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1 INTRODUCTION

The philosophy of space-time methods is, to treat the time direction as an addi-
tional spatial coordinate. For the numerical solution of time dependent problems
we therefore have to discretize the problem in the space-time domain or on so
called space-time slabs. A simple way to derive a space-time method is, to use
a standard finite element discretization in space combined with a discontinuous
Galerkin time stepping scheme in time. This leads to a discretization scheme,
where the space-time domain is decomposed by tensor product space-time ele-
ments. For this type of space-time methods a global time step size with respect to
the spatial discretization is used. Such methods have been applied and analyzed
for several problems in [24,25,27,49,50,77,78,97,105]. Space-time methods based
on other discretization schemes, like least square methods are considered for ex-
ample in [10,60,65,92-95] and wavelet space-time methods have been studied for
example in [2,37,84].

In this work we will focus on space-time discretization schemes based on discontin-
uous Galerkin methods [36,48,52,66,67,91,100,104]. The original discontinuous
Galerkin method was introduced in [75] to solve the neutron transport equation.
Here we will apply an interior penalty approach in space [5,9,79], and an upwind
technique in time [86,97]. This results in a flexible method, where almost arbi-
trary space-time elements can be used for the decomposition of the space-time
domain.

One big advantage of space-time methods is, that they can treat moving domains
in a natural way, because the moving boundary is continuously given with respect
to time and therefore no projections between two different deformed meshes have
to be computed. This allows the construction of conservative methods in space
and time. In [92-95] least square space-time methods are used to solve flow
problems for moving domains, whereas discontinuous Galerkin methods are used
in [52,100].

Another big advantage of space-time methods is, that it is possible to apply lo-
cal refinements in the space-time domain to resolve the local behaviour of the
exact solution. Such local singularities may occur when problems with moving
boundaries have to be solved or when problems with non-linearities are consid-
ered, like it is the case for flow problems. In [2,6,37,76,84] adaptive wavelet
space-time methods are considered for parabolic problems and in [26,62] discon-
tinuous Galerkin methods based on tensor product space-time elements are used
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for an adaptive space-time approach. For hyperbolic problems adaptive discon-
tinuous Galerkin methods are applied in [1,15,96] where unstructured space-time
elements are used to resolve the moving shock fronts.

For discontinuous Galerkin methods it is possible to derive hybrid methods by
introducing additional Lagrange multipliers on the sceleton of the mesh or on the
interface between different subdomains to couple the local degrees of freedom,
see also [17,21,22,68]. In this work we will apply this hybridization technique to
derive a hybrid space-time formulation, which allows to eliminate the local degrees
of freedom on the element level or to apply domain decomposition methods in
space and time.

For space-time decompositions which form so called space-time slabs, we will
derive a multigrid method in space and time for solving the upcoming linear
systems. Multigrid methods for solving parabolic problems were first considered
in [38] and were further developed in [44,45,47,57,101,102,107]. The big ad-
vantage of these methods is, that they can be applied in parallel with respect
to time. Another method to solve time dependent problems parallel in time is
for example the parareal algorithm, which have been introduced in [55] and has
been analyzed in [7,33,58,59,87]. A lot of applications can be found, for exam-
ple, in [30,31,34,35,80]. Multiple shooting methods [51,71] can be also used in
parallel with respect to time. In this work we will focus on a multigrid approach
which will be analyzed by using the local Fourier mode analysis. This type of
analysis was introduced in [12] and the rigorous analysis was done in [13]. The
local Fourier mode analysis has been used for a large class of problems, see for
example [90,99, 108] and is regarded to special model problems, namely those
with periodic boundary conditions on rectangular domains. For general bound-
ary conditions this type of analysis can be used to study the local behavior of the
two-grid algorithm, therefore it is also called local Fourier mode analysis.

For two-dimensional spatial domains the space-time domain is given by a three-
dimensional object, which can be decomposed in unstructured space-time el-
ements by applying standard three-dimensional meshing tools, like [85]. For
complicated three-dimensional spatial domains, one has to construct a four-
dimensional decomposition of the space-time domain into finite elements. If the
domain is not moving with respect to time, the easiest way to get a space-time
decomposition, is to use tensor product space-time elements. But for moving
three-dimensional spatial domains one has to generate a four-dimensional un-
structured space-time decomposition. In [10] four-dimensional simplex space-time
elements are generated by using the Delaunay method. In [64] unstructured four-
dimensional space-time meshes are generated by using the Tent-Pitcher algorithm
to solve hyperbolic problems in the space-time domain, see also [111].



Outline:

For the heat equation, as a model problem, a discontinuous Galerkin space-time
discretization is introduced in Chapter 2 for unstructured space-time decompo-
sitions. For this model problem an error analysis will be given by showing the
boundedness and the stability of the discontinuous Galerkin method. At the end
of Chapter 2 numerical examples will be given, which confirm the proven error
estimates.

Based on the space-time method of Chapter 2, a hybrid space-time discretization
scheme will be presented in Chapter 3 by subdividing the space-time domain into
non-overlapping subdomains. The equivalent system of linear algebraic equations
of this method allows the use of parallel solution algorithms, as they are used in
domain decomposition methods. Moreover, an error analysis will be given, which
will be confirmed by some numerical examples at the end of Chapter 3.

In Chapter 4 a space-time multigrid method will be introduced, which is based on
the use of space-time slabs. The two-grid cycle of this method will be analyzed
by using the local Fourier mode analysis. First this analysis will be applied to an
ordinary differential equation and the results will be used to analyze the full space-
time two-grid cycle. To show the robustness with respect to the discretization
parameters several numerical examples will be given at the end of Chapter 4.
Moreover, the parallel performance of this approach will be shown at the end of
the chapter.

Applications of this space-time approaches to the Navier-Stokes equations will be
given in Chapter 5. First the discontinuous Galerkin approach will be introduced
and afterwards a hybridization technique will be applied. Numerical examples
will show the expected convergence of this approaches. Moreover, to show the
advantage of this approach, the flow in a two-dimensional pump will be simulated
at the end of Chapter 5.

In the last chapter conclusions will be given and possible future work will be
discussed.
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2 SPACE-TIME DISCRETIZATIONS

In this chapter a space-time discretization for the heat equation, as a model prob-
lem, will be presented and analyzed. This discretization scheme is based on a dis-
continuous Galerkin approach in space and time, see also [66,67]. This approach
allows the use of arbitrary elements in space and time which has advantages when
we have to deal with moving domains or if we need to do local refinements in the
space-time domain. For other discontinuous Galerkin discretization schemes in
space and time, where the discretization is based on so called space-time slabs and
where the finite space-time elements are based on a tensor product structure, see
for example [36,52,91,100,104]. In this work, we will allow unstructered decom-
positions for the space-time domain. Other space-time methods which are not
based on discontinuous Galerkin methods are for example least square methods,
which are considered in [10,60,65,92-95].

Let T >0 be a given simulation end time. For ¢ € [0,7] we consider a bounded
Lipschitz domain Q(¢) C R?, d = 1,2,3 with boundary 0Q =T'p ULy, IpNIy =0.
As a model problem we will study the heat equation

oru(x,t) — Au(x,t) = f(x,1) for (x,t) € Q:=Q x(0,7),
u(x,t)=0 for (x,t) € Xp:=Ip x(0,T), (2.1)
ng(x,t) - Vou(x,t) =gn(x,t)  for (z,1) € Ey:=Iyx (0,T), '
u(x,0) = up(x) for (x,t) € Xy := Q(0) x {0}.

In view of [56, chapter 4] we assume f € Lr(Q), gn € Lo(Zy) and ug € H%(Q(O))
An example for a possible space-time domain Q is given in Figure 2.1(a) for d = 1.
In Section 2.1 the space-time discretization scheme for the model problem (2.1)
will be presented and the numerical analysis for this approach will be given in
Section 2.2. Finally numerical examples will be presented in Section 2.3.

2.1 Discretization

In this section a discrete variational formulation for the model problem (2.1)
will be presented. The idea of this approach is to discretize the time dependent
problem (2.1) in the entire space-time domain Q = Q x (0,7) at once. To do so,
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1 !
A ZT A
7 |
Xp — Q — 2N
‘ > X > X
Zo
(a) Space-time domain Q. (b) Decomposition Ty.

Figure 2.1: Space-time domain Q for d = 1 with a possible decomposition Ty.

we need a decomposition of the space-time domain Q into N € N simplices 7, of

mesh size hy = /|1
N
0="Tv:=\J7.
=1

For d =1 an example for a possible decomposition 7y is given in Figure 2.1(b).
Here we consider the simplest finite elements which are triangles for d = 1, tetra-
hedra for d =2 and pentatopes for d = 3. To avoid additional numerical errors
we assume that the space-time domain Q has a polygonal (d = 1), a polyhedral
(d =2), or a polychoral (d =3) boundary dQ. Otherwise, one has to take the
additional variational crimes into account.

Definition 2.1.1 (Interior facet). Let Ty be a decomposition of the space-time
domain Q into finite elements 1, £ =1,...,N. For two neighboring elements
Tr, Tr € TN the interior facet Iy is given by

I =7 N7y,

if the set Iy forms a d-dimensional manifold. The set of all interior facets of the
decomposition Ty will be denoted by Iy.

To derive a discrete variational formulation for the model problem (2.1), we need
to have the following definitions for a function on an interior facet I;y.

Definition 2.1.2 (Jump, average, upwind). Let I}y € Iy be an interior facet
with the outer unit normal vector ny = (nk’w,nkJ)T with respect to T, and with
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Tk
Iy
Ty n
-~ k
>
Ty

Figure 2.2: Interior facet Iy, with normal vectors n; and ny for d = 1.

the outer unit normal vector my = —ny with respect to Ty, see also Figure 2.2.
For a given function v the jump across the interior facet Iy is defined by

[v]FM (x,t):= V|Tk(w,t) nk—l—vm(:c,t) ny for (x,t) € I}y.
The jump in space direction is given by
[v]rkﬂm (x,1) == vig (2, t) iz + Vg, (2, 1) g e for (1) € L1y
whereas the jump in time direction is defined by
[v]rkm (x,t) =g (x, 1) iy + i, (2, 8) g, for (z,1) € I

The average of a function v on the interior facet Iy is

1
Wy, (@) i= 5 g (@) Fvpg (@,0)] - for (@,1) € Ty,
and the upwind in time direction is given by

Vig (z,t)  for my, >0,
{v};ikpé (x,t):=<¢0 for ny, =0, for (z,t) € I}y
Vig,(z,1)  for ny, <0,
Remark 2.1.3. In Definition 2.1.2 the jumps, averages and upwind values for a

giwen function v on an interior facet Ity are independent from the ordering of the
finite elements T and Ty.

Definition 2.1.4 (Broken Sobolev space). Let Ty be a decomposition of the space-
time domain Q. For s >0 the broken Sobolev space is given by

H(Ty) := {v € Lr(Q) : vy, € H (1) for all 7 € 77\/}
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For a given decomposition 7y of the space-time domain Q into finite elements we
introduce the discrete function space of piecewise polynomials of degree p by

SP(Tn) = {vn € Lr(Q) : Vg, € Pp(1) for all 7, € Ty and v, =0 on p}.

We now assume that we have a classical solution u of the heat equation (2.1). If
we multiply the first equation of (2.1) with a test function v, € S (7y) and apply
integration by parts for the time derivative dyu and the Laplacian Au we end up
with the discrete variational problem:

Find u, € S (Ty) such that
Al vi) = (fvn) o + (o, va) 5, + (&v, Vi) 5, (2.2)
for all v, € S (Tn).
In (2.2) the bilinear form A(-,-) is given by
A(up,vy) := b(up,vy) +a(up, vy), (2.3)

where the bilinear form a(-,-) results from an interior penalty Galerkin approxi-
mation for the Laplacian Au

N
a(u,vi) =Y / Vit (@,1) - Vavp(a,1)d(a,1)
lel./

- Y /<V:c”h>rk[(m 1) Valp, o (®:1)ds(z )
I—I‘cZEINE{é

- Y /[uh]m,m(fﬁ,l)'<V:th>17{g(fE,t)dS(a:,r)
I—I‘cZEINE{é

(o}
Iy TP
Ii€ly kfl_],([

with the average mesh size hy = %(h;ﬁ—hg) for an interior facet I;, and the
stabilization parameter o > 0, which has to be chosen appropriately. In addition
the bilinear form b(-,-) results from an approximation of the time derivative d;u

b(uh,vh Z/uh x,t 8tvh(:c l) x, l —I—/uh x, t Vh(m l)dS(m 1)
(2.5)

+ ¥ [ @0 bl @0dsi,
FkZGINF€

with 7 := Q(T) x {T}.
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Remark 2.1.5. For the bilinear form a(-,-) we use the symmetric interior penalty
Galerkin method, where the penalty parameter ¢ is a positive constant and de-
pends on the polynomial degree p, see also [5,20,79]. As a different stabilization
method, one may use a lifting operator as it is used for the Bassi-Rebay stabiliza-
tion, see [4,5,8, 91].

Remark 2.1.6. By integrating by parts, the bilinear form b(-,-) can be also writ-
ten in the form

N
) = Y, [ dun(@, ). 0)d(@,1) + [, (@.1)dsay
é:]TZ 5

d
= Y [ lualy,, (2,0) (v} (@, 1)ds ()
FMGINE(@

for all uy,vy, € SZ(’Y}V). Note that the downwind value on an interior facet Iy is
given by
vig,(z,t)  for my, >0,
{v}fi’yn (x,1): =10 for ng, =0, for (x,1) € I}y
Vig (z,1)  for my, <0
This alternative representation of the bilinear form b(-,-) can be also derived by
interpreting the time derivative du and the initial condition in the weak sense.

Remark 2.1.7. Let u € H*(Ty) with s > 3 be the exact solution of the model
problem (2.1). Further let u, € SV(Ty) be the solution of the discrete problem
(2.2), then the Galerkin orthogonality

A(u—up,vy) =0 for all v, € S7(Tn) (2.6)

is satisfied. The Galerkin orthogonality can be proven by applying integration by
parts, see also [20, 66, 79].

Remark 2.1.8. Inhomogeneous Dirichlet boundary conditions can be easily im-
posed by an extension or by adding penalty terms, see [79, 91].

Let @;, j=1,...,M be a basis of the discrete function space SV (7y), i.e.

M
ST =span{ @} wp(@,t)= Y ulilgj@.r) for wy € SL(Tw).
j=1

Then the discrete variational problem (2.2) is equivalent to the system of linear
algebraic equations

Ahu = f (27)
with
Ah[l7]] :A((p]7(Pl) and f[l] = <f7 (Pi>Q+ <u07(Pi>Eo + <gN7(pi>EN
fori,j=1,....M.
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2.2 Numerical analysis

In this section the discrete problem (2.2) will be analyzed. First the boundedness
and the stability of the two bilinear forms a(-,-) and b(-,-) will be investigated.
After that, the stability and boundedness of the bilinear form A(-,-) will be proven,
by following the ideas as used in the work [21]. At the end of this section related
error estimates will be given.

First we need to make some assumptions on the triangulation Ty.

Assumption 2.2.1 (Shape regularity). For the family of space-time decomposi-
tions Ty we assume shape reqularity. For the measure of an element boundary
ATy this assumption implies a lower and an upper bound with respect to the mesh
size hy

CR]h? < |81'4| < CthZl for all 7, € Ty.

For the measure of an element Ty we have by definition
|Te| = hg“ for all 7, € Ty.

Assumption 2.2.2 (Local mesh grading). For two neighbouring elements T, 7y €
Tn with interior facet Iy we assume local mesh grading, i.e.

h
&g gh—"gag with ég > 1.
14

This assumption implies also lower and upper bounds for the average mesh size
hyy = %(hk—th)

h .
Ci Sh—kSCG, g S—<c¢G with ¢ > 1.

Lemma 2.2.3 (Inverse inequalities). For any discrete function vy € S} (Ty) there
holds for all interior facets Ity € Iy the inverse inequalities

TR
il () < crlliel® 1Tl 2 [[Vall ) (2.8)
TR
IVavall g, me < e el 17l 2 [Vavall g, g0 (2.9)
—1
Vil ) < cthue il ) - (2.10)

For all tp € Ty there also holds

valler o) < ethy 1allzy (o) (2.11)
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Proof.  The proof of (2.8) and (2.9) can be found in [20]. For the inverse
inequality (2.11) see [20,89]. The proof of the inequality (2.10) can be found
n [110]. For arbitrary simplices see also [106]. n

Remark 2.2.4. The constants of the inverse inequalities (2.8)—(2.11) depend
on the polynomial degree p. For the inequalities (2.8) and (2.9) the constant cy

depend linearly on the polynomial degree p, i.e. c; =cy(p) and for the inequalities
(2.10) and (2.11) we have c; = c;(p?).

Lemma 2.2.5 (Young's inequality). Let x,y € R, then there holds

2

1
xy < x—|— —y°, for any € > 0.

2 2¢e

Proof. The statement of the lemma follows by using the inequality of arithmetic
and geometric means

e (eh) ()

[ex* +e1y?].

| —

In the following we are going to analyze the properties of the bilinear form A(,-).
To do so, we first have to define energy norms with respect to the bilinear form
a(-,-). For a function u € H*(Ty) with s > % we define

2 2 h
ul|q o= |lu||y + hké” Vau
ol = Nluell’s QE«IN Ve >17<f ()

N
2. 2
el '—EZZI IVaulip, gy + La(Tie)]

Felhf

To analyze the bilinear form b(-,-) we will use the following two norms for func-
tions u € H*(Ty) with s > 1

2
ul|n =Y hyl||du + + + H )
| HB E_Zl 10 ”Lz () Ju HZ0 e HZT Fkgze:I Ul Ly(T3e)
u : Wt + ||u||x,. + H
|| Z || ||L2 () || IIET G[ZE:I { }l—l‘cf L, 1"5)

The next lemma will be used to give a bound for the bilinear form af(-,-).
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Lemma 2.2.6. For all u, € S (Ty) there holds the estimate

2
Y hkéH zUh) 1,

<cg Vuy,
it R Z” il

with the constant cx = ck(cr,cG,CR,)-

Proof. For uy, € SZ(77V) we have

2

Z hké” xUp) T :cuh|rk+vccuh\’cg]

Iiely

< Z hké [vauhmH Ly (Ti0)] d+ vauhmH [La(T7e)] }
L€y

h
[La (o)) Z .

Tuely [La(Tie))*

Applying the inverse inequality (2.9) leads to the estimate

< ¥ Tuct il [l 1Vl o 1l Va0l ]
L€l

If we rewrite the sum over all interior facets we get

N
_ —1 2
=Y ¥ Al Vol

I;,Coty

N
= ¥ |ul” ||V:cuh|| 0 Y, hie|Tigl.
=1

r/‘{[GIN
T,Caty

With Assumption 2.2.2 we further obtain the estimate

N
< Yl HVmuhH (mycahe Y, Tl
/=1

Q/EIN
L Coty

N
2 -1 2
< c,cGZ1 [Tl e[0T (I Vaunlly, 4y

The statement of the lemma follows if we use Assumption 2.2.1 and |7/| = h;f“

N
) 2
< c7CcGCeR, g; Hvﬂ?”h”[Lz(T/)]d
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Lemma 2.2.7. The bilinear form a(-,-) as defined in (2.4) is bounded, i.e.
a(u,vp) <5 [lulla lvallas

for all u € H*(Ty) with s > 3 and for all v, € S (Ty) with an h-independent con-
stant ¢§ > 0.

Proof. For a function u € H*(7y) and a function v, € S7(7Ty) we can estimate
the bilinear form a(-,-) by using the Cauchy—Schwarz inequality

) gﬁ Vet o IVl o
+17£’INH @5, [La(7))* i Loz
+17</Z€:INH L e AR P
ndezN hkgH H [v”]”ff’“’ [La(z))

Using the Holder inequality leads to the estimate

N 3
2
g_zl ||Vf””’1||[Lzm>}d]

1 1

N ]
2
E ”Vw“”[Lz(wr’]

Eké 2 2 2 2
L, o I [l
ey O Vot m)]] L/Ez]vhke ey )
— _ l _ _ l
o 2 : hké 2 2
_FME’IN hie | ]sz,m [LZW)]d_ [Twezy © Ve >Fk{ [Lz(fz)]d_
- _ l _ l
(0} 2 2 2 2
_HE’IN hie []Fum [LZ(T‘)]d_ | Tio€Iy hké FH’ [La(7, )]d]

Applying Lemma 2.2.6 to the third term containing the test function v, gives the
stated bound for the bilinear form a(-,-)

< \2max (o1, 1+ ek Hull vl



14 2 Space-time discretizations

Lemma 2.2.8. The bilinear form b(-,-) as given in (2.5) is bounded, i.e.
b(u,vi) < [[ull .l [vallp,

for all u € H*(Ty) with s > 1 and for all vy, € S} (Tn).

Proof. Using the Cauchy—Schwarz inequality and the Holder inequality we end
up with the bound for the bilinear form b(-,-)

N
(u,v) < Z [l 2, () 19Vl 1)+ Nl 2 1Vl 5

S OF N

Li€ln

H Vhlgier| |

>
+ [full 5y lvall 2,

2

N 2 al 2
(Zlhé_ [ul|Z, (2, ;WH@%HLZW)

Y [l O [CA

1 1
2
I €In Ly (1—;‘/)] [E{ZEIN L (H{/)]

< lullp i [1vallp-

In the next lemma we will prove a lower bound for the bilinear form a(-,-).

Lemma 2.2.9. Let 0 > 4cg, with the constant cg from Lemma 2.2.6, then for
the bilinear form a(-,-) as defined in (2.4) there holds the bound from below

alup,up) > = ”“hHA for all u, € S (Ty).
Proof. For a function u; € S¥(Ty) we have by using the definition of a(-,-)

a(uy, 14y) Z||ku,,|| ) / et (@) ], o (1) ds(a
I—I‘Cé‘EINF’

2

+ Z H h]Fk(,

4,
Gety ke (Lo ()]

Applying the Cauchy—Schwarz and the Holder inequality gives the bound

>l =2 ¥ |[(Vatw)p,

u
€Ty [La( é)]d [ h]FM’

* ‘[Lz(fz)]d
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SR i I T
- Ti €Ty =g Tty hie Pl | iy |

By using Lemma 2.2.6 we get the estimate

1
2

. % %
2 ] 2 o 2
>l — 2602 | ¥ Vol | | X ol ]

(=1 ]

€Iy hké [La(7)]

Applying Young's inequality with some € € R, gives

2

>||u,,||2—s]ZV)||V T AEE =
= A Z2h L, (1) h [Lo(7))*

=1 €0 T hie

il

and by using the assumption ¢ > 4cg and € = % the statement of the lemma
follows with

1
> o [l I3.

\S]

Lemma 2.2.10. Let I3y € Iy be an interior facet and uy € SZ(77V). Then the
following relation holds

(i (@.0) il )~ 5 (8], ) = 5 s | (Tl (1))

for all (z,t) € I}y.

Proof. The statement of the lemma easily follows by using the Definition 2.1.2,
see also [66]. u

Lemma 2.2.11. The bilinear form b(-,-) as given in (2.5) is bounded from below
with

b(up,up) >

2
up + ||up + H
L 12 s0) + lnllZ, (5 G[ZE‘,IN o 2@5)]

for all uy € S (Tn).

Proof.  Let u, € S¥(Ty). With the definition of the bilinear form b(-,-) we
have

b(up,up) = Z/uh x,t)dup(x,t)d(x, 1) + H“h”L2 )
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£ ¥ [ @0y, @0ds)
GKEINF ’

Rewriting the first sum and using Gauss‘s theorem we obtain

N
1
==Y [0 @) d@.n) + iz,
(=13,

+ ¥ [ @0y, @.0dse)
GKEINF

:__Z /ng, (1)) (g ) + 1l 7 )
8‘5[

£ ¥ [t @0l @0)dsg)
I—I‘CKEINFK

Summing up over all interior facets and over the boundaries Xy and X7 leads to

1
=5 [l )+l
1
+ L[ i @olln, @ - 5 (], @0 i,
I—I‘JEINF' )
2, we obtain the result of the lemma
by
1 2 2 2
= 5 | lunlly ) + lanllz, ) + Y /}nk,t}([”h]rk[(matw ds(z 1)
FkKGINF
L kl
U 2 s+ s+ E 2
> — | |lu —|— u + .
2 [z TG T el

For 6 > 4ck and uj, € SV (Ty) we can estimate the bilinear form A(-,-) as defined
in (2.3) from below by using Lemma 2.2.9 and Lemma 2.2.11 with

Aluy,uy, up|l5 + ||up + ||up + H Uplr, .
(utns ) = = (N3 4 N7, )+ loenl 17 rk@ze"zN el
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This motivates the definition of the energy norm

ol = N3+ Nl )+ Nl g+ X |l (2.12)

TiyeIn L (l—l‘cf)

If the Dirichlet boundary I'p has non-zero measure |Ip| > 0, then it is easy to see
that
|un|l5g =0 implies wu, =0

for uy € S} (Tn). Therefore the energy norm ||-||5¢ implies a full norm with respect

to the discrete function space S (7y). Hence, for 6 > 4ck, the bilinear form A(-,-)
is elliptic on the space SV (7y) with respect to the energy norm 56, i-e-

Alup,up) > —||uh|| for all uy, € SP(Tw). (2.13)

Since (2.2) is a linear problem in finite dimension, the ellipticity estimate (2.13)
implies the existence and uniqueness of a solution uy, € S;Il) (Tn) of the discrete vari-
ational problem (2.2). In the case of a pure Neumann boundary value problem,
i.e. |Ip| =0, the next theorem guarantees the uniqueness of a discrete solution
up € SF(Ty) of the variational problem (2.2).

Theorem 2.2.12. Let 6 > 4ck, then the bilinear form A(-,-) is injective, i.e. for
up € SV(Ty) the condition

A(up,vp) =0 for all vy € S (Tw)

implies uy = 0.
Proof. Let uj, € S(Ty). The ellipticity estimate (2.13) implies
1
0= Aup, ) > 5 llunll g

and therefore | = 0. Hence we have

lunllse

Vaup i, =0 for all 7 € Ty, up=0o0on XUXr and u,€C(Ty). (2.14)

Testing with the test function v, = duy, € S‘Z (Tn) and using the alternative rep-
resentation of the bilinear form b(-,-) as given in Remark 2.1.6, we have, due to
the properties (2.14), that

0= A(up, duy) = Z ’atuh”l%z(fg)'

This implies that dyupj,, =0 for all 7, € Ty and with (2.14) we conclude that
up =0. |
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With Theorem 2.2.12 we conclude that the discrete variational problem (2.2)
omits a unique solution u; € S§(7y). In view of Theorem 2.2.12 we will use
special test functions with a weighted time derivative to derive a priori error
estimates in some energy norm. To do so, we define the following piecewise linear
weight function.

Definition 2.2.13 (Mesh function). Let h be a piecewise linear function on Ty,
i.e. hg, € P! (7)) for all © € Ty, with the property

C;]hg < h(z,t) <cghy for all (z,t) €Ty and cg>1, (2.15)

then h is called a mesh function.

For a given function u; € S7(7y) and a given mesh function h we define the new
function wy, € SP(Ty) as

Whz, ::EW atuhm S PP(Tg> for all 7, € Ty. (2.16)

The following techniques follow the ideas as used in the work [21].

Lemma 2.2.14. For uy € S (Ty) let wy € S (Tn) be defined as in (2.16). Then
for 6 = (Cg*I —|—2C%CRZCS,)*1 there exists a constant cll’ > 0, which is independent of
the function uy, such that the estimate

2
bt up +Swy) > 8 w5

holds.

Proof. Let u, € S7(7y) be a given discrete function and wy, € S7(7y) be defined
as in (2.16). By using the representation of the bilinear form b(-,-) as given in
Remark 2.1.6 we have

b(uh,wh /atuh x t)wh(m l)d x, l —I—/uh x, l Wh(iL‘ l‘)dS(m )

o

= X[l @) o (@05
FMGINE(@

N
Z/ ) (Qrup(,1)) d(:c,t)-l—/uh(m,t)Wh(fE,t)dS(m,r)
=1 %)

- ¥ / )y () o0 O (1)
FMGINE(@
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With Definition 2.2.13 and by using the Cauchy—Schwarz inequality and the
Holder inequality we obtain the estimates

_ 2
>, ; hollOunl1, ey — l1unll Ly ) 1WAl Ly (54

o [ A

Li€ly

Ly (i)

_ 2
> ' Y hellGrunllZ, iz — lanll Ly ) Wall o s

l 1

2 q 2
~| X |mlg. ol |
€Iy k> LZ(FkZ FkIGIN ke ké)

Now we estimate the function wj; on the boundary Xy. We first sum over all
elements 7, € Ty which are intersecting with the boundary Xy. Then we use the
inverse inequality (2.8) to end up with the estimates

2 2 2 —1 2
Wallz, (s = Z IWhllZo0nz) < ci Z 07| | 7] IWhllZ, (2,
T@ETN T@ETN
ATNZy#0 ATNZy#0

N
-1 2
< Y Aol [zl ™ Iwallzy o)
=

With the shape regularity Assumption 2.2.1 and with the definition of the mesh
function (2.15) we get for |1/ = h?“ the estimate

<CICRthé Hhaf”hHL (%) < cjcw, gzhf”af”h”h (z)*

Next we estimate the downwmd value of wy, on the interior facets Iy € Zy. We
first estimate the downwind value wy, with

down 2 2
oty < E (el + e )

Then we rewrite the sum over the interior facets as the sum over all elements

_Z Z ”Wh”Lzrkz

l Q/EIN
L Coty

By using the inverse estimate (2.8) and the shape regularity Assumption 2.2.1 we
end up with the following estimates

N
2 —1 2
<Y, Y Ldlml ™ wallzy)

] r/‘{/GIN
I, Cdty
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N
-1 2
<ci Y 10Tl |zl willzy e,
(=1

N
2 —1 2
< cjcR, Z hg HWhHLz(Té)'
(=1

Using the definition of wy, see (2.16), we obtain the result

N
2.2 2
< CICR,Cy Z thafuhHLz(Tz)'
(=1

With these estimates we have the following result for the bilinear form b(-,-)
1

N 2
2
b(up,wi) 2 ¢y thllaruhlhz () — unll Ly (sy) [C%CRZC%_ZIhéllaruhlhz(m]

2 : L 2 :
Ly () CICchgthHat”hHLz(’cg) :

=1

| X

T €Ty

Using two times Young's inequality with some €1, & € R results in the estimate

N
_1 2 2 €1 2 &2 2 1 2
= (Cg - CICchgE _CICchgE) K:z:lhg”atuhHLZ(Té) T2, Huh”Lz(Zo)

1 2

Y Z H[”h]r,{bt

282 €Iy Ly (I7e)

Choosing & = & = (ZC%CRZCS)_I we have the estimate

—l N 2
2
g E thaﬂ/thLz (%) — CICR,C g [HuhHLz (Zo) + Z H MLt L (1']‘([)] ’
L€y ’

Combining this estimate with the estimate from Lemma 2.2.11 we have
71
b(uh, up+ 5Wh) >

2
EHuhHLz(ZT)

1
+<5_c%%c )[uuhumw L |l

2
1—/‘(/ EIN L (I_/‘{[)

For cb(8) := %min{l,ch', —2c2cR, g5} we obtain

N
> 8(8) | Y hellohunll ey + a1z
(=1
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2
2
+ [Jun + H “hlr }
lunllz, (2 W;IN lunlr Lo (i)

= cb(8)||unl|3-

By choosing 6 = 6* = (cg*1 —I—ZC%Cchg,)*l we get
1 1
b/ sx .
c{(6")==min{ I, ————— 5 >0,
1(07) 2 { 1+ 2C%CR2C§ }
which completes the proof. [ ]

Lemma 2.2.15. For u, € S (Ty) let the discrete function wy € S5 (Ty) be defined
as in (2.16). Then there holds

willp < c7llunllp, — with cf > 0.

