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1 INTRODUCTION

The philosophy of space-time methods is, to treat the time direction as an addi-
tional spatial coordinate. For the numerical solution of time dependent problems
we therefore have to discretize the problem in the space-time domain or on so
called space-time slabs. A simple way to derive a space-time method is, to use
a standard finite element discretization in space combined with a discontinuous
Galerkin time stepping scheme in time. This leads to a discretization scheme,
where the space-time domain is decomposed by tensor product space-time ele-
ments. For this type of space-time methods a global time step size with respect to
the spatial discretization is used. Such methods have been applied and analyzed
for several problems in [24,25,27,49,50,77,78,97,105]. Space-time methods based
on other discretization schemes, like least square methods are considered for ex-
ample in [10,60,65,92–95] and wavelet space-time methods have been studied for
example in [2, 37, 84].

In this work we will focus on space-time discretization schemes based on discontin-
uous Galerkin methods [36,48,52,66,67,91,100,104]. The original discontinuous
Galerkin method was introduced in [75] to solve the neutron transport equation.
Here we will apply an interior penalty approach in space [5,9,79], and an upwind
technique in time [86, 97]. This results in a flexible method, where almost arbi-
trary space-time elements can be used for the decomposition of the space-time
domain.

One big advantage of space-time methods is, that they can treat moving domains
in a natural way, because the moving boundary is continuously given with respect
to time and therefore no projections between two different deformed meshes have
to be computed. This allows the construction of conservative methods in space
and time. In [92–95] least square space-time methods are used to solve flow
problems for moving domains, whereas discontinuous Galerkin methods are used
in [52, 100].

Another big advantage of space-time methods is, that it is possible to apply lo-
cal refinements in the space-time domain to resolve the local behaviour of the
exact solution. Such local singularities may occur when problems with moving
boundaries have to be solved or when problems with non-linearities are consid-
ered, like it is the case for flow problems. In [2, 6, 37, 76, 84] adaptive wavelet
space-time methods are considered for parabolic problems and in [26,62] discon-
tinuous Galerkin methods based on tensor product space-time elements are used
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2 1 Introduction

for an adaptive space-time approach. For hyperbolic problems adaptive discon-
tinuous Galerkin methods are applied in [1,15,96] where unstructured space-time
elements are used to resolve the moving shock fronts.

For discontinuous Galerkin methods it is possible to derive hybrid methods by
introducing additional Lagrange multipliers on the sceleton of the mesh or on the
interface between different subdomains to couple the local degrees of freedom,
see also [17,21,22,68]. In this work we will apply this hybridization technique to
derive a hybrid space-time formulation, which allows to eliminate the local degrees
of freedom on the element level or to apply domain decomposition methods in
space and time.

For space-time decompositions which form so called space-time slabs, we will
derive a multigrid method in space and time for solving the upcoming linear
systems. Multigrid methods for solving parabolic problems were first considered
in [38] and were further developed in [44, 45, 47, 57, 101, 102, 107]. The big ad-
vantage of these methods is, that they can be applied in parallel with respect
to time. Another method to solve time dependent problems parallel in time is
for example the parareal algorithm, which have been introduced in [55] and has
been analyzed in [7, 33, 58, 59, 87]. A lot of applications can be found, for exam-
ple, in [30, 31, 34, 35, 80]. Multiple shooting methods [51, 71] can be also used in
parallel with respect to time. In this work we will focus on a multigrid approach
which will be analyzed by using the local Fourier mode analysis. This type of
analysis was introduced in [12] and the rigorous analysis was done in [13]. The
local Fourier mode analysis has been used for a large class of problems, see for
example [90, 99, 108] and is regarded to special model problems, namely those
with periodic boundary conditions on rectangular domains. For general bound-
ary conditions this type of analysis can be used to study the local behavior of the
two-grid algorithm, therefore it is also called local Fourier mode analysis.

For two-dimensional spatial domains the space-time domain is given by a three-
dimensional object, which can be decomposed in unstructured space-time el-
ements by applying standard three-dimensional meshing tools, like [85]. For
complicated three-dimensional spatial domains, one has to construct a four-
dimensional decomposition of the space-time domain into finite elements. If the
domain is not moving with respect to time, the easiest way to get a space-time
decomposition, is to use tensor product space-time elements. But for moving
three-dimensional spatial domains one has to generate a four-dimensional un-
structured space-time decomposition. In [10] four-dimensional simplex space-time
elements are generated by using the Delaunay method. In [64] unstructured four-
dimensional space-time meshes are generated by using the Tent-Pitcher algorithm
to solve hyperbolic problems in the space-time domain, see also [111].



3

Outline:

For the heat equation, as a model problem, a discontinuous Galerkin space-time
discretization is introduced in Chapter 2 for unstructured space-time decompo-
sitions. For this model problem an error analysis will be given by showing the
boundedness and the stability of the discontinuous Galerkin method. At the end
of Chapter 2 numerical examples will be given, which confirm the proven error
estimates.

Based on the space-time method of Chapter 2, a hybrid space-time discretization
scheme will be presented in Chapter 3 by subdividing the space-time domain into
non-overlapping subdomains. The equivalent system of linear algebraic equations
of this method allows the use of parallel solution algorithms, as they are used in
domain decomposition methods. Moreover, an error analysis will be given, which
will be confirmed by some numerical examples at the end of Chapter 3.

In Chapter 4 a space-time multigrid method will be introduced, which is based on
the use of space-time slabs. The two-grid cycle of this method will be analyzed
by using the local Fourier mode analysis. First this analysis will be applied to an
ordinary differential equation and the results will be used to analyze the full space-
time two-grid cycle. To show the robustness with respect to the discretization
parameters several numerical examples will be given at the end of Chapter 4.
Moreover, the parallel performance of this approach will be shown at the end of
the chapter.

Applications of this space-time approaches to the Navier-Stokes equations will be
given in Chapter 5. First the discontinuous Galerkin approach will be introduced
and afterwards a hybridization technique will be applied. Numerical examples
will show the expected convergence of this approaches. Moreover, to show the
advantage of this approach, the flow in a two-dimensional pump will be simulated
at the end of Chapter 5.

In the last chapter conclusions will be given and possible future work will be
discussed.
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2 SPACE-TIME DISCRETIZATIONS

In this chapter a space-time discretization for the heat equation, as a model prob-
lem, will be presented and analyzed. This discretization scheme is based on a dis-
continuous Galerkin approach in space and time, see also [66,67]. This approach
allows the use of arbitrary elements in space and time which has advantages when
we have to deal with moving domains or if we need to do local refinements in the
space-time domain. For other discontinuous Galerkin discretization schemes in
space and time, where the discretization is based on so called space-time slabs and
where the finite space-time elements are based on a tensor product structure, see
for example [36,52,91,100,104]. In this work, we will allow unstructered decom-
positions for the space-time domain. Other space-time methods which are not
based on discontinuous Galerkin methods are for example least square methods,
which are considered in [10, 60, 65, 92–95].

Let T > 0 be a given simulation end time. For t ∈ [0,T ] we consider a bounded
Lipschitz domain Ω(t)⊂Rd, d = 1,2,3 with boundary ∂Ω =Γ D∪Γ N , ΓD∩ΓN = /0.
As a model problem we will study the heat equation

∂t u(x, t)−∆u(x, t) = f (x, t) for (x, t) ∈ Q := Ω × (0,T ),

u(x, t) = 0 for (x, t) ∈ ΣD := ΓD× (0,T ),

nx(x, t) ·∇xu(x, t) = gN(x, t) for (x, t) ∈ ΣN := ΓN × (0,T ),

u(x,0) = u0(x) for (x, t) ∈ Σ0 := Ω(0)×{0}.

(2.1)

In view of [56, chapter 4] we assume f ∈ L2(Q), gN ∈ L2(ΣN) and u0 ∈ H
1
2 (Ω(0)).

An example for a possible space-time domain Q is given in Figure 2.1(a) for d = 1.
In Section 2.1 the space-time discretization scheme for the model problem (2.1)
will be presented and the numerical analysis for this approach will be given in
Section 2.2. Finally numerical examples will be presented in Section 2.3.

2.1 Discretization

In this section a discrete variational formulation for the model problem (2.1)
will be presented. The idea of this approach is to discretize the time dependent
problem (2.1) in the entire space-time domain Q = Ω × (0,T ) at once. To do so,
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6 2 Space-time discretizations

Q

x

t

Σ0

ΣNΣD

T

ΣT

(a) Space-time domain Q.

x

t

(b) Decomposition TN .

Figure 2.1: Space-time domain Q for d = 1 with a possible decomposition TN .

we need a decomposition of the space-time domain Q into N ∈ N simplices τℓ of
mesh size hℓ =

d+1
√
|τℓ|

Q = TN :=
N⋃

ℓ=1

τℓ.

For d = 1 an example for a possible decomposition TN is given in Figure 2.1(b).
Here we consider the simplest finite elements which are triangles for d = 1, tetra-
hedra for d = 2 and pentatopes for d = 3. To avoid additional numerical errors
we assume that the space-time domain Q has a polygonal (d = 1), a polyhedral
(d = 2), or a polychoral (d = 3) boundary ∂Q. Otherwise, one has to take the
additional variational crimes into account.

Definition 2.1.1 (Interior facet). Let TN be a decomposition of the space-time
domain Q into finite elements τℓ, ℓ = 1, . . . ,N. For two neighboring elements
τk,τℓ ∈ TN the interior facet Γkℓ is given by

Γkℓ := τk ∩ τℓ,

if the set Γkℓ forms a d-dimensional manifold. The set of all interior facets of the
decomposition TN will be denoted by IN .

To derive a discrete variational formulation for the model problem (2.1), we need
to have the following definitions for a function on an interior facet Γkℓ.

Definition 2.1.2 (Jump, average, upwind). Let Γkℓ ∈ IN be an interior facet
with the outer unit normal vector nk = (nk,x,nk,t)

⊤ with respect to τk and with
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nk
nℓ

τk

τℓ

Γkℓ

Figure 2.2: Interior facet Γkℓ with normal vectors nk and nℓ for d = 1.

the outer unit normal vector nℓ = −nk with respect to τℓ, see also Figure 2.2.
For a given function v the jump across the interior facet Γkℓ is defined by

[v]Γkℓ
(x, t) := v|τk

(x, t)nk+ v|τℓ(x, t)nℓ for (x, t) ∈ Γkℓ.

The jump in space direction is given by

[v]Γkℓ,x
(x, t) := v|τk

(x, t)nk,x+ v|τℓ(x, t)nℓ,x for (x, t) ∈ Γkℓ,

whereas the jump in time direction is defined by

[v]Γkℓ,t
(x, t) := v|τk

(x, t)nk,t + v|τℓ(x, t)nℓ,t for (x, t)∈ Γkℓ.

The average of a function v on the interior facet Γkℓ is

〈v〉Γk,ℓ
(x, t) :=

1

2

[
v|τk

(x, t)+ v|τℓ(x, t)
]

for (x, t) ∈ Γkℓ,

and the upwind in time direction is given by

{v}up
Γkℓ

(x, t) :=





v|τk
(x, t) for nk,t > 0,

0 for nk,t = 0,

v|τℓ(x, t) for nk,t < 0,

for (x, t)∈ Γkℓ.

Remark 2.1.3. In Definition 2.1.2 the jumps, averages and upwind values for a
given function v on an interior facet Γkℓ are independent from the ordering of the
finite elements τk and τℓ.

Definition 2.1.4 (Broken Sobolev space). Let TN be a decomposition of the space-
time domain Q. For s ≥ 0 the broken Sobolev space is given by

Hs(TN) :=
{

v ∈ L2(Q) : v|τℓ ∈ Hs(τℓ) for all τℓ ∈ TN

}
.
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For a given decomposition TN of the space-time domain Q into finite elements we
introduce the discrete function space of piecewise polynomials of degree p by

S
p
h(TN) :=

{
vh ∈ L2(Q) : vh|τℓ ∈ Pp(τℓ) for all τℓ ∈ TN and vh = 0 on ΣD

}
.

We now assume that we have a classical solution u of the heat equation (2.1). If
we multiply the first equation of (2.1) with a test function vh ∈ S

p
h(TN) and apply

integration by parts for the time derivative ∂tu and the Laplacian ∆u we end up
with the discrete variational problem:

Find uh ∈ S
p
h(TN) such that

A(uh,vh) = 〈 f ,vh〉Q + 〈u0,vh〉Σ0
+ 〈gN,vh〉ΣN

(2.2)

for all vh ∈ S
p
h(TN).

In (2.2) the bilinear form A(·, ·) is given by

A(uh,vh) := b(uh,vh)+a(uh,vh), (2.3)

where the bilinear form a(·, ·) results from an interior penalty Galerkin approxi-
mation for the Laplacian ∆u

a(uh,vh) :=
N

∑
ℓ=1

∫

τℓ

∇xuh(x, t) ·∇xvh(x, t)d(x, t)

− ∑
Γkℓ∈IN

∫

Γkℓ

〈∇xuh〉Γkℓ
(x, t) · [vh]Γkℓ,x

(x, t)ds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[uh]Γkℓ,x
(x, t) · 〈∇xvh〉Γkℓ

(x, t)ds(x,t)

+ ∑
Γkℓ∈IN

σ

hkℓ

∫

Γkℓ

[uh]Γkℓ,x
· [vh]Γkℓ,x

ds(x,t),

(2.4)

with the average mesh size hkℓ := 1
2
(hk +hℓ) for an interior facet Γkℓ and the

stabilization parameter σ > 0, which has to be chosen appropriately. In addition
the bilinear form b(·, ·) results from an approximation of the time derivative ∂tu

b(uh,vh) :=−
N

∑
ℓ=1

∫

τℓ

uh(x, t)∂tvh(x, t)d(x, t)+
∫

ΣT

uh(x, t)vh(x, t)ds(x,t)

+ ∑
Γkℓ∈IN

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [vh]Γkℓ,t
(x, t)ds(x,t),

(2.5)

with ΣT := Ω(T )×{T}.
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Remark 2.1.5. For the bilinear form a(·, ·) we use the symmetric interior penalty
Galerkin method, where the penalty parameter σ is a positive constant and de-
pends on the polynomial degree p, see also [5,20,79]. As a different stabilization
method, one may use a lifting operator as it is used for the Bassi-Rebay stabiliza-
tion, see [4, 5, 8, 91].

Remark 2.1.6. By integrating by parts, the bilinear form b(·, ·) can be also writ-
ten in the form

b(uh,vh) =
N

∑
ℓ=1

∫

τℓ

∂tuh(x, t)vh(x, t)d(x, t)+
∫

Σ0

uh(x, t)vh(x, t)ds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[uh]Γkℓ,t
(x, t){vh}down

Γkℓ
(x, t)ds(x,t)

for all uh,vh ∈ S
p
h(TN). Note that the downwind value on an interior facet Γkℓ is

given by

{v}down
Γkℓ

(x, t) :=





v|τℓ(x, t) for nk,t > 0,

0 for nk,t = 0,

v|τk
(x, t) for nk,t < 0

for (x, t) ∈ Γkℓ.

This alternative representation of the bilinear form b(·, ·) can be also derived by
interpreting the time derivative ∂tu and the initial condition in the weak sense.

Remark 2.1.7. Let u ∈ Hs(TN) with s > 3
2
be the exact solution of the model

problem (2.1). Further let uh ∈ S
p
h(TN) be the solution of the discrete problem

(2.2), then the Galerkin orthogonality

A(u−uh,vh) = 0 for all vh ∈ S
p
h(TN) (2.6)

is satisfied. The Galerkin orthogonality can be proven by applying integration by
parts, see also [20,66,79].

Remark 2.1.8. Inhomogeneous Dirichlet boundary conditions can be easily im-
posed by an extension or by adding penalty terms, see [79,91].

Let ϕ j, j = 1, . . . ,M be a basis of the discrete function space S
p
h(TN), i.e.

