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Abstract

Event cameras or neuromorphic cameras mimic the human perception system as they
measure the per-pixel intensity change rather than the actual intensity level. In contrast
to traditional cameras, such cameras capture new information about the scene at MHz
frequency in the form of sparse events. The high temporal resolution comes at the cost of
losing the familiar per-pixel intensity information. In this work we propose a variational
model that accurately models the behaviour of event cameras, enabling reconstruction
of intensity images with arbitrary frame rate in real-time. Our method is formulated on
a per-event-basis, where we explicitly incorporate information about the asynchronous
nature of events via an event manifold induced by the relative timestamps of events. In
our experiments we verify that solving the variational model on the manifold produces
high-quality images without explicitly estimating optical flow.

1 Introduction
In contrast to standard CMOS digital cameras that operate on frame basis, neuromorphic
cameras such as the Dynamic Vision Sensor (DVS) [17] work asynchronously on a pixel
level. Each pixel measures the incoming light intensity and fires an event when the absolute
change in intensity is above a certain threshold (which is why those cameras are also often
referred to as event cameras). The time resolution is in the order of µs. Due to the sparse
nature of the events, the amount of data that has to be transferred from the camera to the
computer is very low, making it an energy efficient alternative to standard CMOS cameras
for the tracking of very quick movement [8, 27]. While it is appealing that the megabytes per
second of data produced by a digital camera can be compressed to an asynchronous stream
of events, these events can not be used directly in computer vision algorithms that operate
on a frame basis. In recent years, the first algorithms have been proposed that transform the
problem of camera pose estimation to this new domain of time-continuous events e.g. [3, 9,
12, 20, 21, 26], unleashing the full potential of the high temporal resolution and low latency
of event cameras. The main drawback of the proposed methods are specific assumptions on
the properties of the scene or the type of camera movement.
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(a) Raw Events (b) Reconstructed Image (c) Event Manifold

Figure 1: Sample results from our method. The image (a) shows the raw events and (b) is
the result of our reconstruction. The time since the last event has happened for each pixel
is depicted as a surface in (c) with the positive and negative events shown in green and red
respectively.

Contribution In this work we aim to bridge the gap between the time-continuous domain
of events and frame-based computer vision algorithms. We propose a simple method for
intensity reconstruction for neuromorphic cameras (see Fig. 1 for a sample output of our
method). In contrast to very recent work on the same topic by Bardow et al. [1], we formulate
our algorithm on an event-basis, avoiding the need to simultaneously estimate the optical
flow. We cast the intensity reconstruction problem as an energy minimisation, where we
model the camera noise in a data term based on the generalised Kullback-Leibler divergence.
The optimisation problem is defined on a manifold induced by the timestamps of new events
(see Fig. 1(c)). We show how to optimise this energy using variational methods and achieve
real-time performance by implementing the energy minimisation on a graphics processing
unit (GPU). We release software to provide live intensity image reconstruction to all users of
DVS cameras1. We believe this will be a vital step towards a wider adoption of this kind of
cameras.

2 Related Work
Neuromorphic or event-based cameras receive increasing interest from the computer vision
community. The low latency compared to traditional cameras make them particularly inter-
esting for tracking rapid camera movement. Also more classical low-level computer vision
problems are transferred to this new domain like optical flow estimation, or image recon-
struction as proposed in this work. In this literature overview we focus on very recent work
that aims to solve computer vision tasks using this new camera paradigm. We begin our
survey with a problem that benefits the most from the temporal resolution of event cameras:
camera pose tracking. Typical simultaneous localisation and mapping (SLAM) methods
need to perform image feature matching to build a map of the environment and localise the
camera within [11]. Having no image to extract features from means, that the vast majority
of visual SLAM algorithms can not be readily applied to event-based data. Milford et al. [19]
show that it is possible to extract features from images that have been created by accumulat-
ing events over time slices of 1000 ms to perform large-scale mapping and localisation with

It may be distributed unchanged freely in print or electronic forms.
1https://github.com/VLOGroup/dvs-reconstruction
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loop-closure. While this is the first system to utilise event cameras for this challenging task,
it trades temporal resolution for the creation of images like Fig. 1(a) to reliably track camera
movement.