Proof.  Let u; € S(Ty) and wy, € S7(Ty) be defined as in (2.16). Then we
have

2

N
2 2 2 2
ol = Y hellOmnl e+ Iwnll3, + ol + F || 0ol
/=1 Iy €In

Lo(Tie)
The first term can be estimated by using the inverse inequality (2.11)
N

N N
2 2 -1 2 2 —1(|7 2
glhﬁ”atWhHLz(w)Sclgzlhé HWhHLZ(q):CI;he 119 -

Because & is a mesh function we get with (2.15) the estimate
22w 2
<cjcg Y helldunl|, (z,)-
(=1
For the remaining terms we have by using the same arguments as in Lemma

2.2.14

N

2 2 2
||Wh||L2(20UET) - Z ||Wh||L2(8TgZ:0UET) S C%CR2C§ Z héHatuhHLz(T[)
€T, /=1
aT/ﬂ(éoU%T)#@
and
2 <9 2 2
L (ndnell, <2 X [l +bomie iy

Li€ly L €In
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N

2. 2 2
< ZCICRZCg Z hEHatuh”Lz(Tg)‘
(=1

Hence we have

N 2
2
Zhdlatuh”Lzm)] < crcg/ 1+ 3cry|lunl|p,

/=1

lwallg < cregn/ 1+ 3cr,

which completes the proof. [ ]

With Lemma 2.2.14 and Lemma 2.2.15 the following stability estimate for the
bilinear b(-,-) can be proven.

Theorem 2.2.16. For the bilinear form b(-,-) as defined in (2.5) the following
stability estimate holds

b
sup (up,vp)

o > c§llunlly  for alluy € Sh(Tw).
0£v,ES! (Tw) hllB

Proof. TFor uy € 55(77\7) and the special test function vy, = uy + dwy, where
wp, € S7(Tw) is defined as in (2.16) the stability estimate follows by using the
estimate of Lemma 2.2.14 and by using the boundedness estimate of Lemma
2.2.15

sup b(up,vy) S b(up,up+ Swy,) - b(up,up+ Swy)
ormest(T) |valls — lluntwallp — llunllp+ 8lwallg

2
ctllunllz

b
= :Cs||uh||3-
(1+8¢7)||unll

Remark 2.2.17. Let Ty be a decomposition of the intervall (0,T) into finite
elements. With the stability estimate of Theorem 2.2.16 and the boundedness
estimate of Lemma 2.2.8 we have unique solvability of the discrete variational
problem:

Find uy € SV(Ty) such that
b(up,vy) = (f, vh>(0’T) + upvy(0) (2.17)

for all vy, € SV (Tw).
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The unique solution uj, € SZ(77V) describes an approximate solution for the ordi-
nary differential equation

ou(t)= f(t) forte(0,T), u(0) = up.

An error estimate in the energy norm ||u—up||g can be shown by applying standard
techniques. A comprehensive analysis for the discrete problem (2.17) can be found
for example in [97].

Next we combine all the previous estimates to prove a stability and a boundedness
estimate for the bilinear form A(-,-). To do so we define for u € H*(Ty), s > 3 the
following energy norms with respect to the bilinear form A(:,-)

2 2 2
lllpg = llully + llullz,

2 2 2
el = Nl s+ Nl -

Lemma 2.2.18. The bilinear form A(-,-) as given in (2.3) is bounded, i.e.
A(u,vy) < A llullpg . Ivallpe

for all u € H*(Ty) with s > % and for all v, € SY(Ty) with an h-independent con-
stant ¢ > 0.

Proof. By using the boundedness estimates of Lemma 2.2.7 and Lemma 2.2.8
we get the boundedness estimate for the bilinear form A(-,-) with

A(u,vi) = a(u,vi) +bu,vi) < cslull lvalla +ull . llvallp

< max {1,¢5} [[u]lpg . [[vallpg-

Lemma 2.2.19. Let Ty be a quasi-uniform decomposition, i.e. for all Ty € Ty
there holds c;lh <hy <cqh withcg>1 and h > 0. Foruy, € SZ(77V) let the discrete
function wy € ST(Ty) be defined as in (2.16) with the mesh function

- 1 N
h=— hy € R. 2.18
y Lt (2.18)

Then there holds

Iwalla < cfllunlly, — with cf > 0.
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Proof. The function 4 is indeed a mesh function, because the condition that the
decomposition 7Ty is quasi-uniform, i.e. c;h < hy < cg4h, implies for all 7, € Ty

C;lhg <h< chy  with ¢ = cé. (2.19)
Let u, € SV (Ty) and wy, € S (Ty) be defined as in (2.16). Then we have
il Z Vol oot X = 2 (2.20)
S LN A [V |
i U e | 1y

For the first term of (2.20) we have due to the fact, that % is constant

N N
Z ”Vmwh”[sz Z H hatuh H Z Ve atuhH
/=1 /=1

2

With (2.19) we further obtain

N N d
2 2 2 _ 2
Sngzzlh”w’“&f”’“”[u(w]d_C%; ; 190Gyt

With the inverse inequality (2.11) we get the estimate
2N e 2 2 2 v 2
< cgei Y ki Y by 19 unllzy ) = cen X IV atnlli g
(=1 i=1 (=1

For the second term of (2.20) we have for I}y € Iy

[Wh]Fko = Wh|g ke + Wh|g, Mz = (Wh\rk - Whm) Nz

= h, (up|z, — Unjz,) Mhz = 2y Mz,

with zj, := up|g, — up|g,- Hence we have

H[Wh]l"u,w = hHachnk:cH L) = CghkﬁHach"ka [La(Lie)

(L))
For }nk’w} =1, ie. ny, =0 we conclude, that d;z; is exactly the tangential
derivative of z; on the interior facet I;y. Hence we obtain by using the inverse
inequality (2.10)

|oonle|,, o o < cbreldanliymy < cectllonllym,

[Lo(Tke)]

= ||l |,
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For ’nk@’ =0 we clearly have

0= H [Wh]m,w < CgCIH [”h]r,(@:c

‘ [La(Tie))? (Lo (Ti)*

For 0 < }nkm} < 1 we will decompose the derivative d,z; 1y, into a tangential
part and a part containing only space derivatives. To do so, we introduce for
the normal vector n; = (nk’w,nkJ)T with ny 5 = (nkm,...,nk’xd)T the tangential
vectors t; e R4t for i=1,....,d as

ti[d+1]:nk,xia ti[i]:—nkJ, ti[j]:() forj#iandj;éd-i—l.

Because we study the case 0 < }’nk,w} <1 we have ny, # 0 and we can compute

the normalized tangential vectors &; := (n,% xi +n,%t)_%t,-. For the i-th tangential
derivative of z; we then obtain

V- ti = —ny 0,z + i x,0: 2
Hence we have
nk,xﬁtzh :Vzh-ti—i—nk’,&xizh fori=1,...,d.

With this relation we have

2 _ . d
S CéhiIZHach Tk, H[ZLZ(FM)]‘Z = Céhif Y H"k,xiachHiz(m)

i=1

H bl e

d
_ C?Eig Z‘i Hvzh -t + nk,taXiZhHIZJZ(sz)
i=

d
<2 Y | V- il + Imeedezal ) -

i=1
Using the normalized tangentials #; results in
272 ¥~ [ 2 112 2
= 2¢hy Z‘i [(”k,xi +m,)|[Van: tiHLz(Fk@) + H”kJax;ZhHLz(m)} :
1=

Because Vz;,-£; is the tangential derivative of zj, on the interior facet I}, we obtain
by using the inverse inequality (2.10)

d
27
F6 Lk kel + 26500 Vsl

< 2C%C§(1 -I—a’c;] ) H [”h]l"ke,

ol 2 PV
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with the positive constant
Cn = min{‘nkym‘ >0:n; = (nkym,nkJ)T is a normal vector of I}, € Zy} > 0.

Hence we have

[ 2330 +de,) ¥ Tl |
Wh <2cjc,(1+dc, H Up
e T 11210 71)) SR e T )
+2c0 Y hkéHVmZhH Lo(Ti )
I ely
It remains to estimate
) hkéHVa:ZhH <2 ) hy [vauh\kaLz ()] d+H :c”hmHLz (L) ]
I€ly I €ly

With the same techniques as in the proof of Lemma 2.2.6 we obtain the estimate

N
2
< Zc%CGCRz Z Hva’”h”[Lz(w)]"
=1
Overall we have

N
2 2
[wall5 < c}(c§+2chR2) Z HVmuhH[Lz(m]d
/=1
2

22 —1
+2c7cg(1+de, ') Y, = H i [La(Tie)*

ety e

which completes the proof. [ ]

Remark 2.2.20. Note, that the constant c¢{ of the boundedness estimate in
Lemma 2.2.19 depends on the mesh constant c;'. To ensure, that the constant ¢,
is bounded away from zero, i.e. ¢, > co >0 we have to assume, that the space-time
decomposition Ty fulfils an angle condition with respect to time.

Next we will prove a stability estimate for the bilinear form A(-,-). by combining
the estimates from above.

Theorem 2.2.21. Let Ty be a quasi-uniform decomposition and let ¢ > 4ck,
then for the bilinear form A(-,-) the following stability estimate holds

A
sup (up,vn)

|| || > C?HuhHDG fO’f’ all up € SZ(77V)
0v,esh(Ty) IVRIIDG
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Proof. For uy € SZ(’Y}V) we use the special test function v, = uy, + 6wy, where
wp, € SP(Ty) is defined as given in (2.16) with the special mesh function (2.18).
Then we obtain the estimate

Alun,vn) o Alun,up + 8wn)

sup >
oues!(7x) IVrllog — [lun+willpg
_alup,up) + 8a(up, wy) + b(up, up, + 6wy)
[un, + willpg .

By using the boundedness estimate of Lemma 2.2.7 for uy, € S} (Ty) C H*(Ty),
5> %, and the stability estimate of Lemma 2.2.14 with the 0-dependent constant
A (8) = %min{l,Sc;l, 1 —ZC%CRZCS,S} as given in the proof of Lemma 2.2.14 we
have the estimate

L 12 2
Slunlly — 48 llunll o lIwallo + & (8) lunll3
|un + 6wl pg

For discrete functions u, € Sy (Ty) the norm [luy 4, can be estimated by using

Lemma 2.2.6, i.e. |jupl|y, < V1+ck|lunl| 4. By using Lemma 2.2.15 and Lemma
2.2.19, we obtain the estimate

2 2 2
3llunlls — S VT + ke 8llup|ls + ¢} (8) unll

> b
- (141 6)|lunllpg

with ¢} := max{c{,c?}. Further manipulations lead to

2 2
(3 — VT Fere}d)l|unlls +c7(8)lunll3
(1+¢78)lunllpg
S min{l,écg_',l —2c¢5v/1+ckcfd,1 —ZC%CRZC§5}
> S il

By choosing a fixed 6 = 8* as

1 1
0" := min , >0
{ cgl + ZC%Cchg cgl + 2651 +ckcf }
we obtain the stability estimate

A(up,v) _ min{1,8%, "} |
sup > —[lunllpg = & [lunllpe-
0£veS? (Tw) villp 2(1+c46%) s

By using the stability estimate of Theorem 2.2.21 and the boundedness estimate
of Lemma 2.2.18 we can prove an error estimate in the energy norm ||-||pg-
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Theorem 2.2.22. Let Ty be a quasi-uniform decomposition and let u € H*(Ty),
s > %, be the exact solution of the model problem (2.1). For ¢ > 4ck let uy €
SP(Tn) be the solution of the discrete variational problem (2.2). Then the follow-
ing error estimate holds

|u—up|pg < inf |t — za| +—C§\H — 7|
u u 1 u Z u Z, .
hlIDG e (Th hlIDG Cg\ hlIDG,x

Proof. By using the stability estimate of Theorem 2.2.21 we have for any
discrete function z; € S¥(7y) the bound in the energy norm

Az, —up,v
Aan—wlpg < sup A wvn)
0£v,ESH (Tw) villpg

By inserting the exact solution u and by using the Galerkin orthogonality (2.6)
we have

Alu—up — (u—2zp),vp)

= sup
0 €S (Tw) Villpg
Alzy —
_ sup (Zh u, Vh)

0£vESH (Tw) villp

With the boundedness property of Lemma 2.2.18 we get the estimate

|zn — un||pg < ?%H” — ZnllpG -
S

Using the above estimate with the triangle inequality completes the error estimate
of this theorem

lu=unllpg < llu = 2znllpg + llzn = unllpg
< u=zllog + Zllu = zallpg..-

S
|

Lemma 2.2.23. Let Ty be a decomposition of the space-time domain Q. For an
element 7, € Ty let u € H(7y), s >0, be a given function. By Qu € P,(7;) we
denote the local Ly-projection on Ty as

(Qu, Vi) () = (U, VR) 1y (z)) for all v, € PP(7y).

Then the following error estimates for the local Ly-projection hold:
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For s €Ny and 0 < u <s there holds
. e
|u _ Qéu|H“(T[) S Ch?lln{s?p+ } H |M|HS(T€) . (221)

For s € N there holds the Ly-error estimate on the boundary
min{s,p+1}—1
||M_Q€u||L2(aﬂ;€) SChg 2 |M|H5(Tg)’ (2.22)

For s € N with s > 2 the Ly-error on the boundary 9ty for the gradient can be
estimated by

min{s,p+1}—3
1V = Q) 0 < el . (2.23)

Proof. The proofs can be found in [20] for example. n

To prove explicit hA-dependent error estimates we define the global Ly-projection
O7,u € S (Ty) such that

QTN”W = Quu for all 7, € Ty.

Lemma 2.2.24. For u € H*(Ty) with s > 1 the following error estimate in the
energy norm |||, holds

N 2

2min{s,p+1}—2 2

||u—QTNu||ASc[Zhﬁ‘““” J |u|Hsm>] -
/=1

Proof. By using the definition of the energy norm ||-||, we have for u € H*(7y)
2

(Lo (L))

N
(0}
Hu—QTNuHi:KZZIHVQ’(”_QTN”)”[QLZWM” L

- [u - Q77vu]F ), L
G[GIN hké kt5

With the error estimate (2.21) and by using the triangle inequality we have

N
2 2min{s,p+1}-2, 2
<c? ) h el (z,)
(=1

- (02 2 2
+2 — |||lu— Qru + ||lu—Qqu .
GzZE:IN hie [H k ”[Lz(l"ke)]d | H[LZ(FM)]J]

Rewriting the sum over all interior facets as a sum over all elements and by using
Assumption 2.2.2 we get the estimate

2 Al 2min{s,p+1}-2| 2 Al o 2
=c* Y Iy ultpso) T2, X —llu—Qeulliy, i e
=1 ’

L Coty
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N
2 2min{s,p+1}—2 2
<c ;hzmm{”’ 72 uff ”"CG;% = Qetll, 50
=1 ’

Applying the error estimate (2.22) leads to the estimate

2min{s,p+1}—-2
hf

™=

< (1 +20¢g) |t s 2y -

=1

|
Lemma 2.2.25. For u € H*(Ty) with s > 2 the following error estimate in the
energy norm [|-[ 4 , holds
1
2

Al 2min{s,p+1}-2, 2 :
)M/ ulsiey |-
(=1

lu = Oryully,. < ¢

Proof. Using the definition of the norm [|-||4 , with the error estimate of Lemma
2.2.24 and by applying the triangle inequality we get the estimate

2
2
_ + h
||u Q'ﬁvu”A* e — Q77v””A szgfzv MH x (u — Oy )>er [La (T )]
N oo
<@ Y™
=1 '
+ Y T [HVm (= Quan)lIF o+ 1V (= Qu) [ o
Iy

As in the proof of Lemma 2.2.24 we rewrite the sum over all interior facets as a
sum over all elements. By using Assumption 2.2.2 we get

2min{s,p+1}—-2
_szh {wptd)= |u ‘HY () +Z Z hMHV (u QW)”sz(Gz)}d

E 1 I—I‘C[EIN
I CaTy

N N
Z 2min{s,p+1}-2 | 2 2 Ve (u—Quu)|*
< ng—lhgmm{s . |”‘HS(7:4) T 4—lh€H ’ <u o )”[Lz(am}d.

With the error estimate (2.23) we obtain

Al J2mings,p1}-2
(14cc) Z mies,P [l zy)
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Remark 2.2.26. The reqularity assumption u € H(Ty), s > 2, for Lemma 2.2.25
18 needed to estimate the error of the gradients on the interior facets Iy €Iy. This
assumption can be relazed by assuming u € W2(77v) with p € (d+2,2] see [19,109].

Lemma 2.2.27. For u € H*(Ty) with s > 1 the following error estimates in the
energy norms ||-||g and ||-|| g, hold

B—

h?min{s,p+ 1}—1

M=

lu—Qryullg < c sy |

T
~
I
—_

=

lu = O7yullg,. < c |5 (zy)

-y ‘
2min{s,p+1}—1, 2
Z I u

Proof. Let u € H*(7y) with s > 1. We start by estimating the Lp-errors on the
boundary Xy and on the boundary Xr. If we sum over all elements we have

2 2 2
H”—QTN“”LZ(EO)+ H”—QTN””LZ(ET) = Z Hu_Q77Vu|’L2(8‘L'gﬂ(20UET))'
T[GTN

atN(ZoUXr)#0

With the error estimate (2.22) we conclude

=

< Z Ju— Qﬁv“”%z(am

2 Al 2min{s,p+1}—1, 2
<ty H [l s 2y -

Next we will estimate the error of the jump in time direction. Using the triangle
inequality and by rewriting the sum over the interior facets we get the estimates

2
2 2
Z [u—Omyu ]Fkh »(Ti) <2 Z [ QkuHLz(Fké)+HM_QW”L2(FM)
Iy€ln ¢ Fk/EIN
2
_22 Z qu”Lz(Fké)
=1 eIy
ICoy

N
2
<2) [lu—Quullz, -
=1
With the error estimate (2.22) we end up with the estimate

2 N 2min{s,p+1}—1, 2
<22y By |l 55 ()
=
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Using the same techniques as above we can estimate the Lj-error of the upwind
values in time directions

2
2 2
Y |w—onmip| < ¥ [lu—uli )+ lu— el
€Iy 2( k[) Iy
N
2

SZ Z Hu_QwHLz(FM)

{=1 TiyeIy

ICaty

al 2

< Y lu=QuutlF o0,

L

1
2 ) in{s,p+1}—1, 2
min{s,p —
<c Zhé |u|Hs(m.
(=1

With the error estimates above we can now estimate the error of the Ly-projection
O,u in the energy norm ||-||z. By definition we have

2 Al 2 2 N 2min{s,p+1}—1 2
””_QRMHBSEz,lhéHatw_Qﬂ”)HLz(rg)+3C EZlhg ’ |l fs(,) -

By using the error estimate (2.21) for u = 1 we derive the first error estimate of
the lemma

N
2 2min{s,p+1}—1, |2
§4C Zhg |M|H5(‘L'g)'
(=1

For the error in the energy norm |[-|[5, we also use the estimate (2.21) and we
conclude

N N
2 —1 2 2 2min{s,p+1}—1 2
lu = Omullp, < Y 1yt llu— Qeullpyq,) +2¢ Y mpriterety |t s )
= =

Y omi 1}-1
<32 Z h min{s,p+1}—
(=1

2
|l fs ) -

Now it is possible to give a bound of the error in the energy norm ||-||pg for the
discrete solution u, € S (7y) of the variational problem (2.2).

Theorem 2.2.28. Let Ty be a quasi-uniform decomposition and let u € H*(Ty),
s > 2, be the exact solution of the model problem (2.1) and for o > 4ck let
up € Sy (Tw) be the solution of the discrete variational problem (2.2). Then the
following error estimate holds

i 1}-1
= upllpg < ch™ P
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Proof. By applying the estimate of Theorem 2.2.22 and by using the global
Ly-projection Q7 u € S (Ty) we get the estimate

A
le—wplp < inf [||u—Zh||DG+—2||u—Zh||DG*}
2heS! (Tx) cs ’

%
< [Ju— Qrullpg + ?”” - QWVMHDG,*~
S

With Lemmata 2.2.24-2.2.27 we conclude the error estimate

1
2

2 2
= | lu— @rully + 1l — Q3]

CA 2 2 %
+ 2 | lu =0l + lu— Ol
N

oA
< 1+—2)

Sc(l—l—é)
s/ |

The assumption that the decomposition 7Ty is quasi-uniform implies the esti-
mate

1
2

M=

2min{s,p+1}—2
(14 heyhy ™" Pt |”|12L1s(rg)]

I
_

1
2

M=

1

h?min{s,p+1}f2 ‘u‘%—lf(w)]

A .
S CCg (1 _|_ ?%) hmm{s,P-H}—] |M|H5(’77V) )
S

2.3 Numerical examples

In this section numerical examples will be presented which show the performance
of the presented space-time method. The first example shows the convergence
behavior for a regular solution with respect to different polynomial degrees. For
the second and third example the convergence of the space-time method for solu-
tions with singularities will be considered. The third example shows the conver-
gence for higher dimensional problems. In the last example the use of continuous
approximations will be studied and compared with respect to discontinuous ap-
proximations.

In all the numerical examples the estimated order of convergence

coc — log(Hu - uh/HDG) —log(Hu —Uny, HDG>
' log(h¢) —log(he1)
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>
>

(a) Initial triangulation with N = 2. (b) Initial triangulation with N = 4.

Figure 2.3: Two initial space-time meshes.

will be used to compare the experimental results with the theoretical estimates.

Example 2.3.1 (Regular solution). We consider the one dimensional spatial
domain = (0,1) and the simulation interval (0,7) with 7 = 1. On the boundary
Xp =9 x (0,T) we apply homogeneous Dirichlet boundary conditions. The
given data f and uy are chosen such that the solution is given by the regular
function

u(x,t) = cos(mt) sin(7x).

As an initial triangulation for the space-time domain Q = (0,1)? we use two
triangles of the same size, see also Figure 2.3(a). To analyze the convergence
behavior of the presented space-time method we consider a sequence of several
uniform refinement steps. Further we will use different polynomial degrees p €
{1,2,3,4} to compare the numerical results with the analysis of the previous
section. As a stabilization parameter for the space-time method we will use
o = 10p?, where the additional scaling with the polynomial degree comes from
the local inverse inequalities, as mentioned in Remark 2.2.4. The arising linear
systems are solved with the solver package PARDISO, see [82,83].

In Table 2.1-2.2 the numerical errors in the energy norm |ju — uy||pg for differ-
ent polynomial degrees and different uniform mesh refinements are given. The
presented results confirm the numerical analysis presented in Section 2.2. In par-
ticular the numerical results agree with the error estimate of Theorem 2.2.28.
Only for p =4 and for the refinement level 8 the resulting error in the energy
norm is bigger due to round off errors.



2.3 Numerical examples 35
p=1 p=2

level elements dof |lu—upl|pg eoc dof |lu—upl|pg eoc

0 2 2 25100+0 — 6 13885+0 —

1 8 16 1.2482+40 1.01 36 3.7080—1 1.90

2 32 80 6.5025—-1 0.94 168 9.4582—-2 1.97

3 128 352 3.2824—1 0.99 720 2.2839-2 2.05

4 512 1472 1.6442—1 1.00 2976 5.4760—-3 2.06

5 2048 6016 8.2210—2 1.00 | 12096 1.3253—-3 2.05

6 8192 | 24320 4.1089—2 1.00 | 48768 3.2452—4 2.03

7 32768 | 97792 2.0537—2 1.00 | 195840 8.0170—5 2.02

8 131072 | 392192 1.0267—2 1.00 | 784896 1.9914—-5 2.01
Theory: 1.00 2.00

Table 2.1: Numerical results for polynomial degree p =1 and p = 2.
p=3 p=4
level elements dof |lu—upl|pg eoc dof |lu—upl|pg eoc
0 2 12 4.6587—-1 — 20 2.7556—1 -
1 8 64 8.9955-2 2.37 100 1.7229—-2  4.00
2 32 288 1.1065—2 3.02 440 1.0214—-3 4.08
3 128 1216 1.2973—-3 3.09 1840 5.8403—5 4.13
4 512 4992 1.5205—-4 3.09 7520 3.3506—-6 4.12
5 2048 20224 1.8067—-5 3.07 30400 1.9604—-7 4.10
6 8192 81408 2.1840—6 3.05 122240 1.1732—-8 4.06
7 32768 | 326656 2.6767—7 3.03| 490240 7.1379—-10 4.04
8 131072 | 1308672 3.3098—8 3.02 | 1963520 1.1881—10 2.59
Theory: 3.00 4.00

Table 2.2: Numerical results for polynomial degree p =3 and p = 4.
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level  elements dof |lu—upl|pg eoc
0 4 18 3.2689—-1 —
1 16 84 1.3925-1 1.23
2 64 360 9.2011—-2 0.60
3 256 1488 6.2846—-2 0.55
4 1024 6048 4.3657—-2 0.53
5 4096 24384 3.0589-2 0.51
6 16 384 97920 2.1529-2 0.51
7 65 536 392448 1.5188—2 0.50
8 262144 1571328 1.0727—-2 0.50
9 1048576 6288384 7.5806—3 0.50

10 4194304 25159680 5.3587—-3 0.50
Theory: 0.50

Table 2.3: Numerical results for the singular solution I.

Example 2.3.2 (Singular solution I). As in the previous example we consider
the one dimensional spatial domain £ = (0,1) and the simulation interval (0,7)
with T =1. On the boundary Xp = dQ x (0,T) we apply Dirichlet boundary
conditions. The given data f and up and the Dirichlet boundary conditions are
chosen such that the solution is given by the function

1
2

t——= .
x+< 2)]

The exact solution u omits a point singularity at x =0 and ¢t = % Hence the exact
solution is contained in the Sobolev space

u(x,t) =

uc H%_S(Q), for € > 0.

As an initial triangulation for the space-time domain Q = (0,1)* we use four
triangles of same size, see also Figure 2.3(b). As in the previous example we
consider a sequence of several uniform refinement steps. Hence we can apply
Theorem 2.2.28 and we end up with the a priori error estimate

|u—up|lpg < ch%_g |M|H%’£(77v) for p>1and € > 0.
Due to the point singularity we can not expect better convergence rates for higher
polynomial degrees. But to get faster in the asymptotic range we use for our
numerical experiment a uniform polynomial degree p =2. For the stabilization
parameter we use 0 = 40. As before we solve the arising linear systems with the
solver package PARDISO.
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In Table 2.3 the errors in the energy norm |lu—up|lpg are given for different
refinement levels. As predicted from the theory we see the expected order of con-
vergence of eoc = % The convergence rate for singular solutions can be improved
by using adaptive space-time elements as presented in Chapter 6.

Example 2.3.3 (Singular solution II). We again consider the one dimensional
spatial domain © = (0,1) and the simulation interval (0,7) with 7 =1. As in
the first example we apply homogeneous Dirichlet boundary conditions. Now we
consider the exact solution with a line singularity at t =1

u(x,t) = (1—1)%sin(zwx) with a € (0,1).

Due to the line singularity at r =1 the exact solution is contained in the Sobolev
space
1
uc H*27¢(Q) for € > 0.

For the initial triangulation of the space-time domain Q = (0,1)? we again use
the space-time mesh with four triangles as shown in Figure 2.3(b). Again we
apply several uniform refinement steps to estimate the convergence behavior for
the error in the energy norm |u—uyl/pg. We apply the space-time method for
two different choices of the regularity parameter o € {%, %} If we apply the error
estimate of Theorem 2.2.28 to the given exact solution we get

lu—up|pg < ch¥ 2 ¢ |u|H for p>1and € > 0. (2.24)

a+%7€(77v)
As in the previous example we choose a polynomial degree p = 2 to reach the
asymptotic range faster. For the stabilization parameter we again use o = 40.

In Table 2.4 the results for different mesh refinements are given for the regularity
parameter @ = % and a = %. From the error estimate (2.24) we expect a conver-
gence rate of eoc = 0.00 for @ = % and eoc = 0.25 for @ = % In both cases the
numerical results show a better convergence rate as predicted from the theory.
This behavior can be explained by the fact that the exact solution has a line
singularity at = 1. For any time 7 € [0, T] the exact solution u has full regularity
in space. Using Lemma 2.2.27 for uniform meshes, we have the following error
estimate for the Lr-projection

. _1
|t — Ol g+ llu = Qruel g, < h™™ P2 ugl o

Hence we loose only % order in time for the energy error. Since we have full
regularity in space for any time ¢ € [0,T] we do not lose one order for the error
in the energy norm as predicted in Theorem 2.2.28. This additional convergence
rate of % can be observed in Table 2.4. The full algebraic convergences rates can
be obtained by using anistropic mesh refinement, see [3].
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o=0.5 o =0.75
level elements dof | lu—up|pg eoc | |lu—upl|pg eoc
0 4 18 | 5.5930—1 — | 27264 -1 —
1 16 84 | 3.3948—1 0.72 | 9.3966 -2 1.54
2 64 360 | 2.3452—1 0.53 | 4.0622—-2 1.21
3 256 1488 | 1.6766 —1 0.48 | 2.2667 -2 0.84
4 1024 6048 | 1.1994—1 0.48 | 1.3535—-2 0.74
5 4 096 24 384 | 8.5442—-2 0.49 | 8.1292—-3 0.74
6 16384 97920 | 6.0664—2 0.49 | 4.8659—-3 0.74
7 65 536 392448 | 4.2988—-2 0.50 | 2.9040—-3 0.74
8 262144 1571328 | 3.0430—-2 0.50 | 1.7300—-3 0.75
9 1048576 6288384 | 2.1529-2 0.50 | 1.0297—-3 0.75
10 4194304 25159680 | 1.5228—2 0.50 | 6.1256—-4 0.75

Theory: 0.00 0.25

Table 2.4: Numerical results for the singular solution II with regularity parameter
a=0.5and a=0.75.

Example 2.3.4 (Higher dimensions). We consider for the spatial domain the two
and three dimensional unit cube Q = (0,1)?, d = 2,3 with homogeneous Dirichlet
boundary conditions. The simulation interval is chosen to be [0,T] with T = 1.
The given data f and ugy are chosen such that the exact solution is given by

d

u(x,t) = cos(mt) Hsin(itx,-).

i=1

For d = 2 the space-time domain is given by the three dimensional unit cube
Q = (0,1)? which is decomposed into 6 tetrahedrons for the initial triangulation,
see also Figure 2.4(a). For d =3 the space-time domain is given by the four
dimensional unit cube Q = (0, 1)4 which is decomposed into 96 pentatopes of the
same size. A projection of a pentatope is shown in Figure 2.4(b). For details how
to decompose a four dimensional unit cube into pentatopes and how to refine
these four dimensional simplices see [11,32,66,67,72]. These initial triangula-
tions are refined uniformly several times to analyze the convergence behavior of
the presented space-time method. The arising linear systems are solved with a ge-
ometric space-time multigrid method with a relative error reduction of € = 1073.
This multigrid solver is explained in Chapter 4. For p =1 and a stabilization
parameter ¢ = 15 the errors in the energy norm are given in Tables 2.5-2.6. As
predicted from the theory the expected order of convergence can be observed.

Example 2.3.5 (Continuous approximation). In this example we study the pre-
sented space-time method for the case when continuous approximations are used
instead of discontinuous ones. To do so we repeat Example 2.3.1 and Example
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(a) Initial triangulation with N = 6. (b) Four dimensional simplex, pentatope.

Figure 2.4: Three dimensional triangulation and a four dimensional simplex.

level  elements dof ||u—uplpg eoc
0 6 4 19019+0 —
1 48 104 1.3615+0 0.48
2 384 1168 7.7764—1 0.81
3 3072 10784 4.0785—1 0.93
4 24576 92224 2.0889—-1 0.97
5 196 608 761984 1.0607—-1 0.98
6 1572864 6193408 5.3588—2 0.98

7 12582912 49938944 2.6979—-2 0.99
Theory: 1.00

Table 2.5: Numerical results for d = 2.

level elements dof |lu—upl|pg eoc
0 96 192 1.202740 —
1 1536 5376 8.7542—1 0.46
2 24576 104448 5.0831—-1 0.78

3 393216 1818624 2.6943—-1 0.92
4 6291456 30277632 1.3775—1 0.97
Theory: 1.00

Table 2.6: Numerical results for d = 3.
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p=1 p=2
level elements dof |lu—upl|pg eoc dof |lu—upl|pg eoc
0 2 0 21707+0 — 3 1.4015+0 -
8 3 1277940 0.76 15 3.9261—1 1.84
32 15 6.5150—-1 0.97 63 1.1578—1 1.76
128 63 3.1981—-1 1.03 255 3.5071-2 1.72

512 255 1.5736—-1 1.02 1023 1.1148—2 1.65
28| 1023 7.7932—-2 1.01 4095 3.6972—-3 1.59
8192 | 4095 3.8765—2 1.01 16383 1.2616—3 1.55
32768 | 16383 1.9331—-2 1.00| 65535 4.3779—-4 1.53
8 131072 | 65535 9.6519—3 1.00 | 262143 1.5330—4 1.51
Observed: 1.00 1.50

NN R W=

Table 2.7: Numerical results for polynomial degree p =1 and p = 2.