S
p
h(TN) = span

{
ϕ j

}M

j=1
, uh(x, t) =

M

∑
j=1

u[ j]ϕ j(x, t) for uh ∈ S
p
h(TN).

Then the discrete variational problem (2.2) is equivalent to the system of linear
algebraic equations

Ahu= f (2.7)

with

Ah[i, j] := A(ϕ j,ϕi) and f [i] = 〈 f ,ϕi〉Q + 〈u0,ϕi〉Σ0
+ 〈gN,ϕi〉ΣN

for i, j = 1, . . . ,M.
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2.2 Numerical analysis

In this section the discrete problem (2.2) will be analyzed. First the boundedness
and the stability of the two bilinear forms a(·, ·) and b(·, ·) will be investigated.
After that, the stability and boundedness of the bilinear form A(·, ·)will be proven,
by following the ideas as used in the work [21]. At the end of this section related
error estimates will be given.

First we need to make some assumptions on the triangulation TN .

Assumption 2.2.1 (Shape regularity). For the family of space-time decomposi-
tions TN we assume shape regularity. For the measure of an element boundary
∂τℓ this assumption implies a lower and an upper bound with respect to the mesh
size hℓ

cR1
hd
ℓ ≤ |∂τℓ| ≤ cR2

hd
ℓ for all τℓ ∈ TN .

For the measure of an element τℓ we have by definition

|τℓ|= hd+1
ℓ for all τℓ ∈ TN.

Assumption 2.2.2 (Local mesh grading). For two neighbouring elements τk,τℓ ∈
TN with interior facet Γkℓ we assume local mesh grading, i.e.

c̃−1
G ≤ hk

hℓ
≤ c̃G with c̃G ≥ 1.

This assumption implies also lower and upper bounds for the average mesh size
hkℓ =

1
2
(hk +hℓ)

c−1
G ≤ hkℓ

hk

≤ cG, c−1
G ≤ hkℓ

hℓ
≤ cG with cG ≥ 1.

Lemma 2.2.3 (Inverse inequalities). For any discrete function vh ∈ S
p
h(TN) there

holds for all interior facets Γkℓ ∈ IN the inverse inequalities

‖vh‖L2(Γkℓ)
≤ cI |Γkℓ|

1
2 |τℓ|−

1
2 ‖vh‖L2(τℓ)

, (2.8)

‖∇xvh‖[L2(Γkℓ)]
d ≤ cI |Γkℓ|

1
2 |τℓ|−

1
2 ‖∇xvh‖[L2(τℓ)]

d . (2.9)

‖vh‖H1(Γkℓ)
≤ cIh

−1
kℓ ‖vh‖L2(Γkℓ)

. (2.10)

For all τℓ ∈ TN there also holds

‖vh‖H1(τℓ)
≤ cIh

−1
ℓ ‖vh‖L2(τℓ)

, (2.11)
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Proof. The proof of (2.8) and (2.9) can be found in [20]. For the inverse
inequality (2.11) see [20, 89]. The proof of the inequality (2.10) can be found
in [110]. For arbitrary simplices see also [106].

Remark 2.2.4. The constants of the inverse inequalities (2.8)–(2.11) depend
on the polynomial degree p. For the inequalities (2.8) and (2.9) the constant cI

depend linearly on the polynomial degree p, i.e. cI = cI(p) and for the inequalities
(2.10) and (2.11) we have cI = cI(p2).

Lemma 2.2.5 (Young‘s inequality). Let x,y ∈ R, then there holds

xy ≤ ε

2
x2 +

1

2ε
y2, for any ε > 0.

Proof. The statement of the lemma follows by using the inequality of arithmetic
and geometric means

xy =
(

ε
1
2 x
)(

ε−
1
2 y
)
≤ 1

2

[
εx2 + ε−1y2

]
.

In the following we are going to analyze the properties of the bilinear form A(·, ·).
To do so, we first have to define energy norms with respect to the bilinear form
a(·, ·). For a function u ∈ Hs(TN) with s > 3

2
we define

‖u‖2
A :=

N

∑
ℓ=1

‖∇xu‖2

[L2(τℓ)]
d + ∑

Γkℓ∈IN

σ

hkℓ

∥∥∥[u]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
,

‖u‖2
A,∗ := ‖u‖2

A + ∑
Γkℓ∈IN

hkℓ

∥∥∥〈∇xu〉Γkℓ

∥∥∥
2

[L2(Γkℓ)]
d
.

To analyze the bilinear form b(·, ·) we will use the following two norms for func-
tions u ∈ Hs(TN) with s ≥ 1

‖u‖2
B :=

N

∑
ℓ=1

hℓ‖∂tu‖2
L2(τℓ)

+‖u‖2
Σ0
+‖u‖2

ΣT
+ ∑

Γkℓ∈IN

∥∥∥[u]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
,

‖u‖2
B,∗ :=

N

∑
ℓ=1

h−1
ℓ ‖u‖2

L2(τℓ)
+‖u‖2

ΣT
+ ∑

Γkℓ∈IN

∥∥∥{u}up
Γkℓ

∥∥∥
2

L2(Γkℓ)
.

The next lemma will be used to give a bound for the bilinear form a(·, ·).
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Lemma 2.2.6. For all uh ∈ S
p
h(TN) there holds the estimate

∑
Γkℓ∈IN

hkℓ

∥∥∥〈∇xuh〉Γkℓ

∥∥∥
2

[L2(Γkℓ)]
d
≤ cK

N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d ,

with the constant cK = cK(cI,cG,cR2
).

Proof. For uh ∈ S
p
h(TN) we have

∑
Γkℓ∈IN

hkℓ

∥∥∥〈∇xuh〉Γkℓ

∥∥∥
2

[L2(Γkℓ)]
d
= ∑

Γkℓ∈IN

hkℓ

∥∥∥∥
1

2

[
∇xuh|τk

+∇xuh|τℓ
]∥∥∥∥

2

[L2(Γkℓ)]
d

≤ ∑
Γkℓ∈IN

hkℓ

[∥∥∇xuh|τk

∥∥2

[L2(Γkℓ)]
d +
∥∥∇xuh|τℓ

∥∥2

[L2(Γkℓ)]
d

]
.

Applying the inverse inequality (2.9) leads to the estimate

≤ ∑
Γkℓ∈IN

hkℓc
2
I |Γkℓ|

[
|τk|−1 ‖∇xuh‖2

[L2(τk)]
d + |τℓ|−1 ‖∇xuh‖2

[L2(τℓ)]
d

]
.

If we rewrite the sum over all interior facets we get

= c2
I

N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

hkℓ |Γkℓ| |τℓ|−1 ‖∇xuh‖2

[L2(τℓ)]
d

= c2
I

N

∑
ℓ=1

|τℓ|−1 ‖∇xuh‖2

[L2(τℓ)]
d ∑

Γkℓ∈IN

Γkℓ⊂∂τℓ

hkℓ |Γkℓ| .

With Assumption 2.2.2 we further obtain the estimate

≤ c2
I

N

∑
ℓ=1

|τℓ|−1 ‖∇xuh‖2

[L2(τℓ)]
d cGhℓ ∑

Γkℓ∈IN

Γkℓ⊂∂τℓ

|Γkℓ|

≤ c2
I cG

N

∑
ℓ=1

|τℓ|−1
hℓ |∂τℓ|‖∇xuh‖2

[L2(τℓ)]
d .

The statement of the lemma follows if we use Assumption 2.2.1 and |τℓ|= hd+1
ℓ

≤ c2
I cGcR2

N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d .
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Lemma 2.2.7. The bilinear form a(·, ·) as defined in (2.4) is bounded, i.e.

a(u,vh)≤ ca
2 ‖u‖A,∗‖vh‖A,

for all u ∈ Hs(TN) with s > 3
2
and for all vh ∈ S

p
h(TN) with an h-independent con-

stant ca
2 > 0.

Proof. For a function u ∈ Hs(TN) and a function vh ∈ S
p
h(TN) we can estimate

the bilinear form a(·, ·) by using the Cauchy–Schwarz inequality

a(u,vh)≤
N

∑
ℓ=1

‖∇xu‖
[L2(τℓ)]

d‖∇xvh‖[L2(τℓ)]
d

+ ∑
Γkℓ∈IN

∥∥∥〈∇xu〉Γkℓ

∥∥∥
[L2(τℓ)]

d

∥∥∥[vh]Γkℓ,x

∥∥∥
[L2(τℓ)]

d

+ ∑
Γkℓ∈IN

∥∥∥[u]Γkℓ,x

∥∥∥
[L2(τℓ)]

d

∥∥∥〈∇xvh〉Γkℓ

∥∥∥
[L2(τℓ)]

d

+ ∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[u]Γkℓ,x

∥∥∥
[L2(τℓ)]

d

∥∥∥[vh]Γkℓ,x

∥∥∥
[L2(τℓ)]

d
.

Using the Hölder inequality leads to the estimate

≤
[

N

∑
ℓ=1

‖∇xu‖2

[L2(τℓ)]
d

] 1
2
[

N

∑
ℓ=1

‖∇xvh‖2

[L2(τℓ)]
d

] 1
2

+

[

∑
Γkℓ∈IN

hkℓ

σ

∥∥∥〈∇xu〉Γkℓ

∥∥∥
2

[L2(τℓ)]
d

] 1
2
[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[vh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2

+

[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[u]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2
[

∑
Γkℓ∈IN

hkℓ

σ

∥∥∥〈∇xvh〉Γkℓ

∥∥∥
2

[L2(τℓ)]
d

] 1
2

+

[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[u]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2
[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[vh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2

.

Applying Lemma 2.2.6 to the third term containing the test function vh gives the
stated bound for the bilinear form a(·, ·)

≤
√

2max{σ−1,1+ cKσ−1}‖u‖A,∗‖vh‖A.
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Lemma 2.2.8. The bilinear form b(·, ·) as given in (2.5) is bounded, i.e.

b(u,vh)≤ ‖u‖B,∗‖vh‖B,

for all u ∈ Hs(TN) with s ≥ 1 and for all vh ∈ S
p
h(TN).

Proof. Using the Cauchy–Schwarz inequality and the Hölder inequality we end
up with the bound for the bilinear form b(·, ·)

b(u,vh)≤
N

∑
ℓ=1

‖u‖L2(τℓ)
‖∂tvh‖L2(τℓ)

+‖u‖ΣT
‖vh‖ΣT

+ ∑
Γkℓ∈IN

∥∥∥{u}up
Γkℓ

∥∥∥
L2(Γkℓ)

∥∥∥[vh]Γkℓ,t

∥∥∥
L2(Γkℓ)

≤
[

N

∑
ℓ=1

h−1
ℓ ‖u‖2

L2(τℓ)

] 1
2
[

N

∑
ℓ=1

hℓ‖∂tvh‖2
L2(τℓ)

] 1
2

+‖u‖ΣT
‖vh‖ΣT

+

[

∑
Γkℓ∈IN

∥∥∥{u}up
Γkℓ

∥∥∥
2

L2(Γkℓ)

] 1
2
[

∑
Γkℓ∈IN

∥∥∥[vh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

] 1
2

≤ ‖u‖B,∗‖vh‖B.

In the next lemma we will prove a lower bound for the bilinear form a(·, ·).

Lemma 2.2.9. Let σ ≥ 4cK, with the constant cK from Lemma 2.2.6, then for
the bilinear form a(·, ·) as defined in (2.4) there holds the bound from below

a(uh,uh)≥
1

2
‖uh‖2

A for all uh ∈ S
p
h(TN).

Proof. For a function uh ∈ S
p
h(TN) we have by using the definition of a(·, ·)

a(uh,uh) =
N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d −2 ∑

Γkℓ∈IN

∫

Γkℓ

〈∇xuh〉Γkℓ
(x, t) · [uh]Γkℓ,x

(x, t)ds(x,t)

+ ∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d
.

Applying the Cauchy–Schwarz and the Hölder inequality gives the bound

≥ ‖uh‖2
A −2 ∑

Γkℓ∈IN

∥∥∥〈∇xuh〉Γkℓ

∥∥∥
[L2(τℓ)]

d

∥∥∥[uh]Γkℓ,x

∥∥∥
[L2(τℓ)]

d
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≥ ‖uh‖2
A −2

[

∑
Γkℓ∈IN

hkℓ

σ

∥∥∥〈∇xuh〉Γkℓ

∥∥∥
2

[L2(τℓ)]
d

] 1
2
[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2

.

By using Lemma 2.2.6 we get the estimate

≥ ‖uh‖2
A −2c

1
2

k σ− 1
2

[
N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d

] 1
2
[

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d

] 1
2

.

Applying Young‘s inequality with some ε ∈ R+ gives

≥ ‖uh‖2
A − ε

N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d −

cK

εσ ∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(τℓ)]
d
,

and by using the assumption σ ≥ 4cK and ε = 1
2
the statement of the lemma

follows with

≥ 1

2
‖uh‖2

A.

Lemma 2.2.10. Let Γkℓ ∈ IN be an interior facet and uh ∈ S
p
h(TN). Then the

following relation holds

{uh}up
Γkℓ

(x, t) [uh]Γkℓ,t
(x, t)− 1

2

[
u2

h

]
Γkℓ,t

(x, t) =
1

2

∣∣nk,t

∣∣
(
[uh]Γkℓ

(x, t)
)2

for all (x, t) ∈ Γkℓ.

Proof. The statement of the lemma easily follows by using the Definition 2.1.2,
see also [66].

Lemma 2.2.11. The bilinear form b(·, ·) as given in (2.5) is bounded from below
with

b(uh,uh)≥
1

2

[
‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )
+ ∑

Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]

for all uh ∈ S
p
h(TN).

Proof. Let uh ∈ S
p
h(TN). With the definition of the bilinear form b(·, ·) we

have

b(uh,uh) =−
N

∑
ℓ=1

∫

τℓ

uh(x, t)∂tuh(x, t)d(x, t)+‖uh‖2
L2(ΣT )
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+ ∑
Γkℓ∈IN

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [uh]Γkℓ,t
(x, t)ds(x,t).

Rewriting the first sum and using Gauss‘s theorem we obtain

=−
N

∑
ℓ=1

∫

τℓ

1

2
∂t (uh(x, t))

2
d(x, t)+‖uh‖2

L2(ΣT )

+ ∑
Γkℓ∈IN

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [uh]Γkℓ,t
(x, t)ds(x,t)

=−1

2

N

∑
ℓ=1

∫

∂τℓ

nℓ,t (uh(x, t))
2

ds(x,t)+‖uh‖2
L2(ΣT )

+ ∑
Γkℓ∈IN

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [uh]Γkℓ,t
(x, t)ds(x,t).

Summing up over all interior facets and over the boundaries Σ0 and ΣT leads to

=
1

2

[
‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )

]

+ ∑
Γkℓ∈IN

∫

Γkℓ

[
{uh}up

Γkℓ
(x, t) [uh]Γkℓ,t

(x, t)− 1

2

[
u2

h

]
Γkℓ,t

(x, t)

]
ds(x,t).

With Lemma 2.2.10 and by using
∣∣nk,t

∣∣≥
∣∣nk,t

∣∣2, we obtain the result of the lemma
by

=
1

2


‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )
+ ∑

Γkℓ∈IN

∫

Γkℓ

∣∣nk,t

∣∣
(
[uh]Γkℓ

(x, t)
)2

ds(x,t)




≥ 1

2

[
‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )
+ ∑

Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]
.

For σ ≥ 4cK and uh ∈ S
p
h
(TN) we can estimate the bilinear form A(·, ·) as defined

in (2.3) from below by using Lemma 2.2.9 and Lemma 2.2.11 with

A(uh,uh)≥
1

2

[
‖uh‖2

A +‖uh‖2
L2(Σ0)

+‖uh‖2
L2(ΣT )

+ ∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]
.
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This motivates the definition of the energy norm

‖uh‖2

D̃G
:= ‖uh‖2

A +‖uh‖2
L2(Σ0)

+‖uh‖2
L2(ΣT )

+ ∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
. (2.12)

If the Dirichlet boundary ΓD has non-zero measure |ΓD|> 0, then it is easy to see
that

‖uh‖D̃G
= 0 implies uh = 0

for uh ∈ S
p
h(TN). Therefore the energy norm ‖·‖

D̃G
implies a full norm with respect

to the discrete function space S
p
h(TN). Hence, for σ ≥ 4cK , the bilinear form A(·, ·)

is elliptic on the space S
p
h(TN) with respect to the energy norm ‖·‖

D̃G
, i.e.