A different line of research tries to formulate camera pose updates on an event basis.
Cook et al. [7] propose a biologically inspired network that simultaneously estimates cam-
era rotation, image gradients and intensity information. An indoor application of a robot
navigating in 2D using an event camera that observes the ceiling has been proposed by
Weikersdorfer et al. [26]. They simultaneously estimate a 2D map of events and track the
2D position and orientation of the robot. Similarly, Kim et al. [12] propose a method to
simultaneously estimate the camera rotation around a fixed point and a high-quality intensity
image only from the event stream. A particle filter is used to integrate the events and allow
a reconstruction of the image gradients, which can then be used to reconstruct an intensity
image by Poisson editing. All methods are limited to 3 DOF of camera movement. A full
camera tracking has been shown in [20, 21] for rapid movement of an UAV with respect to a
known 2D target and in [9] for a known 3D map of the environment.

Benosman et al. [3] tackle the problem of estimating optical flow from an event stream.
This work inspired our use of an event manifold to formulate the intensity image recon-
struction problem. They recover a motion field by clustering events that are spatially and
temporally close. The motion field is found by locally fitting planes into the event manifold.
In experiments they show that flow estimation works especially well for low-textured scenes
with sharp edges, but still has problems for more natural looking scenes. Very recently, the
first methods for estimating intensity information from event cameras without the need to
recover the camera movement have been proposed. Barua et al. [2] use a dictionary learning
approach to map the sparse, accumulated event information to infer image gradients. Those
are then used in a Poisson reconstruction to recover the log-intensities. Bardow et al. [1] pro-
posed a method to simultaneously recover an intensity image and dense optical flow from the
event stream of a neuromorphic camera. The method does not require to estimate the camera
movement and scene characteristics to reconstruct intensity images. In a variational energy
minimisation framework, they concurrently recover optical flow and image intensities within
a time window. They show that optical flow is necessary to recover sharp image edges espe-
cially for fast movements in the image. In contrast, in this work we show that intensities can
also be recovered without explicitly estimating the optical flow. This leads to a substantial
reduction of complexity: In our current implementation, we are able to reconstruct > 500
frames per second. While the method is defined on a per-event-basis, we can process blocks
of events without loss in image quality. We are therefore able to provide a true live-preview
to users of a neuromorphic camera.

3 Image Reconstruction from Sparse Events

We have given a time sequence of events (en)N
n=1 from a neuromorphic camera, where en =

{xn,yn,θ n, tn} is a single event consisting of the pixel coordinates (xn,yn) ∈ Ω ⊂ R2, the
polarity θ n ∈ {−1,1} and a monotonically increasing timestamp tn.

A positive θ n indicates that at the corresponding pixel the intensity has increased by a
certain threshold ∆+ > 0 in the log-intensity space. Vice versa, a negative θ n indicates a
drop in intensity by a second threshold ∆− > 0. Our aim is now to reconstruct an intensity
image un : Ω→ R+ by integrating the intensity changes indicated by the events over time.
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Taking the exp(·), the update in intensity space caused by one event en can be written as

f n(xn,yn) = un−1(xn,yn) ·

{
c1 if θ n > 0
c2 if θ n < 0

, (1)

where c1 = exp(∆+), c2 = exp(−∆−). Starting from a known u0 and assuming no noise, this
integration procedure will reconstruct a perfect image (up to the radiometric discretisation
caused by ∆±). However, since the events stem from real camera hardware, there is noise in
the events. Also the initial intensity image u0 is unknown and can not be reconstructed from
events alone. Therefore the reconstruction of un from f n can not be solved without imposing
some regularity in the solution. We therefore formulate the intensity image reconstruction
problem as the solution of the optimisation problem

un = argmin
u∈C1(Ω,R+)

[E(u) = D(u, f n)+R(u)] , (2)

where D(u, f n) is a data term that models the camera noise and R(u) is a regularisation term
that enforces some smoothness in the solution. In the following section we will show how
we can utilise the timestamps of the events to define a manifold which guides a variational
model and detail our specific choices for data term and regularisation.