2.3.3 with continuous approximations. According to Example 2.3.1 the results for
different polynomial degrees are presented in Table 2.7-2.8. Here it can be ob-
served, that for odd polynomial degrees the same convergence rates are obtained
when continuous approximations are used instead of discontinuous approxima-
tions. For even polynomial degrees one observes that the convergence rates are
reduced by a factor of % when continuous approximations are used. However the
number of unknowns for the arising linear systems is much smaller for continuouse
approximations.

According to Example 2.3.3 we also compute the errors in the energy norm, when
continuous approximations are used. The results are given in Table 2.9. Here we
obtain, that the order of convergence is also reduced by a factor of % compared
to the discontinuous case. For the regularity parameter o = % the error in the
energy norm is not reduced when the space-time mesh is refined uniformly.

This example shows, that discontinuous approximations are necessary to obtain
the right convergence rates. However, the use of continuous approximations leads

to smaller linear systems which have to be solved.
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p=3 p=4
level elements dof |lu—upl|pg eoc dof |lu—upl|pg eoc
0 2 8 4.8007—1 — 15 2.8608 —1 —
1 8 35 99193-2 227 63 1.7684—-2 4.02
2 32 143 1.1997—-2 3.05 255 1.2267—-3 3.85
3 128 575 1.3506—3 3.15 1023 9.5546—5 3.68
4 512 2303 1.5800—4 3.10 4095 7.8633—-6 3.60
5 2048 9215 1.8981—-5 3.06 16383 6.6826—7 3.56
6 8192 | 36863 2.3199-6 3.03 65535 5.7799—-8 3.53
7 32768 | 147455 2.8651—-7 3.02 262143 4.9009—-9 3.56
8 131072 | 589823 3.5594—8 3.01 | 1048575 1.2465—9 2.87
Observed: 3.00 3.50

Table 2.8: Numerical results for polynomial degree p =3 and p = 4.

o=0.5 o =0.75
level  elements dof | |lu—up|lpg eoc | |lu—upllpg eoc
0 4 716.1358—1 — | 3.1058—1 —
1 16 31 | 3.4246—-1 0.84 | 9.8628—-2 1.65
2 64 127 | 2.3648—1 0.53 | 4.1484—-2 1.25
3 256 511 | 1.8187—1 0.38 | 2.5638—-2 0.69
4 1024 2047 | 1.5262—1 0.25| 1.9305—-2 0.41
5 4096 8191 | 1.3731—-1 0.15 ] 1.5663 -2 0.30
6 16384 32767 | 1.2951—-1 0.08 | 1.3038—2 0.26
7 65 536 131071 | 1.2559—-1 0.04 | 1.0942—-2 0.25
8 262 144 524287 | 1.2365—1 0.02 | 9.2025—-3 0.25
9 1048576 2097151 | 1.2452—-1 0.01 | 7.7428—-3 0.25
10 4194304 8388607 | 1.2406—-1 0.01 | 6.5139—-3 0.25
Observed: 0.00 0.25

Table 2.9: Numerical results for regularity parameter o = 0.5 and o = 0.75.
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3 HYBRID SPACE-TIME DISCRETIZATIONS

In this chapter we will derive a hybrid space-time discretization scheme by using
the space-time method introduced in the previous chapter. In the first section
we will introduce the hybrid discretization scheme by subdividing the space-time
domain into non-overlapping subdomains and we will introduce the finite element
discretization and the corresponding linear system. Moreover, we will discuss
some solution algorithms. In Section 3.2 we will analyze this hybrid formulation
and derive some a priori error estimates. Finally, numerical examples will be
given in Section 3.3, which confirm the proven error estimates of Section 3.2.
The main ideas of this chapter come from [17,21,68].

3.1 Discretization

We introduce a decomposition of the space-time domain Q C R4*t! into non-
overlapping subdomains Q; fori=1,...,P

~

o=\Jo, 0iNQ;j=0 fori#j.
1

~

For this space-time decomposition we define the interface between the space-time

subdomains Q; as
P

=% with 5:=90:\00.

i=1

For each space-time subdomain Q; we introduce a decomposition
N;
— =
0, =Ty =T
(=1

into N; simplices. For these decompositions 7y, we assume the shape regularity
Assumption 2.2.1 and the mesh grading Assumption 2.2.2. If we sum up all
elements of each decomposition 7y, for i=1...,P we obtain a decomposition of
the space-time domain Q

o P

0=T:=U
i=1rgi
43
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into finite elements, with the set of all interior facets Zy. With Zy,, i=1,...,P we
denote the interior facets of the decomposition 7y,. On the interface X we define
the set of all facets

P
Zh = IN\ UINH ie. f: U fkg.
i=1 I;eX,

A possible configuration for d =1 is given in Figure 3.1. On the interface X we
introduce the discrete function space of piecewise polynomials of degree p as

SZ(Z;,) = {‘Lth S L2<2) : ‘Lth“—M € Pp(l—i{g) for all I, € Zh}.

Figure 3.1: Space-time domain decomposition for d = 1 into four subdomains with
interface X.

Using the decomposition 7Ty one can now use the space-time formulation (2.2)
introduced in Chapter 2 to solve for a discrete solution uy € SZ (Twn), hence we
have to solve the following discrete problem:

Find u, € S (Ty) such that
A(up,vi) = (fvn) o + (0, vi) 5, + (8N, Vi) 5 (3.1)

for all v, € S (Ty).

With respect to each space-time subdomain Q; we apply the space-time discretiza-
tion (3.1). To do so, we define for u},v; € S(Ty,) the local bilinear form

AW (uhy vi) o= @ (udy, v},) + b (v},
with the bilinear form

Ni . .
aD v =Y / Vil (1) - Vvl (,1)d (1)
/=1 ;

T
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- Z /<Vmu;‘1>1"k€(w7t)'[vﬂn/w(wvt)ds(a:,t)
I—I‘CKEINZI’I‘(/ ;

_ Z /[”;z]rk@,:c@’t)'<V$V;z>17(/(w’t)ds(w,t)

I—I‘CKEINZI’I‘(/

o

+ Z —_/ [”;Jrk/’w (x,1)- [V;’]Fkbfﬂ <w7t)ds(a:,t)7

l—l‘cf EINi hkgrkf

and with the bilinear form

b (ul, Vi) Z /uh x,1) o, (,1)d(x,1) + / u;l(w,t)v}'l(w,t)ds(myt)
ETﬂaQi

Z / [} @) ], (@) ds (e

I—I‘JEIN[II‘(/

foralli=1,...,P. We also define the local right hand sides

F(i)(";z) = (f, V;-1>Q,< + <”07V;-z>20maQi + <gN’V2>ENﬂaQi,

fori=1,...,P. With these definitions and by using the fact that u;l = up|p, We

can split the bilinear form A(-,-) in a sum over all local bilinear forms A?(-,.)
and into four different coupling parts on the interface X,

P
Ay, vp) = ZA@(M,,,V,,)

_ Z / oUp) Ly (z,1)- [vh]l"k/,w (w,t)dS(mJ)
kaezhrk

- Y / Wy (T:1)  (Vave)p, (2,1)ds g (3.2)
17‘[62"17{,

o
+ ) — | lunlp, o (2:0) - Vhlg, o (1) S ()
Texy, ker

+ ¥ [ @by, @0ds)
kaezhrk’

To reduce the coupling on the interface X we rewrite the four coupling terms.
Following the approach in [17,21,68] we introduce a new variable 4, € S} (Z;) on
the interface X

1
A, (1) := (un)p;, (1) = 3 [uhm(w,t) —i—uhm(:r:,t)} for all (x,t) € I}y.
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In the next definition we introduce the jumps on the interface X between functions
on the interface and function on the space-time subdomains.

Definition 3.1.1 (Hybrid jump). Let I}, € Xy, be a facet on the interface X with
the outer unit normal vector ny = ('rt,rgw,rz;m)T with respect to the element 1. For
a giwen function u € H(Ty), s > 1 and a function A € Ly(X,) the hybrid jump in
space direction for the element Ty is given by

[u/)‘]ark,m (m7t> = [um(m,t) - )’(mvt)] L7 for (d,‘,t) €l ae.
The hybrid jump in time direction for the element Ty is defined as

/Ay, (1) = [um(m,t) —A(@,t)| g, for (z,1) €Ly ae.
For a function u;, € $¥(7y) we now can use the definition of A to rewrite the
jump in space direction on a facet Iy € X,

[Un)p;, o (®1) = Un|g, (T, 1)+ Up g, (T,1) P00 2

= uh“k(m,l)’nk’w-k [21h|17€g(m7t) - uhm(w,t)} LT

(3.3)
=2 [upye, (@, 1) = Ay, (1) g
=2[un/An)pg, o (1)
or by using the other representation
[uh]l"kg,a: (iL‘,t) = uh\fk(mat)nk,w + uh|fg(w7t>n€,w
= [22,;1‘17(5(:12,1‘) — uhm(iL‘,tﬂ N+ uhm(iL‘,t)ng@ (3 4)

i) Aury (o men
= 2{un/Anl gz, 2 (T,1).

With these two representations (3.3) and (3.4) we can express for u, € SV(7Ty)
the jump on a facet Iy € X with the two hybrid jumps. For the second coupling
term in (3.2) we get the following relation

1
unlp, o (T,1) - (Vavi)p, (@,1) = [un]p, . (2.1) - 3 [vahm(%f) +vahm(w,t)]
1 1
=3 nlr, o (®51) - Vavag (x,1) + 5 tn)p;, & (1) - Vavng, (2,1)

= [uh/)’h]a’rk,:c (iL‘,t) ) vah|rk(m7t) + [uh/)‘hbfc@,w (iL‘,t) ’ vah\fg(mvt)'

Using this relation above we can split the sum over the interface facets into the
local sums over the space-time subdomains

Y | linlg o @) (Vi) (@.0)dsa
G[ezhr]‘d
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= % [ [/l 0 @) Vi 1)

kaezhl"
+ [un/ Mgz 00 (1) - Vavi o, (2,1) |dS(2 )
P N;
=YY ¥ [ 0/ M)y (@10) - Va0
i=1/=1 1—]}[6211
T/}/C&T[ ke

If we introduce for the test function v, € SP(7Ty) also a new variable w, € SP(Zy)
on the interface X

1
;uh‘l'j(@(mvt) = <Vh>17([ (mvt) - E [Vh|fk(m7t) +vh\1’k(m7t>} for all (w7t> € 17(47

we can rewrite the first coupling part of (3.2) in the same way

Y [ Vaundp, (@.0)- bl o (@:0)ds(a =
Géezhr

Z Z Z / wuh\’cl 1) [vh/uh]é"c;;,:c (a"?t)ds(:c,t)-

i=1{=1 IeZ,
I, CaT; ’F
Next we will focus on the third coupling part of (3.2). We use the two relations
(3.3) and (3.4) to rewrite the stabilization terms on the interface

[uh]l—]}[,w (ZE,Z) ’ [Vh]l"k/,w (iL‘,t)
= 2y () Wil (2.0) 43 ] (200) - I ()
=2{un/Mlyg o (@,1) - Vi) Uy, o (0,1)

+2[un/ Ml gg, 2 (@,1) - [Vi/ Ui o, o (1)

With this new representation above the third coupling term of (3.2) can be ex-
pressed in the following way

o
Y = [l (@) bl o (@ 0)d5(0
TieXy kél']‘(

20

= ¥ [ [/ Mg @) B b (@.0)
I€5, ker

+un/ M) g, o (1) - i/ Ul g, o (51) | dS ()

P 20
=2 ) Y = [/ Moe o (1) Vh/ Malgei o (1) dS .
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For the fourth coupling part of (3.2), the coupling in time direction, we introduce
a new upwind term between functions on the interface and functions on the local
space-time subdomains.

Definition 3.1.2 (Hybrid upwind). Let I}y € X, be a facet on the interface X
with the outer unit normal vector ny; = (nk@,nk’,)T with respect to the element
T. For a given function u € H*(Ty), s > 1 and a function A € Ly(Xy) the hybrid
upwind in time direction for the element T is given by

um(w,t) for ng; >0,
{u/ﬂ,}gﬂk (x,t):=<0 forng, =0, for (x,t) € I}y
Alx,t)  form,; <O

With this new definition of the hybrid upwind, we reformulate the standard
upwind term in the following way. First we split the upwind in time direction
into two parts

(i () = 5 (B0 (1) 5 (2 ).

Next we use the definition of the upwind term, where we use for the first part
the normal vector of the element 7, and for the second part we use the normal
vector of the element Ty

up|g, (x,t)  for ny, >0, | up|z,(x,t)  for ng; >0,
==40 for ng, =0, + 3 0 for ng; =0,
up|q, (x,t)  for my, <0 up|g, (z,t)  for ny, <O.

Adding and subtracting the interface variable A;, leads to

. Mh|rk($,t> for ng; >0, Mhm(w,f) for ng, >0,
=5 0 for ng;, =0, + 3 0 for ny, =0,
An(,1) for n, <0 An(z,t) for ny, <0

up|g, (x,1) — Ap(z,t)  for my, >0,
+ 3 0 for ny; =0,
up|g,(x,1) — Ap(z,t)  for ny, <O.

With the definition of the hybrid jump we end up with another representation
for the upwind term in time direction

= % {uh/lh}g?;k (IE,I) + % {uh/)th}gl; (.’B,Z‘)
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uhm(w,t) — Ap(z,t)  for ni, >0,
+ 3 0 for ng, =0,
uhm(m,t) - ),h(m,t) for iy < 0.
For a classical, i.e. continuous, solution of the model problem (2.1) we obtain for
an interior facet Iy € X, the relations
AMz,t) = (u)p, (z,1) = upg (x,1) = ug (x,t) for (x,1) € Iy

For the exact solution of (2.1) we therefore have the following representation for
the upwind term in time on an interior facet Iy € X,

{M}FH(ID r)= —{u/l}afk( )+%{u/l}3ﬂé(w,t) for (x,1) € Iy. (3.5)

This motivates to use on the interface X also for the discrete case the represen-
tation (3.5) for the upwind in time direction. Using the same manipulations as
above and replacing the upwind in time direction by (3.5) we replace the fourth
coupling part of (3.2)

Y [l @) bl (@.0)dsie

Fkéezhl’l‘(/

with the coupling term

PN
YY ¥ [ /2 @) /bl (20 ds(0 .

i=1/=1 11DV
I;,CoT, ’F

Now we can define for each space-time subdomain Q; the local bilinear form

()(uh,lh,vh /,Lh Z Z / uh/lh 6‘1 (:D,t) 'vah|r£(w7t)ds(w,t)
=1 Fklezh[l“ '
I;,CoT,

- Z Z /unhré(mat) ) [Vh/uuh]afé,m (w’t>ds(m:t)

{=1 Iyex,
T/}/CQ‘E[

+Z ) 2G/L‘h/’lh lozi (1) - v/ Ml a1l & (®,0)ds(a )
+Z Y [/ MEE @0) b) g (@,0)d5(0

=1 Iex,
L, CoTy ’F

(3.6)
With the local coupling parts (3.6) we are now able to formulate the hybrid
space-time discretization.
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Find uj, € S (Ty) and A, € S7 () such that

FO(uy) (3.7)

=

P
Z |: uhvvh +C()(uh7lh;vh7.uh)i| =

i=1 i

is satisfied for all v, € S¥(Ty) and py, € S7(Z5).

Remark 3.1.3. A solution uy € SY(Ty) of the hybrid formulation (3.7) is in gen-
eral not a solution of the discrete problem (2.2), because in the hybrid formulation
(3.7) a different upwind term in time is used.

1

Remark 3.1.4. In the hybrid formulation (3.7) everything is local with respect to
each space-time subdomain Q;, i=1,...,P. Therefore it is possible to use different
approzimation schemes on different subdomains. Hence this hybrid formulation
allows the coupling of finite element methods with boundary element methods or
the coupling with standard finite difference schemes, like the implicit Fuler time
stepping scheme for example.

Next we introduce the equivalent linear system for the discrete variational prob-
lem (3.7). For each space-time decomposition Ty, i=1,...,P,let @), £=1,...,M;
be a basis of the discrete function space S¥(7Ty,), i.e

M;
i\ Mi i i i i
SP(Tw) =span{@i}," ,  uy(m,0)= Y uf[()gi(w,1) for u, € SV(Tw,).
/=1

Further let y,, n =1,...,Mx be a basis of the discrete function space SZ(Z;,),
ie.

My
SP(Zp) = span{l//n}n 1 Ap(x,t) = Z Azny,(x,t) for Ay € SP(Zp).
n=1

Next we define for each space-time decomposition Ty, i=1,...,P, the local ma-
trices

Ay k. 0):= AV(9]. 0) +¢ V(9] 0:0[.0)  for kt=1,....M;

Agg[k n|:= c(i)(O Vi 0},0) fork=1,....M;and n=1,...,My,
A(zz[m 14 —C()(q)g,O 0, W) form=1,....My and {=1,...,M;
and the local right hand sides

FK:=FD (@)  fork=1,...,M;
For the decomposition of the interface X, we define the matrix

Axy[m,n] Zc (0, ¥; 0,y formn=1,... ,Msy.
i=1
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Then the discrete variational problem (3.7) is equivalent to the system of linear
algebraic equations

| 1 1
Ajp Aly u; fl(z)
' : =1 ] (3.8)
p P P
1 ) A%J ) Agz) 'u,}) f I(P)
AY) AZ) Al Ass) \ag 0

Remark 3.1.5. The linear system (3.8) has the same structure as the linear sys-
tems arising from general domain decomposition approaches, like FETI methods
for example. Therefore the same implementation framework and algorithms can
be used to assemble and solve the linear system (3.8). For an introduction to
domain decomposition methods see [61,73, 74, 98] for example.

In Section 3.2 an ellipticity estimate for the local bilinear forms

AD W u) 4 D (uly, 0,u,0) >0 for all 0 # uly € SP(Ty,) (3.9)
is shown in Theorem 3.2.5. Hence the local matrices A%) are invertible for any
space-time subdomain Q;, i =1,...,P. Therefore we obtain from the global linear
system (3.8) the Schur complement system

@O\ C OO\
ass - Y40 (40) A2 xs = E AL ()5 6o
i=1 i=1
where the local solutions are given by
. N\ —1 . .
w) = (A7) £ -a@As]  fori=1..p (3.11)

The Schur complement system (3.10) is in general non-symmetric, since the model
problem itself is non-symmetric. For the solution of the Schur complement system
(3.10) we can use for example the GMRES method [81,88], where the inversion of
the local matrices AE’,) can be done in parallel either by using a direct approach,
or by a suitable iterative scheme. After solving for the Lagrange multipliers Ay
one can compute the solutions on each space-time subdomain in parallel by using

the equation (3.11).

Remark 3.1.6 (Static condensation). If any element 1y € Ty is assumed to be a
single subdomain Qp, £ =1,...,N, then the Schur complement system (3.10) can
be easily set up by computing the inverse of the small local problems AE’,) ezxactly.
Then the Schur complement system (3.10) preserves also the sparse structure.
With this approach we arrive in a pure hybrid setting where the unknowns of
the Schur complement system (3.10) are located on the element facets Ty. This
approach has advantages for example when higher polynomial ansatz functions are

used. For hybrid methods applied to other model problems see [21,22,54,63,69,70).
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3.2 Numerical analysis

In this section the presented hybrid space-time method will be analyzed. Here
we also assume that Assumption 2.2.1 and Assumption 2.2.2 are satisfied. First
we focus on the local bilinear forms, where we show an ellipticity estimate, which
guarantees unique solvability of the local space-time problems. After that, we
will show an stability estimate for the whole hybrid method. At the end a priori
error estimates in some energy norm will be derived.

With the same arguments as in Chapter 2 it is possible to bound the local bilinear
forms a'¥)(-,-) from above.

Lemma 3.2.1. Let the stabilization parameter be large enough, i.e. ¢ > 4ck.
Further let Ty, be a given space-time decomposition. Then the following estimate

holds

() \V/ H
a u ul u
h h Z H T hH F eI hké i g, (Lo (T
for all ul, € S (Ty;).
Proof. The estimate is a direct consequence of Lemma 2.2.9. [ ]

For the next lemma we define the following sets of interior facets. First we
define the set of all interface facets which belong to the space-time subdomain
decomposition 7Ty,

ZMI:{I—]‘CgEZNIHgCaT]i with Tllcem}
Next we split the set of all interface facets Xy, into two parts. The set

ZQI:{GgEZMInkJZO}

contains all interior facets where the outer unit normal vector ny is pointing to
the future. Furthermore, we define the set

Sy =T e Zn imy <0} = Iy \ Zy

with all interior facets where the outer unit normal vector mny is pointing to the
past. With these sets of interface facets we can give the following lemma.
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Lemma 3.2.2. For the local bilinear forms b(i)(-,-) the following estimate holds

. 2
b( )(Mhauh) HuhHLz XoNdQ;) + HuhHLZ (¥rn9Qy) +17<Z€ZINi H [M;J ! A
1 /0 :
+ EGE;Z [uh/ ]afli’t Ly (Iie)

uh Lt CE l)) ds(a:t)
F"/GENFH

for all ul, € SP(Ty,).

Proof. Let u} € S?(Ty,). Using the definition of the local bilinear form pI(-,)
we have

bl i) = Z /uh @.1) (1) d(, 1) + ||| 0901

[

£ X [ @ [l @0 ds)

I—I‘JEINII']‘(@

Rewriting the first term and applying Gauss‘s theorem leads to
_ a i2
= Z 2% (uj (1)) (’”J)JF H”hHLz(zmaQ,»)

Z [ @0 4], (@.0)ds)

G/EINZH/

Z/ng; uh T t)) dsﬂ?t +HuhHL2 ZTman)

87:[

+ ¥ [ @0 ], @n0dse,)

Q{EINIF/

Now we can reorder the sum over all elements to a sum over all interior facets
and a sum over the boundaries Xy and X7y and we get

= = (14112 00+ 16117 2000 |

l\.)l*-*
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b 8 [R5 16y, ) s

I—I‘MEINZTI‘(/

1
+5 L /!"k,t

D€y,

_% Z /‘nk,f‘([”ﬂm,t (a:,t))zdS(m,;).

Tkt Ezﬁﬂﬁkz

( [u}l] L (w,t))zds(mvt)

Next we use Lemma 2.2.10 and we obtain

1 i 2 i 2
) |:HuhHL2(EoﬁaQi) + H”hHLZ(szaQi)]

1 ; 2
+§ Z /’nk,t ([uh}ﬂw(w,t)) ds ()

I—I‘MEIN[E(@

1 ; 2
b5 X [l ([l 0 @20)) dsie

D€y,

1
5 L [lm

Tee ezﬁfk@

( [u}l] L (w,t))zds(m).

The estimate of this lemma follows by using the inequality ‘nkJ‘ > ‘nkyt‘z

1 12 2 . 2
Z 5 Hu;’lHLz(EoﬂaQ,‘) + Hu;’lHLz(ETﬂaQ,‘) +17{[§ZN1 H [u;l] Iyt LZ(FM)
1 i 10 2
+§E¢eeZZN4 /)l
1 ; 2
-3 y /}ne,z ([uh}rw (:v,t)) dS(z.1)-
E‘éezﬁiﬁce

Analogously to Lemma 2.2.6 we can prove the following lemma.

Lemma 3.2.3. Let ul, € S¥(7Ty,). Then the following estimate holds
Ni _ .
Z Z hkéHVﬂf”ZW

/=1 I1€X),
I;,CoT,

2 _ Ni v 2
Lam X ; Vet e

with a constant cx = ck(cr,cG,CR,)-
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Proof. Let ul € S(7Ty,). Using the inverse inequality (2.9) gives the bound

Z Z hkévauh|Tt Z Z |17<€|‘T€‘_ hkévauhHszf

4>
{=1 Iyex, L)) =1 Iz,
F]}/C&'Té F]}/C&’Cé

With the local mesh grading Assumption 2.2.2 we further get
N e
< cteg Z hy "L’é’
=1

Sc%cG;hZ\afé\\fé\ [

d+1
h€

Applying the shape regularity Assumption 2.2.1 and with |7/ = we obtain

the stated bound of this lemma

) Ni 2
1
< c,CGCIQZ1 [Va | [La(zh)]"
n

Lemma 3.2.4. Let us assume for the stabilization parameter o > 4ck, then the
following estimate holds

N; 2

O (i 0. °

e (uy, 05, 0) > — ;H w”hH ]“‘Fﬁg hkgH[”h/ oga H[Lz(m)}d
+ Z /’nh} “h iyt (z t)> ds (1)
Lz,

for all ul, € SP(Ty,).

Proof. Let u}, € S7(7y,). Using the definition of the bilinear form c(-,0;-,0) we

have
C(i)(l/l;n();uh? __ZZ Z /uh/oafl (w’t)'Vmuh“}:(w’t)ds(w’t)
(=1 1yex, |
T/}/C&T[
20
+Z L - / [14n /Ol (1) - [n /Ol g (2,1) (s
l=1 Ijexy,

F]}/CaT[ Lie
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+ 2 Y [ /O3 @) /0] (1)
=1 Iz, Tiy !
ILycdt, ™

Applying the Cauchy—Schwarz inequality gives the bound

S8 0 R O B L
Zt‘ Q/Z@’fh / o Lo I s (1))
T]}gCa’L‘[
+2 uh 0
Zl e, ke [Olaci (L (L))
Fk[CaT[
2
+ ) /\nz;‘( FZ’I(:I:,I)) ds(z.)-
GZGEN[E{[
Using the Holder inequality leads to the bound
1
2
> -2 uh O
Z] rkfgz,, [Obci | 1, 1
F]}/C&’Cé
I >
NA
’ hkéH 2
X Vuy
t=1 Fk%h o [Ly(Tj))?
T]}gCa’L‘['
N4
i o 2
+2 = |||Uh 0],
K_Z:l Fk;:h hie un/ ]a%’m [La (L))
FkgCaTé
2
+ ) /\nz;‘( A J(:c,t)) ds(z ).
FMGZ:N[FM

Now we can apply Lemma 3.2.3 and we conclude the estimate

1
. 1
2

2 cx Y 5
> -2 uy /0] — V. u 4
o ] AL N W I 55 o R
Fk[CaTé
2
+2 u,/0
Z:l €%, kéH 2 ]af” H[L (L))

F]}/C&TZ
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+ ) /’ngt}( ]%t(mﬁ))zds(w’,).

17([ EEN 11—];'[

Using Young's inequality for some € € R, results in

> S_Z”VﬂfuhH ]

o
2 - 2
< )421 r,;’zh /O 1
Fk[CaT[
2
+ ) /\nz;‘( ]FW(:c,t)> ds(z.)-

Tt EEN 11—];'[

With the assumption ¢ > 4cg and with the choice € = 1 this leads to the statement
of this lemma

1Y :
> —— V., u d + u, /0] 5
45:1H ’ hH[L (=) er;livi kt i/ ]ark’m (L2 (Tie))?
+ L /!"e,t}([ui]r (@) dsa
17"62;1‘17{[
|
For each space-time subdomain Q;, i =1,...,P, we define for a discrete function
uy € SZ(’Y}VZ) the following energy norm
u V,u H
IS W AR s R
+ u
Tie€Zy, it /0 ]afk (L)
L P 7 SRS il 173 PO
hilLy(Z0n9 Q1) Rl Ly (2rn0Q;) nich, hl Lt Lo(I)
. 2
+ H Ml 0 i .
FMEZ&N [ W brk’t Ly (Tie)
This energy norm ||- HHDG corresponds to the energy norm ||-||55 defined in (2.12)

with the difference, that the energy norm |- 6 ; contains the additional terms

o 2

2 .
[Lz(l—;cé)]d and Z [u;’l/o] 8T,i.t

uy, /0
|:h/ ]afk l'l‘céeZNi s Z(I—I‘d)

Ii€2y, hkﬁ
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With this additional term it is easy to see, that the energy norm ||-|| g ; describes

a full norm on the discrete function space S (7y,).

Combining all the lemmata above it is possible to prove the following ellipticity
estimate.

Theorem 3.2.5. Let the stabilization parameter be large enough, i.e. ¢ > 4ck.
Then the following ellipticity estimate holds

(i i D) (i O 1y Ly i
AD ) € 0:1,0) > 11 o,
for all ul, € S (Ty;).

Proof.  Let ul € S¥(7y,). Combining Lemma 3.2.1 with Lemma 3.2.2 and
Lemma 3.2.4 we get the ellipticity estimate of this theorem with

AD (uf ) + ¢ (), 0:, 0) = a(i)(uﬁn uj) +b(i)(u2, uj) +c(i)(u§;,0;u2,0)

S Va2 O )]
- 4421 Thh [LZ(TZ)] F GI hkf Fk[m L2 Fk[ﬂ
o . 2
e ! 0 i
+Fk/€2Ni hie [uh/ ]afk’w (Lo (i)
1 2
2 H hHLz ZoNdQ;) +HuhHL2 ZrnadQ;) +Fk/€Zi.N H hl L Ly (Tke)
—I—l Z [ui /0] ; ’
217([627 W10l Ly,
Z /\"M i, (@ 0) ds(z,)
FkZGENFk[
1
ZHuhHHDGz

Since the energy norm ||-|| - implies a full norm on the discrete function space

HDG,i
S‘Z (Tn;) the ellipticity estimate of Theorem 3.2.5 induces the injectivity of the
local space-time problem (3.11). Hence the discrete local problems are always
uniquely solvable.

According to Lemma 2.2.10 the following lemma shows a similar identity on the
interface X with respect to the hybrid upwind in time.
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Lemma 3.2.6. Let I}y € X}, be an interior facet on the interface, uy € SZ('Y?V) and
Ay € SV (Zy). Then the following identity holds

/b2, (@) 1/ Ml ()
/Y, @) /Bl () — 5 1] (a0
= 2 kel i (o) = AaC0)) | s ) — (1))

for all (z,t) € Ijy.

Proof. Without loss of generality we assume that ng, > 0. Using the definition
of the hybrid upwind we have

{un/ M} 3, (,0) [un/Anl ye, , (1)

/A, @) o/ Rl () 5[] ()

= upjg, (@,1) [t (2,0) = Mp(@,0) | iy + An(, 1) [up)q, (2,0) — Ap(,1) | g
1

1
_5 - (uhm(m,t))zng,,.

(uh\fk(mat))znk,t_ >

With the assumption n; > 0 and some algebraic manipulations we get the state-
ment of the lemma with

= s | (unjo (1)) = || unyg (,0) (1) — ey | An(@, )i, (2, 1)
+ |nes| (An(,1))* — % k| (upg (2,1))7 + % e (upyg (1))
_ % ke [ (e (.00 = 2015 (. 0) A1) + (R .0))?
o+ (g, (@,1))* = 2upj, (@,0) (. ) + (Ma,1))

= % “nk,t‘ (), (1) —Ah(a;,t))2+ || (e, (2,1) —Ah(ac,t))z] ,

For uj, € SV (Ty) and A, € S} (Z;) we define the following energy norm

P p 2
)| v T
I 2l ZZMZH S zzfrkgezi]vi sz[uh]E"“ LT
Ni 2
199D W W5 (LN
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P 2
2 2
+ {|un =+ ||up + Uplr,
lunllz,y () + Nunll (5 ;nﬁgNi [unlr, . L)
PN,
+ /2o
23:1 rkéze’zh Ly (1)
I;yCot

With this energy norm we can prove the following ellipticity estimate.