A(uh,uh)≥
1

2
‖uh‖2

D̃G
for all uh ∈ S

p
h(TN). (2.13)

Since (2.2) is a linear problem in finite dimension, the ellipticity estimate (2.13)
implies the existence and uniqueness of a solution uh ∈ SP

h (TN) of the discrete vari-
ational problem (2.2). In the case of a pure Neumann boundary value problem,
i.e. |ΓD| = 0, the next theorem guarantees the uniqueness of a discrete solution
uh ∈ SP

h (TN) of the variational problem (2.2).

Theorem 2.2.12. Let σ ≥ 4cK, then the bilinear form A(·, ·) is injective, i.e. for
uh ∈ S

p
h(TN) the condition

A(uh,vh) = 0 for all vh ∈ S
p
h(TN)

implies uh = 0.

Proof. Let uh ∈ S
p
h(TN). The ellipticity estimate (2.13) implies

0 = A(uh,uh)≥
1

2
‖uh‖2

D̃G

and therefore ‖uh‖D̃G
= 0. Hence we have

∇xuh|τℓ = 0 for all τℓ ∈ TN , uh = 0 on Σ0 ∪ΣT and uh ∈ C(TN). (2.14)

Testing with the test function vh = ∂tuh ∈ S
p
h(TN) and using the alternative rep-

resentation of the bilinear form b(·, ·) as given in Remark 2.1.6, we have, due to
the properties (2.14), that

0 = A(uh,∂tuh) =
N

∑
ℓ=1

‖∂tuh‖2
L2(τℓ)

.

This implies that ∂tuh|τℓ = 0 for all τℓ ∈ TN and with (2.14) we conclude that
uh = 0.
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With Theorem 2.2.12 we conclude that the discrete variational problem (2.2)
omits a unique solution uh ∈ S

p
h(TN). In view of Theorem 2.2.12 we will use

special test functions with a weighted time derivative to derive a priori error
estimates in some energy norm. To do so, we define the following piecewise linear
weight function.

Definition 2.2.13 (Mesh function). Let h be a piecewise linear function on TN ,
i.e. h|τℓ ∈ P1(τℓ) for all τℓ ∈ TN , with the property

c−1
g hℓ ≤ h(x, t)≤ cghℓ for all (x, t)∈ τℓ and cg ≥ 1, (2.15)

then h is called a mesh function.

For a given function uh ∈ S
p
h(TN) and a given mesh function h we define the new

function wh ∈ S
p
h
(TN) as

wh|τℓ := h|τℓ ∂tuh|τℓ ∈ Pp(τℓ) for all τℓ ∈ TN . (2.16)

The following techniques follow the ideas as used in the work [21].

Lemma 2.2.14. For uh ∈ S
p
h(TN) let wh ∈ S

p
h(TN) be defined as in (2.16). Then

for δ = (c−1
g +2c2

I cR2
c3

g)
−1 there exists a constant cb

1 > 0, which is independent of
the function uh, such that the estimate

b(uh,uh +δwh)≥ cb
1‖uh‖2

B

holds.

Proof. Let uh ∈ S
p
h(TN) be a given discrete function and wh ∈ S

p
h(TN) be defined

as in (2.16). By using the representation of the bilinear form b(·, ·) as given in
Remark 2.1.6 we have

b(uh,wh) =
N

∑
ℓ=1

∫

τℓ

∂tuh(x, t)wh(x, t)d(x, t)+
∫

Σ0

uh(x, t)wh(x, t)ds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[uh]Γkℓ,t
(x, t){wh}down

Γkℓ
(x, t)ds(x,t)

=
N

∑
ℓ=1

∫

τℓ

h(x, t)(∂tuh(x, t))
2

d(x, t)+
∫

Σ0

uh(x, t)wh(x, t)ds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[uh]Γkℓ,t
(x, t){wh}down

Γkℓ
(x, t)ds(x,t).
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With Definition 2.2.13 and by using the Cauchy–Schwarz inequality and the
Hölder inequality we obtain the estimates

≥ c−1
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

−‖uh‖L2(Σ0)
‖wh‖L2(Σ0)

− ∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
L2(Γkℓ)

∥∥∥{wh}down
Γkℓ

∥∥∥
L2(Γkℓ)

≥ c−1
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

−‖uh‖L2(Σ0)
‖wh‖L2(Σ0)

−
[

∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

] 1
2
[

∑
Γkℓ∈IN

∥∥∥{wh}down
Γkℓ

∥∥∥
2

L2(Γkℓ)

] 1
2

.

Now we estimate the function wh on the boundary Σ0. We first sum over all
elements τℓ ∈ TN which are intersecting with the boundary Σ0. Then we use the
inverse inequality (2.8) to end up with the estimates

‖wh‖2
L2(Σ0)

= ∑
τℓ∈TN

∂τℓ∩Σ0 6= /0

‖wh‖2
L2(∂τℓ∩Σ0)

≤ c2
I ∑

τℓ∈TN

∂τℓ∩Σ0 6= /0

|∂τℓ| |τℓ|−1‖wh‖2
L2(τℓ)

≤ c2
I

N

∑
ℓ=1

|∂τℓ| |τℓ|−1 ‖wh‖2
L2(τℓ)

.

With the shape regularity Assumption 2.2.1 and with the definition of the mesh
function (2.15) we get for |τℓ|= hd+1

ℓ the estimate

≤ c2
I cR2

N

∑
ℓ=1

h−1
ℓ

∥∥h∂tuh

∥∥2

L2(τℓ)
≤ c2

I cR2
c2

g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

.

Next we estimate the downwind value of wh on the interior facets Γkℓ ∈ IN . We
first estimate the downwind value wh with

∑
Γkℓ∈IN

∥∥∥{wh}down
Γkℓ

∥∥∥
2

L2(Γkℓ)
≤ ∑

Γkℓ∈IN

[∥∥wh|τk

∥∥2

L2(Γkℓ)
+
∥∥wh|τℓ

∥∥2

L2(Γkℓ)

]
.

Then we rewrite the sum over the interior facets as the sum over all elements

=
N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

‖wh‖2
L2(Γkℓ)

.

By using the inverse estimate (2.8) and the shape regularity Assumption 2.2.1 we
end up with the following estimates

≤ c2
I

N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

|Γkℓ| |τℓ|−1 ‖wh‖2
L2(τℓ)
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≤ c2
I

N

∑
ℓ=1

|∂τℓ| |τℓ|−1‖wh‖2
L2(τℓ)

≤ c2
I cR2

N

∑
ℓ=1

h−1
ℓ ‖wh‖2

L2(τℓ)
.

Using the definition of wh, see (2.16), we obtain the result

≤ c2
I cR2

c2
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

.

With these estimates we have the following result for the bilinear form b(·, ·)

b(uh,wh)≥ c−1
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

−‖uh‖L2(Σ0)

[
c2

I cR2
c2

g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

] 1
2

−
[

∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

] 1
2
[

c2
I cR2

c2
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

] 1
2

.

Using two times Young‘s inequality with some ε1,ε2 ∈R+ results in the estimate

≥
(

c−1
g − c2

I cR2
c2

g

ε1

2
− c2

I cR2
c2

g

ε2

2

) N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

− 1

2ε1
‖uh‖2

L2(Σ0)

− 1

2ε2
∑

Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
.

Choosing ε1 = ε2 = (2c2
I cR2

c3
g)

−1 we have the estimate

≥
c−1

g

2

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

− c2
I cR2

c3
g

[
‖uh‖2

L2(Σ0)
+ ∑

Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]
.

Combining this estimate with the estimate from Lemma 2.2.11 we have

b(uh,uh+δwh)≥
δc−1

g

2

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

+
1

2
‖uh‖2

L2(ΣT )

+

(
1

2
− c2

I cR2
c3

gδ

)[
‖uh‖2

L2(Σ0)
+ ∑

Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]
.

For cb
1(δ ) := 1

2
min

{
1,δc−1

g ,1−2c2
I cR2

c3
gδ
}
we obtain

≥ cb
1(δ )

[ N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

+‖uh‖2
L2(Σ0)
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+‖uh‖2
L2(ΣT )

+ ∑
Γkℓ∈IN

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)

]

= cb
1(δ )‖uh‖2

B.

By choosing δ = δ ∗ = (c−1
g +2c2

I cR2
c3

g)
−1 we get

cb
1(δ

∗) =
1

2
min

{
1,

1

1+2c2
I cR2

c4
g

}
> 0,

which completes the proof.

Lemma 2.2.15. For uh ∈ S
p
h(TN) let the discrete function wh ∈ S

p
h(TN) be defined

as in (2.16). Then there holds

‖wh‖B ≤ cb
I ‖uh‖B, with cb

I > 0.

Proof. Let uh ∈ S
p
h(TN) and wh ∈ S

p
h(TN) be defined as in (2.16). Then we

have

‖wh‖2
B =

N

∑
ℓ=1

hℓ‖∂twh‖2
L2(τℓ)

+‖wh‖2
Σ0
+‖wh‖2

ΣT
+ ∑

Γkℓ∈IN

∥∥∥[wh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
.

The first term can be estimated by using the inverse inequality (2.11)

N

∑
ℓ=1

hℓ‖∂twh‖2
L2(τℓ)

≤ c2
I

N

∑
ℓ=1

h−1
ℓ ‖wh‖2

L2(τℓ)
= c2

I

N

∑
ℓ=1

h−1
ℓ

∥∥h∂tuh

∥∥2

L2(τℓ)
.

Because h is a mesh function we get with (2.15) the estimate

≤ c2
I c2

g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

.

For the remaining terms we have by using the same arguments as in Lemma
2.2.14

‖wh‖2
L2(Σ0∪ΣT )

= ∑
τℓ∈TN

∂τℓ∩(Σ0∪ΣT ) 6= /0

‖wh‖2
L2(∂τℓΣ0∪ΣT )

≤ c2
I cR2

c2
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

and

∑
Γkℓ∈IN

∥∥∥[wh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
≤ 2 ∑

Γkℓ∈IN

[∥∥wh|τk

∥∥2

L2(Γkℓ)
+
∥∥wh|τℓ

∥∥2

L2(Γkℓ)

]
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≤ 2c2
I cR2

c2
g

N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

.

Hence we have

‖wh‖B ≤ cIcg

√
1+3cR2

[
N

∑
ℓ=1

hℓ‖∂tuh‖2
L2(τℓ)

] 1
2

≤ cIcg

√
1+3cR2

‖uh‖B,

which completes the proof.

With Lemma 2.2.14 and Lemma 2.2.15 the following stability estimate for the
bilinear b(·, ·) can be proven.

Theorem 2.2.16. For the bilinear form b(·, ·) as defined in (2.5) the following
stability estimate holds

sup
06=vh∈S

p
h
(TN)

b(uh,vh)

‖vh‖B

≥ cb
S ‖uh‖B for all uh ∈ S

p
h(TN).

Proof. For uh ∈ S
p
h(TN) and the special test function vh = uh + δwh where

wh ∈ S
p
h(TN) is defined as in (2.16) the stability estimate follows by using the

estimate of Lemma 2.2.14 and by using the boundedness estimate of Lemma
2.2.15

sup
06=vh∈S

p
h
(TN)

b(uh,vh)

‖vh‖B

≥ b(uh,uh +δwh)

‖uh +δwh‖B

≥ b(uh,uh +δwh)

‖uh‖B +δ‖wh‖B

≥ cb
1‖uh‖2

B

(1+δcb
I )‖uh‖B

= cb
S‖uh‖B.

Remark 2.2.17. Let TN be a decomposition of the intervall (0,T ) into finite
elements. With the stability estimate of Theorem 2.2.16 and the boundedness
estimate of Lemma 2.2.8 we have unique solvability of the discrete variational
problem:

Find uh ∈ S
p
h(TN) such that

b(uh,vh) = 〈 f ,vh〉(0,T )+u0vh(0) (2.17)

for all vh ∈ S
p
h(TN).
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The unique solution uh ∈ S
p
h(TN) describes an approximate solution for the ordi-

nary differential equation

∂tu(t) = f (t) for t ∈ (0,T ), u(0) = u0.

An error estimate in the energy norm ‖u−uh‖B can be shown by applying standard
techniques. A comprehensive analysis for the discrete problem (2.17) can be found
for example in [97].

Next we combine all the previous estimates to prove a stability and a boundedness
estimate for the bilinear form A(·, ·). To do so we define for u ∈ Hs(TN), s > 3

2
the

following energy norms with respect to the bilinear form A(·, ·)

‖u‖2
DG := ‖u‖2

A +‖u‖2
B,

‖u‖2
DG,∗ := ‖u‖2

A,∗+‖u‖2
B,∗.

Lemma 2.2.18. The bilinear form A(·, ·) as given in (2.3) is bounded, i.e.

A(u,vh)≤ cA
2‖u‖DG,∗‖vh‖DG

for all u ∈ Hs(TN) with s > 3
2
and for all vh ∈ S

p
h(TN) with an h-independent con-

stant cA
2 > 0.

Proof. By using the boundedness estimates of Lemma 2.2.7 and Lemma 2.2.8
we get the boundedness estimate for the bilinear form A(·, ·) with

A(u,vh) = a(u,vh)+b(u,vh)≤ ca
2‖u‖A,∗‖vh‖A +‖u‖B,∗‖vh‖B

≤ max{1,ca
2}‖u‖DG,∗‖vh‖DG.

Lemma 2.2.19. Let TN be a quasi-uniform decomposition, i.e. for all τℓ ∈ TN

there holds c−1
q h ≤ hℓ ≤ cqh with cq ≥ 1 and h > 0. For uh ∈ S

p
h(TN) let the discrete

function wh ∈ S
p
h(TN) be defined as in (2.16) with the mesh function

h =
1

N

N

∑
ℓ=1

hℓ ∈ R. (2.18)

Then there holds

‖wh‖A ≤ ca
I ‖uh‖A, with ca

I > 0.
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Proof. The function h is indeed a mesh function, because the condition that the
decomposition TN is quasi-uniform, i.e. cqh ≤ hℓ ≤ cqh, implies for all τℓ ∈ TN

c−1
g hℓ ≤ h ≤ cghℓ with cg = c2

q. (2.19)

Let uh ∈ S
p
h
(TN) and wh ∈ S

p
h
(TN) be defined as in (2.16). Then we have

‖wh‖2
A =

N

∑
ℓ=1

‖∇xwh‖2

[L2(τℓ)]
d + ∑

Γkℓ∈IN

σ

hkℓ

∥∥∥[wh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
. (2.20)

For the first term of (2.20) we have due to the fact, that h is constant

N

∑
ℓ=1

‖∇xwh‖2

[L2(τℓ)]
d =

N

∑
ℓ=1

∥∥∇x(h∂tuh)
∥∥2

[L2(τℓ)]
d =

N

∑
ℓ=1

h
2‖∇x∂tuh‖2

[L2(τℓ)]
d .

With (2.19) we further obtain

≤ c2
g

N

∑
ℓ=1

h2
ℓ‖∇x∂tuh‖2

[L2(τℓ)]
d = c2

g

N

∑
ℓ=1

h2
ℓ

d

∑
i=1

‖∂t(∂xi
uh)‖2

L2(τℓ)
.

With the inverse inequality (2.11) we get the estimate

≤ c2
gc2

I

N

∑
ℓ=1

h2
ℓ

d

∑
i=1

h−2
ℓ ‖∂xi

uh‖2
L2(τℓ)

= c2
gc2

I

N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d .