3.1 Variational Model on the Event Manifold
Moving edges in the image cause events once a change in logarithmic intensity is bigger
than a threshold. The collection of all events (en)N

n=1 can be recorded in a spatiotemporal
volume V ⊂Ω×T . V is very sparsely populated, which makes it infeasible to directly store
it. To alleviate this problem, Bardow et al. [1] operate on events in a fixed time window
that is sliding along the time axis of V . They simultaneously optimise for optical flow and
intensities, which are tightly coupled in this volumetric representation.

Regularisation Term As in [3], we observe that events lie on a lower-dimensional mani-
fold within V , defined by the most recent timestamp for each pixel (x,y)∈Ω. A visualisation
of this manifold for a real-world scene can be seen in Fig. 1(c). Benosman et al. [3] fittingly
call this manifold the surface of active events. We propose to incorporate the surface of ac-
tive events into our method by formulating the optimisation directly on the manifold. Our
intuition is, that parts of the scene that have no or little texture will not produce as many
events as highly textured areas. Regularising an image reconstructed from the events should
take into account the different “time history” of pixels. In particular, we would like to have
strong regularisation across pixels that stem from events at approximately the same time,
whereas regularisation between pixels whose events have very different timestamps should
be reduced. This corresponds to a grouping of pixels in the time domain, based on the times-
tamps of the recorded events. Solving computer vision problems on a surface is also known
as intrinsic image processing [14], as it involves the intrinsic (i.e. coordinate-free) geometry
of the surface, a topic studied by the field of differential geometry. Looking at the body of
literature on intrinsic image processing on surfaces, we can divide previous work into two
approaches based on the representation of the surface. Implicit approaches [6, 13] use an
implicit surface (e.g. through the zero level set of a function), whereas explicit approaches
[18, 24] construct a triangular mesh representation. Our method uses the same underlying
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theory of differential geometry, however we note that because the surface of active events is
defined by the timestamps which are monotonically increasing, the class of surfaces is effec-
tively restricted to 2 1

2 D. This means that there exists a simple parameterisation of the surface
and we can perform all computations in a local euclidean coordinate frame (i.e. the image
domain Ω). In contrast to [14], where the authors deal with arbitrary surfaces, we avoid the
need to explicitly construct a representation of the surface. This has the advantage that we
can straightforwardly make use of GPU-accelerated algorithms to solve the large-scale op-
timisation problem. A similar approach was proposed recently in the context of variational
stereo [10].

We start by defining the surface S ⊂ R3 as the graph of a scalar function t(x,y) through
the mapping ϕ : Ω→ S

X = ϕ(x,y) =
[
x, y, t(x,y)

]T
, (3)

where X ∈ S denotes a 3D-point on the surface. t(x,y) is simply an image that records for
each pixel (x,y) the time since the last event. The partial derivatives of the parameterisation
ϕ define a basis for the tangent space TXM at each point X of the manifoldM, and the dot
product in this tangent space gives the metric of the manifold. In particular, the metric tensor
is defined as the symmetric 2×2 matrix

g =

[
〈ϕx,ϕx〉 〈ϕx,ϕy〉
〈ϕx,ϕy〉 〈ϕy,ϕy〉

]
, (4)

where subscripts denote partial derivatives and 〈·, ·〉 denotes the scalar product. Starting
from the definition of the parameterisation Eqn. (3), straightforward calculation gives ϕx =[
1 0 tx

]T
, ϕy =

[
0 1 ty

]T and

g =

[
1+ t2

x txty
txty 1+ t2

y

]
(5a)

g−1 =
1
G

[
1+ t2

y −txty
−txty 1+ t2

x

]
, (5b)

where G = det(g).
Given a smooth function f̃ ∈C1(S,R) on the manifold, the gradient of f̃ is characterised

by d f̃ (Y ) = 〈∇g f̃ ,Y 〉g ∀Y ∈ TXM [16]. We will use the notation ∇g f̃ to emphasise the
fact that we take the gradient of a function defined on the surface (i.e. under the metric of
the manifold). ∇g f̃ can be expressed in local coordinates as