Theorem 3.2.7. Let uy, € ) (Ty) and A, € S} (Zy). Further we assume, that the
stabilization parameter satisfies ¢ > 4cg. Then the following ellipticity estimate
holds

_ 1
[A(l)(uh,uh)—I—C()(uh,lh,“halh)} _”(uh’lh)HHDG

=

4>

1

~

Proof. Let u, € S)(7y) and A, € S7(X;). Applying Lemma 3.2.1 and by using
the techniques as used in the proof of Lemma 3.2.4 we find the estimate

2

Lo (L))

Ni
Y. Vil it N A [

1 23 i€l hy

- llns o,

i=10=1 Fk/e):h [La(Tig))
P
XY X /A @0 Ml o (@0)ds(e

For the sum over the local bilinear forms b (-,-) we have by definition

PN

zb 1) / (.0 (. 1)(. 1) + s 7,
i= 1€ 1
f

SY T [ @l 0,

i=1 I—HEINJ‘

Applying Gauss's theorem we find, by rewriting the sum over all elements anal-
ogously to Lemma 2.2.11, the estimate

>

P
e+ lnl Fyiry + X X |l

i=1 FkgGINi

N =

Ly (Iip)
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QR )
_ 5 Z Z Z /nﬁ,t (uh(:c,t)) dS(wJ).
i=10=1 Lex,
hucat ¥

With the definition of the jump in time direction we further have

P
2 2
== | |lup + ||un + up
2 H ”L2(20) H HLz(ZT) ;G[EZINI [ ]1—/‘{571‘ Lz(l—];[)
1 2
_5 Z /[uh}r];ht (w,t)dS(myt).
Fkéezhrk[
Combining these two estimates we obtain
P .
Y [A( ) (up, up) +C(’)(uh77th;uh,)~h)]
i=1
1 P N; ) 1 P o 2
S0 LTINS b A
4§2H * ||[L2(Té)]d 2217([6%-1\,' I, [ ]Eké"w Lo (L))

2
[uh/lh]aré,a:

5

i=14=1 Iz, kl [LZ(I—I‘M)}d
T/}[C&TZ

1 ’ 5 P 2
+3 | Il + bl + X T ldril],

1 2
) Z /[”h}l“,cbt(w?t)ds(m,t)

I—I‘cZEEhFM

P N

+Yy / {212, (@.0) /Al (2,10

i=10=1 Iyey,
Fk[C&‘Egricé

Rewriting the sum of the last term leads to the identity
P N; 1 P

1 2 o 2
Sk L Vel a2 L E_MH[””EW

d
i=1 FkZGIN[ [Lz(FkZH

(=
P
+YY X E% H [uh/z’h]afé@H[sz(Ud)}d
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1 P
5 | lnllE iz + Ny + X X | l0alg

i=11;€Ty,

2

Ly (Ie)
1 u
+ ) —5 i), o (@00) + {2} g (0) [ Mg gy (2,1)
I—I‘MEFNI—]‘M )

{2 b (@) 01 2y (1) |
With Lemma 3.2.6 we further obtain

1P%HV ’ 1i26[] 2
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+ }n&,‘ (uhm(w,t) —)l,h(m,l))z]dS(mJ).

The statement of the theorem follows by applying the definition of the hybrid
jump and by summing up over all elements
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Using Theorem 3.2.7 we now can show the injectivity of the discrete variational

problem (3.7).

Theorem 3.2.8. Let the assumptions of Theorem 3.2.7 be fulfilled. If the func-
tion up € S} (Ty) and Ay € S(Xy) satisfy

P
Z[ (tn, v +C()(”h,7th;vhauh)] =0
i=1

for all v, € Sg(ﬁv) and W, € SZ(Z;,), then this implies up, =0 and A, =0

Proof. Let u, € S¥(Ty) and 4, € S} (Z;). The ellipticity estimate of Theorem
3.2.7 implies

P
0— ;[ () 4t Az, )| = 50, 2, > O

and therefore || (up, An) = 0. Hence there holds

e

Va:l/lh“.[ =0 forall Ty € 77\7, up = 0Oon XgUZXyp and up € 6(77\,), (312)

with up x = An. As in the proof of Theorem 2.2.12 we can use an alternative rep-

resentation for the local bilinear forms o) (-,-). Further we use the test function
v, = duuy, € SV (Ty) and the properties (3.12) to derive the identity

N
0= Y |4 Gur. 3+ . 220, 0)| = Y. 3l > 0

i=1

Hence we have dyuy 9, = 0 for all 7, € Ty and with the above properties (3.12)
we conclude that uj, =0. With uy )y = Ay, we also have that A4, =0. [ ]

Theorem 3.2.8 implies that the discrete variational problem (3.7) omits a unique
solution uy, € S§(Ty) and A, € S} (Z;).

Next we will derive a priori error estimates. To do so, we need to introduce
the following two energy norms for functions u € H*(7Ty), s > %, and functions
ALeL, (Eh)

=z

e, A) P = (20,2 s, +

R

Il
o~
Il

j 2
hléHat”HLz(T;),

™~
=z

N
I
—_
~
I
—_

00, A) P = 11 2) |2 +

i\ —1
(hz) H”Hiz(qj)
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2
+Z Y hkéH zU)p,

i=113,€Ty, [La (L))
2
+ hkgHV " .
;):1 %Eh Tl

Fk[CaTé

With respect to these energy norms the following boundedness estimate holds.

Theorem 3.2.9. Let u € H*(Ty), s > 3, and A € Ly(%;). Further let vy, € S} (Ty)
and Wy, € Sy (Zy). Then the boundedness estimate holds

P
Y [0 ) 2w )| < 1102 o0 )l
i=1

Proof. As in Chapter 2, see Lemma 2.2.7 and Lemma 2.2.8 the estimate

follows by using the Cauchy-Schwarz inequality and by applying Lemma 3.2.3
and Lemma 2.2.6. ]

Theorem 3.2.10. Let Ty be a quasi-uniform decomposition and let ¢ > 4cg,
then the following stability estimate holds

Y2 1AD (wyyvi) + D (upy Ans v, 1)

> 51| (un, M) lupg

sup
(0,0) (vt ST (Ta) % ST (Z3) | (Vs ) llapg

for all w, € S (Ty) and A, € S} (Z).

Proof. The stability estimate follows exactly in the same way as the stability
estimate of Theorem 2.2.22. The main difference is the ellipticity estimate, which
is proven in Theorem 3.2.7. [ |

Theorem 3.2.11. Let Ty be a quasi-uniform decomposition and let u € H*(Ty),
s >2, be the ezact solution of the model problem (2.1). Further let uy € S5(Ty)
and Ay € SP(Zp) be the exact solution of the discrete variational problem (3.7)
with ¢ > 4ck. Then the following error estimate in the energy norm holds

== Al <A™ P ]y
Proof. The main ingredients for the proof are the Galerkin orthogonality (2.6),

Theorem 3.2.10 and Theorem 3.2.11 combined with standard arguments as it was
done for the proof of Theorem 2.2.28. [ ]
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3.3 Numerical examples

In this section numerical examples for the presented hybrid space-time discretiza-
tion will be presented to show the performance of this method.

Example 3.3.1. In this example we consider the spatial domains 2 = (0,1)¢ for
d =1,2,3 and the simulation end time 7= 1. Hence the space-time domains are
given by the (d+ 1) unit cubes Q = (0,1)?*!. On the boundary p = 9dQ x (0,T)
we assume homogeneous Dirichlet boundary conditions and the given data f and
uy are chosen such that the exact solutions are given by

d

u(x,t) = cos(mt) Hsin(itx,-).

i=1

Further we decompose the space-time domains Q into several space-time subdo-
mains Q;, i=1,...,P. Where for d =1 we use P =16, for d =2 we use P =24 and
for d =3 we use P = 96 space-time subdomains. For d =1 and d =2 these decom-
positions are shown in Figure 3.2. The initial triangulation for d =1 is given by
32 triangles, by simply using two triangles for each space-time subdomain. For
d = 2,3 the space-time subdomains itself are considered as initial triangulations.
To analyze the convergence behavior of the presented hybrid space-time method
we apply several uniform refinement steps. For the stabilization parameter we
choose 6 = 10p? for the polynomial degrees p € {1,2}.

For the iterative solution of the Schur complement system (3.10) we use the
GMRES method without any preconditioning with a relative error reduction of
egmres = 1078, The local problems Ag), i=1,...,P are solved in parallel by
using the solver package PARDISO or by applying the GMRES method, where
a simple multigrid preconditioner is used.

In Tables 3.1-3.6 the number of required iterations and the errors in the energy
norm ||u —up|lgpg are given. We observe that the number of required iterations
for solving the Schur complement system (3.10) are growing slightly indicating the
need of using an appropriate preconditioner. Further, the expected convergence
rates with respect to the energy norm for linear and quadratic ansatz functions
can be observed.
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(a) Decomposition into P = 16 subdomains. (b) Decomposition into P = 24 subdomains.

Figure 3.2: Space-time decompositions for d =1 and d = 2.

level elements dof up dof Ay ||(u—up,u—2p)|lppg e€oc iter
0 32 80 48 5.9010—-1 — 28
1 128 352 96 2.9501 -1 1.00 38
2 512 1472 192 1.4660 — 1 1.01 50
3 2048 6016 384 7.2877 =2 1.01 65
4 8192 24 320 768 3.6289 -2 1.01 84
5 32768 97792 1536 1.8098 —2 1.00 110
6 131072 392192 3072 9.0362 -3 1.00 135
7 524288 1570816 6144 4.5147 -3 1.00 166
8 2097152 6287360 12288 2.2564 -3 1.00 209

Theory: 1.00

Table 3.1: Numerical results for d =1, p =1 and P = 16 subdomains.
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level  elements dof up, dof Ay |[(u—up,u—2Ap)|lgpg eoc iter
0 32 168 72 9.6081 —2 — 40
1 128 720 144 2.3273 -2 205 58
2 512 2976 288 5.5544 -3 207 76
3 2048 12 096 576 1.3358 -3 206 98
4 8192 48768 1152 3.2540 -4 2.04 116
5 32768 195840 2304 8.0120 -5 2.02 142
6 131072 784896 4608 1.9863 —5 2.01 172
7 524288 3142656 9216 4.9440 -6 2.01 198
8 2097152 12576768 18432 1.2333 -6 2.00 236

Theory: 2.00

Table 3.2: Numerical results for d =1, p =2 and P = 16 subdomains.

level  elements dof up,  dof Ay |[(u—up,u—2Ap)|lypg eoc  iter
0 24 48 108 1.417740 — 25
1 192 576 432 9.1732 -1 0.63 82
2 1536 5376 1728 4.8790 -1 091 127
3 12 288 46 080 6912 2.4827 -1 0.97 209
4 98 304 380928 27648 1.2480 — 1 0.99 365
5 786432 3096576 110592 6.2508 —2 1.00 635
6 6291456 24969216 442368 3.1276 -2 1.00 1075

Theory: 1.00

Table 3.3: Numerical results for d =2, p =1 and P = 24 subdomains.

level elements dofu,  dof Ay ||(u—up,u—A)|lgpg €oc iter
0 24 144 216 6.4591 —1 — 107
1 192 1536 864 1.6417 -1 1.98 273
2 1536 13 824 3456 4.4846 -2 1.87 370
3 12 288 116 736 13824 1.1423 -2 1.97 509
4 98304 958464 55296 2.8653 -3 2.00 746
5 786432 7766016 221184 7.1658 —4 2.00 1125

Theory: 2.00

Table 3.4: Numerical results for d =2, p =2 with P = 24 subdomains.
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level  elements dof uy, dof A ||(u—up,u—Ap)|lgpg €oc iter
0 96 192 768 1.1669+0 — 70
1 1536 5376 6 144 8.2292 — 1 0.50 145
2 24576 104 448 49 152 4.7452 -1 0.79 207
3 393216 1818624 393216 2.5066 — 1 0.92 323
4 6291456 30277632 3145728 1.2797 -1 0.97 551

Theory: 1.00

Table 3.5: Numerical results for d =3, p =1 with P =96 subdomains.

level elements dof up, dof Ay |[(u—up,u—2Ap)|lypg eoc  iter
0 96 720 1920 7.2073 —1 — 391
1 1536 17280 15360 2.5149 —1 1.52 680
2 24576 322560 122880 7.3177 -2 1.78 889
3 393216 5529600 983040 1.9496 —2 1.91 1134

Theory: 2.00

Table 3.6: Numerical results for d =3, p =2 with P =96 subdomains.



4 SPACE-TIME MULTIGRID METHODS

In this chapter a multigrid approach for the space-time discretization (2.2) in-
troduced in Chapter 2 will be presented. Here we assume that the space-time
decompositions form so called space-time slabs. Two examples for space-time
meshes with space-time slabs are given in Figure 4.1 for d = 1.

ForO=fmn<ti<---<ty_1 <ty=T let Ty,, n=1,...,N be the decomposition of
the n-th space-time slab into finite elements, i.e.

U 7, with Qp:=Q X (taei,ta).

€N,

For each space-time slab we consider the discrete function space Si(’ﬁvn) and by
An(-,+) we denote the bilinear form (2.3) with respect to the space-time slab Q,
and the initial boundary X, := Q(#,—1) X {t,—1}. Then the linear system (2.7)
introduced in Chapter 2 is given by the following equations

T,h Ui fl
2,1 2
B, Ag,g % 2
By, Ay, u3 [ =1| f3|. (4.1)
B’;ih AY, N Iy

For n=1,...,N the matrices of (4.1) are given by

A%l 1] = An(9], 0F) for ¢f, @} € S;(Tw,),
By "l ] := (9] k+]>2,,+1 for ¢ € S (Tn,), @™ € 5} (Tw,...)-

Moreover, the vectors on the right hand side of (4.1) are defined as

Falil ==, 07')

With the solution vectors u, for n=1,...,N of the linear system (4.1) we obtain
an approximate solution on each space-time slab Q,,.

0, T (&N, @) 5yna0, for @F €57 (Tw,)-

To solve the linear system (4.1) one can simply apply a forward substitution
with respect to the blocks corresponding to a space-time slab. Hence one has to
invert the matrix A , for each space-time slab Q,, where for example a multigrid
solver can be apphed This is the usual way how time dependent problems are

69
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>
>

(a) Tensor product space-time mesh. (b) Simplex space-time mesh.

Figure 4.1: Space-time meshes with space-time slaps for d = 1.

solved when implicit schemes are used [41,42,97]. But in this chapter we want
to apply a space-time multigrid scheme to solve the global linear system (4.1) at
once. Space-time multigrid methods have been studied earlier in [38,44,45,107].
Other methods to solve the global linear system (4.1) are for example waveform
relaxation methods, which have been considered in [46,47].

Next we will study the case when tensor product space-time meshes are used,
like in Figure 4.1(a). For an easier notation we assume, that we have a uniform
partition of the time interval (0,7) into subintervals (f,_i,t,) for n=1,... N,
i.e. t, =nt with 7 > 0. For tensor product space-time meshes the approximate
solution on the space-time slab Q, is then given by the ansatz

N; N,
W)=Y Yl oi(@) wile), with ;= uu[jN, + 4], (4.2)
(=1 j=1

and with basis functions

uj, € 55(77\’,1> = Span{q)j}]},i1 ® Span{‘/fé}?il- (4.3)

For the tensor product case different polynomial degrees with respect to space
and time can be used, i.e. p:= (py,p;). For the space-time discretization (2.2)
the ansatz (4.2) leads to the following matrices

A'Z,h =Aqp =My QKr+ K @Mz, Bzzl,n =Brj:=—Mp®Nrg,

with the mass and stiffness matrix

Myli, j] i=/<Pj(w)<Pi(w)d% Kpli, j] := a(oj, i)
Q
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fori,j=1,...,N,. Note that the bilinear form a(-,-) results from the bilinear form
a(-,-) by integrating only over the spatial domain £. The matrices with respect
to the time discretization are given by

Kelkot) = = [ wil0)u()de -+ ilon) (1), (4.4)
Ml = [ W, Nolko ] = o) v (ta) (4.5)

In—1

for k,£ =1,...,N;. Note that for the coupling matrix N; we have to evaluate the
ansatz function yy at the time f,, because we have 1/’27_] (th=1) = W} (tn) = We(tn).
Further for n=1,...,N the right hand sides are given by

FaliN +0] = / / F@. 1) () yi()dadr

In—1 Q

for j=1,...,Ny and £ =1,...,N,. If for the spatial ansatz functions continuous
basis functions are used, then the stiffness matrix Kj reduces to the standard
finite element stiffness matrix

Kuli, j] = /ij(w) Vo@)dz  fori,j—1,...,Ny.
Q

Hence, for tensor product space-time meshes we conclude, that the use of contin-
uous ansatz functions in space leads to a standard finite element discretization
in space combined with a discontinuous Galerkin time stepping scheme in time.
This type of discretizations has been analyzed for example in [97].

4.1 Multigrid method

In this section a space-time multigrid method to solve the linear system (4.1)
will be introduced. For an introduction to multigrid methods see for example
[39,99,103,108]. For an easier notation we now write the linear system (4.1) as

,CT’hCE = f (46)

To solve the linear system (4.6) with a multigrid technique, a hierarchical sequence
of space-time meshes 7Ty, is needed for L =0,...,My. This space-time hierarchy
has to be chosen in an appropriate way and will depend on the discretization, see
Section 4.3. For each space-time decomposition 7y, we can compute the system
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matrix L, , for L=0,...,M;. On the last level M; we have to solve the linear
system (4.6) and therefore we have LTML’hML =L

With S;’L n We denote the smoother, where v € N is the number of smoothing
steps which are used. For the smoothing operator we consider the damped block
Jacobi iteration

2t = 2k 4 a);(ﬁfLth)*l [f — ETL,thk} ) (4.7)
By 5_L].hL we denote an approximation of the inverse of the block diagonal matrix
Dy, :=diag{A7 , }gi | where a block A7 , ~corresponds to the space-time slab

0,.. For the approximation of (DTLJ,L)_l we apply one space multigrid iteration

for each space-time slab. When tensor product space-time meshes are used we
have to apply a multigrid solver on each space-time slab, where the system matrix
is given by

Ay = My, @Ky, + Kpy, @ My, .

In this case the matrix A 5, has tensor product structure, hence we can use
a standard tensor product multigrid, like in [14] to approximate the inverse of
the block diagonal matrix Dy, p,. To get an approximation for the inverse of the
block diagonal matrix Dy, 5, for general simplex space-time slabs, like in Figure
4.1(b), we apply an algebraic multigrid solver to the system matrix Ay, p,, as
implemented in the package hypre, see [28,29].

For the prolongation operator PX we use the standard interpolation from coarse
space-time grids to the next fine space-time grids. Therefore the prolongation
operator will depend on the chosen space-time hierarchy. The restriction operator
is defined as the adjoint of the prolongation operator R = (PL)T.

The definition of one complete multigrid cycle is given in Algorithm 4.2. With
Vi, V2 € N we denote the number of pre- and post smoothing steps. Further y € N
defines the cycle index, where a typical choice is y € {1,2}. For y =1 the multigrid
cycle in Algorithm 4.2 is the classical V-cycle, whereas for ¥ =2 we have the so
called W-cycle. On the coarse level L =0 we solve the linear system exactly by
using a LU-factorization for the system matrix L p,. For a given initial guess
we apply the space-time multigrid cycle of Algorithm 4.2 several times, until we
have reached a given relative error reduction &yg.

To prove convergence of the presented space-time multigrid method, we will use
the local Fourier mode analysis. First we will apply this type of analysis to
the simpler ODE case and afterwards we will use these results to analyze the
space-time two-grid cycle.
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MGCycle(z, f, L)

if L=0 then
Coarse grid solver: x=(Lyp) ' f
else
Pre-smoothing: r=8", (x, f)
Compute defect: d=f—-Ly T
Restriction: d;_=RN
Initialize: wr;_1=0

foralli=1,...,ydo
MGCycle(wyp_1, dp—1, L—1)

end for
Prolongation: w = Prw;_
Correction: r=x+w

Post-smoothing: « = S:Lz n (@ F)

end if
Algorithm 4.2: Space-time multigrid cycle.

4.2 Time analysis

In this section we will consider for T > 0 the one-dimensional model problem

ou(t)+u(t)=f() forte(0,T),
(4.8)

u(0) = uo.
For the discretization of the model problem (4.8) we will use the discontinuous
Galerkin approach as introduced at the beginning of this chapter. To solve the
related linear system we will apply the multigrid idea presented above. We will
see, that the analysis of the two-grid cycle for this simple one-dimensional problem
is strongly connected to the analysis of the more complicated space-time two-grid
cycle.

In what follows we first subdivide the simulation interval [0, 7] into N € N uniform
subintervals
O=f<yu<---<ty_1<tyn=T, 1,=nt,

with the time step size T = %, see also Figure 4.3. By introducing the continuity

condition u?(t,_1) = u~'(t,_1) in the weak sense we obtain for the time interval
(tn—1,t,) the following discrete variational problem:
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Io 5] L o Iy In at1 0 IN—1 IN

Figure 4.3: DG time stepping scheme for p; = 1.

Find uf} € PPi(t,_1,t,) such that

In

— [ wavindr+ i) + [ v

In—1 In—1

' (4.9)
= /f(t)v’rl(t)dt—l—u’él(tn—l)vrfl(fn—l)

fn—1
is fulfilled for all vi € PPt (t,_1,t,).
Using the basis functions
PP (ty1,ta) = span{ye}) ., Ny=pi+1,

the discrete variational problem (4.9) is equivalent to the system of linear alge-
braic equations

[KT+MT] Uy = fn +Nru,—q,

with the matrices Kr,M; and N; as defined in (4.4)—(4.5). Moreover, the right
hand side is given by

Full] = /f(t)l,l/g(t)dt, (=1.....N.

On the time interval [f,_1,t,] we therefore can define the approximation

uz(1) =) un[ €1y (1).

=1
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Overall we have to solve the linear system

K+ M: U] Ji

—N;  K;+M; %) I2
—Nz K:+M; us | = | f3]. (4.10)

—N: Ki+M; un fN

The linear system (4.10) is closely related to the linear system (4.1) corresponding
to the full space-time discretization. Before we introduce the multigrid approach
for solving the linear system (4.10), we will first study the properties of the
discontinuous Galerkin discretization (4.9).

To do so, we consider for a function f: (f,—1,t,) — R the Radau quadrature of
order 2s — 1

[ rode Y sl + ),
k=1

th—1

with the weights by € Ry and the integration points ¢; =0 and ¢y, ...,¢s € [0, 1],
see also [42]. If the right hand side f, of the discontinuous Galerkin discretization
scheme (4.9) is approximated by the Radau quadrature of order 2p; + 1, i.e.
s = p;+ 1, we can prove the following theorem.

Theorem 4.2.1. The discontinuous Galerkin approzimation (4.9) of the model
problem (4.8), introduced above, is equivalent to the (p;+ 1)-stage implicit Runge-
Kutta scheme RADAU IA, if the integral of the right hand side is approzimated
by the Radau quadrature of order 2p; + 1.

Proof. Approximating the right hand side of (4.9) by the Radau quadrature
rule of order 2p; + 1 and by using integration by parts, the discontinuous Galerkin
scheme (4.9) is given by to following variational problem:

Find uf} € PP!(t,_1,t,) such that

In

tn
8,u’§(t)v’§(t)dt+u’;(tn_1)v’;(t,,_l)+/u’;(t)v’;(t)dt
In-1 th—1 (4.11)
pi+1
=T Y bpfta 1 +crt)Vi(tar +exT) (1 )Vt 1)
k=1

is fulfilled for all v} € PPt (t,_1,t,).
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In what follows, we will also apply the discontinuous collocation method intro-
duced in [40] to the model problem (4.8). Let ¢; =0 and ¢3,...,cp41 € [0,1] be
the integration points of the Radau quadrature of order 2p; + 1 with the weights
bi,...,bp4+1 € R\ {0}. Then the discontinuous collocation method is given by:

Find w? € PPi(t,_1,t,) such that

We(tn1) = Wi (ta1) = Tb1 [f(ta1) = AW (ta1) = Wh(ta )],
OWi(ty—1+cxT) + Wi(ty—1 +cxT) = f(tn—1 + ¢ 7)
(4.12)
is fulfilled for all k=2,...,p; + 1.

In [40] it was shown, that the discontinuous collocation method (4.12) is equiv-
alent to the (p; + 1)-stage implicit Runge-Kutta scheme RADAU TA. Hence it
remains to show the equivalence of the discontinuous Galerkin method (4.11)
with the discontinuous collocation method (4.12). First we observe that du}iv’
and uV} are polynomials of degree at most 2p;. Therefore we can replace the in-
tegrals on the left hand side of (4.11) with the Radau quadrature of order 2p, + 1.

Hence we obtain

pi+1
e Y bl (tn 1 + TVt 1+ exT) + (tn VA1)
k=1
pitl
+7 Z bkug(tn—l —l—CkT)VfEl(l‘n_1 —I—CkT) (4.13)
k=1
pi+1 |
=17 Y bif(tn-1 + kO (tno1 + cT) + 1y (ta1)Vi(ta1),
k=1

with v} € PP (t,_1,t,). As test functions v} we now consider the Lagrange poly-
nomials |

Pt — (ty1 +¢jT)

0 t) = T / fori=1,..., 1.
l() H T(Ci-Cj) l Pt+

ph

J#
Hence we have £}(t,—1+cjt) =0fori# jand ¢} (t,—1 +c;t)=1fori=1,...,p,+1.
First we use the test function v = ¢ in (4.13) and we obtain

Th Gl (ty— 1)+t (tn—1) + Ty (tp—1) = Th1f(tn_1) + U2 (ta1).

This implies, that the solution u} of (4.11) satisfies the first equation of (4.12).
For the test function vi = ¢}, k=2,...,p; +1 we further get

Thr Oy (th—1 + ¢ T) + Thrup(th—1 + cxT) = Thy f(th—1 + 1 T).

Dividing this equation by the factor th, # 0 we obtain, that the solution u}
of the discontinuous Galerkin scheme (4.11) also satisfies the second equation
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of the discontinuous collocation method (4.12). Hence, the solution u} of the
discontinuous Galerkin scheme (4.11) is a solution of the discontinuous collocation
method (4.12). The other direction of the proof is obtained by reverting the
arguments of above. |

Remark 4.2.2. The RADAU IA scheme has been introduced in the PhD the-
sis [23] in 1969, see also [16]. Whereas the original discontinuous Galerkin
method was introduced by Reed and Hill [75] in 1973 to solve the hyperbolic neu-
tron transport equation. In [53] discontinuous Galerkin methods for ordinary
differential equations are considered, see also [18].

Remark 4.2.3. In the proof of Theorem 4.2.1 it is shown, that the jump of the
discrete solution at the time t,—1 is equal to the pointwise error multiplied with
the time step size T and the weight by, see equation (4.12). Hence the hight of the
Jump can be used as a simple error estimator for adaptive time stepping schemes.

Remark 4.2.4. We obtain by replacing the integrals of (4.11) with the Lobatto
IIIC quadrature, see [42], the implicit Runge Kutta scheme Lobatto IIIC, which
has a different stability behaviour as the RADAU IA method.

Theorem 4.2.5. Fors € N the s-stage RADAU IA scheme is of order 2s —1 and
the stability function R(z) is given by the (s—1,s) subdiagonal Padé approzimation
of the exponential function e*. Furthermore the method is A-stable, i.e.

R(z)| < 1 for z € C with R(z) <O0.
Proof. The proof can be found in [42]. u

Remark 4.2.6. For s € N, the first (s —1,s) subdiagonal Padé approzimations
Ps_1 4(z) of the exponential function e* are given by

1 642z
Poa(@) =1 P =" a

60+ 24z + 372 840 + 360z 4 6022 + 47°
Py3(z) P3.4(z2)

" 60— 367+ 972 — 23 T 840 —480z+ 12022 — 163 + 2+

Corollary 4.2.7. The stability function R(z) of the discontinuous Galerkin ap-
proximation with polynomial degree p; € N is given by the (p;, ps+ 1) subdiagonal
Padé approximation of the exponential function e*. Furthermore the method is
A-stable, i.e.

R(z)| < 1 for z € C with R(z) < 0.

Proof. For the Dahlquist test equation dju = Au,A € C we obtain by Theorem
4.2.1 that the discontinuous Galerkin scheme is equivalent to the RADAU TA
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method. Hence the two methods have the same stability function R(z). Applying
Theorem 4.2.5 completes the proof. [ ]

In what follows, we will consider a global multigrid scheme, as introduced in
Section 4.1, for the solution of (4.10). For an easier notation we write the linear
system (4.10) as

with the matrix

Uy = -10 € RV*N,
-1 0
For the global multigrid scheme we assume a nested sequence of decompositions
Ty, with time step size 77 for L=0,...,M;. Moreover we use the geometric

restriction and prolongation operators R and PE. For the smoother we apply a
fixed number v € N of damped block Jacobi iterations

2 = 2k oD ! [ f—Lq wk] , (4.15)

with the block diagonal matrix Dy, := diag{ Ky, + M-, }fyi , and with the damping
parameter @y € (0,2).

In what follows, we will study the two-grid cycle for solving the linear system
(4.10). Using the definition of the smoother (4.15) we find for a given time step
size 77, that the error of the (k+ 1)-th Jacobi iteration for v € N is given by

P S5 R 55 RO - thngﬁrL] Vekv . Sé’Lek,V_ (4.16)
Moreover the (k+ 1)-th error of the two-grid cycle is given by
I [I—PLCETILRLETJ Stk = My, e (4.17)

To ensure mesh independent convergence of the two-grid cycle we need that the
spectral radius of the iteration matrix My, is smaller than one, i.e.

p(MTL)§q< 17

with a constant g independent of the time step size. The computation of the
spectral radius for arbitrary two-grid iteration matrices is in general not trivial,
because the inverse of the coarse grid operator Ly is involved. Moreover the
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iteration matrix My, is not symmetric in our case. To overcome this problem
we transform the equation (4.14) into the frequency domain, where we apply
the analysis based on exponential Fourier modes. This type of analysis was
introduced in [12] where the rigorous analysis was done in [13] and it is used for
a large class of problems, see for example [90,99,108]. The analysis is regarded
to special model problems, namely those with periodic boundary conditions on
rectangular domains. For general boundary conditions this type of analysis can
be used to study the local behavior of the two-grid algorithm, therefore it is also
called local Fourier mode analysis.

For time periodic solutions the problem (4.8) changes to
du(t)+u(t)=f(tr) forte (0,1), u(0) =u(T). (4.18)

For the discretization of the problem (4.18) with a discontinuous Galerkin time
stepping method we therefore have to solve the linear system (4.14), i.e.

[Iv® (K: +M:)+ Uy @Ne | = f,
where the matrix Uy is given by the circulant matrix

0 —1

Oy = -1 0 c RVN, (4.19)

4.2.1 Smoothing analysis

In this subsection we will use the local Fourier mode analysis to study the smooth-
ing behavior of the iteration matrix Sy . To transform the problem (4.14) into
the frequency domain we need the following theorem.

Theorem 4.2.8 (Discrete Fourier transform). For m € N let uw € R*", then there
holds

m
i k
u = Z ﬁk(P(Gk), (P<9k)[€] = eﬂfek, Z: 1,,._,2m, 9k3: _TL',
k=1—m m

with the coefficients

1 12m

y := %(u,ga(—ek))z =5 Z ul[l](—6) (], fork=1—m,...,m.
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Proof. The proof can be found in [108, Theorem 7.3.1] for example. |

Definition 4.2.9 (Fourier modes, Fourier frequencies). Let Ny € N. Then the
vector valued function @(6;)[(] := "%, £ =1,... Ny is called Fourier mode with
frequency

2km Np, Np.
e =¢—k=1——,...,— — .
k € OL {NL 27 72}C( TC,TC]

The frequencies O are further separated into low and high frequencies

rx
227
oy i=e,n((-m.~J)u(5.7]) =eL\ e,

O :==0.N(—

In the following we denote by Ny € N the number of time steps for the level
L € Ny and by N; = p; +1 € N we denote the degrees of freedom with respect to
one time step, see also (4.3). With the next lemma we transform a given vector
corresponding to the problem (4.14) into the frequency domain.