For the second term of (2.20) we have for Γkℓ ∈ IN

[wh]Γkℓ,x
= wh|τk

nk,x+wh|τℓnℓ,x =
(
wh|τk

−wh|τℓ
)
nk,x

= h∂t

(
uh|τk

−uh|τℓ
)
nk,x = h∂tzhnk,x,

with zh := uh|τk
−uh|τℓ. Hence we have

∥∥∥[wh]Γkℓ,x

∥∥∥
[L2(Γkℓ)]

d
= h
∥∥∂tzhnk,x

∥∥
[L2(Γkℓ)]

d ≤ cghkℓ

∥∥∂tzhnk,x

∥∥
[L2(Γkℓ)]

d .

For
∣∣nk,x

∣∣ = 1, i.e. nk,t = 0 we conclude, that ∂tzh is exactly the tangential
derivative of zh on the interior facet Γkℓ. Hence we obtain by using the inverse
inequality (2.10)

∥∥∥[wh]Γkℓ,x

∥∥∥
[L2(Γkℓ)]

d
≤ cghkℓ‖∂tzh‖L2(Γkℓ)

≤ cgcI‖zh‖L2(Γkℓ)

= cgcI

∥∥∥[uh]Γkℓ,x

∥∥∥
[L2(Γkℓ)]

d
.
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For
∣∣nk,x

∣∣= 0 we clearly have

0 =
∥∥∥[wh]Γkℓ,x

∥∥∥
[L2(Γkℓ)]

d
≤ cgcI

∥∥∥[uh]Γkℓ,x

∥∥∥
[L2(Γkℓ)]

d
.

For 0 <
∣∣nk,x

∣∣ < 1 we will decompose the derivative ∂tzhnk,x into a tangential
part and a part containing only space derivatives. To do so, we introduce for
the normal vector nk = (nk,x,nk,t)

⊤ with nk,x = (nk,x1
, . . . ,nk,xd

)⊤ the tangential
vectors ti ∈ Rd+1 for i = 1, . . . ,d as

ti[d+1] = nk,xi
, ti[i] =−nk,t , ti[ j] = 0 for j 6= i and j 6= d+1.

Because we study the case 0 <
∣∣nk,x

∣∣ < 1 we have nk,t 6= 0 and we can compute

the normalized tangential vectors t̃i := (n2
k,xi

+ n2
k,t)

− 1
2 ti. For the i-th tangential

derivative of zh we then obtain

∇zh · ti =−nk,t∂xi
zh +nk,xi

∂tzh.

Hence we have

nk,xi
∂tzh = ∇zh · ti +nk,t∂xi

zh for i = 1, . . . ,d.

With this relation we have

∥∥∥[wh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
≤ c2

gh
2
kℓ

∥∥∂tzhnk,x

∥∥2

[L2(Γkℓ)]
d = c2

gh
2
kℓ

d

∑
i=1

∥∥nk,xi
∂tzh

∥∥2

L2(Γkℓ)

= c2
gh

2

kℓ

d

∑
i=1

∥∥∇zh · ti +nk,t∂xi
zh

∥∥2

L2(Γkℓ)

≤ 2c2
gh

2

kℓ

d

∑
i=1

[
‖∇zh · ti‖2

L2(Γkℓ)
+
∥∥nk,t∂xi

zh

∥∥2

L2(Γkℓ)

]
.

Using the normalized tangentials t̃i results in

= 2c2
gh

2
kℓ

d

∑
i=1

[
(n2

k,xi
+n2

k,t)
∥∥∇zh · t̃i

∥∥2

L2(Γkℓ)
+
∥∥nk,t∂xi

zh

∥∥2

L2(Γkℓ)

]
.

Because ∇zh · t̃i is the tangential derivative of zh on the interior facet Γkℓ we obtain
by using the inverse inequality (2.10)

≤ 2c2
I c2

g

d

∑
i=1

(n2
k,xi

+n2
k,t)‖zh‖2

L2(Γkℓ)
+2c2

gh
2
kℓ‖∇xzh‖2

[L2(Γkℓ)]
d

≤ 2c2
I c2

g(1+dc−1
n )
∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
+2c2

gh
2
kℓ‖∇xzh‖2

[L2(Γkℓ)]
d ,
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with the positive constant

cn = min{
∣∣nk,x

∣∣> 0 : nk = (nk,x,nk,t)
⊤ is a normal vector of Γkℓ ∈ IN}> 0.

Hence we have

∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[wh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
≤ 2c2

I c2
g(1+dc−1

n ) ∑
Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+2c2
gσ ∑

Γkℓ∈IN

hkℓ‖∇xzh‖2

[L2(Γkℓ)]
d .

It remains to estimate

∑
Γkℓ∈IN

hkℓ‖∇xzh‖2

[L2(Γkℓ)]
d ≤ 2 ∑

Γkℓ∈IN

hkℓ

[∥∥∇xuh|τk

∥∥2

[L2(Γkℓ)]
d +
∥∥∇xuh|τℓ

∥∥2

[L2(Γkℓ)]
d

]
.

With the same techniques as in the proof of Lemma 2.2.6 we obtain the estimate

≤ 2c2
I cGcR2

N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d .

Overall we have

‖wh‖2
A ≤ c2

I (c
2
g +2cGcR2

)
N

∑
ℓ=1

‖∇xuh‖2

[L2(τℓ)]
d

+2c2
I c2

g(1+dc−1
n ) ∑

Γkℓ∈IN

σ

hkℓ

∥∥∥[uh]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
,

which completes the proof.

Remark 2.2.20. Note, that the constant ca
I of the boundedness estimate in

Lemma 2.2.19 depends on the mesh constant c−1
n . To ensure, that the constant cn

is bounded away from zero, i.e. cn ≥ c0 > 0 we have to assume, that the space-time
decomposition TN fulfils an angle condition with respect to time.

Next we will prove a stability estimate for the bilinear form A(·, ·). by combining
the estimates from above.

Theorem 2.2.21. Let TN be a quasi-uniform decomposition and let σ ≥ 4cK,
then for the bilinear form A(·, ·) the following stability estimate holds

sup
06=vh∈S

p
h
(TN)

A(uh,vh)

‖vh‖DG

≥ cA
S‖uh‖DG for all uh ∈ S

p
h(TN).
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Proof. For uh ∈ S
p
h(TN) we use the special test function vh = uh + δwh where

wh ∈ S
p
h(TN) is defined as given in (2.16) with the special mesh function (2.18).

Then we obtain the estimate

sup
06=vh∈S

p
h
(TN)

A(uh,vh)

‖vh‖DG

≥ A(uh,uh+δwh)

‖uh +δwh‖DG

=
a(uh,uh)+δa(uh,wh)+b(uh,uh+δwh)

‖uh +δwh‖DG

.

By using the boundedness estimate of Lemma 2.2.7 for uh ∈ S
p
h(TN) ⊂ Hs(TN),

s > 3
2
, and the stability estimate of Lemma 2.2.14 with the δ -dependent constant

cb
1(δ ) := 1

2
min

{
1,δc−1

g ,1−2c2
I cR2

c3
gδ
}
as given in the proof of Lemma 2.2.14 we

have the estimate

≥
1
2
‖uh‖2

A − ca
2δ‖uh‖A,∗‖wh‖A + cb

1(δ )‖uh‖2
B

‖uh +δwh‖DG

.

For discrete functions uh ∈ S
p
h(TN) the norm ‖uh‖A,∗ can be estimated by using

Lemma 2.2.6, i.e. ‖uh‖A,∗ ≤
√

1+ cK‖uh‖A. By using Lemma 2.2.15 and Lemma
2.2.19, we obtain the estimate

≥
1
2
‖uh‖2

A − ca
2

√
1+ cKca

I δ‖uh‖2
A + cb

1(δ )‖uh‖2
B

(1+ cA
I δ )‖uh‖DG

,

with cA
I := max{ca

I ,c
b
I }. Further manipulations lead to

=
(1

2
− ca

2

√
1+ cKca

I δ )‖uh‖2
A + cb

1(δ )‖uh‖2
B

(1+ cA
I δ )‖uh‖DG

≥
min

{
1,δc−1

g ,1−2ca
2

√
1+ cKca

I δ ,1−2c2
I cR2

c3
gδ
}

2(1+ cA
I δ )

‖uh‖DG.

By choosing a fixed δ = δ ∗ as

δ ∗ := min

{
1

c−1
g +2c2

I cR2
c3

g

,
1

c−1
g +2ca

2

√
1+ cKca

I

}
> 0

we obtain the stability estimate

sup
06=vh∈S

p
h
(TN)

A(uh,vh)

‖vh‖DG

≥
min

{
1,δ ∗c−1

g

}

2(1+ cA
I δ ∗)

‖uh‖DG = cA
s ‖uh‖DG.

By using the stability estimate of Theorem 2.2.21 and the boundedness estimate
of Lemma 2.2.18 we can prove an error estimate in the energy norm ‖·‖DG.
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Theorem 2.2.22. Let TN be a quasi-uniform decomposition and let u ∈ Hs(TN),
s > 3

2
, be the exact solution of the model problem (2.1). For σ ≥ 4cK let uh ∈

S
p
h
(TN) be the solution of the discrete variational problem (2.2). Then the follow-

ing error estimate holds

‖u−uh‖DG ≤ inf
zh∈S

p
h
(TN)

[
‖u− zh‖DG +

cA
2

cA
S

‖u− zh‖DG,∗

]
.

Proof. By using the stability estimate of Theorem 2.2.21 we have for any
discrete function zh ∈ S

p
h(TN) the bound in the energy norm

cA
S‖zh −uh‖DG ≤ sup

06=vh∈S
p
h
(TN)

A(zh −uh,vh)

‖vh‖DG

.

By inserting the exact solution u and by using the Galerkin orthogonality (2.6)
we have

= sup
06=vh∈S

p
h
(TN)

A(u−uh − (u− zh),vh)

‖vh‖DG

= sup
06=vh∈S

p
h
(TN)

A(zh −u,vh)

‖vh‖DG

.

With the boundedness property of Lemma 2.2.18 we get the estimate

‖zh −uh‖DG ≤ cA
2

cA
S

‖u− zh‖DG,∗.

Using the above estimate with the triangle inequality completes the error estimate
of this theorem

‖u−uh‖DG ≤ ‖u− zh‖DG +‖zh −uh‖DG

≤ ‖u− zh‖DG +
cA

2

cA
S

‖u− zh‖DG,∗.

Lemma 2.2.23. Let TN be a decomposition of the space-time domain Q. For an
element τℓ ∈ TN let u ∈ Hs(τℓ), s ≥ 0, be a given function. By Qℓu ∈ Pp(τℓ) we
denote the local L2-projection on τℓ as

〈Qℓu,vh〉L2(τℓ)
= 〈u,vh〉L2(τℓ)

for all vh ∈ Pp(τℓ).

Then the following error estimates for the local L2-projection hold:
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For s ∈ N0 and 0 ≤ µ ≤ s there holds

|u−Qℓu|Hµ (τℓ)
≤ ch

min{s,p+1}−µ
ℓ |u|Hs(τℓ)

. (2.21)

For s ∈ N there holds the L2-error estimate on the boundary

‖u−Qℓu‖L2(∂τℓ)
≤ ch

min{s,p+1}− 1
2

ℓ |u|Hs(τℓ)
. (2.22)

For s ∈ N with s ≥ 2 the L2-error on the boundary ∂τℓ for the gradient can be
estimated by

‖∇x (u−Qℓu)‖[L2(τℓ)]
d ≤ ch

min{s,p+1}− 3
2

ℓ |u|Hs(τℓ)
. (2.23)

Proof. The proofs can be found in [20] for example.

To prove explicit h-dependent error estimates we define the global L2-projection
QTN

u ∈ S
p
h
(TN) such that

QTN
u|τℓ := Qℓu for all τℓ ∈ TN.

Lemma 2.2.24. For u ∈ Hs(TN) with s ≥ 1 the following error estimate in the
energy norm ‖·‖A holds

‖u−QTN
u‖A ≤ c

[
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

] 1
2

.

Proof. By using the definition of the energy norm ‖·‖A we have for u∈Hs(TN)

‖u−QTN
u‖2

A =
N

∑
ℓ=1

‖∇x(u−QTN
u)‖2

[L2(τℓ)]
d + ∑

Γkℓ∈IN

σ

hkℓ

∥∥∥[u−QTN
u]Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
.

With the error estimate (2.21) and by using the triangle inequality we have

≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

+2 ∑
Γkℓ∈IN

σ

hkℓ

[
‖u−Qku‖2

[L2(Γkℓ)]
d +‖u−Qℓu‖2

[L2(Γkℓ)]
d

]
.

Rewriting the sum over all interior facets as a sum over all elements and by using
Assumption 2.2.2 we get the estimate

= c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
+2

N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

σ

hkℓ

‖u−Qℓu‖2

[L2(Γkℓ)]
d
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≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
+2σcG

N

∑
ℓ=1

h−1
ℓ ‖u−Qℓu‖2

[L2(∂τℓ)]
d .

Applying the error estimate (2.22) leads to the estimate

≤ c2(1+2σcG)
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
.

Lemma 2.2.25. For u ∈ Hs(TN) with s ≥ 2 the following error estimate in the
energy norm ‖·‖A,∗ holds

‖u−QTN
u‖

A,∗ ≤ c

[
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

] 1
2

.

Proof. Using the definition of the norm ‖·‖A,∗ with the error estimate of Lemma
2.2.24 and by applying the triangle inequality we get the estimate

‖u−QTN
u‖2

A,∗ = ‖u−QTN
u‖2

A
+ ∑

Γkℓ∈IN

hkℓ

∥∥∥〈∇x (u−QTN
u)〉Γkℓ

∥∥∥
2

[L2(Γkℓ)]
d

≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

+ ∑
Γkℓ∈IN

hkℓ

[
‖∇x (u−Qku)‖2

[L2(Γkℓ)]
d +‖∇x (u−Qℓu)‖2

[L2(Γkℓ)]
d

]
.

As in the proof of Lemma 2.2.24 we rewrite the sum over all interior facets as a
sum over all elements. By using Assumption 2.2.2 we get

= c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
+

N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

hkℓ‖∇x (u−Qℓu)‖2

[L2(Γkℓ)]
d

≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
+ cG

N

∑
ℓ=1

hℓ‖∇x (u−Qℓu)‖2

[L2(∂τℓ)]
d .

With the error estimate (2.23) we obtain

≤ c2(1+ cG)
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)
.
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Remark 2.2.26. The regularity assumption u∈Hs(TN), s≥ 2, for Lemma 2.2.25
is needed to estimate the error of the gradients on the interior facets Γkℓ ∈IN . This
assumption can be relaxed by assuming u ∈W 2

p (TN) with p ∈ ( 2d
d+2

,2], see [19,109].

Lemma 2.2.27. For u ∈ Hs(TN) with s ≥ 1 the following error estimates in the
energy norms ‖·‖B and ‖·‖B,∗ hold

‖u−QTN
u‖

B
≤ c

[
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)

] 1
2

,

‖u−QTN
u‖B,∗ ≤ c

[
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)

] 1
2

.

Proof. Let u ∈ Hs(TN) with s ≥ 1. We start by estimating the L2-errors on the
boundary Σ0 and on the boundary ΣT . If we sum over all elements we have

‖u−QTN
u‖2

L2(Σ0)
+‖u−QTN

u‖2
L2(ΣT )

= ∑
τℓ∈TN

∂τℓ∩(Σ0∪ΣT ) 6= /0

‖u−QTN
u‖2

L2(∂τℓ∩(Σ0∪ΣT ))
.

With the error estimate (2.22) we conclude

≤
N

∑
ℓ=1

‖u−QTN
u‖2

L2(∂τℓ)

≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.