∇g f̃ =
(
g11 f̃x +g12 f̃y

)
ϕx +

(
g21 f̃x +g22 f̃y

)
ϕy, (6)

where gi j, i, j = 1,2 denotes the components of the inverse of g (the so-called pull-back). In-
serting g−1 into Eqn. (6) gives an expression for the gradient of a function f̃ on the manifold
in local coordinates

∇g f̃ =
1
G

[((
1+ t2

y
)

f̃x− txty f̃y
)[

1 0 tx
]T

+
((

1+ t2
x
)

f̃y− txty f̃x
)[

0 1 ty
]T ]

. (7)

Equipped with these definitions, we are ready to define our regularisation term. It will be a
variant of the total variation (TV) norm insofar that we take the norm of the gradient of f̃ on
the manifold

TVg( f̃ ) =
∫

S
|∇g f̃ |ds. (8)
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(a) Flat surface (b) Ramp surface (c) Sine surface

Figure 2: ROF denoising on different manifolds. A flat surface (a) gives the same result
as standard ROF denoising, but more complicated surfaces (b)(c) significantly change the
result. The graph function t(x,y) is depicted in the upper right corner. We can see that a
ramp surface (b) produces regularisation anisotropy due to the fact that the surface gradient
is zero in y-direction but non-zero in x-direction. The same is true for the sine surface (c),
where we can see strong regularisation along level sets of the surface and less regularisation
across level sets.

It is easy to see that if we have t(x,y) = const, then g is the 2×2 identity matrix and TVg( f̃ )
reduces to the standard TV. Also note that in the definition of the TVg we integrate over the
surface. Since our goal is to formulate everything in local coordinates, we relate integration
over S and integration over Ω using the pull-back∫

S
|∇g f̃ |ds =

∫
Ω

|∇g f̃ |
√

Gdxdy, (9)

where
√

G is the differential area element that links distortion of the surface element ds to
local coordinates dxdy. In the same spirit, we can pull back the data term defined on the man-
ifold to the local coordinate domain Ω. In contrast to the method of Graber et al. [10] which
uses the differential area element as regularization term, we formulate the full variational
model on the manifold, thus incorporating spatial as well as temporal information.

To assess the effect of TVg as a regularisation term, we depict in Fig. 2 results of the
following variant of the ROF denoising model [23]

min
u

∫
Ω

|∇gu|
√

G+ λ

2 |u− f |
√

Gdxdy, (10)

with different t(x,y), i.e. ROF-denoising on different manifolds. We see that computing the
TV norm on the manifold can be interpreted as introducing anisotropy based on the surface
geometry (see Fig. 2(b),2(c)). We will use this to guide regularisation of the reconstructed
image according to the surface defined by the event time.

Data Term The data term D(u, f n) encodes the deviation of u from the noisy measurement
f n Eqn. (1). Under the reasonable assumption that a neuromorphic camera sensor suffers
from the same noise as a conventional sensor, the measured update caused by one event
will contain noise. In computer vision, a widespread approach is to model image noise as
zero-mean additive Gaussian. While this simple model is sufficient for many applications,
real sensor noise is dependent on scene brightness and should be modelled as a Poisson
distribution [22]. We therefore define our data term as

D(u, f n) := λ

∫
S
(u− f n logu)ds = λ

∫
Ω

(u− f n logu)
√

Gdxdy s.t. u(x,y) ∈ [umin,umax]

(11)
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whose minimiser is known to be the correct ML-estimate under the assumption of Poisson-
distributed noise between u and f n [15]. Note that, in contrast to [10], we also define the data
term to lie on the manifold. Eqn. (11) is also known as generalised Kullback-Leibler diver-
gence and has been investigated by Steidl and Teuber [25] in variational image restoration
methods. Furthermore, the data term is convex, which makes it easy to incorporate into our
variational energy minimisation framework. We restrict the range of u(x,y) ∈ [umin,umax]
since our reconstruction problem is defined up to a gray value offset caused by the unknown
initial image intensities.