Lemma 4.2.10. The vector u = (uj,uy,... ,uNL)T e RVeN: for Np_1,N, €N and

Ny = 2N;_1 can be written as

NL

u= Z ’lbL(ek,U): Z 'lpL(ek,U)?

k=1-Np_ 00y,
with the vectors
Y0, U) :=UBL(6,), BL(6)[]:=p(6)[n] forn=1,....,Np and £ =1,...,N,
and the coefficent matrix
U = diag(i[1], ..., 4 [N;]) € CNoxMe

with the coefficients

1 %
ﬁk[f] = N_L Zu,[ﬁ]g&(—@k)[l] f07“ k= I—NL,I,...,NL,L
i=1

Proof. For a fixed index ¢ € {1,...,N;} we apply Theorem 4.2.8 to the vector
iy € RV with dig[n] := w,[f], n=1,...,N;. Further by using the definition of
the coefficient 7[¢] and the definition of the vector 1% (6y) the statement of the
lemma follows with

NL

wll) =anl= Y ale(6)n]
k=1—N,_,
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NL .
= Y D6
k=1—-N;_;
NL
= Y U056
k=1—-N;_;
NL
= Y He.U="Y vr(6,U
k=1—-Np_4 6,0,

Remark 4.2.11. Note that in Lemma 4.2.10 the vector p* = p*(6;,U) depends
on the frequency 6, € Op and on the coefficent matriz U € CN*Nt where the
coefficent matriz U can be computed via the given vector u = (uy,uy,...,uy,) " .
In the following we will study the mapping properties of the system matriz L, and
the smoother S with respect to the vector Pt =L, U). Since the coefficent
matriz U will be fized and since we have to study the mapping properties of Ly,
and 8}2 with respect to the frequencies 6, € O we will use the simpler notation
Wt =pr(6,). The dependence of the vector Wb with the coefficent matriz U is
giwen in the following definition.

Definition 4.2.12 (Fourier space). For Ni,N; € N let the vector ®¢(6;) € CNM
be defined as in Lemma 4.2.10 with frequency 6, € @p. Then we define the linear
space of Fourier modes with frequency 6y as

¥ () := span {B"(6;) }
= {’I,bL(Gk) c CNMVL . '(,b,%(@k) = U@ﬁ(@k), n=1,....N, and U € CN[XN;}.

Before we can study the mapping properties of the system matrix £; and the
smoother SY we have to prove the following lemma.

Lemma 4.2.13. For Ni,N; € N let ¥ (6;) € W.(6y). Then the following shifting
equality holds true

Pk (6) = e O pl(6,)  forn=2,....Np.

Proof. By using the definition of the blockwise Fourier mode ) (6y) € Wi.(6y)

we get the statement of the lemma for n =2,...,N; with
L & L
Y 1 (B[] = Y UL, i]®y_1(6k) ZU (0 [n—1] = ZU
i=1 i=1

o6k Z U nn@k — ¢ 16k Z U (9k) [n]

i=
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_w"ZU [£,)B5(6;)[i] = e " apl(8,)[¢]

i=1

for{=1,...,N;. [ ]

For the system matrix £; we are now able describe the Fourier symbol.

Lemma 4.2.14. For N;,N; € N let ¥L(6) € W.(6). Then for the system matriz
Ly, as defined in (4.14) there holds

(ﬁqu,bL(ek))n = (Ky, + My, — AuNg, ) PE(6)) forn=1,...,Np,
with

2/n:: eiﬁ@k n%l,
0 n=1.

Proof. By using the representation (4.14) of the matrix L7, we get for a fixed
but arbitrary j=1,...,M

N, N
(ETL'lp (ek) Z Z INL n m]<KTL+MTL)[]7 ]+UNL[n m]NTL[]7 ])wm(ek)[]

m=1i=1

= Z (Ke, + M) [j, ilpk(8,)]i +ZNTL [/, i] Z Un, [n, )4y, (6 [i].

i=1 i=1 m=1

With the definition of the matrix Uy, we obtain for n # 1

—Z (Kg, +Mz,) [, 06 ZNTL Jo il (6]

Applying Lemma 4.2.13 gives the statment of this lemma for n # 1

N, .
=Y (Ko, +Mqg, —e %Nz ) [, il (60)[i]

i=1
= (Ko, + Mz, = AuNg, )y, (60)) [1].

For n =1 we observe that

N
Y Un, [n,mpE(6,)[i] = 0,

m=1

and hence we conclude that

(Lo, ), 1] = ((Kg,+ Mz, )95 (60)) L]
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Remark 4.2.15. Lemma 4.2.14 shows, that the system matriz Ly, is not a self
mapping on the Fourier space W.(6), i.e.

Lo YL(6k) = PL(6k),

since Ky, +My, — AyNy, € CNeXNt s not constant with respect to n. But for periodic
solutions, see (4.18) we have due to the circulant matriz Uy, see (4.19)

KTL +MTL - A’VINTL — KTL +MTL - eiﬁOkNTL,

which implies that Ly, is a self mapping on the Fourier space W (6) in this case.
Since A, = e~ 2% for all n# 1 the mapping L, is closely related to the case with
pertodic solutions.

With the next lemma we will compute the Fourier symbol for the smoother S
forv=1.

Lemma 4.2.16. For N,N; € N let ¢"(6;) € W.(6¢). Then for the smoother Sy,
there holds for v=1 and oy € R

(S;L'I,bL(Ok))n:Snw,e(Ok) forn=1,...,Np,
with the local iteration matrix

e 0 £,

Sl’l = (1 — a)t)IN[ +A«na)t(KTL +MTL)71NTL7 A«n = {O n— 1

Proof. Let ¥%(6;) € W.(6;). Then for n=1,...,N; we obtain
(S5,9"(6k)), = ((Iny, — D% L) H(6))) .

Since D;L] is a block diagonal matrix we obtain

= Qpﬁ(ek) - a)t(KTL +MTL)71 (ﬁrﬂ/JL(@k))n-

Applying Lemma 4.2.14 leads to the statement of this lemma with
= ¢£(9k> - wl(KTL +MTL>_] (KTL +Mq — A’”NTL) ’(,D,I:(Gk)
= ((1 - wt)INr +)Lna)l<KTL +MTL)_1NTL) "prlf(ek)

To analyze the smoothing behaviour of the damped block Jacobi smoother (4.15)
we have to estimate the spectral radius of the local iteration matrix

Sp=(1—ay)ly, + Ao (Ky, +MTL>_]NTL c CNxN:

Hence, we have to compute the eigenvalues of the matrix (Ky, + Mz, )~ ' Ny, .
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Theorem 4.2.17. The eigenvalues of the matriz (Ky, + Mz, )~ 'N;, € RNN: gre
given by

0 ((Ke, +Mz,)”'Ny) = {0,0(7)},
where o(t) = R(—11), and R(z) is the A-stability function of the given discon-

tinuous Galerkin time stepping scheme.

Proof. First we notice, that the eigenvalues of the matrix (Ky + My, )" 'Ny,
are independent of the basis {l,l/k}],:’f:] which is used to compute the matrices

K:, ,M7, and Ng,. Hence we will use special basis functions {l//k}iv’: | Where the
eigenvalues of the matrix (K, —|—MTL)_'NTL are easy to compute. In particular we
use polynomials y; € PP(0, 1) with the property

1 k=1,

fork=1,...,N;.
0 k#1

Vi(TL) = {

In what follows, we will study the A-stability of the discontinuous Galerkin dis-
cretization. We therefore consider for A € C with R(A) < 0 the model problem

du(t) =Au(t), te€(0,7) and u(0)=uy.
This leads to the linear system
(KTL — A’MTL) U1 - MONTL'U,

with the vector v[1] =1 and v[k] =0 for k=2,...,N; and with the solution vector
w; € RV for the first step. Therefore the value at the endpoint 7, of the discrete
solution is given by

Uy = upv (Ky, — )LMTL)_] Ny v eR.
Hence the stability function R(z) with z = A1 is given by
R(z(A, 7)) =v" (Ky, — AMy,) "' Ny v. (4.20)
Multiplying the equation (4.20) with the vector v results in
(K, — AMg,) ' Nyv = R(z(A,71))v.
For A = —1 this implies, that the vector v is an eigenvector with eigenvalue

o(t) = R(—1) of the matrix (Ky, — 7LMTL)71NTL. Since the matrix Ny, has rank
one, all the other eigenvalues have to be zero. ]
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Remark 4.2.18. Theorem 4.2.17 holds true for any single step method. Hence
any single step method is A-stable if and only if

IR(z(A, 7)) = p((Kyy —AMy,) ' Ng,) < 1 for all z € C with R(z) <O.
Now we are able to compute the spectral radius of the local iteration matrix
Sy = (1 —ay)Iy, + Ay (Ky, + My, ) "' Ny, € CNXN

Lemma 4.2.19. Let p, € No. Then for the smoother Sy, the spectral radius of
the local iteration matriz Sy = (1 — )In, + Ay (Kz, +M‘EL)_]N‘EL is given by

plsy=q1 n=1,
"\ max {|1 - @, 8(@, (1), 6)} n#l,
with
(S(a)taaa 9k>)2 =(1- w,)2-|—2wt(1 — ay)oecos(6y) +a2a)t2,

where o = o(t) is the (p;,pr + 1) subdiagonal Padé approximation of the expo-

nential function e,

Proof. For n =1 we have A, =0 and therefore the eigenvalues are given by
6(S1) = 0 (1= @)y, + A (Ke, +Mz)"'Ne) = {1~}

Hence the spectral radius is given by p(S,) = |1 — ay|. For n# 1 we have A, = e~
and since Iy, is the identity matrix the eigenvalues of the local iteration matrix
S, are given by

16

o(S,) =1—w+e %ao((Ky +M;,) 'Ny,).

With Theorem 4.2.17 we are now able to compute the spectrum of the iteration
matrix S,

o(Sy) = {1 -, 1 — oy, +e’ﬁ9’<a)toc(rL)} .

Hence we obtain the spectral radius

P (Sn) :max{\l — o, |1 —a)t+e’ﬁ9ka)t(x(q)‘}.

Simple calculations lead to
: 2
1— +e*“9ka)toc(q)’ = (1—ay)?+2a,(1 — o) ou(t) cos(6) + (au(11)) > 0P,

which completes the proof. [ ]

To prove the convergence of the block Jacobi smoother introduced in (4.15), we
will estimate the spectral radius of the local iteration matrix S, € CN*M with the
following lemma.
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Lemma 4.2.20. Let p, € Ny and @ € (0,1], then the spectral radius of the local
iteration matriz Sy = (1 — ;) Iy, + An@y (Kr, +Mz, ) "Ny, is strictly bounded by one,
1.€.

p(Sn) <1.

Proof. In view of Lemma 4.2.19 we have to estimate for a fixed n € {1,...,Np}
the function

max{|1—a),|,.§(a),,‘L'L,9k)}.

For @y € (0,1] we clearly have that |l —ay| < 1. Furthermore we can estimate
S(O);, TL, ek) by

(S(er,72,80)|” =] (1 - @)* +20,(1 — @) er(1L) cos(8y) + (ex(7)) 0|
< (1-)* + 20 (1 - @) |o(1)| + () 07

Since o (7)) = R(—1r) is the A-stability function for z = —1z, see Theorem 4.2.17,
and by using the fact that the discontinuous Galerkin scheme is A-stable, see
Corollary 4.2.7, we have |a(11)| < 1 for 7, > 0. Hence we obtain the statment of
this lemma with

<(1-o)*+20,(1 — o) + o}
—(l—w+w)* =1.

Theorem 4.2.21. For any damping parameter @ € (0,1] the block Jacobi smooth-
er introduced in (4.15) converges for any initial quess x° to the exact solution
of

Lyx=f.

Proof. For an arbitrary but fixed n € {1,...,N.} the n-th error component e}
of the first damped block Jacobi iteration is given by

e,ll = (S%Leo)

n’

with the initial error €® = & —2°. In what follows, we will transform the initial

error € into the frequency domain by applying Lemma 4.2.10

(st 5 wo0))
6,€0r, n
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where the Fourier vectors 1'(6;), 6; € ©p depend on the constant coefficent
matrix U = U (ep) € CN*M resulting from the initial vector eg. Since Sy, v =1,
is a linear operator we have

=Y (Syv(6),

OkEQL

Using Lemma 4.2.16 leads to

= Y ((1— o)y, + o (Ke, +Mz,) "' Ny, ) 5 (6,)
6, €O

= Y SL(6y.

OkEQL
Further computations show that for n > v we have
. v
S;l/ = ((1 B a)t)INr + e_wka)fU(TL +MTL)_]NTL>

As the spectral radius p ((1 —ay)ly, +e*ﬁ9ka),(KTL —I—MTL)*INTL) is strictly smaller
then one, see Lemma 4.2.20, we conclude, that S} contracts as v — n. Further-
more for n < v the local iteration matrix S) is given by

n—1 )

\% . i B j

S,‘{ = Z() <v—j)(1_w’>v J (a),e Gk(KTL+MTL) qu) .
j:

Hence we can estimate the spectral radius by

P =P (f (vv ) (1-e)"™ (“’fewk(KfﬁMrL)lNu)j)

—J

) (1- )" Jolp ((e‘wk(KTﬁMn)“Nn)j)

IA
T.
o

IA
M=

v_

(
) < v .)<1—wt)v—jw{' [ (Ko, +Mz,)"'Ng,) ]
5 (

Ve sl

.
Il
(]

1_a)l+a)l‘p( KTL+MTL) INTL)}

Rﬁ

Since p ((Kz, +Mz,) " 'Ny, ) =|o(7)] < 1, see Theorem 4.2.17 we conclude that
[1— @+ p (Ko +My) " 'Nyy )| < 1.

Hence we obtain
Sy —0 as V-—»oo.
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This implies, that the n-th component e} of the v-th Jacobi iteration converges
to zero as Vv tends to infinity, i.e.

e, >0  forv— oo

Hence ¥ — @ as the number of iterations v tends to infinity. ]

Remark 4.2.22. In Theorem 4.2.21 the uniform convergence of the damped block
Jacobi smoother with respect to the blocks is proven for @y € (0,1]. Otherwise, to
prove convergence of the smoother one can simply compute the spectral radius of
the iteration matrix

(1—60;)IN[
wt(KTL'i'MTL)ilNTL (l_wl>11\7t
STL: .. . )
wt(KTL'i'MTL)ilNTL (l_wl>11\7t

which simply is
P(Sy) =[1- 0.

Hence the damped block Jacobi smoother converges also for a damping parameter
o € (0,2).

Choosing a damping parameter @ € (1,2) leads to a convergent smoother but not
to a uniform convergent one. This means that the error can grow for some blocks
if we use a damping parameter @ € (1,2). This implies that for a good smoother
we have to use a damping parameter @, € (0, 1].

For a convergent multigrid scheme we need that the applied smoother reduces the
error with respect to the high frequencies ®@Meh fast. In view of Theorem 4.2.21
this motivates the following definition.

Definition 4.2.23 (Smoothing factor). For the damped block Jacobi iteration
introduced in (4.15) we define the smoothing factor as

Us := maX{P (Sy): 6 € @Eigh and n € {17~-~7NL}}
with

—16; 1
_ e n#1,
Sl’l — (1 - a)t)IN[ +A«na)t(KTL +MTL) INTL Cm,d A«n - {O nf 1

To analyze the smoothing behavior, we have to prove the following lemma for an
arbitrary o € R..
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Lemma 4.2.24. Let o € R with oo > —1. Then for the function

(S(er, Gk))2 = (1—)*+2a,(1 — ay)acos(6;) + &’ @?

the following min-max principle holds true

. & Lz (04 Z 07
inf sup S(a)t7(x7ek) = o S [07 1]7
o €(0.1] g.e[Z 7] || o <0

with the optimal parameter

1 T
6!);*:{““)‘2 @20, and 9*:{7 @ =0,

1 a<0

Proof. Since S(ay, o, 6;) >0 we will study the function

(S(er, t,6))° = (1 — )+ 2, (1 — o) acos(6;) + o}

For @ € (0,1] only the terms with o and cos(6y) can get negative. Hence we first
consider the case when « is positive, i.e. @ > 0. In this case we simply have

argsup S(ay, o, 6;) = g for @y, € (0,1].

eke[%m:}

This gives for the case o« > 0

A ~ T
inf  sup S(wy,a,6;) = inf S(oy,a,—=).

*€(0,1] ge[Z 1] o€(0,1] 2
Since
& T, \? 2 2.2
(8@, 3)) = (1-@)+a?a?,
we find that
N T 1 ~ 1 T o
arginf S(wy, o0, =) = and S(——,Q, =) = ——.
w,égm,u ( ? I+a? T2 Vi+a?

For the case a < 0 we have

argsup S(oy, o, 6;) = 7 for @y, € (0,1].

9](6[%,717}

Because of

(St 7))’ = (1— o) — 20,1 — @) || + | 0? = (1 — (1 +|al])?
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Figure 4.4: Optimal damping parameter ®* = @*(1z) for different polynomial de-
grees p, and different time step sizes 7.

we find that
arginf S(ay, o, 7) =1 and S(1,0,7) = ||,
@ €(0,1]
which completes the proof. [ ]

With the next lemma we will show, that the smoothing factor pg is strictly
bounded by one, if we use the optimal damping parameter @ = @ (7).

Lemma 4.2.25. For the optimal choice of the damping parameter

1
a)t*(TL) — 1+((X(TL))2 (X<TL) > 07
1 OC(TL> <0

the smoothing factor us of the damped block Jacobi iteration (4.15) is bounded by

Sil-

us <
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Proof. In view of Lemma 4.2.19 we have to estimate

max {1 o7 | 8(e7,a(z).6,)
ekGQng

with
(S(wt*a o, Ok))z =(1- wt*>2+2wt*(1 — @ )acos(6) + az(wt*)2~

Since § (o, a, 6)) is symmetric with respect to the frequencies 6, we only have to
estimate the function $(w*, &, 6;) for the frequencies 6 € @Blgh N[%,x]. Applying
Lemma 4.2.24 for a = a(1;) gives the estimate

) ) @) g(g) >0,
max S(o,0(7.),6) < sup S(w,0(t),6k) = 1+(a(7))
6O, CRIER loe ()] o(tr) <O.
(4.21)

Since a(1z) is the (py, ps + 1) subdiagonal Padé approximation of the exponential
function, see Lemma 4.2.19, we have

5—3V3
—0.0980762 ~ T\/_ < OC(TL) <1 for 17, > 0.

Combining this estimate with the results of (4.21) we end up with

1
N —= a>0, 1
max S(o, o, 6,) <{ V2 < —.
gecoleh WIS <0 T V2

Simple calculations show that

sup S(w,*,a,ek) > |1 -,
9/(6[%777:]

which completes the proof. [ ]

Remark 4.2.26. Because o(1z) is the (p;,p;+ 1) subdiagonal Padé approxima-
tion of the exponential function e™" we have that (1) — 1 as 1o — 0 and hence
(O % for 11 close to zero, see also Figure 4.4. It turns out, that the estimate
of Lemma 4.2.25 is also true for a uniform damping parameter @* = % But for
large time steps Tp a better smoothing behaviour is obtained when the optimal
damping parameter ®* = ®*(11) as given in Lemma 4.2.25 is used.

To show the convergence behaviour of the damped block Jacobi smoother (4.15)
with respect to the time step size 77, we will prove the following lemma for an
arbitrary o € R.
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Figure 4.5: Convergence factor S(@;, a(1.),6;) = % of the damped
L

block Jacobi for the optimal damping parameter @* and different
polynomial degrees p; plotted with respect to the time step sizes ;.

Lemma 4.2.27. For a € R and the optimal choice for the damping parameter

1
w*_ l+(x2 azo,
=
1 a<0

the following estimate holds true

. of (1+|a|)
S(o",a,b <7‘ )
5?%(“ 0) < 1+ a2

Proof. For the optimal damping parameter @ we have

2 3

o« n 200
S 1+a? (14 02)?

(S(ey, @, 00)) cos(6y).

For the case ¢ > 0 we therefore obtain

argsup S(w/', o, 6;) = 0.
9](6[0,717}
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Thus we have

a?+ot+20’  a’(l1+a)?
(I+a?)?  (1+a?)?

(S(oot*,oc,O))2 =

For the case o < 0 we find that

argsupS(w, o, 6;,) =7
9/(6[0,717}

and thus
o Oz_w+w+mﬁ_aM+mw
(S(ey, @,0))" = 1+a2?  (1+a2?

The statement of this lemma follows with the fact that

max S(@,a,6,) < sup S(of,a,6).
6€0; 6,€[0,7]

Remark 4.2.28. For sufficiently small values of & = a(tr), i.e. for sufficiently
large time step sizes T it 1s shown in Lemma 4.2.27, that the convergence factor
S(wt*,a(TL),OI:‘) of the block Jacobi smoother (4.15) is close to zero, see also
Figure 4.5. Hence the block Jacobi smoother (4.15) is already a very good iterative
solver.

Remark 4.2.29. All the estimates above are valid for arbitrary polynomial de-
grees p; € No. For the limit case p; — oo the function a(tr) is given by

o(t) = e o,
since a(t) is the (p;, p; + 1) subdiagonal the Padé approzimation of the exponen-
tial function e”'. Hence, the choice of the best damping parameter @* and the

smoothing factors converge also to a limit function.

4.2.2 Two-grid analysis

In this subsection we will analyze the two-grid cycle for solving the linear system
(4.14). For the (k4 1)-th two-grid iteration the error is given by

e = My et =St 1= PHLI MLy | Stk (4.22)
In what follows, we will apply the local Fourier mode analysis to analyze the

local convergence behaviour of the two-grid iteration matrix My, . This type of
analysis will be exact, if we consider periodic solutions, see (4.18). To do so, we
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will compute the Fourier symbol of the two-grid iteration matrix My, . In Lemma
4.2.14 we already derived the local Fourier symbol for the system matrix £, as

LATL(ek) = KTL +MTL - eiﬁekNTL € CNIXNI.

Whereas the local Fourier symbol for the smoother Sz is given by

ay . —i6; -1 v N, xN,
STL(Ok,a)t).:<(1—a),)IM+e o (Kz, +Ms,) NTL) e CNxM:,

see Lemma 4.2.16. For the local parts this motivates to use the so called stencil
notation for the upcoming operators. For the system matrix £ we therefore
have the stencil

Lo =[Ny Ky+Mg 0],

and one smoothing iteration Sy ,

v =1, is given in stencil notation by
Sli= [~ (Ky +Mg)'Ny, (1—ar)ly, 0].
For periodic solutions this leads to the following mapping properties
‘CTL : lPL(Ok) — lPL(Ok) and S%/L : TL(G]{) — lPL(Ok>. (423)

In what follows, we will analyze the mapping properties of the restriction and the
prolongation operator. To do so, we first have to prove the following lemma.

Lemma 4.2.30. The mapping y: @i"w — @Eigh with
Y(6k) := 6 —sign(6) 7

1S @ one to one mapping.

Proof. Let 6; € ®°V. By definition we have

2km . Ny N;
O = — th & 1——,...,— 7.
‘ L h e{ 477774 }
For the mapping y we then obtain
2k 2(k—sign(6,) %) 2k
'}’(Qk)zek—sign(ek)n:N—Zc_sign(ek)ﬂ;: ( SI%\IS k)5 _ NZE,
with
2 . Np NL NL N N
=k— — l——=,...,— —+1,...,— .
k k51gn(9k)2€{ 5 4}U{4+, ,2}

This implies that y(6;) € @figh and that sign(y(6y)) = —sign(6;). Hence we have
Y(¥(6k)) = v(6k) —sign(¥(6k)) 7w = V(6;) + sign(6x) 7w = 6.

which completes the proof. [ ]
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Lemma 4.2.31. The vector u = (uy,uy,... ,uNL)T e RNN: for Np_1,N, € N and
Ni, = 2N;_1 can be written as

u= Y [$H60+ v (r(6)]

6,€0/°%

where the vector YL (6y) € CNM s defined as in Lemma 4.2.10.

Proof. Applying Lemma 4.2.10 and Lemma 4.2.30 proves the statement of this
lemma with

u= Y ¢0)= ¥ v+ Y v

0, €6L, 0, €0/0Y gkegiligh
= ) vHe)+ Y vt(re))= Y [¥"(6)+¢"(v(6)].
Bre@ OOV Bre@™

Lemma 4.2.31 motivates the following definition.

Definition 4.2.32 (Space of harmonics). For Np,N; € N and for a low frequency
6 € OV let the vector ®L(6;) € CVM. be defined as in Lemma 4.2.10. Then the
linear space of harmonics with frequency 6y is given by
EL(6k) = span {B"(6,), D" (v(61)) }
= {9p"(6;) € CNNe 2 pf(6) = Ui b5 (6k) + UaPL (Y(61)),
n=1,...,Ny and Uy,U, E(CN’XN’}.

Under the assumption of periodic solutions the mappings (4.23) imply the fol-
lowing mapping properties

L EL(6k) — EL(6r) and SXL 2 EL(6k) — EL(6y), (4.24)

with the mapping for the system matrix L,

U Lo, (6) 0 ) <U1)
— o 4.25
<Uz) ( 0 Lo \v: (4:25)
and with the mapping for the smoother S/
Uy SA%/ (Ok,(t)t> 0 ) <U1)
— L A . 4.26
()= 55 syiomam) (@ (420

In what follows, we will analyze the two-grid cycle on the space of harmonics
EL(6y) for frequencies 6 € @i‘)w. To do so, we further have to investigate the
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mapping properties of the restriction and prolongation operators RY and PL.
The restriction operator is given by

Ri R,
RE .= K ko e RMNLNNL-1 (4.27)
R, R,
whereas the prolongation operator is given by
T
R]
Ry
L RT LNT N;Ny_1 XN;N|
= =(R R™ML-1 2L 4.28
P ] (R e L )
Ry
Ry

with the local prolongation matrices
T —1p7l T —1x72
R :=M;'M} and R} :=M;'M?,

where for basis functions {l//k}],:’le C PP (0,7z) and {lT/k}iv’:l C PP1(0,271) the local
projection matrices from coarse to fine grids are defined as

277,

M. [k, 0] : /W Jyi(t)dt and M2 [k, 0] := /w YWt + T)dr

T

for k,¢ =1,...,N;. To prove the mapping properties of the restriction operator
RE we need the following lemma.

Lemma 4.2.33. Let ¥1(6;) € ¥.(6;) for 6, € ©p. Then there holds
W2(66) = iy (265),
form=1,... Np_.

Proof. Let 9% (6;) € ¥.(6;). Hence we have L (6;) = UPL(6;) forn=1,...,Ny.
Then for &% (6;) with n€ {1,...,N._;} we obtain for £ =1,...,N, that

D5, (0[] = p2u(6) = "% = 0, (26,) = B;(26,)[¢].

Hence we conclude the statement of this lemma with

Y5, (6) = UD5, (6) = UPL(26)) = 1l (26;).

The next lemma shows the mapping property of the restriction operator.
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Lemma 4.2.34. Let 6 € @i"w. Then the following mapping property for the
restriction operator RE holds true

RE:EL(6) — F-1(26y),

with the mapping

Ui 5 5 Ui NN,
(00) =+ (@) Rert@) () e
and the Fourier symbol

7@(9]() = eiﬁekR] +R2.

Proof. Let ¥%(6;) € £.(6;) for some frequency 6; € ©°" with the linear com-
bination 5 (6;) = U1 ®L(6;) + UL (y(6;)). Then for the Fourier mode &X(6,)
with frequency 6y € @ there holds for a fixed n € {1,...,N._} that

(RF®"(6/)),, = Ri®5,_1 (6r) + RaP53,(6r).

Since &% (6;) € ¥;.(6;) we further obtain by using Lemma 4.2.13

- [e*ﬁ“’le +R2] ®L ().
Applying Lemma 4.2.33 gives

= [T+ Ro| B (200).
Using this result for the vector ¥%(6;) leads to

(REYH(8)), = R(B)U1L, ™" (26) + R (7(60) V2%~ (27(8k)-

Fori=1,...,N; we further have that

@, (27(00)[i] = @n(27(6y)) = €2V = A isen( G2
= "% = ,(26,) = BL71(26,)]i].

Hence we obtain
(REH(61)), = [R(O)U1 +R(¥(6)Ua] DL (260),
which completes the proof. [ ]

For the prolongation operator the mapping property will be proven in the follow-
ing lemma.
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Lemma 4.2.35. Let 6 € @i"w. Then the following mapping property for the
prolongation operator PL holds true

PL.w_1(26,) — EL(6p),

with the mapping

and the Fourier symbol

P(6r) ::% [eﬁeleTJrRﬂ .

Proof. For 6; € ©°% let ¥'~1(26,) € W1 (26;) with o571 (26,) = UL (26,)
for A€ {1,...,N._1}. We then define ¥ (6;) € ¥.(6k) as ¥L(6;) = UPL(6;) for
ne{l,...,N.}. Then we have

(PE9™1(200) 5, = Ri 95 (260).
With Lemma 4.2.33 we further obtain
= R{ 95(6)).
Applying Lemma 4.2.13 results in
= %R 551 (6)).
Similar computations as above give
(P 1(2600)),,, = Ry b5~ 1 (26) = Ry 15,(6)).

Hence we have for n € {1,...,Np}

cCM,

(Pr™1(260)), = {ekalT‘/’r%(ek) n odd,

Ry pL(6)) n even

If the image of the prolongation operator PL should be contained in £7(6;) we
therefore have to fulfil the following equations

U1 bL(6;) +Ua®L(v(6r)) = %R UPL(6,)  for n odd,

(4.29)
U BL(6,) + U BL(v(6r) =R, UBL(6)) for n even

for n=1,...,Np. Further computations show for ¢ =1,...,N; that
452('}/(9]{))[4 = n(7(6))) = V(6k) — pinb—isign(6p)nm _ son(9}{)61'1sign(9k)n7r
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1 n even,

= @%(Qk)[ﬁ] {_1 n odd.

Hence the equations (4.29) are equivalent to the system of linear equations

Uy —U,=e%R] U,
U +U, = R;—U.

Solving for U; and U, results in

17 .
Ur =5 %R +R] | =P (69U,
U oy 0 RT L RT 1 i(6c—sign(6)7) pT | pT
2= 57 TRy | = 5 ¢ 1 TRy
17 N
=5 [¢"R] +R]| = P(v(8)U.
which completes the proof. [ ]

Remark 4.2.36. In view of Lemma 4.2.34 and Lemma 4.2.35 the stencil nota-
tions for the restriction and prolongation operator RY and P are given by

RL .= [Rl R> O] and P- ::%[O R2T Rﬂ

For the two-grid operator My, it now remains to prove the mapping property
of the coarse grid operator Lz_T]L. Under the assumption of periodic solutions we
have for 6, € @;_; by using (4.23) that

Lyg W 1(68) = ¥ 1(6k),
with the Fourier symbol

A ) . .
‘CETIL(GIJ - (KTL +M1L — €7n0kNTL> = (‘CZTL(Gk))il c CNI ><Nr‘

Lemma 4.2.37. The frequency mapping
B:OY -0,  with 626

1S a one to one mapping.

Proof. For 6, € @i"w we obtain

2kxn 2km 2km
ﬁ(ek)zzekzzNL = N = E@L—]-
2
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The proof of this lemma follows by using the identity

Np N Ni—y I\
l——,...,—=<1- .
N

With Lemma 4.2.37 we now conclude for 6; € @i"w the following mapping prop-
erty of the coarse grid operator

Lot W 1(260) = ¥ 1(26)). (4.30)
We are now able to prove the following theorem for the two-grid operator Mg, .

Theorem 4.2.38. Let 6, € @FW. Under the assumption of periodic solutions the
following mapping property for the two-grid operator My, holds true

Mz, EL(6r) — EL(6k),

with the mapping

and the iteration matriz
. SY2(6y, ay) 0 ) (Svl(ek ) 0 )
M(6,) := LA A K(6 AT A
0= ("0 g @) €O
with

— PO\ (2, ag (RO Y (LalB) 0
/C(ek>-_12N[_(75(y(ekk))) (L27,(261)) l(ﬁ(y(gk)f) ( ()k ETL(y(Gk)))'

Proof. The statement of this theorem is a direct consequence of Lemma 4.2.34,
Lemma 4.2.35 and the mapping properties (4.23) and (4.30). |

We now write the initial error € = x — x° as

= ¥[8+ 8))],

6OV

with L (8;) + L (y(6k)) € EL(6) for all 6; € O™, see Lemma 4.2.31. In view of
Theorem 4.2.38 we can analyze the convergence of the two-grid cycle by simply
computing the largest spectral radius of M(Gk) € C2N<2Ni with respect to the
low frequencies 6 € @i"w. This motivates the following definition.
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Definition 4.2.39 (Two-grid convergence factor). For the two-grid iteration ma-
triv M+, we define the asymptotic convergence factor as

p(Myg,) := max {p (M) : 6 € @i"w}.