Next we will estimate the error of the jump in time direction. Using the triangle
inequality and by rewriting the sum over the interior facets we get the estimates

∑
Γkℓ∈IN

∥∥∥[u−QTN
u]Γkℓ,t

∥∥∥
2

L2(Γkℓ)
≤ 2 ∑

Γkℓ∈IN

[
‖u−Qku‖2

L2(Γkℓ)
+‖u−Qℓu‖2

L2(Γkℓ)

]

= 2
N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

‖u−Qℓu‖2
L2(Γkℓ)

≤ 2
N

∑
ℓ=1

‖u−Qℓu‖2
L2(∂τℓ)

.

With the error estimate (2.22) we end up with the estimate

≤ 2c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.
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Using the same techniques as above we can estimate the L2-error of the upwind
values in time directions

∑
Γkℓ∈IN

∥∥∥{u−QTN
u}up

Γkℓ

∥∥∥
2

L2(Γkℓ)
≤ ∑

Γkℓ∈IN

[
‖u−Qku‖2

L2(Γkℓ)
+‖u−Qℓu‖2

L2(Γkℓ)

]

≤
N

∑
ℓ=1

∑
Γkℓ∈IN

Γkℓ⊂∂τℓ

‖u−Qℓu‖2
L2(Γkℓ)

≤
N

∑
ℓ=1

‖u−Qℓu‖2
L2(∂τℓ)

≤ c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.

With the error estimates above we can now estimate the error of the L2-projection
QTN

u in the energy norm ‖·‖B. By definition we have

‖u−QTN
u‖2

B
≤

N

∑
ℓ=1

hℓ‖∂t (u−Qℓu)‖2
L2(τℓ)

+3c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.

By using the error estimate (2.21) for µ = 1 we derive the first error estimate of
the lemma

≤ 4c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.

For the error in the energy norm ‖·‖B,∗ we also use the estimate (2.21) and we
conclude

‖u−QTN
u‖2

B,∗ ≤
N

∑
ℓ=1

h−1
ℓ ‖u−Qℓu‖2

L2(τℓ)
+2c2

N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)

≤ 3c2
N

∑
ℓ=1

h
2min{s,p+1}−1

ℓ |u|2Hs(τℓ)
.

Now it is possible to give a bound of the error in the energy norm ‖·‖DG for the
discrete solution uh ∈ S

p
h(TN) of the variational problem (2.2).

Theorem 2.2.28. Let TN be a quasi-uniform decomposition and let u ∈ Hs(TN),
s ≥ 2, be the exact solution of the model problem (2.1) and for σ ≥ 4cK let
uh ∈ S

p
h(TN) be the solution of the discrete variational problem (2.2). Then the

following error estimate holds

‖u−uh‖DG ≤ chmin{s,p+1}−1 |u|Hs(TN)
.
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Proof. By applying the estimate of Theorem 2.2.22 and by using the global
L2-projection QTN

u ∈ S
p
h(TN) we get the estimate

‖u−uh‖DG ≤ inf
zh∈S

p
h
(TN)

[
‖u− zh‖DG +

cA
2

cA
S

‖u− zh‖DG,∗

]

≤ ‖u−QTN
u‖DG+

cA
2

cA
S

‖u−QTN
u‖DG,∗.

With Lemmata 2.2.24–2.2.27 we conclude the error estimate

=
[
‖u−QTN

u‖2
A
+‖u−QTN

u‖2
B

] 1
2

+
cA

2

cA
S

[
‖u−QTN

u‖2
A,∗+‖u−QTN

u‖2
B,∗

] 1
2

≤ c

(
1+

cA
2

cA
S

)[
N

∑
ℓ=1

(1+hℓ)h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

] 1
2

≤ c

(
1+

cA
2

cA
S

)[
N

∑
ℓ=1

h
2min{s,p+1}−2

ℓ |u|2Hs(τℓ)

] 1
2

.

The assumption that the decomposition TN is quasi-uniform implies the esti-
mate

≤ ccg

(
1+

cA
2

cA
S

)
hmin{s,p+1}−1 |u|Hs(TN)

.

2.3 Numerical examples

In this section numerical examples will be presented which show the performance
of the presented space-time method. The first example shows the convergence
behavior for a regular solution with respect to different polynomial degrees. For
the second and third example the convergence of the space-time method for solu-
tions with singularities will be considered. The third example shows the conver-
gence for higher dimensional problems. In the last example the use of continuous
approximations will be studied and compared with respect to discontinuous ap-
proximations.

In all the numerical examples the estimated order of convergence

eoc :=
log(

∥∥u−uhℓ

∥∥
DG

)− log(
∥∥u−uhℓ+1

∥∥
DG

)

log(hℓ)− log(hℓ+1)
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x

t

(a) Initial triangulation with N = 2.

x

t

(b) Initial triangulation with N = 4.

Figure 2.3: Two initial space-time meshes.

will be used to compare the experimental results with the theoretical estimates.

Example 2.3.1 (Regular solution). We consider the one dimensional spatial
domain Ω = (0,1) and the simulation interval (0,T ) with T = 1. On the boundary
ΣD = ∂Ω × (0,T ) we apply homogeneous Dirichlet boundary conditions. The
given data f and u0 are chosen such that the solution is given by the regular
function

u(x, t) = cos(πt)sin(πx).

As an initial triangulation for the space-time domain Q = (0,1)2 we use two
triangles of the same size, see also Figure 2.3(a). To analyze the convergence
behavior of the presented space-time method we consider a sequence of several
uniform refinement steps. Further we will use different polynomial degrees p ∈
{1,2,3,4} to compare the numerical results with the analysis of the previous
section. As a stabilization parameter for the space-time method we will use
σ = 10p2, where the additional scaling with the polynomial degree comes from
the local inverse inequalities, as mentioned in Remark 2.2.4. The arising linear
systems are solved with the solver package PARDISO, see [82, 83].

In Table 2.1–2.2 the numerical errors in the energy norm ‖u−uh‖DG for differ-
ent polynomial degrees and different uniform mesh refinements are given. The
presented results confirm the numerical analysis presented in Section 2.2. In par-
ticular the numerical results agree with the error estimate of Theorem 2.2.28.
Only for p = 4 and for the refinement level 8 the resulting error in the energy
norm is bigger due to round off errors.
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p = 1 p = 2

level elements dof ‖u−uh‖DG eoc dof ‖u−uh‖DG eoc
0 2 2 2.5100+0 − 6 1.3885+0 −
1 8 16 1.2482+0 1.01 36 3.7080−1 1.90

2 32 80 6.5025−1 0.94 168 9.4582−2 1.97

3 128 352 3.2824−1 0.99 720 2.2839−2 2.05

4 512 1 472 1.6442−1 1.00 2 976 5.4760−3 2.06

5 2 048 6 016 8.2210−2 1.00 12 096 1.3253−3 2.05

6 8 192 24 320 4.1089−2 1.00 48 768 3.2452−4 2.03

7 32 768 97 792 2.0537−2 1.00 195 840 8.0170−5 2.02

8 131 072 392 192 1.0267−2 1.00 784 896 1.9914−5 2.01

Theory: 1.00 2.00

Table 2.1: Numerical results for polynomial degree p = 1 and p = 2.

p = 3 p = 4

level elements dof ‖u−uh‖DG eoc dof ‖u−uh‖DG eoc
0 2 12 4.6587−1 − 20 2.7556−1 −
1 8 64 8.9955−2 2.37 100 1.7229−2 4.00

2 32 288 1.1065−2 3.02 440 1.0214−3 4.08

3 128 1 216 1.2973−3 3.09 1 840 5.8403−5 4.13

4 512 4 992 1.5205−4 3.09 7 520 3.3506−6 4.12

5 2 048 20 224 1.8067−5 3.07 30 400 1.9604−7 4.10

6 8 192 81 408 2.1840−6 3.05 122 240 1.1732−8 4.06

7 32 768 326 656 2.6767−7 3.03 490 240 7.1379−10 4.04

8 131 072 1 308 672 3.3098−8 3.02 1 963 520 1.1881−10 2.59

Theory: 3.00 4.00

Table 2.2: Numerical results for polynomial degree p = 3 and p = 4.
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level elements dof ‖u−uh‖DG eoc
0 4 18 3.2689−1 −
1 16 84 1.3925−1 1.23

2 64 360 9.2011−2 0.60

3 256 1 488 6.2846−2 0.55

4 1 024 6 048 4.3657−2 0.53

5 4 096 24 384 3.0589−2 0.51

6 16 384 97 920 2.1529−2 0.51

7 65 536 392 448 1.5188−2 0.50

8 262 144 1 571 328 1.0727−2 0.50

9 1 048 576 6 288 384 7.5806−3 0.50

10 4 194 304 25 159 680 5.3587−3 0.50

Theory: 0.50

Table 2.3: Numerical results for the singular solution I.

Example 2.3.2 (Singular solution I). As in the previous example we consider
the one dimensional spatial domain Ω = (0,1) and the simulation interval (0,T )
with T = 1. On the boundary ΣD = ∂Ω × (0,T ) we apply Dirichlet boundary
conditions. The given data f and u0 and the Dirichlet boundary conditions are
chosen such that the solution is given by the function

u(x, t) =

[
x2 +

(
t − 1

2

)2
] 1

4

.

The exact solution u omits a point singularity at x = 0 and t = 1
2
. Hence the exact

solution is contained in the Sobolev space

u ∈ H
3
2−ε(Q), for ε > 0.

As an initial triangulation for the space-time domain Q = (0,1)2 we use four
triangles of same size, see also Figure 2.3(b). As in the previous example we
consider a sequence of several uniform refinement steps. Hence we can apply
Theorem 2.2.28 and we end up with the a priori error estimate

‖u−uh‖DG ≤ ch
1
2−ε |u|

H
3
2
−ε(TN)

for p ≥ 1 and ε > 0.

Due to the point singularity we can not expect better convergence rates for higher
polynomial degrees. But to get faster in the asymptotic range we use for our
numerical experiment a uniform polynomial degree p = 2. For the stabilization
parameter we use σ = 40. As before we solve the arising linear systems with the
solver package PARDISO.
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In Table 2.3 the errors in the energy norm ‖u−uh‖DG are given for different
refinement levels. As predicted from the theory we see the expected order of con-
vergence of eoc = 1

2
. The convergence rate for singular solutions can be improved

by using adaptive space-time elements as presented in Chapter 6.

Example 2.3.3 (Singular solution II). We again consider the one dimensional
spatial domain Ω = (0,1) and the simulation interval (0,T ) with T = 1. As in
the first example we apply homogeneous Dirichlet boundary conditions. Now we
consider the exact solution with a line singularity at t = 1

u(x, t) = (1− t)α sin(πx) with α ∈ (0,1).

Due to the line singularity at t = 1 the exact solution is contained in the Sobolev
space

u ∈ Hα+ 1
2−ε(Q) for ε > 0.

For the initial triangulation of the space-time domain Q = (0,1)2 we again use
the space-time mesh with four triangles as shown in Figure 2.3(b). Again we
apply several uniform refinement steps to estimate the convergence behavior for
the error in the energy norm ‖u−uh‖DG. We apply the space-time method for
two different choices of the regularity parameter α ∈

{
1
2
, 3

4

}
. If we apply the error

estimate of Theorem 2.2.28 to the given exact solution we get

‖u−uh‖DG ≤ chα− 1
2−ε |u|

H
α+ 1

2
−ε (TN)

for p ≥ 1 and ε > 0. (2.24)

As in the previous example we choose a polynomial degree p = 2 to reach the
asymptotic range faster. For the stabilization parameter we again use σ = 40.

In Table 2.4 the results for different mesh refinements are given for the regularity
parameter α = 1

2
and α = 3

4
. From the error estimate (2.24) we expect a conver-

gence rate of eoc = 0.00 for α = 1
2
and eoc = 0.25 for α = 3

4
. In both cases the

numerical results show a better convergence rate as predicted from the theory.
This behavior can be explained by the fact that the exact solution has a line
singularity at t = 1. For any time t ∈ [0,T ] the exact solution u has full regularity
in space. Using Lemma 2.2.27 for uniform meshes, we have the following error
estimate for the L2-projection

‖u−QTN
u‖B +‖u−QTN

u‖B,∗ ≤ chmin{s,p+1}− 1
2 |u|Hs(TN)

.

Hence we loose only 1
2
order in time for the energy error. Since we have full

regularity in space for any time t ∈ [0,T ] we do not lose one order for the error
in the energy norm as predicted in Theorem 2.2.28. This additional convergence
rate of 1

2
can be observed in Table 2.4. The full algebraic convergences rates can

be obtained by using anistropic mesh refinement, see [3].
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α = 0.5 α = 0.75

level elements dof ‖u−uh‖DG eoc ‖u−uh‖DG eoc
0 4 18 5.5930−1 − 2.7264−1 −
1 16 84 3.3948−1 0.72 9.3966−2 1.54

2 64 360 2.3452−1 0.53 4.0622−2 1.21

3 256 1 488 1.6766−1 0.48 2.2667−2 0.84

4 1 024 6 048 1.1994−1 0.48 1.3535−2 0.74

5 4 096 24 384 8.5442−2 0.49 8.1292−3 0.74

6 16 384 97 920 6.0664−2 0.49 4.8659−3 0.74

7 65 536 392 448 4.2988−2 0.50 2.9040−3 0.74

8 262 144 1 571 328 3.0430−2 0.50 1.7300−3 0.75

9 1 048 576 6 288 384 2.1529−2 0.50 1.0297−3 0.75

10 4 194 304 25 159 680 1.5228−2 0.50 6.1256−4 0.75

Theory: 0.00 0.25

Table 2.4: Numerical results for the singular solution II with regularity parameter
α = 0.5 and α = 0.75.

Example 2.3.4 (Higher dimensions). We consider for the spatial domain the two
and three dimensional unit cube Ω = (0,1)d, d = 2,3 with homogeneous Dirichlet
boundary conditions. The simulation interval is chosen to be [0,T ] with T = 1.
The given data f and u0 are chosen such that the exact solution is given by

u(x, t) = cos(πt)
d

∏
i=1

sin(πxi).

For d = 2 the space-time domain is given by the three dimensional unit cube
Q = (0,1)3 which is decomposed into 6 tetrahedrons for the initial triangulation,
see also Figure 2.4(a). For d = 3 the space-time domain is given by the four
dimensional unit cube Q = (0,1)4 which is decomposed into 96 pentatopes of the
same size. A projection of a pentatope is shown in Figure 2.4(b). For details how
to decompose a four dimensional unit cube into pentatopes and how to refine
these four dimensional simplices see [11, 32, 66, 67, 72]. These initial triangula-
tions are refined uniformly several times to analyze the convergence behavior of
the presented space-time method. The arising linear systems are solved with a ge-
ometric space-time multigrid method with a relative error reduction of ε = 10−8.
This multigrid solver is explained in Chapter 4. For p = 1 and a stabilization
parameter σ = 15 the errors in the energy norm are given in Tables 2.5–2.6. As
predicted from the theory the expected order of convergence can be observed.

Example 2.3.5 (Continuous approximation). In this example we study the pre-
sented space-time method for the case when continuous approximations are used
instead of discontinuous ones. To do so we repeat Example 2.3.1 and Example
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x2

t

x1

(a) Initial triangulation with N = 6.

x1

x2

x3

t

(b) Four dimensional simplex, pentatope.