Discrete Energy In the discrete setting, we represent images of size M×M as matrices
in RM×M with indices (i, j) = 1 . . .M. Derivatives are represented as linear maps Lx,Ly :
RM×M→RM×M , which are simple first order finite difference approximations of the deriva-
tive in x- and y-direction [4]. The discrete version of ∇g, defined in Eqn. (7), can then be
represented as a linear map Lg : RM×M → RM×M×3 that acts on u as follows

(Lgu)i j1 =
1

Gi j

(
(1+(Lyt)2

i j)(Lxu)i j− (Lxt)i j(Lyt)i j(Lyu)i j
)

(Lgu)i j2 =
1

Gi j

(
(1+(Lxt)2

i j)(Lyu)i j− (Lxt)i j(Lyt)i j(Lxu)i j
)

(Lgu)i j3 =
1

Gi j
((Lxt)i j(Lxu)i j +(Lyt)i j(Lyu)i j)

Here, G ∈RM×M is the pixel-wise determinant of g given by Gi j = 1+(Lxt)2
i j +(Lyt)2

i j. The
discrete data term follows from Eqn. (11) as D(u, f n) := λ ∑i, j(ui j− f n

i j logui j)
√

Gi j. This
yields the complete discrete energy

min
u
‖Lgu‖g +λ ∑

i, j

(
ui j− f n

i j logui j
)√

Gi j s.t. ui j ∈ [umin,umax], (13)

with the g-tensor norm defined as ‖A‖g = ∑i, j
√

Gi j ∑l(Ai jl)2 ∀A ∈ RM×M×3.

3.2 Minimising the Energy
We minimise (13) using the Primal-Dual algorithm [5]. Dualising the g-tensor norm yields
the primal-dual formulation

min
u

max
p

[
D(u, f n)+ 〈Lgu, p〉−R∗(p)

]
, (14)

where u ∈ RM×M is the discrete image, p ∈ RM×M×3 is the dual variable and R∗ denotes the
convex conjugate of the g-tensor norm. A solution of Eqn. (14) is obtained by iterating

uk+1 =(I + τ∂D)−1(uk− τL∗g pk)

pk+1 =(I +σ∂R∗)−1(pk +σLg(2uk+1−uk)),

where L∗g denotes the adjoint operator of Lg. The proximal maps for the data term and the
regularisation term can be solved in closed form, leading to the following update rules

û = proxτD(ū) ⇔ ûi j = clamp
umin,umax

(
1
2

(
ūi j−βi j +

√
(ūi j−βi j)

2 +4βi j f n
i j

))
p̂ = proxσR∗(p̄) ⇔ p̂i jl =

p̄i jl

max{1,‖p̄i j,·‖/
√

Gi j}
,

Citation
Citation
{Le, Chartrand, and Asaki} 2007

Citation
Citation
{Graber, Balzer, Soatto, and Pock} 2015

Citation
Citation
{Steidl and Teuber} 2010

Citation
Citation
{Chambolle} 2004

Citation
Citation
{Chambolle and Pock} 2011



8 REINBACHER et al.: REAL-TIME IMAGE RECONSTRUCTION FOR EVENT CAMERAS

with βi j = τλ
√

Gi j. The time-steps τ,σ are set according to τσ ≤ 1/‖Lg‖2, where we estimate
the operator norm as ‖Lg‖2 ≤ 8+ 4

√
2. Since the updates are pixel-wise independent, the

algorithm can be efficiently parallelised on GPUs. Moreover, due to the low number of
events added in each step, the algorithm usually converges in k ≤ 50 iterations.

4 Experiments
We perform our experiments using a DVS128 camera with a spatial resolution of 128×128
and a temporal resolution of 1 µs. The parameter λ is kept fixed for all experiments. The
thresholds ∆+,∆− are set according to the chosen camera settings. In practice, the times-
tamps of the recorded events can not be used directly as the manifold defined in Section 3.1
due to noise. We therefore denoise the timestamps with a few iterations of a TV-L1 denoising
method. We compare our method to the recently proposed method of [1] on sequences pro-
vided by the authors. Furthermore, we will show the influence of the proposed regularisation
on the event manifold using a few self-recorded sequences.