For the simplest case, i.e. for the polynomial degree p, =0, we have to compute
the spectral radius of the 2 x 2 iteration matrix M(Gk). Using one pre and post
smoothing step, i.e. Vi = v, = 1, we find that the spectral radius of M(6;) € C>*2
is given by

4(1 4 17)2 (sin(6y))* + T2 (1 4 277 — €%i%)
2

PO = = G e P (11 27— 1)

Further calculations show that the maximum of p (M(Gk)) with respect to the
low frequencies 6y € @iow is obtained for 6 = 7. Hence for this simple case we
can compute the asymptotic convergence factor as

1 1

SR S— for all 7, > 0.
2427+ 7} [2] oratl i =

p(MTL>

For periodic solutions we therefore conclude, that the two-grid cycle converges
for any 77, > 0 to the exact solution, since p(My, ) < % for all 7, > 0. Furthermore
we obtain, that the asymptotic convergence factor p(My, ) gets very small for
large time step sizes, i.e. p(My,) = O(t;%). This results from the fact, that the
smoother itself is already an efficient iterative solver for large time step sizes.

For higher polynomial degrees p; we have to compute the eigenvalues of the
2(p;+1) x2(p; +1) iteration matrix M(6;), which is in general not a trivial task.
To overcome this problem we compute for all frequencies 6 € @i"w the eigenvalues
of M(6;) numerically to find the asymptotic convergence factor p (M(Gk)) for a

given time step sizes Tr.

With respect to the time step sizes 77 € [107%,10°] and for different polynomial
degrees p, € {0,1,...,5} the theoretical average convergence factors p (M(6y))
are plotted as solid lines in the Figures 4.6-4.11. In each plot the convergence
factors are compared for a different number of smoothing iterations vi = v, =v
with v € {1,2,5}. It can be seen, that for higher polynomial degrees p; > 1 the
theoretical convergence rates are almost smaller by a factor of two compared to
the theoretical convergence rates of the lowest order case p; = 0. In addition
we see, that the theoretical convergence factors are close to zero for large time
step sizes T7. This results from the fact, that the smoother itself is already a
good iterative solver for the given problem, see also Remark 4.2.28. Furthermore
for odd polynomial degrees p; we observe a peak in the plots for the theoretical
convergence rates. This behaviour can be explained due to the fact, that for odd
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polynomial degrees the (p;,p; + 1) subdiagonal Padé approximation of e™' has
exactly one zero for + > 0. Hence for one 7/ > 0 we have a(7}) =0 which implies
for the smoothing factor g =0, see Lemma 4.2.27. Hence the application of only
one smoothing iteration results in an exact solver.

Furthermore we compare the theoretical results of the local Fourier mode analysis
with the numerical results for solving the equation

‘CTLm = f

with the two-grid cycle. In particular we use Ny = 1024 time steps with a zero
right hand side, i.e. f=0. As an initial vector £° we use a random vector with
values between zero and one. The convergence of the two-grid cycle is measured
with

Il

: k._ p k
e ], T T e

where Nijer € N, Nijter < 250 is the number of used two-grid iterations until we
have reached a given relative error reduction of &yg. To measure the asymptotic
behaviour of the two-grid cycle we have to use eyg = 107140, since in the pre-
asymptotic range the convergence rates of two-grid cycle are in the most cases
smaller than in the asymptotic range. The measured convergence rates of the
two-grid cycle are plotted as dots, triangles and squares in Figures 4.6-4.11.
Here we observe that the theoretical results from the local Fourier mode analysis
completely agree with the numerical results, even if the applied Fourier mode
analysis is only a rigorous analysis when periodic solutions are assumed.

4.3 Space-time analysis

In this section we analyze the two-grid cycle for solving the discretized space-
time problem (2.2) introduced at the beginning of this chapter. In particular
we analyze the case when tensor product space-time elements are used. For
simplicity we assume that 2 is a one-dimensional domain. The analysis for
higher dimensions is more technical, but the techniques stay the same as for the
one dimensional case. Hence we have to solve the linear system

Azp U fi
Brn Agp uz p)

By Acp us | = | f3 |, (4.31)

Brp Azn) \uy Iy
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Figure 4.6: Average convergence factor p (My,) for different time step sizes 1,
pr =0 and numerical convergence rates for N; = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).
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linear plot (top) and Log-log plot (bottom).
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Figure 4.9: Average convergence factor p (My,) for different time step sizes 1z,
pr =3 and numerical convergence rates for N; = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).
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pr = 4 and numerical convergence rates for N, = 1024 time steps.
Log-linear plot (top) and Log-log plot (bottom).
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with the following matrices Az, and Bg,
AT,h =My QK+ K, QM- B’r,h = —M; Q®N;.

Here we assume, that we have a uniform decomposition of the simulation interval
[0, T] with time step size T and that we also have a uniform decomposition of the
one dimensional domain = (0,1) with mesh size h. Furthermore we use piece-
wise linear continuous ansatz functions to approximate the solutions in space.
Hence we have to deal with the standard one dimensional mass and stiffness
matrices

1 2 -1
4 1 -1 2 -1

1 -1 2 -1
4 -1 2

4.3.1 Smoothing analysis

In this subsection we study the smoothing behaviour of the damped block Jacobi
smoother (4.7). The iteration matrix of the damped block Jacobi is given by

_ v
;}LhL [I wl(DTLJlL) I‘CTLJIJ )

where D, p, is a block diagonal matrix with blocks Az, . For the analysis we
can use the results which we obtained in the last section, where we have analyzed
the two-grid cycle for the simpler ODE case.

In the following we denote by Ny, € N the number of time steps for the level
L € Ny, by Ny = p;+1 € N we denote the degrees of freedom with respect to the
polynomial degree p, and with N;_ € N we denote the degrees of freedom with
respect to the space discretization for the Level L.

We start by transforming the problem (4.31) into the frequency domain. To do
so, we first have to prove the following lemma.

Lemma 4.3.1. Let u = (ul,uz,...,uNL[)T € RNNLNL for N, Np,Ni, € N where
we assume that Ni, and Ny, are even numbers. Furthermore we assume that

e RMNL: and Uy, € RM

forn=1,...,Nr, andr=1,...,Nr_. Then the vector u can be written as

Z ZwLL,G )

0 GQLX 9;€@Lt
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with the vectors
Pyl (60,6,) ;= UBL1 (6,,6,), Py (6y,6,) := By (6,) " (6,)[7]
forn=1,...,Np,, r=1,...,Ny_ and with the coefficient matriz

U := diag (fiy,[1],. .., i [N;]) € CNNe

with the coefficients for 6, € O, and 6; € O,

1 N, Ni,
it [l] == MY 0 .
lfli= - X X e (-0 (-0l
Proof. For u = (uy,uy,...,uy, )" € RM¥Nu we define for s =1,...,Ny, the

vector w® € RVEMN as wi[0] := u, 4[¢]. Applying Lemma 4.2.10 to the vector w*
results in

ui [ =wi[]=Y »"(6)= Y Ul 0p(0)]i,

0[ S ®Lt 9; S ®Lt

with

NL,

Ut[ﬁ,g]: :_Zuns£]90 )[ ]

Next we define for a fixed n € {1,...,N, } and a fixed £ € {1,...,N;} the vector
2" € RV as 2™Y[s] := uy, 4[f]. By using Theorem 4.2.8 with respect to the vector

2! we obtain for s =1,...,Np,
uns[l] =251 = Y &8s,
exEQLx
with
R
NN
= r g _9
21! = g X sl (001

By combining the results from above we obtain the statement of this lemma
with

N, N,
Um[z] = Z Z ( )[S]SO et Z Z unr [ ]90(_9t)[n]
Gxe®Lx Gte@Lt L, r=Iln=

-y Y ﬁx,t[ﬂ]w(ex)[S]SO(Ot)[i]

0, E@Lx [PAS @Lt
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= Y Y Ulegete.,6)

Gx GQLX 9; S ®Lt

= Y Y wirte.6).

6, GQLX PRS ®Lt

Lemma 4.3.1 motivates the following definition.

Definition 4.3.2 (Fourier space). For N;,Ni ,Ni, € N and the frequency 0y € O,
and 6, € O, let the vector ®*+1(8,,6,) € CNNuNL be defined as in Lemma 4.3.1.
Then we define the linear space of Fourier modes with frequencies (6, 6;) as
lPLx,Lr(em 9[) := Span {diLX’Lt(ex, et)}
= {p"11(6y,6,) € CMVM - qpmte(6,,6,) := Uy (61, 6)),
n=1,...,N,,r=1,...,N_ and U € CN’XM}.

To analyze the mapping properties of the occurring operators, we need the fol-
lowing shifting results.

Lemma 4.3.3. For N;,Ni ,Ni, € N and the frequencies 6, € O, 6, € O, let
Pl (0,,6,) €W, 1,(0x,6;). Then the following shifting equalities hold true

P (6x,6)
P (6, 6)

e 0Lty 6,),
e—ﬁﬂx,l’be,L, (Gxa et)

n,r

form=2,....Ng, and r=2,...,Ng

t x

Proof. As in the proof of Lemma 4.2.13 the statement of this lemma follows by
the fact, that

p(0)[n— 1] = 118 = 70510 — 10 5(9) ]

which can be applied for the frequencies in space 8, € @ and the frequencies in
time 6; € Oy,. [ ]

In the next lemma the Fourier symbol for the space-time operator L, 5, will be
computed.

Lemma 4.3.4. For the frequencies 6y € O, and 6; € O, we consider the vector
Pholi(0,,6,) € ¥,.1,(6x,6;). Then forn=2,... Ny and r=2,...,N;_—1 there
holds

(‘CTL,hL’L)be’Lt (9X7 91‘)) n,r - 'CATL,hL(GJH et)’lﬁylzlfr’Lt (9X7 et) 9
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where the Fourier symbol is given by
A h —i
Le, 1, (61,6 ::?L(2+Cos(9x)) Ko, +hy 2 B(0:)My, —e Ny, | € CVN,

with the function

6 1 —cos(6y)

B(6,) := 3 Foos(6) € [0,12].

Proof. Let ¢ (0,,6,) € ¥, 1,(0y,6;) then we have for n=2,...,Ny.

( TL,hL¢L Lt(e )) _BTLhL'I#Lx’Lt(G 9t)+ATLhL¢L Lt(e 91‘)

Applying Lemma 4.3.3 results in

— ( DOIBTL,//LL +ATL7hL> L)ﬁLl(e 9),‘)'

Hence, we have to study the action of A;j; and Bz, onto the vector wﬁx’L’(Gx, 6;).
By using the definition of B;j, we obtain for r =2,... N, —1land £ =1,...,N;

Nie N

(B i (64, 6,)) [€] = legthL[r,s]NTL[z,k] Ll (6, 6,)[K]

:_): ( W, (6, 6,)[k] +4epny (6, et)[k]+¢§f;if1(ex,et)[k])NTL[e,k].

Applying Lemma 4.3.3 leads to

h N; . :
_ —KL Y Ny [£,] (e‘wx +4+en9x> i (6, 6;) [K]
k=1

— —%L (24 cos(Oy Z Ny, [¢ k]TﬁL”’L’(@ 6;) k]

= —h—; (2+cos(6y)) (NTL’tbL"’L’(@ 6,)) [{].

Next we study the action of the matrix A;; onto the local vector ¢nx’L’(9 0;).

N, N

PR A CCIRGEDY Z My, [r,5)Kz, [0, K]apys™ (6x, 6;) [K]

s=1k=
NL)C Ny

+) ZKhL 1, s]Mo, [, Kbt (6, 6,)[K]

s=1k=
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h3 (2 +cos(6y ZKTLEk]¢L*’L’(9 6,)[k]

+ Z (s (0 0+ 205561, 0 1) — 13 (61,84 M (4K
Using Lemma 4.3.3 results in

(2+cos(6y)) (Ko 1" (64,6,)) [¢]

_L
3

2 N
(1 —cos(6y)) Y Mo [ Kyt 6y, 6,) K]
k=1

N
:q <z+cos<9x>>KTL+h—2L<1—cos<9)>Mu] C 90) 4]

Hence we have

L
hr
3

hr

(Lo ¥ (6:,6)),, = 5 (2+cos(8:)) (Ko, —e "Ny, ) 73 (6.,6)

3
+ (1= cos(0)M, w(6,.0)

cos( 0,
Z—I—COS <K +6h; 2+COSEG ;MTL— —nGtNTL) Lx,Lt(e 6;)

L (2 4cos(8 (KTL-l— 0, )My, — _HQ’NTL) Pl (6,,6,),
which completes the proof. [ ]

Remark 4.3.5. We note, that the Fourier symbol LATLJ,L(GX, 6;) for the space-time
operator L, 5, 1s closely related to the Fourier symbol Lo =Ky +M; —e 9N,
which we obtained for the ODE case, see also Lemma 4.2.14. The major difference
is the additional weight hgzﬁ(ex) in front of the local time mass matriz My, .

If we assume periodicity in space and time, i.e.

t,0) =u(r,1 for t € (0,T),
u(t,0)=u(t,1)  forre(07) )
u(0,x) = u(T,x) forxe Q =(0,1),
we conclude with Lemma 4.3.4, the following mapping property
‘CTLth : lPLx,Lr(em 9;) - lPvaLr(em 6t)7 <4.33)

U Lo 1, (65, 6,)U.

Next we study the mapping property of the iteration matrix S;/LflL
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Lemma 4.3.6. For the frequencies 6, € O, and 6; € O, we consider the vector
Pl (0,,6,) €W, 1,(6x,60,). Then under the assumption of periodic solutions, see
(4.32), there holds forn=2,... Ny, and r=2,... N —1 that

(STL hL¢LX7Lt (9x, 9t>) STL,hL(Gxa et) LX’LI (9 9t>

where the Fourier symbol is given by

S 1
STL:hL(9X7 91‘) = ( a)f)IN, —|— a)te —16; (KTL +hL 2[.‘))( )MTL) N‘EL c (CNIXNI,

with the function B(6y) as defined in Lemma 4.3.4.

Proof. Let ¥t (6,,6,) € ¥, 1,(6,6,), then for a fixed n =2,...,N;, and a
fixed r=2,...,N;, — 1 we have that

(Sz, 5, ™" (6x, 9t))n7, = ((Innn, — (Do py) ™ Loy ) b0 6y, 9r))

~ —1
- (INt — @) (A’L'L hL(e )) ‘CTL,hL(GM 9t)> wLx’Lt(e et)
= STL,hL(9X79t) Lx’Lt(O 91‘)

with

=

~

2
Agy 1y (6)) := == (2+cos(6,)) Ky, + h—L(l — cos(6;)) Mz,

3
3

(2+cos(6y)) [Kr, + h B (6:)Mz,] .
Further calculations give

(A (60) ' Loy (61,6) = (A (60) Ko, + 1 B(8 )MTL e N, |
= Iy, — % [Ko, +h2B(6)Mz, ] Ny,
Hence we have
8oy (06 = Iy, — a (I, — ¢ (Ko +h 2B (0IMy,) ' Ny, )
= (1= @)y, + 0e ™% (Ky, + 12 B(6:)My,) ' Noy,
which completes the proof. [ ]

In view of Lemma 4.3.6 the following mapping property holds true, when period-
icity in space and time assumed

SV : lIIL,C,Lt(GJM et) — lIIL,C,Lt(GJM 9l)7

woh N ) (4.34)
U— (STLJ,L(GX,@)) U
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(a) Semi coarsening. (b) Full space-time coarsening.

Figure 4.12: Low and high frequencies 6, and 6; for semi coarsening and full
space-time coarsening.

Next we will analyze the smoothing behaviour for the high frequencies. To do
so, we consider two coarsening strategies. We will study the case when semi
coarsening with respect to time is applied and the case when we apply full space-
time coarsening. This motivates the following definition.

Definition 4.3.7. Let Ni,,Nr, € N. Then we define the set of frequencies

2kmt 2T Np. Np Ny, Ny, 2
Q) =S (=, — ) k=1——"2, ... “andl=1——"2,...,—L  C (—m, &l
Ly,L; {<NLX,NL,) 7 ) ) D) an D) 9 ) 2 ( ) ]

Next we define the low and high frequencies with respect to semi coarsening in
time

low,s | T
®LX,L, = 0L,1,N(~7, 7] X (—57 5],
high,s | low,s
@L_,C,L, -— YLy L \@LX,L,'

Furthermore we define the low and high frequencies with respect to full space-time
coarsening

T E]2
27277
highf , low,f

®LX,L[ T ®L.’C>Lt \ @LX,L[ :

low,f ,
@L.’C7Lt T @LX7L[ ﬂ (

In Figure 4.12 the high and low frequencies are illustrated for the two coarsen-
ing strategies. Next we define the smoothing factors with respect to these two
coarsening strategies.
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Definition 4.3.8 (Smoothing factors). Let Sy, 1, (6x,6;) be the symbol of the
block Jacobi smoother. Then we define the smoothing factor with respect to semi-
coarsening in time as

5 = max { p(Se, . (6,8))  (61,61) € O}

Furthermore the smoothing factor with respect to full space-time coarsening is
given by

N high,f
uh = max {p(STL,hL(ex, 6)): (6:,6) c O } .

To analyze the smoothing behaviour we need the following lemma to compute
the eigenvalues of the Fourier symbol Sz, 4, (6y, 6;).

Lemma 4.3.9. The eigenvalues of the iteration matrix
_ —1
(Kz, + 12 B(6,)My,) Ny, € RN

are given by
_ ~1
o (Ko, + 1.2 B(6IMz,) ' Ny, ) = {0, (6, 0)}

were p = trh; % is a discretization parameter and o(Oy, 1) = R(—uB(6y)) is de-
fined by the A-stability function R(z) of the given time discretization, which is
given by the (py, pr + 1) subdiagonal Padé approximation of the exponential func-
tion e*.

Proof. The statement of this lemma follows simply by using A = —hL_2[3(9x) in
the proof of Theorem 4.2.17. ]

Now we are able to compute the spectral radius for the Fourier symbol ‘SA’TLJZL(OX, 0).

Lemma 4.3.10. The spectral radius of the Fourier symbol ‘SA’TLJZL(OX, 6,) is given
by

P (S5 (6:,6)) = max {|1 - ], (e, (6:,10). 6}
with
(S(@,0.8))" = (1—a1)> +20(1 — @) crcos(6;) + o0}

where a(6x, 1) = R(—uP(6y)) and R(z) is the (ps,pr+ 1) subdiagonal Padé ap-
prozimation of the exponential function € and U := ‘L‘Lhiz 15 a discretization
parameter.
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Proof. The Fourier symbol STL,hL(eﬁh 6;) has the same structure as the Fourier
symbol which is analyzed in Lemma 4.2.19. Hence the statement of this lemma
follows by applying Lemma 4.3.9 in the same way as in Lemma 4.2.19. ]

Next we study the smoothing behaviour of the damped block Jacobi iteration for
the case when semi-coarsening with respect to time is applied.

Lemma 4.3.11. For the function

(S(ar, @, 8;))2 = (1 —a)*+20(1 — o) orcos(6;) + o’ o

with o = a0y, 1) as defined in Lemma 4.3.9 and even polynomial degrees p; the
following min-mazx principle holds true

A 1
inf sup S(a)tva(e ,;,L),O ) =5
0 €(0,1] e ] x t /2

0,€[0,7]

for any discretization parameter w > 0 with the optimal parameters

D
*
Il
SRS

and 67 =0.

Proof. Since we consider even polynomial degrees p;, we conclude that the
(pt, pr + 1) subdiagonal Padé approximation R(z) of the exponential function e° is
positive for all z < 0. Hence we also have that a(6x, 1) = R(—up(6y)) is positive
for all u >0 and 6y € [0, w]. Since @ € (0,1] we obtain that

~ 4
91;|< = argsupS(a)ha(exnu)?el) = 5
9[6[%,71’]

Since a(0,u) =1 and |a(6y,u)| <1 for all 6, € [0,7] and u > 0 we conclude
that

6, := argsup S (@, a(6y, 1t),0%) =0.
0,€[0,7]

Hence we have to find the infimum of
(S(@,a(6;,1),8)" = (1- @)+ @,
which is obtained for @ = % This implies that
(S(or,a(67,1).6/)" =5
which completes the proof. [ ]

With the next lemma we can bound the smoothing factor ug for the case when
semi coarsening with respect to time is used.
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Lemma 4.3.12. Let S(ay, (6, 1), 6;) be defined as in Lemma 4.3.12. Then for
the choice o = % and any polynomial degree p; € Ng the following bound holds

true

A 1
sup S(Q},(X(G nu')?et) S =
o€ % 7] " \/E

0,€(0,7]

Proof. For even polynomial degrees p; we can apply Lemma 4.3.11 to end up
with the stated bound. For odd polynomial degrees the (p;, p; + 1) subdiagonal
Padé approximation R(z) of the exponential function e° is negative for large nega-
tive values of z. If the value of (60, 1u) = R(—up(6y)) for the optimal parameter
0; € [0, 7] is positive we end up with the bound of Lemma 4.3.11, otherwise if
o (67, 1) is negative we have that

9;< .= argsup S(a)taa(eﬁ)cknu%et) =T.

9)?6[%777:]

For a negative a(0;, 1) this implies that

(1+ (6, 1)

| =

sup S(o, (6, 10),6) <
QIE[%,TC]
0,€[0,7]

Since any subdiagonal (p;, p; + 1) Padé approximation R(z) is bounded from below
by R(z) > £(5—3v/3) for all z < 0 we get the estimate

< 3(\@—1)<—.

4

EH

With Lemma 4.3.12 we conclude, that the smoothing factor with respect to semi-
coarsening in time is bounded by

s <

Sil-

Hence, by applying the damped block Jacobi smoother with the optimal damping
parameter @ = %, the error components with respect to the high frequencies

@ggg’s are damped by a factor of at least % To study the smoothing behaviour
when full space-time coarsening is applied, we consider the following lemma.

Lemma 4.3.13. For the optimal choice of the damping parameter @; = % there
holds

. 1
sup S(o, ¢, 6;) = 5(1 + o)
9[6[0,71']
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with the optimal parameter

. {o o >0,
0 =
T o>0.

Proof. Let oo € R. For the optimal damping parameter @ = % we have

o 1
(S(w), 0, Ot))z =7 (1+2acos(6;) + az) .
First we will study the case @ > 0. Hence we have

0 := argsupS(w;", a, 6;) = 0.
9[6[0,77}

For the case ¢ < 0 we further obtain

6 :=argsupS(w;, @, 6,) = 7.

6,€[0,7]
This implies that
(S(af, a0, 04))* = % (1+42]a] +0?) = % (1+|a))?,
which completes the proof. [ ]

Lemma 4.3.13 shows, that we obtain a good smoothing behaviour for the high
frequencies with respect to the space discretization, i.e. 6y € @ggh, if & =o(6y, 1)
is sufficiently small for any frequency 6y € [§, 7]. Hence we conclude by combining
Lemma 4.3.12 with Lemma 4.3.13, that a good smoothing behaviour is obtained
for all frequencies (6y,6;) € @Zgg’f, if the function a = ot(6y,u) is sufficiently
small. This results in a restriction on the discretization parameter u. With the
next lemma we will analyze the behaviour of the smoothing factor /.Lg with respect

to the discretization parameter p for even polynomial degrees p; € Np.

Lemma 4.3.14. Let p; € Ny be even. Then for the optimal choice of the damping
parameter @ = % there holds

. 1

sup - S(@y, (6, 1), 6) = 5(1+R(=34))
9[6[0,77.']

6.€[% 7]

where R(z) is the (ps, pr + 1) subdiagonal Padé approzimation of the exponential
function e*.
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Proof. In view of Lemma 4.3.13 it remains to compute the supremum

1
sup_—(1+]a(6, ).

0.€[5 .7

Since for even polynomial degrees p; the function o(6y, ) = R(—uB(6y)) is mono-
tonically decreasing with respect to (6y), the supremum is obtained for 3 (6,) =3
since B(6y) € [3,12] for 6, € [Z,m]. This implies that 67 = 7 and we obtain the
statement of the lemma with

5 * 5 * * * 1 *
sup S(@, (0, 10)),60) = S(w, (6, 1),6) = 5(1 +|a (65, 1))
9[6[0,77.’]
6.€[5 7]

1
= S(1+R(=3u)).

Remark 4.3.15. Lemma 4.3.14 is only proven for even polynomial degrees, but
the statement of this lemma s also true for odd polynomial degrees p;. Only
the proof gets more complicated, since the Padé approximation R(z), z <0 is not
monotonically decreasing for odd polynomial degrees.

Remark 4.3.16. In view of Lemma 4.3.14 we obtain a good smoothing behaviour
for the high frequencies in space 6y € @ggh; i.€. ;,Lg < %, iof the discretization
parameter W 1s large enough, i.e.

w>pr o with R(=3))=v2-1. (4.35)

Hence we are able to compute the critical discretization parameter Uy with respect
to the polynomial degree p;

2
w = g ~ 0.4714045208,

1
ui=5(-3- V241114 12v2) ~ 0.2915022565,

1} ~ 0.2938105446,
1} ~0.2937911168,
1k ~0.2937911957.

To compute the critical discretization parameter ul we used the fact, that the
(pt,pr + 1) subdiagonal Padé approximation R(z) converges to the exponential
function e* for z <0 as py — oo.
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Figure 4.13: Smoothing factor S(o}, ot(60y, 1), 6;)* for 6., 6, € [0, 7] with the dis-
cretization parameter g4 =1 and p; = 0.

Figure 4.14: Smoothing factor S(®}*, ot(6y, 1), 6,)> for 6,,6; € [0, 7] with the dis-
cretization parameter g = 100 and p; = 0.
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Figure 4.15: Smoothing factor S(w;, ot(6y, 1), 6,)> for 6, 6; € [0, 7] with the dis-
cretization parameter u = 0.01 and p; = 0.

Remark 4.3.17. Lemma 4.3.18 shows, that for all frequencies (0x,6;) € Oy,
the following bound holds true

S(of,0(6x,11)),68) < 5 (1+|R(=B(BIW)]) < 1.

N =

Only for 6, =0 we have that B(6;) =0, which implies R(—B(6,)u)) = 1. Hence
if the discretization parameter 4 = TLhZZ 15 large enough we have that

[R(—=B(6:)p)| =0

for almost all frequencies O, € O, which implies a good smoothing behaviour for
almost all frequencies, see also Figure 4.13-4.15. Only the frequencies 6 € O,
which are close to zero imply S(@;,a(6,1)),6;) ~ 1. Hence for a large dis-
cretization parameter W the smoother itself is almost a good iterative solver, only
the frequencies 0y € @, which are close to zero, i.e. wvery few low frequencies
0, @i‘j{w, spoil this effect. To obtain also a perfect solver for a large discretiza-
tion parameter W we can simply apply a correction step after one damped block
Jacobi iteration by restricting the defect in space several times until we arrive at
a very coarse problem. For this small problem one can solve the coarse correction
exactly by solving these small problems forward in time. Afterwards we correct
the solution by prolongating the coarse corrections back to the fine space-grids.
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4.3.2 Two-grid analysis

In this subsection we study the convergence behaviour of the two-grid cycle. The
iteration matrices for the two-grid cycles with respect to semi-coarsening and full
space-time coarsening are given by

S =SV

TLh TL,hL

f N %)
MTL,hL =S8

TL,hL

[l - PSLX’LI (£2TLJ1L) - R?“L[LTLJ!L} Sy

TL,hL’

[1 ~Pr (Lanam) Rf’”’L’CrL,hL] S

TL,h?
with the restriction and prolongation matrices
Revb =1y, ®RM, Ryl =R @ RN,
Plelt .= Iy, @PH, Pt = plegph.

The restriction and prolongation matrices with respect to time, i.e. R and
Pl are given by (4.27) and (4.28). Further, for the one dimensional case, the
restriction and prolongation matrices with respect to space are given by

2 1
1 1 2 1
R{;x::5 € RV Nix—t (4.36)
1 2
2
PLe = (RE)T ¢ RN 1Ny (4.37)

To analyze the two-grid iteration matrices M} , and Mt », Wwe need the fol-
LyNL TN
lowing lemma.

Lemma 4.3.18. Let u= (uj,uy,.. ~,UNL,)T € RNNLNL for Ny, Ny Ny, € N where
we assume that Ni, and Ny, are even numbers. Furthermore we assume that

u, € RNAL: and Uy, € RM
forn=1,...,Np

candr=1,...,Np_. Then the vector u can be written as

u = Z ['l,be’Lt(exa 9t> + ¢LX7LI(Y(6X>7 9;)

(6:,6,)€0,%"
+ wL'x’Lt (6, 7(6:)) + ¢L"’L’ (7(6x), 7(91))} )
with the shifting operator

Y(0) := 6 —sign(0)xw

and the vector =t (0, 6,) € CNNLNL defined as in Lemma 4.3.1.
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Proof. Using Lemma 4.3.1 and Lemma 4.2.30 results in the statement of this

lemma with

u= Y Y ¢"1(6,6)

0, E@Lx [PAS @Lt

Y Y wthene)+ Y Y otl(e.,6)

6.€0,° 6,0 6,0, 6,0
Ly.L Ly.L
+ Z Z ¢x t(ezhel‘)-i_ Z Z dj ¥ t(9X79t)
€O 0" 0,€0," g,co"

= Y [R(6..6) + il (v(6y). 6)
(6:,6,)€0,"!

+ wLX’L[(Gx, 7(6r)) + wLX’LI (7(6x), V(Gt))] .

Lemma 4.3.18 motivates the following definition.

Definition 4.3.19 (Space of harmonics). For N;,Np ,Nr, € N and the frequencies
(0y,6) € @iOWLf let the vector @+ (0, 8,) € CNNuNL be defined as in Lemma
4.8.1. Then we define the linear space of harmonics with frequencies (6y,6;) as

Er,.1,(6x, 6;) := span{ "' (6,,6,), 8" (7(6,),6,),
"l (6,,7(6,)), D" (7(6y),7(6)) }
— {¢Lx:Ll 0, 9t> € CNNLN,
w5 (0, 6) = Uiy (6x, 6,) + U2 By ((6y), 6,)
+Us @55 (64, 7(6,)) + UaBiy (7(61), 7(6)),
foralln=1,...,Np,,r=1,....Nr, and Uy,U,,U3,Us € CN’XM}.

Under the assumption of periodic solutions, see (4.32), Lemma 4.3.4 implies
the following mapping property for the system matrix L, 5, for all frequencies

(6,6,) € @ijf{f

‘CTLJZL : gL.th (9x7 9),‘) — ng,Lt (9X7 91‘)

Ul ‘CATLhL(e)HGI)U] U]

Uy thL( 7(6x), 6:)U> = Us
— =L 0., 0 ,

U3 ’L'L hL(OX7 Y(9t>)U3 TL’hL( * t) U3

Us TLhL( ) ( )>U4 Uy

(4.38)



4.3 Space-time analysis 125

where ZTL,hL(Gx,Gt) € CHix4N: i5 g block diagonal matrix. With the same argu-
ments we obtain with Lemma 4.3.6 the mapping property for the smoother for
all frequencies (0,,6;) € @i(zvztf

STLhL gL Lt(9x79l> _)gL Lt(9X79t)
U, (SrL n, (6, 6:)) U, U,
U (STLhL< ( ) )) Us S V1 U
5 = (S 0., 6 ,
Us ~ (‘ifLth<GXv7(9t)))vU3 ( . t>> Us
Us (St (¥(6:),7(6r))) " Us l<]4 |
4.39

with the block diagonal matrix gfL’hL(Gx, 6;) € CHixaN:,

To analyze the two-grid cycle on the space of harmonics &1, (6, 6;) for frequen-

cies (6y,6;) € @iOWLf we further have to investigate the mapping properties of the
restriction and prolongatlon operators for the two different coarsening strategies
Ré"’L’,Rg"’L’ and PSL "’L’,PfL ©I1 " The next lemma shows the mapping properties
for the restriction and prolongation operators with respect to space.