Figure 2.4: Three dimensional triangulation and a four dimensional simplex.

level elements dof ‖u−uh‖DG eoc
0 6 4 1.9019+0 −
1 48 104 1.3615+0 0.48

2 384 1 168 7.7764−1 0.81

3 3 072 10 784 4.0785−1 0.93

4 24 576 92 224 2.0889−1 0.97

5 196 608 761 984 1.0607−1 0.98

6 1 572 864 6 193 408 5.3588−2 0.98

7 12 582 912 49 938 944 2.6979−2 0.99

Theory: 1.00

Table 2.5: Numerical results for d = 2.

level elements dof ‖u−uh‖DG eoc
0 96 192 1.2027+0 −
1 1 536 5 376 8.7542−1 0.46

2 24 576 104 448 5.0831−1 0.78

3 393 216 1 818 624 2.6943−1 0.92

4 6 291 456 30 277 632 1.3775−1 0.97

Theory: 1.00

Table 2.6: Numerical results for d = 3.
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p = 1 p = 2

level elements dof ‖u−uh‖DG eoc dof ‖u−uh‖DG eoc
0 2 0 2.1707+0 − 3 1.4015+0 −
1 8 3 1.2779+0 0.76 15 3.9261−1 1.84

2 32 15 6.5150−1 0.97 63 1.1578−1 1.76

3 128 63 3.1981−1 1.03 255 3.5071−2 1.72

4 512 255 1.5736−1 1.02 1 023 1.1148−2 1.65

5 2 8 1 023 7.7932−2 1.01 4 095 3.6972−3 1.59

6 8 192 4 095 3.8765−2 1.01 16 383 1.2616−3 1.55

7 32 768 16 383 1.9331−2 1.00 65 535 4.3779−4 1.53

8 131 072 65 535 9.6519−3 1.00 262 143 1.5330−4 1.51

Observed: 1.00 1.50

Table 2.7: Numerical results for polynomial degree p = 1 and p = 2.

2.3.3 with continuous approximations. According to Example 2.3.1 the results for
different polynomial degrees are presented in Table 2.7–2.8. Here it can be ob-
served, that for odd polynomial degrees the same convergence rates are obtained
when continuous approximations are used instead of discontinuous approxima-
tions. For even polynomial degrees one observes that the convergence rates are
reduced by a factor of 1

2
when continuous approximations are used. However the

number of unknowns for the arising linear systems is much smaller for continuouse
approximations.

According to Example 2.3.3 we also compute the errors in the energy norm, when
continuous approximations are used. The results are given in Table 2.9. Here we
obtain, that the order of convergence is also reduced by a factor of 1

2
compared

to the discontinuous case. For the regularity parameter α = 1
2
the error in the

energy norm is not reduced when the space-time mesh is refined uniformly.
This example shows, that discontinuous approximations are necessary to obtain
the right convergence rates. However, the use of continuous approximations leads
to smaller linear systems which have to be solved.
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p = 3 p = 4

level elements dof ‖u−uh‖DG eoc dof ‖u−uh‖DG eoc
0 2 8 4.8007−1 − 15 2.8608−1 −
1 8 35 9.9193−2 2.27 63 1.7684−2 4.02

2 32 143 1.1997−2 3.05 255 1.2267−3 3.85

3 128 575 1.3506−3 3.15 1 023 9.5546−5 3.68

4 512 2 303 1.5800−4 3.10 4 095 7.8633−6 3.60

5 2 048 9 215 1.8981−5 3.06 16 383 6.6826−7 3.56

6 8 192 36 863 2.3199−6 3.03 65 535 5.7799−8 3.53

7 32 768 147 455 2.8651−7 3.02 262 143 4.9009−9 3.56

8 131 072 589 823 3.5594−8 3.01 1 048 575 1.2465−9 2.87

Observed: 3.00 3.50

Table 2.8: Numerical results for polynomial degree p = 3 and p = 4.

α = 0.5 α = 0.75

level elements dof ‖u−uh‖DG eoc ‖u−uh‖DG eoc
0 4 7 6.1358−1 − 3.1058−1 −
1 16 31 3.4246−1 0.84 9.8628−2 1.65

2 64 127 2.3648−1 0.53 4.1484−2 1.25

3 256 511 1.8187−1 0.38 2.5638−2 0.69

4 1 024 2 047 1.5262−1 0.25 1.9305−2 0.41

5 4 096 8 191 1.3731−1 0.15 1.5663−2 0.30

6 16 384 32 767 1.2951−1 0.08 1.3038−2 0.26

7 65 536 131 071 1.2559−1 0.04 1.0942−2 0.25

8 262 144 524 287 1.2365−1 0.02 9.2025−3 0.25

9 1 048 576 2 097 151 1.2452−1 0.01 7.7428−3 0.25

10 4 194 304 8 388 607 1.2406−1 0.01 6.5139−3 0.25

Observed: 0.00 0.25

Table 2.9: Numerical results for regularity parameter α = 0.5 and α = 0.75.
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3 HYBRID SPACE-TIME DISCRETIZATIONS

In this chapter we will derive a hybrid space-time discretization scheme by using
the space-time method introduced in the previous chapter. In the first section
we will introduce the hybrid discretization scheme by subdividing the space-time
domain into non-overlapping subdomains and we will introduce the finite element
discretization and the corresponding linear system. Moreover, we will discuss
some solution algorithms. In Section 3.2 we will analyze this hybrid formulation
and derive some a priori error estimates. Finally, numerical examples will be
given in Section 3.3, which confirm the proven error estimates of Section 3.2.
The main ideas of this chapter come from [17, 21, 68].

3.1 Discretization

We introduce a decomposition of the space-time domain Q ⊂ Rd+1 into non-
overlapping subdomains Qi for i = 1, . . . ,P

Q =
P⋃

i=1

Qi, Qi ∩Q j = /0 for i 6= j.

For this space-time decomposition we define the interface between the space-time
subdomains Qi as

Σ :=
P⋃

i=1

Σi with Σi := ∂Qi \∂Q.

For each space-time subdomain Qi we introduce a decomposition

Qi = TNi
:=

Ni⋃

ℓ=1

τ i
ℓ

into Ni simplices. For these decompositions TNi
we assume the shape regularity

Assumption 2.2.1 and the mesh grading Assumption 2.2.2. If we sum up all
elements of each decomposition TNi

for i = 1 . . . ,P we obtain a decomposition of
the space-time domain Q

Q = TN :=
P⋃

i=1

⋃

τ i
ℓ∈TNi

τ i
ℓ

43
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into finite elements, with the set of all interior facets IN . With INi
, i = 1, . . . ,P we

denote the interior facets of the decomposition TNi
. On the interface Σ we define

the set of all facets

Σh := IN \
P⋃

i=1

INi
, i.e. Σ =

⋃

Γkℓ∈Σh

Σ kℓ.

A possible configuration for d = 1 is given in Figure 3.1. On the interface Σ we
introduce the discrete function space of piecewise polynomials of degree p as

S
p
h(Σh) :=

{
µh ∈ L2(Σ) : µh|Γkℓ

∈ Pp(Γkℓ) for all Γkℓ ∈ Σh

}
.

Σ

Figure 3.1: Space-time domain decomposition for d = 1 into four subdomains with
interface Σ .

Using the decomposition TN one can now use the space-time formulation (2.2)
introduced in Chapter 2 to solve for a discrete solution uh ∈ S

p
h(TN), hence we

have to solve the following discrete problem:

Find uh ∈ S
p
h(TN) such that

A(uh,vh) = 〈 f ,vh〉Q + 〈u0,vh〉Σ0
+ 〈gN,vh〉ΣN

(3.1)

for all vh ∈ S
p
h(TN).

With respect to each space-time subdomain Qi we apply the space-time discretiza-
tion (3.1). To do so, we define for ui

h,v
i
h ∈ S

p
h(TNi

) the local bilinear form

A(i)(ui
h,v

i
h) := a(i)(ui

h,v
i
h)+b(i)(ui

h,v
i
h)

with the bilinear form

a(i)(ui
h,v

i
h) :=

Ni

∑
ℓ=1

∫

τ i
ℓ

∇xui
h(x, t) ·∇xvi

h(x, t)d(x, t)
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− ∑
Γkℓ∈INi

∫

Γkℓ

〈
∇xui

h

〉
Γkℓ

(x, t) ·
[
vi

h

]
Γkℓ,x

(x, t)ds(x,t)

− ∑
Γkℓ∈INi

∫

Γkℓ

[
ui

h

]
Γkℓ,x

(x, t) ·
〈
∇xvi

h

〉
Γkℓ

(x, t)ds(x,t)

+ ∑
Γkℓ∈INi

σ

hkℓ

∫

Γkℓ

[
ui

h

]
Γkℓ,x

(x, t) ·
[
vi

h

]
Γkℓ,x

(x, t)ds(x,t),

and with the bilinear form

b(i)(ui
h,v

i
h) :=−

Ni

∑
ℓ=1

∫

τ i
ℓ

ui
h(x, t)∂tv

i
h(x, t)d(x, t)+

∫

ΣT∩∂Qi

ui
h(x, t)v

i
h(x, t)ds(x,t)

+ ∑
Γkℓ∈INi

∫

Γkℓ

{
ui

h

}up

Γkℓ
(x, t)

[
vi

h

]
Γkℓ,t

(x, t)ds(x,t)

for all i = 1, . . . ,P. We also define the local right hand sides

F(i)(vi
h) :=

〈
f ,vi

h

〉
Qi
+
〈
u0,v

i
h

〉
Σ0∩∂Qi

+
〈
gN,v

i
h

〉
ΣN∩∂Qi

,

for i = 1, . . . ,P. With these definitions and by using the fact that ui
h = uh|Qi

we

can split the bilinear form A(·, ·) in a sum over all local bilinear forms A(i)(·, ·)
and into four different coupling parts on the interface Σh

A(uh,vh) =
P

∑
i=1

A(i)(uh,vh)

− ∑
Γkℓ∈Σh

∫

Γkℓ

〈∇xuh〉Γkℓ
(x, t) · [vh]Γkℓ,x

(x, t)ds(x,t)

− ∑
Γkℓ∈Σh

∫

Γkℓ

[uh]Γkℓ,x
(x, t) · 〈∇xvh〉Γkℓ

(x, t)ds(x,t)

+ ∑
Γkℓ∈Σh

σ

hkℓ

∫

Γkℓ

[uh]Γkℓ,x
(x, t) · [vh]Γkℓ,x

(x, t)ds(x,t)

+ ∑
Γkℓ∈Σh

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [vh]Γkℓ,t
(x, t)ds(x,t).

(3.2)

To reduce the coupling on the interface Σ we rewrite the four coupling terms.
Following the approach in [17,21,68] we introduce a new variable λh ∈ S

p
h(Σh) on

the interface Σ

λh|Γkℓ
(x, t) := 〈uh〉Γkℓ

(x, t) =
1

2

[
uh|τk

(x, t)+uh|τℓ(x, t)
]

for all (x, t) ∈ Γkℓ.
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In the next definition we introduce the jumps on the interface Σ between functions
on the interface and function on the space-time subdomains.

Definition 3.1.1 (Hybrid jump). Let Γkℓ ∈ Σh be a facet on the interface Σ with
the outer unit normal vector nk = (nk,x,nk,t)

⊤ with respect to the element τk. For
a given function u ∈ Hs(TN), s ≥ 1 and a function λ ∈ L2(Σh) the hybrid jump in
space direction for the element τk is given by

[u/λ ]∂τk,x
(x, t) :=

[
u|τk

(x, t)−λ (x, t)
]
nk,x for (x, t) ∈ Γkℓ a.e.

The hybrid jump in time direction for the element τk is defined as

[u/λ ]∂τk,t
(x, t) :=

[
u|τk

(x, t)−λ (x, t)
]
nk,t for (x, t) ∈ Γkℓ a.e.

For a function uh ∈ S
p
h(TN) we now can use the definition of λh to rewrite the

jump in space direction on a facet Γkℓ ∈ Σh

[uh]Γkℓ,x
(x, t) = uh|τk

(x, t)nk,x+uh|τℓ(x, t)nℓ,x

= uh|τk
(x, t)nk,x+

[
2λh|Γkℓ

(x, t)−uh|τk
(x, t)

]
nℓ,x

= 2
[
uh|τk

(x, t)−λh|Γkℓ
(x, t)

]
nk,x

= 2 [uh/λh]∂τk,x
(x, t)

(3.3)

or by using the other representation

[uh]Γkℓ,x
(x, t) = uh|τk

(x, t)nk,x+uh|τℓ(x, t)nℓ,x

=
[
2λh|Γkℓ

(x, t)−uh|τℓ(x, t)
]
nk,x+uh|τℓ(x, t)nℓ,x

= 2
[
uh|τℓ(x, t)−λh|Γkℓ

(x, t)
]
nℓ,x

= 2 [uh/λh]∂τℓ,x
(x, t).

(3.4)

With these two representations (3.3) and (3.4) we can express for uh ∈ S
p
h(TN)

the jump on a facet Γkℓ ∈ Σh with the two hybrid jumps. For the second coupling
term in (3.2) we get the following relation

[uh]Γkℓ,x
(x, t) · 〈∇xvh〉Γkℓ

(x, t) = [uh]Γkℓ,x
(x, t) · 1

2

[
∇xvh|τk

(x, t)+∇xvh|τℓ(x, t)
]

=
1

2
[uh]Γkℓ,x

(x, t) ·∇xvh|τk
(x, t)+

1

2
[uh]Γkℓ,x

(x, t) ·∇xvh|τℓ(x, t)

= [uh/λh]∂τk,x
(x, t) ·∇xvh|τk

(x, t)+ [uh/λh]∂τℓ,x
(x, t) ·∇xvh|τℓ(x, t).

Using this relation above we can split the sum over the interface facets into the
local sums over the space-time subdomains

∑
Γkℓ∈Σh

∫

Γkℓ

[uh]Γkℓ,x
(x, t) · 〈∇xvh〉Γkℓ

(x, t)ds(x,t)
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= ∑
Γkℓ∈Σh

∫

Γkℓ

[
[uh/λh]∂τk,x

(x, t) ·∇xvh|τk
(x, t)

+ [uh/λh]∂τℓ,x
(x, t) ·∇xvh|τℓ(x, t)

]
ds(x,t)

=
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

[uh/λh]∂τ i
ℓ,x

(x, t) ·∇xvh|τ i
ℓ
(x, t)ds(x,t).

If we introduce for the test function vh ∈ S
p
h(TN) also a new variable µh ∈ S

p
h(Σh)

on the interface Σ

µh|Γkℓ
(x, t) := 〈vh〉Γkℓ

(x, t) =
1

2

[
vh|τk

(x, t)+ vh|τk
(x, t)

]
for all (x, t)∈ Γkℓ,

we can rewrite the first coupling part of (3.2) in the same way

∑
Γkℓ∈Σh

∫

Γkℓ

〈∇xuh〉Γkℓ
(x, t) · [vh]Γkℓ,x

(x, t)ds(x,t) =

P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

∇xuh|τ i
ℓ
(x, t) · [vh/µh]∂τ i

ℓ,x
(x, t)ds(x,t).

Next we will focus on the third coupling part of (3.2). We use the two relations
(3.3) and (3.4) to rewrite the stabilization terms on the interface

[uh]Γkℓ,x
(x, t) · [vh]Γkℓ,x

(x, t)

=
1

2
[uh]Γkℓ,x

(x, t) · [vh]Γkℓ,x
(x, t)+

1

2
[uh]Γkℓ,x

(x, t) · [vh]Γkℓ,x
(x, t)

= 2 [uh/λh]∂τk,x
(x, t) · [vh/µh]∂τk,x

(x, t)

+2 [uh/λh]∂τℓ,x
(x, t) · [vh/µh]∂τℓ,x

(x, t).

With this new representation above the third coupling term of (3.2) can be ex-
pressed in the following way

∑
Γkℓ∈Σh

σ

hkℓ

∫

Γkℓ

[uh]Γkℓ,x
(x, t) · [vh]Γkℓ,x

(x, t)ds(x,t)

= ∑
Γkℓ∈Σh

2σ

hkℓ

∫

Γkℓ

[
[uh/λh]∂τk,x

(x, t) · [vh/µh]∂τk,x
(x, t)

+ [uh/λh]∂τℓ,x
(x, t) · [vh/µh]∂τℓ,x

(x, t)
]
ds(x,t)

=
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

2σ

hkℓ

∫

Γkℓ

[uh/λh]∂τ i
ℓ,x

(x, t) · [vh/µh]∂τ i
ℓ,x

(x, t)ds(x,t).
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For the fourth coupling part of (3.2), the coupling in time direction, we introduce
a new upwind term between functions on the interface and functions on the local
space-time subdomains.

