art computational techniques for dealing
with Potts-type of models. In our opinion nested sampling
represents a high potential algorithm for applications in
statistical physics and due to its uniqueness it deserves
a place in a physicists standard repertoire of simulation
techniques.
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