Lemma 4.3.20. Let RE and P+ be the restriction and prolongation matrices
as defined in (4.56). For 6, € @low let o' (0;) € CNix and pl=1(26,) € CNe-1 be
defined as in Theorem 4.2.8. Then there holds

(R;%XS"LX(G)C)) [r] = ﬁx(9x>¢Lx—1 (26,)[r],

for r=2,...,N,_1 — 1 with the Fourier symbol 7A€x(9x) :=1+cos(6y). For the
prolongation operator we further have

(Pere™1(264)) [s] = (Pa(8x)0™ (6:) + Pr(7(6x)) o™ (7(6x))) [s],

for s =2,...,Ny, — 1 with the Fourier symbol Py(6y) := 1R(6,).

Proof. To prove this lemma one can use the same techniques as used in the
proofs of Lemma 4.2.34 and Lemma 4.2.35, or see [99] for example. n

Definition 4.3.21. For N;,Ni,Ni, € N and the frequencies (6,6;) € @éOWLf let
the vector ®L+bi=1(0,,6,) € CNNuNL-1 pe defined as in Lemma 4.3.1. Then we

define the linear space with frequencies (6y,26;) as
V1, 1,1(6,,26,) := span {411 (6,,20,), 41 (1(6,),26)) )
{1t 1(6,20) € LY
r%r’Lt_l (6x,26;) = U, @L"L’_] (6,26,) + UQSFLX’L’ 1(7(9x>7 26,)
for alln=1,...,Nyyr = 1., Ny, and Uy, U € V).
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For the semi-coarsening case the next lemma shows the mapping property for the
restriction operator RQ%L’ .

Lemma 4.3.22. The restriction operator Rﬁ"’L’ fulfils the following mapping
property

Réx,Lt €1, (0%, 0r) = W1, 1,—1(6x,26))

with the mapping

Ui Ui
U, ~ U,
Uy Uy

and the matrix

= . (R(B) 0 R(¥e) 0
Rs(6r) -—( 0 R(6) 0 7€(Y(Ot)))

with the Fourier symbol R(6;) € CN*N: as defined in Lemma 4.2.34.

Proof. Let ®&11(0,,6,) € ¥, 1,(6,,6,) and $'+L~1(6,,26,) € ¥ 1,-1(6:,26))
be defined as in Lemma 4.3.1. Then for n=1,...,N;,—1 and r=1,...,N, we
have

Np, Ny,
(Rt t(0,,6),,, = 1, X I, [rs)RY [n, m] B (61, 61)
s=1m=1
Ng,
=P (0)[r] Y R [n,m] Py (1)
m=1

@' (0.)[r] (RM"(8)),, -

n

Using Lemma 4.2.34 leads to

R(6)®; " (26,) 9™ (6,)[7]
=R(6) DLy " (6:,26)).

Applying this result on the vector L (6,,6,) € &, 1,(0x,6;) with (6,,6,) € @foth
results in

(Rgx’Lt'lpLx’Lt(ex,6t))n7r:7%'(6 )U]SpL oLt — 1(6 29;)
+R(6) VBl (1(6y),26;)
+R(1(6,))Us DLy 1 (64, 27(6)))
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+R(7(6:)) Vs~ (7(6:),27(86))).-
Since 5155 L1 0, 27(6,)) = SFLX’L’ (6y,26;) we further obtain

= [R( U1+R(y(et))U3} it 1(6:,26;)
+ [R(6)U2+R(¥(6)U ]be b (1(61),26)),

which completes the proof. [ ]

Lemma 4.3.23. Under the assumptions of periodic solutions (4.32) the following
mapping property for the restriction operator holds true

R?’mLt . ngLt(GXv 9),‘) — lIILx—LL[—l (29x729t>

with the mapping

U, U
Uy ~ U,
Us — Re(6Oy, 6;) Us
Uy Uy

and the matrix
Ri(6.6) = (R(6,6) R(6,6) R(6,7(8)) R(1(6),7(6))
with the Fourier symbol
R(6s,6,) :=R(6:)R(6,) € CNM,
where Ry(0y) € C is defined as in Lemma 4.3.20.
Proof. For the frequencies (6y,6;) € @ngLt let @1+11(6,,6,) € ¥,.1,(6,6;) and

GLbli=1(29,26,) € W, _11,-1(26,,26;) be defined as in Lemma 4.3.1. Then for
n=1,...,Nj,_1and r=2,...,N;__1 —1 we have

Ni, Ny,
(R?,L@LX,LI(GX,@ ) =Y Y RE[rs|RY[n,ml Lol (6:,6)
s=1m=1

Ni Ny,
= <; Rﬁ-‘[r,s]so“(e)x)[r]) (Z_:IRLf[n,m]sﬁﬁ;(et)>

= (Rboh(0)) ] (R (6),.

Applying Lemma 4.3.20 and Lemma 4.2.34 leads to

= Ra(6)R(6;) B 1 (26,) ™" (26,)[7]
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=R(6,,0)P55 "171(26,,26,).

Using this result on the vector ¥t (6,,6,) € &..1,(6,6;) with (6,6;) € ®Lf4x7Lt
results in

(Rf)mLt,(/)Lx?Lt(ex, 61‘)) . (ex, et)Ul Spiﬁrilthil (29)67 29[)

)

(7(6x), ) Ua iy 11 (27(6y),26;)
(64, 7(6,))Us DLy 11264, 27(6,))
(Y(6x), 7(6:)) Us@rls V=1 (2(6y),27(6,)).

=R
p
LR
LR
R
With the relations

eh 11 (20,,26,) = 41 (2(6,),26))
=& (266,27(8)
=& (2(60),27(6)

we obtain the statement of this lemma with

(R?X,L%LX,L,(QM 9t>) = [R(6:,6,)U;

n,r

With the next lemmata we will analyze the mapping properties of the prolonga-
. Ly, Ly Ly, Ly
tion operators Py and Py,

Lemma 4.3.24. For (6,,6;) € @zth the prolongation operator P=™ fulfils the
following mapping property

PsLx’Lt . lIIL,_mLt—] (9X7 Zef) — gL-’C7Lf(GX7 9t>

with the mapping

U A75(09t) 75(09[) U\ _. 5 U
(o8) | ety 0 (02) =200 (1)
0 P(v(6:))

and the Fourier symbol P(6;) € CN*M defined as in Lemma 4.2.35.



4.3 Space-time analysis 129

Proof. Let ¢"l=1(6,,26,) € ¥y, 1, 1(6y,26,) for (6,,6;) € Of ; . Then we have
forn=1,...,N;, and r=1,...,Ny_ that

Np, NLt
(Pertraptt1(60,260),,, = X, X I, [ 1P Ino i~ (6,26))

s=1m=1
N,

— Z Pliln,mlplsl1(6,,26;)

NLt
= Y Pl (™ (8) U@ (26)

+ (" (7(6:)[NU2) B~ (26,) |

Since @ (0,)[r]U; € CN>Ne and b (y(6,))[r)U> € CN*Nt we further obtain by
applying Lemma 4.2.35 that

P(
P(6:) (" (1(6x))[1]U2) Py (6r)
P(1(6)) (™ (7(6:))[r]U2) By (1(6)).

With the definition of the Fourier mode @ﬁj‘;L’ (6x,6;) we get

(6)U 1975 (61, 6,)

P(v(6,)) Ui B3 (6,,7(6r))
P(6)Ua®rs" (v(6y),6)
P

(Y(6:)) U2y (v(6:), 7(61)),

which completes the proof. [ ]

_ P
n
n
n

Lemma 4.3.25. Under the assumptions of periodic solutions (4.32) the following
mapping property for the prolongation operator holds true

PfLX’L’ T Wr10,-1(264,260,) — Ep,.1,(6x, 6r)

with the mapping
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and the Fourier symbol
P(6y,6,) :=Pu(6:)P(6)),

where P(6;) is defined as in Lemma 4.2.35.

Proof. Let ot 1171(26,,26,) € W1, 1 1,-1(26,,26;) for (6,,6,) € ©f ; . Then
we have forn=1,...,N;, and r=2,...,N;, — 1 that

Np, Ny,
(prqu/;Lrl’Lr*l(29x,29t)) =Y Y PElrsIPY il 1 (26,,26))
n,r s=1m=1

N, N,
= (Z Pelnslet ! (26,)] ) <Z Phn,mly ! <2et>>

s=1 m=1

Using Lemma 4.2.35 gives

= (Pe(6:)0" (6 [r] + Pu(7(6x)) 0" (7(61))[1])
x (P(8)UD, (6:) +P(v(6,)U D (7(6)))

Using the definition of the Fourier mode SZiL)"L’(G 6;) leads to

(6x),6)
6,))UBL" (7(6:),7(61)),

which completes the proof. [ ]

)
=P(6y,6)U D5 (61, 6;) + P (v(6x), 6,)UB" (v
+P(6:,7(6)) U5 (61, 7(6)) + P (7(6:), 1

Assuming periodicity in space and time (4.32) we further obtain with Lemma
4.2.37 the mapping property for the coarse grid operator, when semi coarsening
with respect to time is applied

(Lomm) ™ W, 1(60,26) = Wi, 1, 1(6:,26;)
Ui -1/, IN, XN, (4.40)
(UZ) = ( ZTL hL(9X7 291‘)) (UZ) E (C x

with the matrix
—1

= -1 (L2, (61,26))) 0 2N, x2N,
L 6,,26 = LA . _y | e CH et
( ZTL,hL< t)) ( 0 (Lzrth(}/(Gx), 9;)) 1

With respect to full space-time coarsening we further conclude the following map-
ping property

-1
(Logon) = Wo1.0,-1(264,26,) = W —11,-1(26y,26;)

G (a
U (£5,00,(26:26)) U €Y,
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with

~ 71 " _]
(LgTLQhL(zex’zet)) = (Lag, 21, (26,,26,)) € CNM,

Now we are able to prove the following theorems.

Theorem 4.3.26. Let (6,,6,) € @iZWLf Under the assumptions of periodic solu-
tions (4.32) the following mapping property for the two-grid operator Mi’L.hL with
respect to semi coarsening in time holds true /

MiL,hL : ng>Lt (6X7 91‘) — ngaLt (9x7 9t)’
with the mapping

U Ui
Us s o)
U3 ’_)M[J(Okaet) U3
Uy Uy

and the iteration matriz

_ B vy _ "

Mz(elﬁ 9[) = (S‘EL,hL(em 9t)> ]Cs(ex, 9;) (STLJIL(G)H 9t)> e AN xAaN;
with

~ ~ ~ -1 - ~
Kol(8:61) i= Loy, = Po(81) (L50,.,(6::26))  Rel(81) L, (61 60).

Proof. The statement of this theorem follows by using Lemma 4.3.22, Lemma
4.3.24 and the mapping properties (4.38), (4.39) and (4.40). n

Theorem 4.3.27. Let (6,,6;) € @EWL’tf Under the assumptions of periodic solu-

tions (4.32) the following mapping property for the two-grid operator MEL.hL with
respect to full space-time coarsening holds true

M 4y ELor,(65,61) = EL,1,(64,6),
with the mapping

Uj U,
U, Vi U,
U3 i—>./\/lu(9k,9t) U3
U, U,

and the iteration matriz
— _ vy N "
Mﬁ(ek,et) = (S%;,L(Ox,et)) Ke(6x, 6;) (STL,hL(OJHGt)) € 4N x4N,
with

~ ~ ~ -1 ~ ~
Ki(6:,6) == lin, — Pr(60,6,) (Lhe, 21, (26,26))  Re(60,6) L1 (6,60,
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Proof. The statement of this theorem is a direct consequence of Lemma 4.3.23,
Lemma 4.3.25 and the mapping properties (4.38), (4.39) and (4.41). n

In view of Lemma 4.3.18 we can now represent the initial error e = & — z as

= Y [ptl(6:,6) +ptl ((6y),6)

(6:,6,)€0,

+ ‘bLX’LI(ex, Y(6,)) + ‘pLx’L[(Y(ex),V(et))]
= Z 1;(6)”61)7

(6,60,

with 45(6y,6,) € &r,1,(6,6,) for all (6y,6,) € ®£wa Using Theorem 4.3.26 and
Theorem 4.3.27 we now can analyze the convergence behaviour of the two-grid
cycles by simply computing the largest spectral radius of Mj, (6, 6;) or ML(O;{, 6;)
with respect to the frequencies (6y,6;) € ®KWLf This motivates the following
definition.

Definition 4.3.28 (Two-grid convergence factors). For the two-grid iterations
matrices MSTL,hL and MfCLth we define the asymptotic convergence factors as

(ML) == max {p(ﬁ/t’;(ek, 6)) : (6:,6) € O with 6, # 0} ,
PN = max{p(ﬂg(ek, 6)): (6:,6,) € O with 6, # 0} .

Remark 4.3.29. In the definition of the two-grid convergence factors we have
neglected all frequencies (0,6) € @Evztf since the Fourier symbol with respect to

the Laplacian is zero for Oy =0, see also the remarks in [99, chapter 4].

To derive the average convergence factors p(./\%it) and p(/\%it) for a given dis-
cretization parameter u € R4 and a given polynomial degree p; € Ny we have to
compute the eigenvalues of

M, (6,6,) € CN*Neand - ML (6, 6;) € TN (4.42)

with N; = p, + 1 for each low frequency (6y,6;) € @ngtf Since it is very difficult
to find an algebraic exact expression for the eigenvalues of the iteration matrices
(4.42), we will compute the eigenvalues numerically. In particular we will compute
the average convergence factors for the domain Q = (0, 1) with a decomposition
into 1024 uniform sub intervals, i.e. Ny, = 1023. Furthermore we will analyze the
two-grid cycles for Ny, = 256 time steps.

With respect to the discretization parameter y = t7h; > € [107°,10°] and for dif-
ferent polynomial degrees p; € {0, 1,2} the theoretical convergence factors p(My,)
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are plotted as solid lines in Figure 4.16-4.18. In each plot the theoretical con-
vergence factors are compared with respect to a different number of smoothing
steps vi = v, = v € {1,2,5}. We observe, that the theoretical convergence rates
are always bounded by p(/\%it) < % For the case when semi coarsening with
respect to time is applied we conclude, that the two-grid cycle converges for any
discretization parameter y. Furthermore for polynomial degrees p; > 1 we see,
that the theoretical convergence rates are much smaller than the convergence
rates for the lowest order case p; = 0.

Furthermore we have compared the theoretical results with the numerical results
for solving the equation

‘CTL,th = f

with the two-grid cycle when semi coarsening with respect to time is applied. For
the numerical test we use a zero right hand side, i.e. f =0 and as an initial vector
x¥ we use a random vector with values between zero and one. The convergence

of the two-grid cycle is measured with

max w with 7€ := f — L, 5, x*
k=1,...,Niter HrkH2 ’ th s

where Nijer € N, Nijter < 250 is the number of used two-grid iterations until we
have reached a given relative error reduction of eyg = 107140, The measured
numerical convergence rates are plotted in Figures 4.16-4.18 as dots, triangles
and squares. We observe, that the numerical results completely agree with the
theoretical results, even if the applied Fourier mode analysis is only a rigorous
analysis when periodicity in space and time is assumed.

In Figures 4.19-4.21 the theoretical convergence factors p(./\%fl) for the two-grid
cycle Mer hy with respect to full space-time coarsening are plotted with respect

to the discretization parameter u € [107%,10°] for different polynomial degrees
pr € {0,1,2}. We observe, that the theoretical convergence factors are bounded
by p(./\;lz) < % if the discretization parameter u is large enough, i.e. for u > u*.
In Remark 4.3.16 we already computed these critical values u* for several polyno-
mial degrees p;. As before we compared the theoretical results with the numerical
results when full space-time coarsening is applied. In Figures 4.19-4.21 the mea-
sured numerical convergence rates are plotted as dots, triangles and squares. We

observe, that the theoretical results agree with the numerical results.

Overall we conclude, that the two-grid cycle always converges to the exact solution
of the linear system (4.31) when semi coarsening with respect to time is applied.
Furthermore, if the discretization parameter U is large enough, we also can apply
full space-time coarsening, which leads to a smaller coarse problem compared to
the semi coarsening case.
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Figure 4.18: Average convergence factor p(Mfl) for different discretization pa-
rameter i, p; =2 and numerical convergence rates for Ny = 256 time
steps and N, = 1023.
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Figure 4.19: Average convergence factor p(Mﬂ) for different discretization pa-
rameter U, p; =0 and numerical convergence rates for Ny = 256 time
steps and N, = 1023.
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Remark 4.3.30. For the two-grid analysis above we used for the applied block
Jacobi smoother

\%
7‘7/L hy — [I a)f(DTL hL) IE‘EL,hL] (4.43)

the exact inverse of the diagonal matriz DTL n, = diag {ATL hL}NLf For practical

n=1"
reasons we will use an approxrimation D h for the inverse of the diagonal matrix

Dz, y, by applying one multigrid ztemtzon wzth respect to the blocks Az, . Hence
the smoother (4.43) changes to

\4

gTLJlL = [I_ o (I_ MTLJIL) <DTL7hL)71£TL:hL:|V’ (4-44)

N,
with the matriz My, 5, = diag{ e } " where ./\/l , is the iteration matriz

of the applied multigrid scheme with respect to the matrzx Az - In the case that

the iteration matriz M7, , is given by a two-grid cycle, we further obtain the
L,IL

following representation

TL,hL T,h’

X,V =Lc,—1 ==L v
);LJIL =S [I_PX ATL,2hLRX ATLahL] S
with a damped Jacobi smoother with respect to space

2

hM’L'L }NLX

x ~1 vt
S/Tv;‘,/hL = [I_ Ox (Dﬁth) ATLth:| ) D);L,hL : dlag{ KTL +
and the restriction and prolongation operators
L« =L,
R =Rboly and P =Pkaly.

With the different smoother (4.44) we also have to analyze the two different two-
grid iteration matrices

- _ -1 _
M?CL,hL = S,‘C/z h [[— P!Jx’Lt (;CQTL’hL) Ré""Lt,CTth] Svl (4.45)

T,h

f

MTLJ!L = STL hi, |:I Pf - (EZTL 2hL) ]

RE Lo, | oy (4.46)

Hence it remains to analyze the mapping property of the operator Mg, j, on
the space of harmonics &, 1,(6y,6;). By several computations we find under the
assumptions of periodic solutions (4.32) that

MTLahL : gL)mLt (6X7 6t> — ng,Lt (6X7 61‘)

with the mapping

U1 " Ul
U My, p, (6x) 0 ) U

— ’ ~ , 4.47
U3 < 0 MTL,hL(ex) U3 ( )

U, Uy
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and the iteration matriz

M‘ELJ!L(OX) = S:valzL(ex> ’;Lth(Ox)gj;;‘;iL(ex) c Cthszf,

X (04,6, = Iy, —Py(6,)A !

L0 7,20y

(26x>Rx(6X>ATL,hL (6x> S C2Nix2N: ,

with the matrices

-~ A 1, (6)) 0 2N, 2N,
TL,hL( ) ( 0 ATL,hL(Y(Ox»
~ A~ -1 XN,
Ay, (260) := (Ag 0, (26y)) € CVN
A v
gﬁ;‘z(@x) :: ((STL,hL(wX76x>) ) 0 v-‘) € CHx2N
0 (STL,hL(me(Ox)))

~ A

R(6:) = (Ri(0:)Iy, Ru((6:))Iy,) € CHNM:,

~ [ P60y, N, x2N;
PelO) = (ﬁxwwx»lw,) <€

and the Fourier symbols

N h 2
ATL,hL<9x) = ?L (2—|—COS(9X))KTL + E (1 —Cos(ex))MfL [ CNIXN[,

A 2h 2 —1 R
STL,hL((Dx, ex) = IN[ — Oy <TL 7 + h_LMTL) ATL,hL<9x) c (CN,XNI.

Hence we can analyze the modified two-grid iteration matrices (4.45) by tak-
ing the additional approzimation with the mapping (4.47) into account. For the
smoothing steps Vi = V3 =2 and the damping parameter @, = % the theoretical
convergence rates with respect to semi coarsening in time are plotted in Figures
4.22—4.24 for the discretization parameter | € [10_6, 106] with respect to the poly-
nomial degrees p; € {0,1,2}. We observe, that the theoretical convergence rates
are always bounded by p(ﬂ;) < % Further we notice that the derived theoret-
ical convergence rates are a little bit higher for small discretization parameters
W, compared to the case when the exact inverse of the diagonal matriz Dy, p, s
used. The measured numerical rates are plotted as dots, triangles and squares in
Figures 4.22-4.24. We observe, that the theoretical convergence rates coincide
with the numerical results.

In Figures 4.25—4.27 the convergence of the two-grid cycle for the full space-time
coarsening case s studied. Here we see, that the computed convergence rates are
very close to the results which we obtained for the case when the exact inverse of
the diagonal matriz Dy, 5, is used.
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4.4 Numerical examples

In this section applications of the space-time multigrid approach, introduced in
Section 4.1 will be presented. In the last Section 4.3 the two-grid cycles with
respect to semi coarsening in time and full space-time coarsening have been an-
alyzed. There we concluded, that semi coarsening with respect to time is always
possible and that full space-time coarsening can be applied, if the discretization
parameter Uy = ‘L’Lhz2 is large enough, i.e. yu;y > pu*. Hence, also for the multigrid
cycle we are able to apply full space-time coarsening only, if u; > u*. Whereas
for yu; < u* we have to apply semi coarsening with respect to time. When semi
coarsening is applied, we have for the next coarser level

pr1 = 27rh* =2

This implies that the discretization parameter p; | gets larger when semi coars-
ening with respect to time is used. Hence, if y; ;> u* for k < L we can apply
full space-time coarsening to reduce the computational costs. If full space-time
coarsening is applied, we have

_ 1
p 1 =21 (2h) 2 = SHL

which results in a smaller discretization parameter ;1. We therefore will com-
bine semi coarsening in time or full space-time coarsening in the right way, to
get to the next coarser space-time level. For different discretization parameters
U=cu*, ce {ILO, 1,10} this coarsening strategy is shown in Figure 4.28 for 8 time
and 4 space levels. The restriction and prolongation operators for the space-time
multigrid scheme are then defined by the given coarsening strategy.

Next we will study some examples to show the performance of this space-time
multigrid approach.

Example 4.4.1 (Tensor product space-time elements). In this example we con-
sider the spatial domain 2 = (0,1)? and the simulation interval (0,7) with T = 1.
The initial decomposition for the spatial domain £ is given by 12 tetrahedra. We
will use several uniform refinement levels to study the convergence behaviour of
the space-time multigrid solver with respect to the space-discretization. For the
coarsest time level we will use one time step, i.e. 7o = 1. The ansatz functions
in space are given by piecewise linear continuous functions and for the time dis-
cretization we will use piecewise linear discontinuous ansatz functions, i.e. p; = 1.
Hence we have to solve the linear system (4.6) for the given ansatz functions. To
test the performance of the space-time multigrid method we will use a zero right
hand side, i.e. f=0 and as an initial guess ° we will use a random vector with



4.4 Numerical examples 143
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Figure 4.28: Space-time coarsening for different discretization parameter .
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time levels

01 2 3 4 5 6 7 8 9 10 11 12 13 14

o(r 7 7 7 7 7 7 78 8 9 9 9 9 9
Tt;j 11 7 7 7 7 7 7 78 8 9 9 9 9 9
L 21 7 7 7 7 7 8 7 8 8 9 9 9 9 9
% 3117 7 7 7 8 8 8 8 8 9 9 9 9 9
2 411 7 7 7 8 8 8 8 8 8 8 9 9 9 9
51 7 7 7 7 7 8 8 8 8 8 9 9 9 9

Table 4.1: Multigrid iterations for Example 4.4.1.

values between zero and one. For the space-time multigrid solver we will use the
following settings with respect to time

VI =V, =2, ==, =1.

1 2 oy > Y
We will apply for each block A, 5, one geometric multigrid iteration to approx-
imate the inverse of the diagonal matrix D, p,. For this multigrid cycle we will

use the the following settings

Vi=v; =2, 0 =3, Y%= 1.
For the smoother we use a damped block Jacobi smoother. We will apply the
described space-time multigrid solver until we have reached a given relative error
reduction of eyg = 1078, In Table 4.1 the iteration numbers for several space
and time levels are given. We observe, that the iteration numbers stay bounded
independent of the mesh size hy , the time step size 77, and the number of used
time steps Ny, = 25

Example 4.4.2 (High order time discretizations). In this example we will study
the convergence of the space-time multigrid method with respect to different
polynomial degrees p;, which are used for the underlying time discretization. To
do so, we will consider the spatial domain £ = (0,1)? and the simulation interval
(0,T) with T = 1024. For the space-time discretization we will use tensor product
space-time elements with piecewise linear continuous ansatz functions in space.
For the discretization in time we will use a fixed time step size T = 1. For the
initial triangulation of the spatial domain £ we will consider 4 triangles, which
will be refined uniformly several times. For the space-time multigrid approach
we will use the same settings as in Example 4.4.1. We solve the linear system
(4.6) with a zero right hand side, i.e. =0 and for the initial vector 2% we will
use a random vector with values between zero and one. We apply the space-time
multigrid solver until we have reached a relative error reduction of eyg = 102, In
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polynomial degree p;

0 1 2 3 4 5 10 15 20 25 30 35 40 45
077 6 6 6 6 5 5 4 4 4 4 5 5
VW7 7 17777 7 7 7 7 7 7T 7T 17

Tt;j 27 717177177717 7 7 7 7 7 7 7T 17
< 3777171717177 7 7 7 7 7 T 7T
% 47 7 7 77 7 7 7 7 7 7 7T 7T 17
e s\y\7 717177771 717 7 7 7 7 7T 7T 17
6,7 77777 7 7 7 7 7 7 7T 17
77 7 717 777 7 7 7 7 7 7 7T 17

Table 4.2: Multigrid iterations with respect to the polynomial degree p;.

Table 4.2 the iteration numbers for different polynomial degrees p; and different
space levels are given. We observe, that the iteration numbers are bounded,
independent of the ansatz functions which are used for the time discretization.

Example 4.4.3 (Simplex space-time elements). In this example we study the
space-time multigrid approach when simplex space-time elements are used for
discretizing the model problem (2.1) by the discontinuous Galerkin scheme (2.2).
We consider the spatial domains Q = (0,1)? for d = 1,2,3 and the simulation
end time T = 1. Hence, the space-time domains are given by the unit cubes
Q = (0,1)*!. We decompose the space-time domains Q with (d+ 1) dimensional
simplices. For d =1 we will use 2 triangles, for d =2 we will use 6 tetrahedra and
for d =3 we will use 24 pentatopes for the initial decompositions. We further
apply several uniform refinement steps to analyze the performance of the pre-
sented solver. To solve the linear system (4.6) for this example, we will apply the
preconditioned GMRES method, where the preconditioner is given by one cycle
of the space-time multigrid method. For the penalty parameter we use ¢ = 15
and as a polynomial degree we choose p = 1. To approximate the inverse of the
diagonal matrix Dy, 5, we will use an algebraic multigrid solver as implemented
in the package hypre, see [28,29]. As in the previous examples we use a zero right
hand side and a random initial vector 2 with values between zero and one. Since
we are using uniform decompositions for the space-time domains Q, we obtain
for the discretization parameter u for any level that

u=th2~h'>1.

Hence we can apply for all space-time levels full space-time coarsening, i.e. the
standard geometric coarsening for simplicial meshes. In the Tables 4.3-4.5 the
iteration numbers for the preconditioned GMRES method are given for a relative
error reduction of egmres = 1078, We observe, that the iteration numbers stay
bounded independent of how many refinement steps are used.
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level elements dof iter
0 2 2 1
1 8 16 4
2 32 80 5
3 128 352 6
4 512 1472 6
5 2048 6016 ©6
6 8192 24320 6
7 32768 97792 6
8 131072 392192 6
9 524288 1570816 6
10 2097152 6287360 ©6

Table 4.3: Multigrid iterations for d = 1.

level elements dof iter

0 6 4 . level elements dof 1iter
1 48 104 4

0 24 25 1
2 384 1168 5

1 384 968 6
3 3072 10784 6

2 6 144 22312 9
4 24 576 92224 6

3 98 304 421040 9
> 196 608 761984 6 4 1572864 7287520 9
6 1572864 6193408 6
7 12582912 49938944 6

Table 4.5: Multigrid iterations for d = 3.

Table 4.4: Multigrid iterations for d = 2.

4.5 Parallelization

One big advantage of the presented space-time multigrid approach is, that it
can be parallelized with respect to time. The idea of solving time dependent
problems parallel in time is not new. For example the parareal algorithm has
become popular in the last years. This algorithm has been introduced in [55]
and has been analyzed in [7,33,58,59,87]. A lot of applications can be found, for
example, in [30,31,34,35,80]. Other methods to solve evolution equations parallel
in time are multiple shooting methods, which have been introduced in [51, 71].
Multigrid methods for parabolic problems have been introduced in [38] and have
been further developed in [44,45,47,57,101,102,107]. The main difference with
the approach in this work is the line wise smoother which is used, i.e. the damped
block Jacobi smoother (4.7).

The application of this damped block Jacobi smoother can be done in parallel
with respect to time. For each space-time slab we have to apply one multigrid
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cycle in space to approximate the inverse of the diagonal matrix Dy, 5,. The
application of this space multigrid cycle can be done also in parallel, where one
may use parallel packages like in [28,29,43]. Hence the problem (4.6) can be fully
parallelized with respect to space and time, see also Figures 4.29.

The next example will show the parallel performance of this space-time multigrid
approach.

Example 4.5.1 (Parallel computations). In this example we consider the spatial
domain Q = (0,1)3, which is decomposed into 49 152 tetrahedra. For the dis-
cretization in space we will use piecewise linear continuous ansatz functions and
for the time discretization we will use piecewise linear discontinuous functions
with a fixed time step size T = 10"'. For the space-time multigrid settings we
apply the same configuration as in Example 4.4.1.

To show the parallel performance with respect to time, we first study the weak
scaling behaviour of the presented multigrid approach. To do so, we use a fixed
number of time steps per core, i.e. 4 time steps for each core. Furthermore we
increase the number of cores when we increase the number of time steps. Hence
the computational costs for one space-time multigrid cycle stay almost the same
for each core. Only the costs for the communication grows, since the space-time
hierarchy gets bigger, when we increase the number of time steps. In Table 4.6
the measured times for solving the linear system (4.6) for a different number of
time steps are given. We obtain, that the multigrid iterations stay bounded, if
we increase the problem size. Further we see, that the computational costs stay
almost bounded if we increase the number of cores, see also Figure 4.30. Only
for one and two cores we obtain better results for the measured solving times,
because in these cases almost no communication is needed.

To test the strong scaling behaviour, we fix the problem size. In particular we will
use 4 096 time steps, which results in a linear system with 61 202 432 unknowns.
Then we increase the number of cores, which then results in smaller problems per
computing core. In Table 4.6 the measured times are given for a different number
of cores. We see, that the computational costs are almost divided by two, if we
double the number of cores, see also the Figure 4.31. For one core we obtain a
better performance, because no communication is involved. The computational
costs when using P =2 048 cores are a little bit higher, since the problem size per
core gets to small.

All the parallel computations of this example were performed on the Vienna

Scientific Cluster VSC-2.
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(a) Parallelization only in time direction.

(b) Full space-time parallelization.

Figure 4.29: Communication pattern on a fixed level.