Definition 3.1.2 (Hybrid upwind). Let Γkℓ ∈ Σh be a facet on the interface Σ
with the outer unit normal vector nk = (nk,x,nk,t)

⊤ with respect to the element
τk. For a given function u ∈ Hs(TN), s ≥ 1 and a function λ ∈ L2(Σh) the hybrid
upwind in time direction for the element τk is given by

{u/λ}up

∂τk
(x, t) :=





u|τk
(x, t) for nk,t > 0,

0 for nk,t = 0,

λ (x, t) for nk,t < 0

for (x, t)∈ Γkℓ.

With this new definition of the hybrid upwind, we reformulate the standard
upwind term in the following way. First we split the upwind in time direction
into two parts

{uh}up
Γkℓ

(x, t) =
1

2
{uh}up

Γkℓ
(x, t)+

1

2
{uh}up

Γkℓ
(x, t).

Next we use the definition of the upwind term, where we use for the first part
the normal vector of the element τk and for the second part we use the normal
vector of the element τℓ

=
1

2





uh|τk
(x, t) for nk,t > 0,

0 for nk,t = 0,

uh|τℓ(x, t) for nk,t < 0

+
1

2





uh|τℓ(x, t) for nℓ,t > 0,

0 for nℓ,t = 0,

uh|τk
(x, t) for nℓ,t < 0.

Adding and subtracting the interface variable λh leads to

=
1

2





uh|τk
(x, t) for nk,t > 0,

0 for nk,t = 0,

λh(x, t) for nk,t < 0

+
1

2





uh|τℓ(x, t) for nℓ,t > 0,

0 for nℓ,t = 0,

λh(x, t) for nℓ,t < 0

+
1

2





uh|τk
(x, t)−λh(x, t) for nk,t > 0,

0 for nk,t = 0,

uh|τℓ(x, t)−λh(x, t) for nk,t < 0.

With the definition of the hybrid jump we end up with another representation
for the upwind term in time direction

=
1

2
{uh/λh}up

∂τk
(x, t)+

1

2
{uh/λh}up

∂τℓ
(x, t)
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+
1

2





uh|τk
(x, t)−λh(x, t) for nk,t > 0,

0 for nk,t = 0,

uh|τℓ(x, t)−λh(x, t) for nk,t < 0.

For a classical, i.e. continuous, solution of the model problem (2.1) we obtain for
an interior facet Γkℓ ∈ Σh the relations

λ (x, t) := 〈u〉Γkℓ
(x, t) = u|τk

(x, t) = u|τℓ(x, t) for (x, t)∈ Γkℓ.

For the exact solution of (2.1) we therefore have the following representation for
the upwind term in time on an interior facet Γkℓ ∈ Σh

{u}up
Γkℓ

(x, t) =
1

2
{u/λ}up

∂τk
(x, t)+

1

2
{u/λ}up

∂τℓ
(x, t) for (x, t) ∈ Γkℓ. (3.5)

This motivates to use on the interface Σ also for the discrete case the represen-
tation (3.5) for the upwind in time direction. Using the same manipulations as
above and replacing the upwind in time direction by (3.5) we replace the fourth
coupling part of (3.2)

∑
Γkℓ∈Σh

∫

Γkℓ

{uh}up
Γkℓ

(x, t) [vh]Γkℓ,t
(x, t)ds(x,t)

with the coupling term

P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

{uh/λh}up

∂τ i
ℓ
(x, t) [vh/µh]∂τ i

ℓ,x
(x, t)ds(x,t).

Now we can define for each space-time subdomain Qi the local bilinear form

c(i)(uh,λh;vh,µh) :=−
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

[uh/λh]∂τ i
ℓ,x

(x, t) ·∇xvh|τ i
ℓ
(x, t)ds(x,t)

−
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

∇xuh|τ i
ℓ
(x, t) · [vh/µh]∂τ i

ℓ,x
(x, t)ds(x,t)

+
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

2σ

hkℓ

∫

Γkℓ

[uh/λh]∂τ i
ℓ,x

(x, t) · [vh/µh]∂τ i
ℓ,x

(x, t)ds(x,t)

+
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

{uh/λh}up

∂τ i
ℓ
(x, t) [vh/µh]∂τ i

ℓ,x
(x, t)ds(x,t).

(3.6)
With the local coupling parts (3.6) we are now able to formulate the hybrid
space-time discretization.
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Find uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh) such that

P

∑
i=1

[
A(i)(uh,vh)+ c(i)(uh,λh;vh,µh)

]
=

P

∑
i=1

F(i)(vh) (3.7)

is satisfied for all vh ∈ S
p
h(TN) and µh ∈ S

p
h(Σh).

Remark 3.1.3. A solution uh ∈ S
p
h(TN) of the hybrid formulation (3.7) is in gen-

eral not a solution of the discrete problem (2.2), because in the hybrid formulation
(3.7) a different upwind term in time is used.

Remark 3.1.4. In the hybrid formulation (3.7) everything is local with respect to
each space-time subdomain Qi, i= 1, . . . ,P. Therefore it is possible to use different
approximation schemes on different subdomains. Hence this hybrid formulation
allows the coupling of finite element methods with boundary element methods or
the coupling with standard finite difference schemes, like the implicit Euler time
stepping scheme for example.

Next we introduce the equivalent linear system for the discrete variational prob-
lem (3.7). For each space-time decomposition TNi

, i = 1, . . . ,P, let ϕ i
ℓ, ℓ= 1, . . . ,Mi

be a basis of the discrete function space S
p
h(TNi

), i.e.

S
p
h(TNi

) = span
{

ϕ i
ℓ

}Mi

ℓ=1
, ui

h(x, t) =
Mi

∑
ℓ=1

u
(i)
I [ℓ]ϕ i

ℓ(x, t) for ui
h ∈ S

p
h(TNi

).

Further let ψn, n = 1, . . . ,MΣ be a basis of the discrete function space S
p
h(Σh),

i.e.

S
p
h
(Σh) = span{ψn}MΣ

n=1 , λh(x, t) =
MΣ

∑
n=1

λΣ [n]ψn(x, t) for λh ∈ S
p
h
(Σh).

Next we define for each space-time decomposition TNi
, i = 1, . . . ,P, the local ma-

trices

A
(i)
II [k, ℓ] := A(i)(ϕ i

ℓ,ϕ
i
k)+ c(i)(ϕ i

ℓ,0;ϕ i
k,0) for k, ℓ= 1, . . . ,Mi,

A
(i)
IΣ [k,n] := c(i)(0,ψn;ϕ i

k,0) for k = 1, . . . ,Mi and n = 1, . . . ,MΣ ,

A
(i)
Σ I[m, ℓ] := c(i)(ϕ i

ℓ,0;0,ψm) for m = 1, . . . ,MΣ and ℓ= 1, . . . ,Mi

and the local right hand sides

f
(i)
I [k] := F(i)(ϕ i

k) for k = 1, . . . ,Mi.

For the decomposition of the interface Σh we define the matrix

AΣΣ [m,n] :=
P

∑
i=1

c(i)(0,ψn;0,ψm) for m,n = 1, . . . ,MΣ .



3.1 Discretization 51

Then the discrete variational problem (3.7) is equivalent to the system of linear
algebraic equations




A
(1)
II A

(1)
IΣ

A
(2)
II A

(2)
IΣ

. . .
...

A
(P)
II A

(P)
IΣ

A
(1)
Σ I A

(2)
Σ I · · · A

(P)
Σ I AΣΣ







u
(1)
I

u
(2)
I
...

u
(P)
I

λΣ




=




f
(1)
I

f
(2)
I
...

f
(P)
I

0



. (3.8)

Remark 3.1.5. The linear system (3.8) has the same structure as the linear sys-
tems arising from general domain decomposition approaches, like FETI methods
for example. Therefore the same implementation framework and algorithms can
be used to assemble and solve the linear system (3.8). For an introduction to
domain decomposition methods see [61,73,74,98] for example.

In Section 3.2 an ellipticity estimate for the local bilinear forms

A(i)(ui
h,u

i
h)+ c(i)(ui

h,0;ui
h,0)> 0 for all 0 6= ui

h ∈ S
p
h(TNi

) (3.9)

is shown in Theorem 3.2.5. Hence the local matrices A
(i)
II are invertible for any

space-time subdomain Qi, i = 1, . . . ,P. Therefore we obtain from the global linear
system (3.8) the Schur complement system

[
AΣΣ −

P

∑
i=1

A
(i)
Σ I

(
A
(i)
II

)−1

A
(i)
IΣ

]
λΣ =−

P

∑
i=1

A
(i)
Σ I

(
A
(i)
II

)−1

f
(i)
I , (3.10)

where the local solutions are given by

u
(i)
I =

(
A
(i)
II

)−1 [
f
(i)
I −A

(i)
IΣλΣ

]
for i = 1, . . . ,P. (3.11)

The Schur complement system (3.10) is in general non-symmetric, since the model
problem itself is non-symmetric. For the solution of the Schur complement system
(3.10) we can use for example the GMRES method [81,88], where the inversion of

the local matrices A
(i)
II can be done in parallel either by using a direct approach,

or by a suitable iterative scheme. After solving for the Lagrange multipliers λΣ

one can compute the solutions on each space-time subdomain in parallel by using
the equation (3.11).

Remark 3.1.6 (Static condensation). If any element τℓ ∈ TN is assumed to be a
single subdomain Qℓ, ℓ= 1, . . . ,N, then the Schur complement system (3.10) can

be easily set up by computing the inverse of the small local problems A
(i)
II exactly.

Then the Schur complement system (3.10) preserves also the sparse structure.
With this approach we arrive in a pure hybrid setting where the unknowns of
the Schur complement system (3.10) are located on the element facets IN. This
approach has advantages for example when higher polynomial ansatz functions are
used. For hybrid methods applied to other model problems see [21,22,54,63,69,70].
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3.2 Numerical analysis

In this section the presented hybrid space-time method will be analyzed. Here
we also assume that Assumption 2.2.1 and Assumption 2.2.2 are satisfied. First
we focus on the local bilinear forms, where we show an ellipticity estimate, which
guarantees unique solvability of the local space-time problems. After that, we
will show an stability estimate for the whole hybrid method. At the end a priori
error estimates in some energy norm will be derived.

With the same arguments as in Chapter 2 it is possible to bound the local bilinear
forms a(i)(·, ·) from above.

Lemma 3.2.1. Let the stabilization parameter be large enough, i.e. σ ≥ 4cK.
Further let TNi

be a given space-time decomposition. Then the following estimate
holds

a(i)(ui
h,u

i
h)≥

1

2




Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d + ∑
Γkℓ∈INi

σ

hkℓ

∥∥∥
[
ui

h

]
Γkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d




for all ui
h ∈ S

p
h(TNi

).

Proof. The estimate is a direct consequence of Lemma 2.2.9.

For the next lemma we define the following sets of interior facets. First we
define the set of all interface facets which belong to the space-time subdomain
decomposition TNi

ΣNi
: =
{

Γkℓ ∈ ΣN : Γkℓ ⊂ ∂τ i
k with τ i

k ∈ TNi

}
.

Next we split the set of all interface facets ΣNi
into two parts. The set

Σ+
Ni

: =
{

Γkℓ ∈ ΣNi
: nk,t ≥ 0

}

contains all interior facets where the outer unit normal vector nk is pointing to
the future. Furthermore, we define the set

Σ−
Ni

: =
{

Γkℓ ∈ ΣNi
: nk,t < 0

}
= ΣNi

\Σ+
Ni

with all interior facets where the outer unit normal vector nk is pointing to the
past. With these sets of interface facets we can give the following lemma.
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Lemma 3.2.2. For the local bilinear forms b(i)(·, ·) the following estimate holds

b(i)(ui
h,u

i
h)≥

1

2


∥∥ui

h

∥∥2

L2(Σ0∩∂Qi)
+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)
+ ∑

Γkℓ∈INi

∥∥∥
[
ui

h

]
Γkℓ,t

∥∥∥
2

L2(Γkℓ)




+
1

2
∑

Γkℓ∈Σ−
Ni

∥∥∥
[
ui

h/0
]

∂τ i
k
,t

∥∥∥
2

L2(Γkℓ)

− 1

2
∑

Γkℓ∈Σ+
Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

for all ui
h ∈ S

p
h(TNi

).

Proof. Let ui
h ∈ S

p
h(TNi

). Using the definition of the local bilinear form b(i)(·, ·)
we have

b(i)(ui
h,u

i
h) =−

Ni

∑
ℓ=1

∫

τ i
ℓ

ui
h(x, t)∂tu

i
h(x, t)d(x, t)+

∥∥ui
h

∥∥2

L2(ΣT∩∂Qi)

+ ∑
Γkℓ∈INi

∫

Γkℓ

{
ui

h

}up

Γkℓ
(x, t)

[
ui

h

]
Γkℓ,t

(x, t)ds(x,t).

Rewriting the first term and applying Gauss‘s theorem leads to

=−
Ni

∑
ℓ=1

∫

τ i
ℓ

1

2
∂t

(
ui

h(x, t)
)2

d(x, t)+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)

+ ∑
Γkℓ∈INi

∫

Γkℓ

{
ui

h

}up

Γkℓ
(x, t)

[
ui

h

]
Γkℓ,t

(x, t)ds(x,t)

=−1

2

Ni

∑
ℓ=1

∫

∂τ i
ℓ

nℓ,t
(
ui

h(x, t)
)2

ds(x,t)+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)

+ ∑
Γkℓ∈INi

∫

Γkℓ

{
ui

h

}up

Γkℓ
(x, t)

[
ui

h

]
Γkℓ,t

(x, t)ds(x,t).

Now we can reorder the sum over all elements to a sum over all interior facets
and a sum over the boundaries Σ0 and ΣT and we get

=
1

2

[∥∥ui
h

∥∥2

L2(Σ0∩∂Qi)
+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)

]
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+ ∑
Γkℓ∈INi

∫

Γkℓ

[{
ui

h

}up

Γkℓ
(x, t)

[
ui

h

]
Γkℓ,t

(x, t)− 1

2

[
(ui

h)
2
]

Γkℓ,t
(x, t)

]
ds(x,t)

+
1

2
∑

Γkℓ∈Σ−
Ni

∫

Γkℓ

∣∣nk,t

∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

− 1

2
∑

Γkℓ∈Σ+
Ni

∫

Γkℓ

∣∣nk,t

∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

Next we use Lemma 2.2.10 and we obtain

=
1

2

[∥∥ui
h

∥∥2

L2(Σ0∩∂Qi)
+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)

]

+
1

2
∑

Γkℓ∈INi

∫

Γkℓ

∣∣nk,t

∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

+
1

2
∑

Γkℓ∈Σ−
Ni

∫

Γkℓ

∣∣nk,t

∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

− 1

2
∑

Γkℓ∈Σ+
Ni

∫

Γkℓ

∣∣nk,t

∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

The estimate of this lemma follows by using the inequality
∣∣nk,t

∣∣≥
∣∣nk,t

∣∣2

≥ 1

2


∥∥ui

h

∥∥2

L2(Σ0∩∂Qi)
+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)
+ ∑

Γkℓ∈INi

∥∥∥
[
ui

h

]
Γkℓ,t

∥∥∥
2

L2(Γkℓ)




+
1

2
∑

Γkℓ∈Σ−
Ni

∥∥∥
[
ui

h/0
]

∂τ i
k
,t

∥∥∥
2

L2(Γkℓ)

− 1

2
∑

Γkℓ∈Σ+
Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

Analogously to Lemma 2.2.6 we can prove the following lemma.