4.1 Timing
In this work we aim for a real-time reconstruction method. We implemented the proposed
method in C++ and used a Linux computer with a 3.4 GHz processor and a NVidia Titan X
GPU2. Using this setup we measure a wall clock time of 1.7 ms to create one single image,
which amounts to ≈ 580 fps. While we can create a new image for each new event, this
would create a tremendous amount of images due to the number of events (≈ 500.000 per
second on natural scenes with moderate camera movement). Furthermore one is limited
by the monitor refresh rate of 60 Hz to actually display the images. In order to achieve
real-time performance, one has two parameters: the number of events that are integrated
into one image and the number of frames skipped for display on screen. The results in the
following sections have been achieved by accumulating 500 events to produce one image,
which amounts to a time resolution of 3-5 ms.

4.2 Influence of the Event Manifold
We have captured a few sequences around our office with a DVS128 camera. In Fig. 3 we
show a few reconstructed images as well as the raw input events and the time manifold. For
comparison, we switched off the manifold regularisation (by setting t(x,y) = const), which
results in images with notably less contrast.

4.3 Comparison to Related Methods
In this section we compare our reconstruction method to the method proposed by Bardow
et al. [1]. The authors kindly provided us with the recorded raw events, as well as inten-
sity image reconstructions at regular timestamps δ t = 15ms. Since we process shorter event
packets, we search for the nearest neighbour timestamp for each image of [1] in our se-
quences. We visually compare our method on the sequences face, jumping jack and ball to

2We note that the small image size of 128× 128 is not enough to fully load the GPU such that we measured
almost the same wall clock time on a NVidia 780 GTX Ti.
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Figure 3: Sample results from our method. The columns depict raw events, time manifold,
result without manifold regularisation and finally with our manifold regularisation. Notice
the increased contrast in weakly textured regions (especially around the edge of the monitor).

the results of [1]. We point out that no ground truth data is available so we are limited to
purely qualitative comparisons.

In Fig. 4 we show a few images from the sequences. Since we are dealing with highly
dynamic data, we point the reader to the included supplementary video3 which shows whole
sequences of several hundred frames.

Figure 4: Comparison to the method of [1]. The first row shows the raw input events that
have been used for both methods. The second row depicts the results of Bardow et al., and
the last row shows our result. We can see that out method produces more details (e.g. face,
beard) as well as more graceful gray value variations in untextured areas, where [1] tends to
produce a single gray value.

4.4 Comparison to Standard Cameras
We have captured a sequence using a DVS128 camera as well as a Canon EOS60D DSLR
camera to compare the fundamental differences of traditional cameras and event-based cam-
eras. As already pointed out by [1], rapid movement results in motion blur for conventional

3https://www.youtube.com/watch?v=rvB2URrGT94
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cameras, while event-based cameras show no such effects. Also the dynamic range of a DVS
is much higher, which is also shown in Fig. 5.

Figure 5: Comparison to a video captured with a modern DSLR camera. Notice the rather
strong motion blue in the images of the DSLR (top row), whereas the DVS camera can easily
deal with fast camera or object movement (bottom row).

5 Conclusion
In this paper we have proposed a method to recover intensity images from neuromorphic
or event cameras in real-time. We cast this problem as an iterative filtering of incoming
events in a variational denoising framework. We propose to utilise a manifold that is induced
by the timestamps of the events to guide the image restoration process. This allows us to
incorporate information about the relative ordering of incoming pixel information without
explicitly estimating optical flow like in previous works. This in turn enables an efficient
algorithm that can run in real-time on currently available PCs.

Future work will include the study of the proper noise characteristic of event cameras.
While the current model produces natural-looking intensity images, a few noisy pixels appear
that indicate a still non-optimal treatment of sensor noise within our framework. Also it
might be beneficial to look into a local minimisation of the energy on the manifold (e.g. by
coordinate-descent) to further increase the processing speed.
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