4.5 Parallelization

149

cores | time steps dof iter | time
1 4 59768 | 9 6.8

2 8 119536 | 9 8.1

4 16 239072 | 9 9.2

8 32 478144 | 9 9.2

16 64 956288 | 9 9.2
32 128 1912576 | 9 9.3
64 256 3825152 | 9 9.1
128 512 7650304 | 9 9.4
256 1024 | 15300608 | 9 9.4
512 2048 | 30601216 | 9 9.4
1024 4096 | 61202432 | 9 9.4
2048 8192 | 122404864 | 9 9.5

Table 4.6: Weak scaling results with solving times in [s].

cores | time steps dof iter time
1 4096 | 61202432 | 9 | 6960.7

2 4096 | 61202432 | 9 |3964.8

4 4006 | 61202432 | 9 |2106.2

8 4096 | 61202432 | 9 | 1056.0

16 4096 | 61202432 | 9 530.4

32 4096 | 61202432 | 9 269.5
64 4096 | 61202432 | 9 135.2
128 4096 | 61202432 | 9 68.2
256 4096 | 61202432 | 9 34.7
512 4096 | 61202432 | 9 17.9
1024 4096 | 61202432 | 9 9.4
2048 4096 | 61202432 | 9 5.4

Table 4.7: Strong scaling results with solving times in [s].
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5 APPLICATIONS

In this chapter we will apply the space-time discretization scheme (2.2) introduced
in Chapter 2 and the hybrid space-time formulation (3.7) as given in Chapter 3
to the Navier-Stokes equations, i.e. for v > 0 we consider the following problem

du—vVAu+(u-Vy)u+Vep=f in O,
div(u) =0 in Q,
u=gp on Xp, (5.1)
Vv(Vau)ng —png =0 on Xy,
u = uo on Z().

Space-time methods for flow problems have been studied for example in [52,92—-
94,100]. In the first section we will introduce the space-time discretization for
the Navier-Stokes problem (5.1). A hybrid discretization scheme will be derived
in Section 5.2 and in the last section we will apply this method to simulate the
flow in a pump.

5.1 Space-time discretizations

In this section we derive a space-time discretization scheme for the problem (5.1).
This scheme is based on the space-time formulation (2.2) as introduced in Chapter
2. First we will define the discrete function spaces which we use to approximate
the model problem (5.1). Let p € Ny, then we define the spaces of piecewise
polynomials

d
V:+1(77V> = |:SZ+1(77v>i|
= {'Uh S [Lz(Q)]d L Up|r, S [Pp+1(fg)]d for all 7, € Ty,v, =0 on ZD}
Qi('ﬁv) = {qh S LZ(Q) “qh|z, € ]P)p(fg) for all 7, € 77\7} .

In the first equation of the model problem (5.1) the vector valued heat equation
is contained. This part will be discretized by the space-time formulation (2.2).
This motivates to define the following bilinear form.

A(up,vp) Z i]) + va(upli], vp[i])] (5.2)

151
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Next we will derive a discretization scheme for the gradient of the pressure, i.e.
Vzp. To do so, we multiply the gradient of the pressure with a test function
v, e VP +] (7Tn) and integrate over the space-time domain Q. Hence we have

/Vmpwt)'vh(wt (x,t) Z/Vmpwt ~vp(x,t)d(x,1).

Integration by parts yields

—Z/ (x,t)div(vy(x,t))d(x,t) Z/ (x,t)vp(x,t) Ngdsz )

o 815

= x,t)div(v,(x, x,t)— T, t)vp(x,t) ngdsiy,
;/m )div(on(@.))d(@.0) - [ plast)on(e.n) nadse,)

- Y /[th]m,m(w,f)ds(m,ty
I—I‘cZeINI—]‘([

By rewriting the jump terms we have

N
=Y. [ pandvi@)d@.n - [ o) nedse,)

=1z, Sy
- Z /|:[p]1—];/,w (a"?t>'<vh>1“k4 (mvt)—i_(p)l“k[ (iL‘,t) [vh]l"k@,:c (iL‘,t) ds(a:,t)'
Tw€lng,

If we assume that the pressure p is continuous we obtain

= Z/p x,t)div(v,(x,1))d(x, 1) Z / P, (1) [nlg, o (®:1)ds( )

H/EINF[
—/p(w,t)'vh(:c,t)-nmds(m).
Y

This motivates to define the bilinear form

B(vp, pn) Z/ph x,t)div(v,(x,t))d(x,t)
(5.3)

= ¥ [, @) fonlg, o @0 ds
I—I‘cZeINI—]‘([
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If we assume, that u is a classical solution of the model problem (5.1) we have

for g, € Q) (Tn)

N

Blu.gn) = Y. [ an(a.0)div(u(e.0)d(@.1
/=1

K (5.4)

= ¥ [ @ (@) fuly, o (@.0)ds0 =0
I—I‘MEINFM

Hence we will use the formulation (5.4) to discretize the second equation of the
model problem (5.1). Finally we define a stabilization term for the pressure

D(pn,qn) =0, Y, Eké/ [Pilr, (1) - [anlp, (%,1)ds(z)- (5.5)
HZEIN 1—]‘([
Now we are able to formulate the discretization scheme for the model problem
(5.1).
Find uy = up o+ Egp with up € V:H(’ﬁv) and pj € QZ(77V), such that
A(wp,vp) + ((un - V) up, vp) g — B(vp, pr) = (F s vn) o + (2o, vn) 5, »
B(wp,qn) +D(pryqn) =0
for all vy, € Vf“ (Tn) and g, € Q7 (Tw)-

Remark 5.1.1. In the discrete formulation (5.6) the nonlinearity is treated in
the simplest way. For discontinuous Galerkin schemes it is possible to apply an
upwind technique for the nonlinear convective term, see [79].

(5.6)

Lemma 5.1.2 (Stability condition). For the decomposition Ty and the discrete
subspace

VI (T = {on € VP (T NC(TN) 0y =0 on ZpUSUZr | € VPP (Th),

let the stability estimate

fQ prh(mvt) ' vh(w7t>d(w7t>
sup
020,V (Tx) onl 1))

be fulfilled for all p, € QF(Tn) NC(Tw), then the following stability estimate

>csllpallg  (67)

B
sup (Vn,Pn)

> EsllpallLy o) (5.8)
0£v,eVy (Th) lorlpe :

holds for all p, € ker(D) = QF(Ty) NC(Tx), with the vector valued energy norm

d

2 2112
lonllbe = Y. [loali]Ipg-
i=1
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Proof. For v, € Vf“(ﬁv) and i =1,...,d we observe that

lonlillpe = llvaliliz + loaldll

N N
= 421 IV 2 vi] H[ZLZ(W(! + zzi hel|OonlillIZ, (z,)

N
< (1+hma) Y [Hvah[i] 15 e+ 190l 2, e,
=1 ’
N 2
= (14 hmax) Y, [|Vopli ]H gt < (I ) [|on[i] [ )
/=1

with Amax :=max{hy:¢=1,...,N}. Hence we have
[vnllpg < V1 + Amax ||’Uh||[H1(Q)]d

Further, for p, € 07 (Tv)NC(Ty) and vy, € Vf“(ﬁv) we obtain
N
B(vnp) = ¥, / pala.)div(vy (@.)d(@,1)
=¥

- Y / Pr)r, (%) O], o (€, 1)ds(g 1)
I—I‘CKEINFl

N
-y / pul@,0)div(vy(z,1))d(z,1)
Ezlw

:/ph(m,t)div(vh(m,t))d(w,t): —/prh(m,t)-vh(m,t)d(m,t).
0 0

Hence we have
sup B(vp, ph) > s B(vp, py)
0£v,eV) T (Th) lvllpe 040,V (Ty) lunllpe

- fQ Va:ph<w7t) : 'vh(wvt)d(wvt)

= sup

O#Uﬁj$+%7h) thHD(}
. 1 up — Jo Vapu(®,t) vp(z,t)d(z,1)
- V 1 + hmax 03&’0;,6?}{]+] ||vh|| [H] (Q)]d

cs
> -
RV +hmax”thL2(Q)
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Remark 5.1.3. If we compare the stability estimate (5.7) with the standard sta-
bility estimate for the stationary case, i.e.

sup fQ Vpu(x,t) - vp(x,t)d(x,1)

0#0h€[$£+1(77v)}d+1 ||’Uh||[H1(Q)]d+1

> csllpally0)-

we observe, that in the stability estimate (5.7) only the spatial gradient V 4 appears
instead of the full gradient V. Hence, to prove the stability estimate (5.7) for the

finite element pairing (V/ZDH (Tn), 07 (Tw)), one has to modify the standard proof
for the stability estimate of the standard Taylor-Hood elements.

Remark 5.1.4. For the linearized Navier-Stokes equations the stability result of
Lemma 5.1.2 implies with the stability estimate for the bilinear form A(-,-), see
Theorem 2.2.21, the unique solvability of the discrete variational problem

Find upg € V:H('ﬁv) and py € QZ(77V), such that

A(up0,vn) = B(vn, pr) = (f,0n) o + (w0, v1) 5, — A(EGD, 1),
B(un0,qn) +D(pn,qn) = —B(Egp, qn)

for all v, € V;fﬂrl (Tv) and g, € OF (Tw).

Furthermore, by assuming quasi uniform decompositions Ty and by using standard
arguments we observe the following error estimate in the energy norms

i 211
= wnllpg + 17— Prllyg) <A™ 2 [lul v+ Pl | (5.9)
with up = upo+Egp and s > 2.
In what follows, we will introduce the equivalent system of algebraic equations

for the discrete problem (5.6). For the discrete function spaces V/ +1(77v) and
QZ (Tn) we define the basis functions

S

Vf“ (Tn) = span{¢g:1}24”, upo(x,t) =Y ull]p(x,t) for uyge Vf“ (Tn),
/=1
M My
0 (Tv) =span{y,}, ", pu(e,r) =Y pllyu(z,r)  for p, € Q) (Tw).

3
Il

We define the nonlinear operator

(K w) [k] := A(un, 1) + {(un - Va)un, i)
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for w, = Egp +224:”l u[l]py and the matrices

Bh[mag] :B(¢€7Wm>7 Dh[man] = D(Wna‘llm)a

for k¢ =1,...,M, and m,n=1,...,M,. Then the discrete variational problem
(5.6) is equivalent to the system of algebraic equations

(&2 ()= (%),

with the vectors

fulk] := <fv‘Pk>Q+ <'U'0780k>20,
fplm] :=—B(Egp, Yin)

for k=1,...,M, and m=1,...,M,. To solve the nonlinear problem (5.10) we
apply a fixed point scheme or Newton’s method.

Example 5.1.5. In this example we consider the spatial domain = (0,1)? and
the simulation time T = 1. The Neumann and Dirichlet space-time boundaries
are given by

v i={(1,xn) eR?*:0<x <1} x[0,7],
Yp:=(0Q2 x[0,T])\ Zy.

The given data f, gp and ug are chosen, such that the solutions u and p of (5.1)
are given by the regular functions

t(1—x1)cos(xp)
tsin(xy)

w(xy,xp,1) = <

) L plraxat) = —vicos(x)

with v = 1. For the initial decomposition of the space-time domain Q = (0,1)? we
use N = 6 tetrahedra, as given in Figure 2.4a. To study the convergence behaviour
of the numerical approach (5.6) we apply several uniform refinement steps. Fur-
ther we use the element pairings (V,!(7y),0%(7w)) and (VZ(Tn),Q}(Tn)), i.e.
p=0and p =1, to compute approximations for the given exact solution. As
a stabilization parameter we use o = 10(p+1) and o6, = 10. To solve the nonlin-
ear system (5.10) we apply Newton’s method, where each linear problem is solved
with the solver package PARDISO [82,83]. In the Tables 5.1-5.2 the numerical
errors are given in the energy norms |[u —uy|lpg and ||p — pallp, ). We observe,
that the convergence rates behave as expected.
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level elements dof w, dof pp [lu—upllpg eoc |[[p—pullp, eoc
0 6 16 6 59776 -1 — 3.1450 -1 -
1 48 248 48 29742—-1 1.01 2.4636—1 0.35
2 384 2512 384 1.6879—-1 082 2.1774—1 0.18
3 3072 22304 3072 9.7794-2 079  1.6074—1 0.44
4 24 576 187456 24576 49947-2 097 9.1229-2  0.82

5 196 608 1536128 196608 2.2355—-2 1.16 4.0581-2 1.17
Theory: 1.00 1.00

Table 5.1: Numerical results for the finite element pairing (V;! (7Tv),O)(Tn)).

level elements dofw, dof py [lu—wupllpg eoc |lp—pull,e eoc

0 6 54 24 1.0881—1 — 1.7006 — 1 —
1 48 684 192 3.1840—-2 1.77 1.9859-2 3.10
2 384 6552 1536 7.9904—-3 199 4.0378—-3 2.30
3 3072 56880 12288 1.9818—3 2.01 9.6060—4  2.07
4 24576 473184 98304 49134—-4 201 23394—4 2.04
Theory: 2.00 2.00

Table 5.2: Numerical results for the finite element pairing (VZ(7x), Q) (Tn)).

5.2 Hybrid space-time discretizations

In this section a hybrid discretization scheme with respect to the problem (5.1)
will be derived. As in Chapter 3 we introduce a decomposition of the space-time
domain Q C R¥*! into non-overlapping subdomains Q; for i = 1,...,P. We will
use the same notations as in Chapter 3 for the interface X, the interior facets on
the interface X, and the decompositions 7Ty, for the subdomains Q; with interior
facets Zy,. On the interface X we define for p € Ny the following discrete functions
spaces of piecewise polynomials

d
vit(E,) = {p,h e LX) pin, € [Ppr1(Tie)]” for all Ty € zh},
0(5)) = {nh € Lo(Z) : My, € Pp(Iiy) for all Tig € zh}.

Summing up all local decompositions Ty, fori=1,..., P results in a decomposition
of the space-time domain Q, i.e.

With respect to the decomposition Ty we can use the space-time formulation (5.6)
to get an approximation for the problem (5.1). On each subdomain Q; we will
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apply the space-time formulation (5.6). To do so, we define for w, v, € V/ + (Tw)
and pp,qp € Qi(’ﬁv) the following local bilinear forms

. d . .
AD (wy,v5) = Y [b@(uh[i],vh[i]) + va(‘)(uh[i],vh[i])] ,
i=1
N;
BY (v, pp) := Z/ph x,t)div(v,(x,t))d(x,1)
=1 o
- ¥ [ g, @0 il o (@0)ds(a .
G/EINQ[
DO pna) =0, ¥, Tuc [ Ipalg, @) lanlg, (.00
l—l‘cfezNi Iy
fori=1,...,P. Further we define the local right hand sides
F(l)(vh) = <f7,vh>Qi + <uoavh>zoﬁaQi7
foralli=1,..

.,P. With these local bilinear forms we obtain

P

<(uh : Vﬂf)um'vh)Q - B<vh7ph) = Z [<(uh : Vﬂf)um'vh)Qi - B(i) ('Uh,ph)
i=1

+ X [ o, @0 il o (@.0)ds(0, .
G/ezhry

(5.11)
Furthermore we have

~

B(wp,qn) +D(pn,qn) Z [ (wh, qn +D()(Ph7Qh)]

-y / an)r;, (@,0) [unl g, o (€,0)ds(a 1) (5.12)
kaezhl"[

+6, ¥ T [ [y, (@.1)- iy, (@.0)dsce
IeXy Ty

To reduce the coupling on the interface X, we will rewrite the coupling terms of
(5.11) and (5.12) by introduce the new variables

Anjr, (1) = <uh)1—k[ (1), Pnir, (T,1) = (vh>1—k[ (x,1),
ph|Fkg<w7t) = <ph>1"k/ (wvt)7 nh\l"kg(wvt) = <Qh>1"k¢ (wvt)7
for (x,t) € I}y and Iy € X;,. With these new variables we obtain

Y [ (pud, @) onlg o 005 = X

[ pul@.t) ol o (@)
l—l‘céezhr]‘([

Géezhné
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= Z /Ph(w,f) ('vh|rk'nk,m‘i‘vhm'nﬁ,m(w7t))ds(a:,t)

“Y Y X pulwst) (onge mea () dsa,
i=14=1 Iz
n(],féca}lr;;m”

Further we have

Y [ (@, @0 iy, o (@0dsw) = X[m0 g, o @05

I eX I;eX
kt hrké kt thK
PN
= Z /TM(IE,[) (uh"cg 'nf,m(w7t))ds(:l:,t)‘
i=1/=1 1—]‘(562/1'
LT, ke

For the remaining coupling term in (5.12) we need the following definition.

Definition 5.2.1 (Hybrid jump). Let I}, € X, be a facet on the interface X with
the outer unit normal vector ny = ('rt,rgw,rz;m)T with respect to the element 1. For
a discrete function p, € Q) (Ty) and a function py € QF(X) the hybrid jump for
the element T is given by

[0/ Pil e, (@) = ph‘fk(m,t)—ph(:c,t)]nk for (z,1) €I}y ace.

With this definition of the hybrid jump we obtain

[Pilr, (1) - lanlg, (®,1) =2 [Pn/Prlog, (2.1) - [gn/ Ml 5, (1)
+2 [Ph/Ph]arg (IE,I) ) [Qh/nh]arg (IE,I).

Hence we have

Y Tue [ Ipalg, (@) lailg, (@:)dsce

LeXy T

Y Eke/[ph/l?h]aw (1) - [qn/Mhl s, (2,1)ds (2 ).
i=1{=1 Ijex,
F]}[C&Té

For each subdomain Q;, i = 1,...,P this motivates to define the local bilinear
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forms

M&

()(um)\h,vh,Hh ANRAVINTAVE

]:

()(’Uh,ﬁbh PhsPn) : Z Z / ’Uhm nyq(, l))ds(w,z),
=1 TeeZy

T]}gCa’L‘[ ke

S onpian)=20,Y ¥ [ 1pa/oula, @) lan/ e, (@,1)d5(0
/=1 1—]}[€th 1—;([

I;,CoT,

(5.13)

With the local bilinear forms (5.13), we are now able to formulate the hybrid

space-time discretization scheme.

Find u;, = Up,0 —l—c‘ng with Upo € Vf+1(7;v), A, € V}f7+1(2h), Pn € QZ(,];\I) and
pn € Q‘Z(Zh), such that

P
Z u’h?”h +C§4)(uh7Ah’vh7IJ’h>+<(u’h'vw)uh7vh>Q[

. P ]
— B (v, pi) — 5 (wp, s pis 1) = ;F (wn). (5.14)

~

[B(i)(uh,q;l) + cg) (W, An3 @y M)

o

N
Il
—_

_|_D(l) (Ph,(]h) —|—Cg) (p/’nph;qin nh)] =0

holds for all v, € Vf“(ﬁv), wn € V/:H(Zh), gn € 07 (Ty) and n;, € OF(Zy).

Next we will introduce the equivalent system of algebraic equations for the dis-
crete variational problem (5.14). To do so, we define for each space-time decom-

positions Ty;, i = 1,...,P the following basis functions
p+1(7}v)—span{cp£}£ “1, uho x,1) Zu, (x,t) for u}'hoerﬂ(ﬁv),
0, (Tx) —Span{W}n 5 Pl ZPI nly,(z.1)  for pj € OF(Ty,)-

Furthermore, on the interface X we introduce the following basis functions

My My
VIE(E) = Span{¢f}s_l, A Z AslslpZ(a,r) for N, € VITH(E,),
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z

2

M P
QZ(Zh)ZSPaH{‘I/tE}tP], pr(x,t) = Z 1y (,1)  for py € OF ().

=

Then the discrete variational problem (5.14) is equivalent to the system of alge-
braic equations

(K},” BEPT) (AEQ —BEQ)
B ol i
<K,<,p> _B;;’W) <A§f;> B§§>) u?\ | =
A Dif/ (p@) (
Ag,) Agspl) Axx Ax
(Bg; Dgz) (Bg; Dg?) ( ) <>

R T
L5 LS
SN————

(5.15)
with the nonlinear operator
(K,(;)ugi)) k] ::A(i)(uh,gaf;) +CX)(uh,0;¢2,0) + <(uh . Vm)uh7§02>Qi
for w, = Egp +22/£‘1 ugi) [€]¢} and the local matrices
By m,0) == B}, v,
Dy Im,n] = D (i, i) + ) (w1, 0: ¥4, 0),
for k,¢ =1,....M, and m,n=1,. ,M;, Furthermore the coupling matrices are
given by
Ajplies) =) (0,07:00,0), ARInd =) (¢],0:0,7),
Biglkit] =i (¢}, 0:0.97), B0, =i (¢},0:0,7).
Dlm,1] = e (0, 4F: ¥, 0),  Djlo.n] =iy (v;,0:0,¥5)

and the matrices with respect to the interface X are defined as
AQ s =) (0,05:0,6%),  Diyfor] =) (0,70, y7),

for
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Further, the right hand sides are given by
f;ﬁf}[k] = F(i)(sob = <.f790§<>Qi + <u0790;<>2008Qi’
£ = =B (Egp, yi),

P

fsll=—-Y (Egp.0;0,¢0),
i=1
>0

fp,E[O] = ZCB (SgD,O 0 wg)

~
[y

Remark 5.2.2. The nonlinearity in the system of algebraic equations (5.15) is

only contained in the operators KI(;), i=1,...,P. To solve this nonlinear problem,
one can apply a fixed point method or Newton’s method, where in each iteration
a linear problem has to be solved. Since the nonlinearity is only contained in the

(i)

operators KI(I)’ we only have to linearize the operators KH

g

K,/ . Hence the linear system, which has to be solved in each fixed point iteration
or Newton step has the same structure as the system (5.15). In particular, if the

by a linear operator

assumption of Lemma 5.1.2 is fulfilled and if further the linear operators I?I(Ii),
i=1,...,P are invertible we can invert each block

(i AT
R -
W o

Hence we can compute the Schur complement system
. . AT\ L ;
Ass Po(al) kY _pW AY —BON | (A fix
"Xl 0 0 P (i) -
Drx i=1 \By; Dy By Dy Dy ex Fox
with the right hand side

~ . . T -1 ;
<fA,2> _ <Az> - XP: Al kY —BY £
fr) o) E\ay by ) sy by ) sl
Further, the local solutions are given by
i ~(i AT\ ! j 1 i
w'\ _ (K] -5 far\ (A B (Az)

v’} \sy Dff Ty Diy ) \ex

~

=

fori=1,...,P. For the solution of the Schur complement system (5.16) we can
use for example the GMRES method, where the inversion of the local problems
can be done in parallel, either by using a direct approach, or by a suitable iterative
scheme.
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level dofw, dof p, dofX, dofp, [[(u—wpu—XAlupe eoc |lp—pullg eoc
0 120 24 216 36 3.0715 -1 — 2.5234 -1 —
1 1248 192 864 144 1.9538 -1 0.65 23727-1 0.09
2 11136 1536 3456 576 1.2347 -1 0.66 1.9567—-1 0.28
3 93696 12288 13824 2304 6.8429 —2 085 1.2649—-1 0.63
4 768000 98304 55296 9216 3.1597 -2 1.11  6.0021-2 1.08
5 6217728 786432 221184 36864 1.3373 -2 1.24  23086—-2 1.38

Theory: 1.00 1.00

Table 5.3: Numerical results for the finite element pairing (V! (7v),0%(7y)) and
(Vi (Z1), O0(Zn))-

level  dofu, dofp, dof N, dofp, [[(u—upu—N)llgpg eoc  ||p—pall eoc

0 336 96 432 108 2.6865 -2 — 1.6555 -2 —
1 3264 768 1728 432 7.5822 -3 1.83  4.7767-3 1.79
2 28416 6144 6912 1728 1.8787—3 201  1.1237-3  2.09
3 236544 49152 27648 6912 4.6254 -4 2.02 2.7143—-4 2.05
4 1929216 393216 110592 27648 1.1443 -4 202 6.6604—5 2.03
Theory: 2.00 2.00

Table 5.4: Numerical results for the finite element pairing (VZ(7y),0}(7y)) and
(Vi2 (Z1), Q4(Zn))-

Example 5.2.3. In this example we consider the spatial domain Q = (0,1)? with
the simulation interval [0,7T] with 7= 1. For the boundary conditions we use the
same setting as in Example 5.1.5. We also use the same data f, gp and ug as
in Example 5.1.5, i.e. we study the hybrid formulation (5.14) for approximating
the exact solution

ulrnonn) = (" TRN) ) = —vrcost)
with v = 1. Further we decompose the space-time domain Q into P = 24 space-
time subdomains Q;, i =1, ..., P and the space-time subdomains itself are consid-
ered as the initial decompositions for each subdomain, see also Figure 3.2(b). As
in Example 5.1.5 we apply several uniform refinement steps to analyze the con-
vergence behaviour of the presented hybrid space-time formulation (5.14). We
use the finite element pairings for p =0 and p = 1 with the stabilization param-
eters 0 = 10(p+ 1) and o, = 10. The nonlinear equations (5.15) are solved by
applying Newton’s method. For the solution of the arising linear system of each
Newton step we solve the Schur complement system (5.16) with the GMRES
method without any preconditioning. The local problems are solved in parallel
by using the solver package PARDISO. In the Tables 5.3-5.4 the errors in the
energy norms ||(u—up,u—Np)|lgpg and |[p — pally, () are given. We observe,
that the convergence rate for the energy errors behave as expected.
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Zp

ZD Z:D

Zp

Figure 5.1: Lobe pump - spatial domain Q(t).

5.3 Applications

In this section we apply the hybrid discretization scheme (5.14) to simulate the
flow in a pump. The initial spatial domain  C R? of the pump is given in
Figure 5.1. The pump consists of two rotating parts, which are called lobes. The
magnitudes of the angular velocities for the two lobes are the same, only the sign
is different, see also Figure 5.1. In particular, for 0 < T, < T the magnitudes of
the angular velocities are given by

2
4n [Pl <,
1 t>T,

e C'(R).

Hence we have d
®(0)=0 and 5(00)“:0 =0.

The angular velocities for the two lobes are then defined as

0 0
wi(t) = 0 and wy(t):=1[ O
—o(t) o(t)
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With these angular velocities we define the angle for the lobes as

wo:/wmm.
0

Hence we have
o(T)=2m,

which implies, that at the time t = T exactly one rotation is performed. Further
the velocities on the lobes are defined as

gpi(x,t):=wi(t) xri(x,t) and gpa(x,t):=ws(t) x ra(x,1),

where 71,7, € R? are the vectors from the centers of the lobes to the boundary
points x, ie. ri(x,t):= (x,t)— (c1,t) and ry(x,t) := (x,1) — (cz,¢). On the
boundary Xp the velocity is zero, i.e. gp(x,t) =0 for (x,7) € Zp. On the boundary
Xy we apply homogeneous Neumann boundary conditions, as defined in (5.1).

Since the spatial domain Q is a two dimensional domain, we have
0=Qx[0,T] CR>.

For T =100 and T, = 50 the space-time domain Q is shown in Figure 5.2. Because
the space-time domain Q is a bounded subset in R? we can use a standard meshing
tool, like [85], to generate a space-time decomposition into tetrahedra. The space-
time mesh which we are using for the simulation consists of N =766 105 elements,
see also Figure 5.2. To apply the hybrid space-time discretization scheme (5.14),
we subdivide the space-time decomposition into P = 64 subdomains, see also
Figure 5.3. For the space-time discretization scheme (5.14) we use for the viscosity
constant v = % the stabilization parameters , 6 =20 and o, =10 for p = 1. For
the solution of the nonlinear equations (5.15) we apply Newton’s method, where
the linear system in each Newton step is solved via the Schur complement system
(5.16). We apply the Newton’s method until we have reached a relative error
reduction of &y = 10710, which results in 6 Newton steps which have to be used
to solve the nonlinear problem (5.15).

The resulting velocity field is plotted for different time steps in the Figures 5.4—
5.11. We observe, that the flow is transported from the right side of the pump
to the left side via the cavities of the rotating lobes. Between the two lobes we
see, that the magnitude of the velocity has its maximum, where additional local
refinement in the space-time domain Q would be needed, to resolve these local
phenomena.



166 5 Applications

Figure 5.2: Space-time domain Q for the lobe pump.

Figure 5.3: Space-time decomposition into P = 64 subdomains.
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Figure 5.5: Lobe pump - velocity field for t = 40.
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Figure 5.7: Lobe pump - velocity field for t = 60.
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Figure 5.8: Lobe pump - velocity field for t = 70.

Figure 5.9: Lobe pump - velocity field for = 80.
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Figure 5.11: Lobe pump - velocity field for # = 100.



6 CONCLUSIONS AND OUTLOOK

In this work discretization schemes, to approximate time dependent problems
by a numerical approach, have been introduced and studied. Moreover, a fast
solver for the arising linear systems has been formulated and analyzed by using
the so called local Fourier mode analysis. The main difference of the presented
approach of this work to the more common time stepping schemes is, that in this
work the discrete solution is obtained by decomposing the space-time domain
Q0 =Q x(0,T) into finite elements. This results in an approach which allows
the use of almost arbitrary space-time decompositions for the space-time domain
Q. For moving spatial domains ©Q = Q(¢) these space-time methods lead to a
continuous approximation for the motion of the domain €. This results in the
advantage, that bigger time step sizes can be used for approximating the exact
solution. Moreover these methods allow the use of local refinements in the space-
time domain Q.

In particular, a space-time discretization scheme for the heat equation, as a model
problem, has been derived by using a discontinuous Galerkin approach. For
the discretization of the Laplace operator an interior penalty Galerkin approach
has been used, whereas for the first order time derivative an upwind scheme in
time has been applied. This discretization scheme has been analyzed in Chapter
2, where error estimates with respect to the energy norm have been proven.
Moreover, several numerical examples confirmed these error estimates.

Based on the discontinuous Galerkin space-time discretization of Chapter 2, a
hybrid space-time formulation has been introduced in Chapter 3 by defining a
new unknown variable A;, on the interface of the space-time subdomains. With
this formulation the unknowns on each space-time subdomain can be eliminated,
which results in the Schur complement system (3.10), where the unknowns of the
Schur complement system are given by the introduced interface variable Aj,. This
allows the use of parallel solution algorithms in space and time. Furthermore,
error estimates for the related energy norms have been proven and numerical
examples confirm the proven estimates.

In the main part of this work a space-time multigrid approach has been analyzed
by applying the local Fourier mode analysis. This multigrid approach is based on
so called space-time slabs, which are natural, if a standard discretization scheme
in space and time is used. Under the assumption of periodic boundary conditions
the two-grid cycle for this approach has been studied, where the asymptotic con-
vergence rates have been computed for arbitrary polynomial degrees with respect

171
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A t
Q
u=1 u=20
up=1—x X
(a) Space-time domain Q for a moving domain (b) Adaptive space—time mesh.

Q.

Figure 6.1: Space-time domain Q for a moving one-dimensional spatial domain
Q and the resulting adaptive space-time mesh.

to time. The measured convergence rates completely agree with the theoreti-
cal results which have been obtained by the local Fourier mode analysis. One
advantage of this multigrid approach is, that each space-time slab can be solved
separately. Hence, the linear systems resulting from the space-time discretizations
can be solved in parallel with respect to time. For a tensor product space-time

discretization the parallel performance of this approach has been studied at the
end of Chapter 4.

In Chapter 5 the space-time discretization schemes introduced in Chapter 2 and
Chapter 3 have been applied to the Navier-Stokes equations. Here numerical
examples also showed the expected order of convergence with respect to the en-
ergy norm. Further, to show the advantage of this discretization schemes, this
approach has been applied to simulate the flow in a two-dimensional pump.

To apply these methods to more complicated three-dimensional geometries, one
has to implement a four-dimensional mesh generator. For spatial domains
which do not change in time one can simply generate a four-dimensional de-
composition, by decomposing the tensor product space-time elements into sim-
plices. For moving three-dimensional spatial domains the decomposition of a
four-dimensional space-time domain is more complicated, but not impossible.

Another advantage of the presented approach is, that it is possible to apply mesh
refinements local in the space-time domain. For example, singularities in the
solution can occur local in the space-time domain Q, if the spatial domain is
moving in time. For the moving spatial domain Q(t) = (0,5 + |t — %}) the heat
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equation has been solved with the data as given in Figure 6.1(a). A simple residual
error estimator has been used to apply adaptive refinements in space and time.
The resulting adaptive space-time mesh is given in Figure 6.1(b), where most of
the refinements take place near the singularity and almost uniform refinement
has been used where the solution is smooth enough.

An interesting research topic would be the application of these space-time meth-
ods to other partial differential equations with first or second order time deriva-
tives, as for example the bidomain equations, which are used to simulate the
electrical activity of the heart. Further, one may study the coupling of this ap-
proaches with other discretization schemes, as for example the coupling with
boundary element methods, where the coupling interface is in general a complex
four-dimensional manifold.
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