Lemma 3.2.3. Let ui
h ∈ S

p
h(TNi

). Then the following estimate holds

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

hkℓ

∥∥∥∇xui
h|τ i

ℓ

∥∥∥
2

[L2(Γkℓ)]
d
≤ cK

Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d ,

with a constant cK = cK(cI,cG,cR2
).
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Proof. Let ui
h ∈ S

p
h(TNi

). Using the inverse inequality (2.9) gives the bound

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

hkℓ

∥∥∥∇xui
h|τ i

ℓ

∥∥∥
2

[L2(Γkℓ)]
d
≤ c2

I

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

|Γkℓ|
∣∣τ i

ℓ

∣∣−1
hkℓ

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d .

With the local mesh grading Assumption 2.2.2 we further get

≤ c2
I cG

Ni

∑
ℓ=1

hi
ℓ

∣∣τ i
ℓ

∣∣−1∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d ∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

|Γkℓ|

≤ c2
I cG

Ni

∑
ℓ=1

hi
ℓ

∣∣∂τ i
ℓ

∣∣ ∣∣τ i
ℓ

∣∣−1∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d .

Applying the shape regularity Assumption 2.2.1 and with |τℓ| = hd+1
ℓ we obtain

the stated bound of this lemma

≤ c2
I cGcR2

Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d .

Lemma 3.2.4. Let us assume for the stabilization parameter σ ≥ 4cK, then the
following estimate holds

c(i)(ui
h,0;ui

h,0)≥−1

4

Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d + ∑
Γkℓ∈ΣNi

σ

hkℓ

∥∥∥
[
ui

h/0
]

∂τ i
k
,x

∥∥∥
2

[L2(Γkℓ)]
d

+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

for all ui
h ∈ S

p
h(TNi

).

Proof. Let ui
h ∈ S

p
h
(TNi

). Using the definition of the bilinear form c(·,0; ·,0) we
have

c(i)(ui
h,0;ui

h,0) =−2
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

[uh/0]∂τ i
ℓ,x

(x, t) ·∇xuh|τ i
ℓ
(x, t)ds(x,t)

+
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

2σ

hkℓ

∫

Γkℓ

[uh/0]∂τ i
ℓ,x

(x, t) · [uh/0]∂τ i
ℓ,x

(x, t)ds(x,t)



56 3 Hybrid space-time discretizations

+
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

{uh/0}up

∂τ i
ℓ
(x, t) [uh/0]∂τ i

ℓ,x
(x, t)ds(x,t).

Applying the Cauchy–Schwarz inequality gives the bound

≥−2
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
[L2(Γkℓ)]

d

∥∥∥∇xuh|τ i
ℓ

∥∥∥
[L2(Γkℓ)]

d

+2
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

Using the Hölder inequality leads to the bound

≥−2




Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d




1
2

×




Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

hkℓ

σ

∥∥∥∇xuh|τ i
ℓ

∥∥∥
2

[L2(Γkℓ)]
d




1
2

+2
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

Now we can apply Lemma 3.2.3 and we conclude the estimate

≥−2




Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d




1
2 [

cK

σ

Ni

∑
ℓ=1

‖∇xuh‖2

[L2(τ
i
ℓ)]

d

] 1
2

+2
Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d
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+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

Using Young‘s inequality for some ε ∈ R+ results in

≥−ε
cK

σ

Ni

∑
ℓ=1

‖∇xuh‖2

[L2(τ
i
ℓ)]

d

+

(
2− 1

ε

) Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/0]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

With the assumption σ ≥ 4cK and with the choice ε = 1 this leads to the statement
of this lemma

≥−1

4

Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
ℓ)]

d + ∑
Γkℓ∈ΣNi

σ

hkℓ

∥∥∥
[
ui

h/0
]

∂τ i
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,x

∥∥∥
2

[L2(Γkℓ)]
d

+ ∑
Γkℓ∈Σ+

Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t).

For each space-time subdomain Qi, i = 1, . . . ,P, we define for a discrete function
ui

h ∈ S
p
h(TNi

) the following energy norm

∥∥ui
h

∥∥2

H̃DG,i
:=

Ni

∑
ℓ=1

∥∥∇xui
h

∥∥2

[L2(τ
i
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d + ∑
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σ

hkℓ

∥∥∥
[
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]
Γkℓ,x

∥∥∥
2
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d

+ ∑
Γkℓ∈ΣNi

σ

hkℓ

∥∥∥
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ui

h/0
]
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k
,x

∥∥∥
2

[L2(Γkℓ)]
d

+
∥∥ui

h

∥∥2

L2(Σ0∩∂Qi)
+
∥∥ui

h

∥∥2

L2(ΣT∩∂Qi)
+ ∑

Γkℓ∈INi

∥∥∥
[
ui

h

]
Γkℓ,t

∥∥∥
2

L2(Γkℓ)

+ ∑
Γkℓ∈ΣNi

∥∥∥
[
ui

h/0
]

∂τ i
k
,t

∥∥∥
2

L2(Γkℓ)
.

This energy norm ‖·‖
H̃DG,i

corresponds to the energy norm ‖·‖
D̃G

defined in (2.12)

with the difference, that the energy norm ‖·‖
H̃DG,i

contains the additional terms

∑
Γkℓ∈ΣNi

σ

hkℓ

∥∥∥
[
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h/0
]

∂τ i
k
,x

∥∥∥
2

[L2(Γkℓ)]
d

and ∑
Γkℓ∈ΣNi

∥∥∥
[
ui

h/0
]

∂τ i
k
,t

∥∥∥
2

L2(Γkℓ)
.
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With this additional term it is easy to see, that the energy norm ‖·‖
H̃DG,i

describes

a full norm on the discrete function space S
p
h(TNi

).

Combining all the lemmata above it is possible to prove the following ellipticity
estimate.

Theorem 3.2.5. Let the stabilization parameter be large enough, i.e. σ ≥ 4cK.
Then the following ellipticity estimate holds

A(i)(ui
h,u

i
h)+ c(i)(ui

h,0;ui
h,0)≥

1

4

∥∥ui
h

∥∥2

H̃DG,i

for all ui
h ∈ S

p
h(TNi

).

Proof. Let ui
h ∈ S

p
h(TNi

). Combining Lemma 3.2.1 with Lemma 3.2.2 and
Lemma 3.2.4 we get the ellipticity estimate of this theorem with

A(i)(ui
h,u

i
h)+ c(i)(ui

h,0;ui
h,0) = a(i)(ui

h,u
i
h)+b(i)(ui

h,u
i
h)+ c(i)(ui

h,0;ui
h,0)

≥ 1

4
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∑
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h

∥∥2
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i
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d +
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2
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σ

hkℓ

∥∥∥
[
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h

]
Γkℓ,x

∥∥∥
2
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d

+ ∑
Γkℓ∈ΣNi

σ

hkℓ

∥∥∥
[
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h/0
]
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k
,x

∥∥∥
2
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+
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2


∥∥ui
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+
∥∥ui
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L2(ΣT∩∂Qi)
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∥∥∥
[
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h

]
Γkℓ,t
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2

L2(Γkℓ)


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+
1

2
∑

Γkℓ∈Σ−
Ni

∥∥∥
[
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h/0
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∂τ i
k
,t

∥∥∥
2

L2(Γkℓ)

+
1

2
∑

Γkℓ∈Σ+
Ni

∫

Γkℓ

∣∣nℓ,t
∣∣
([

ui
h

]
Γkℓ,t

(x, t)
)2

ds(x,t)

≥ 1

4

∥∥ui
h

∥∥2

H̃DG,i
.

Since the energy norm ‖·‖
H̃DG,i

implies a full norm on the discrete function space

S
p
h(TNi

) the ellipticity estimate of Theorem 3.2.5 induces the injectivity of the
local space-time problem (3.11). Hence the discrete local problems are always
uniquely solvable.

According to Lemma 2.2.10 the following lemma shows a similar identity on the
interface Σ with respect to the hybrid upwind in time.
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Lemma 3.2.6. Let Γkℓ ∈ Σh be an interior facet on the interface, uh ∈ S
p
h(TN) and

λh ∈ S
p
h(Σh). Then the following identity holds

{uh/λh}up

∂τk
(x, t) [uh/λh]∂τk,t

(x, t)

+{uh/λh}up

∂τℓ
(x, t) [uh/λh]∂τℓ,t

(x, t)− 1

2

[
u2

h

]
Γkℓ,t

(x, t)

=
1

2

[∣∣nk,t
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(x, t)−λh(x, t)

)2
+
∣∣nℓ,t

∣∣ (uh|τℓ(x, t)−λh(x, t)
)2
]

for all (x, t) ∈ Γkℓ.

Proof. Without loss of generality we assume that nk,t ≥ 0. Using the definition
of the hybrid upwind we have

{uh/λh}up

∂τk
(x, t) [uh/λh]∂τk,t

(x, t)
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2

[
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h
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2

(
uh|τk

(x, t)
)2

nk,t −
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2

(
uh|τℓ(x, t)

)2
nℓ,t .

With the assumption nk,t ≥ 0 and some algebraic manipulations we get the state-
ment of the lemma with

=
∣∣nk,t

∣∣(uh|τk
(x, t)

)2 −
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+
∣∣nℓ,t

∣∣(λh(x, t))
2 − 1

2
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2

+
(
uh|τℓ(x, t)
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)2]

.

For uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh) we define the following energy norm
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+‖uh‖2
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.

With this energy norm we can prove the following ellipticity estimate.

Theorem 3.2.7. Let uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh). Further we assume, that the

stabilization parameter satisfies σ ≥ 4cK. Then the following ellipticity estimate
holds
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[
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]
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4
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.

Proof. Let uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh). Applying Lemma 3.2.1 and by using

the techniques as used in the proof of Lemma 3.2.4 we find the estimate
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For the sum over the local bilinear forms b(i)(·, ·) we have by definition
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Applying Gauss‘s theorem we find, by rewriting the sum over all elements anal-
ogously to Lemma 2.2.11, the estimate
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− 1
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=
1

2


‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )
+

P

∑
i=1

∑
Γkℓ∈INi

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)




− 1

2
∑

Γkℓ∈Σh

∫

Γkℓ

[
u2

h

]
Γkℓ,t

(x, t)ds(x,t).

Combining these two estimates we obtain
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Rewriting the sum of the last term leads to the identity
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With Lemma 3.2.6 we further obtain
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The statement of the theorem follows by applying the definition of the hybrid
jump and by summing up over all elements

≥ 1

4

P

∑
i=1

Ni

∑
ℓ=1

‖∇xuh‖2

[L2(τ
i
ℓ)]

d +
1

2

P

∑
i=1

∑
Γkℓ∈INi

σ

hkℓ

∥∥∥[uh]Σkℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

σ

hkℓ

∥∥∥[uh/λh]∂τ i
ℓ,x

∥∥∥
2

[L2(Γkℓ)]
d

+
1

2


‖uh‖2

L2(Σ0)
+‖uh‖2

L2(ΣT )
+

P

∑
i=1

∑
Γkℓ∈INi

∥∥∥[uh]Γkℓ,t

∥∥∥
2

L2(Γkℓ)




+
1

2

P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∥∥∥[uh/λh]∂τ i
ℓ,t

∥∥∥
2

L2(Γkℓ)



3.2 Numerical analysis 63

Using Theorem 3.2.7 we now can show the injectivity of the discrete variational
problem (3.7).

Theorem 3.2.8. Let the assumptions of Theorem 3.2.7 be fulfilled. If the func-
tion uh ∈ S

p
h(TN) and λh ∈ S

p
h(Σh) satisfy

P

∑
i=1

[
A(i)(uh,vh)+ c(i)(uh,λh;vh,µh)

]
= 0

for all vh ∈ S
p
h(TN) and µh ∈ S

p
h(Σh), then this implies uh = 0 and λh = 0.

Proof. Let uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh). The ellipticity estimate of Theorem

3.2.7 implies

0 =
P

∑
i=1

[
A(i)(uh,uh)+ c(i)(uh,λh;uh,λh)

]
≥ 1

4
‖(uh,λh)‖2

H̃DG
≥ 0

and therefore ‖(uh,λh)‖H̃DG
= 0. Hence there holds

∇xuh|τℓ = 0 for all τℓ ∈ TN , uh = 0 on Σ0 ∪ΣT and uh ∈ C(TN), (3.12)

with uh|Σ = λh. As in the proof of Theorem 2.2.12 we can use an alternative rep-

resentation for the local bilinear forms b(i)(·, ·). Further we use the test function
vh = ∂tuh ∈ S

p
h
(TN) and the properties (3.12) to derive the identity

0 =
P

∑
i=1

[
A(i)(uh,∂tuh)+ c(i)(uh,λh;∂tuh,0)

]
=

N

∑
ℓ=1

‖∂tuh‖2
L2(τℓ)

≥ 0.

Hence we have ∂tuh|∂τℓ = 0 for all τℓ ∈ TN and with the above properties (3.12)
we conclude that uh = 0. With uh|Σ = λh we also have that λh = 0.

Theorem 3.2.8 implies that the discrete variational problem (3.7) omits a unique
solution uh ∈ S

p
h(TN) and λh ∈ S

p
h(Σh).

Next we will derive a priori error estimates. To do so, we need to introduce
the following two energy norms for functions u ∈ Hs(TN), s > 3

2
, and functions

λ ∈ L2(Σh):

‖(u,λ )‖2
HDG := ‖(u,λ )‖2

H̃DG
+

P

∑
i=1

Ni

∑
ℓ=1
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ℓ‖∂tu‖2

L2(τ
i
ℓ)
,

‖(u,λ )‖2
HDG,∗ := ‖(u,λ )‖2

H̃DG
+

P

∑
i=1

Ni

∑
ℓ=1

(
hi
ℓ

)−1‖u‖2
L2(τ

i
ℓ)
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+
P

∑
i=1

∑
Γkℓ∈INi

hkℓ

∥∥∥〈∇xu〉Γkℓ

∥∥∥
2

[L2(Γkℓ)]
d

+
P

∑
i=1

Ni

∑
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∑
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Γkℓ⊂∂τ i
ℓ

hkℓ

∥∥∥∇xu|τ i
ℓ

∥∥∥
2

[L2(Γkℓ)]
d
.

With respect to these energy norms the following boundedness estimate holds.

Theorem 3.2.9. Let u ∈ Hs(TN), s > 3
2
, and λ ∈ L2(Σh). Further let vh ∈ S

p
h(TN)

and µh ∈ S
p
h(Σh). Then the boundedness estimate holds

P

∑
i=1

[
A(i)(u,vh)+ c(i)(u,λ ;vh,µh)

]
≤ cA

2‖(u,λ )‖HDG,∗‖(vh,µh)‖HDG.

Proof. As in Chapter 2, see Lemma 2.2.7 and Lemma 2.2.8 the estimate
follows by using the Cauchy–Schwarz inequality and by applying Lemma 3.2.3
and Lemma 2.2.6.

Theorem 3.2.10. Let TN be a quasi-uniform decomposition and let σ ≥ 4cK,
then the following stability estimate holds

sup
(0,0) 6=(vh,µh)∈S

p
h
(TN)×S

p
h
(Σh)

∑P
i=1

[
A(i)(uh,vh)+ c(i)(uh,λh;vh,µh)

]

‖(vh,µh)‖HDG

≥ cA
S‖(uh,λh)‖HDG

for all uh ∈ S
p
h(TN) and λh ∈ S

p
h(Σh).

Proof. The stability estimate follows exactly in the same way as the stability
estimate of Theorem 2.2.22. The main difference is the ellipticity estimate, which
is proven in Theorem 3.2.7.

Theorem 3.2.11. Let TN be a quasi-uniform decomposition and let u ∈ Hs(TN),
s ≥ 2, be the exact solution of the model problem (2.1). Further let uh ∈ S

p
h(TN)

and λh ∈ S
p
h(Σh) be the exact solution of the discrete variational problem (3.7)

with σ ≥ 4cK. Then the following error estimate in the energy norm holds

‖(u−uh,u−λh)‖HDG ≤ chmin{s,p+1}−1 |u|Hs(TN)
.

Proof. The main ingredients for the proof are the Galerkin orthogonality (2.6),
Theorem 3.2.10 and Theorem 3.2.11 combined with standard arguments as it was
done for the proof of Theorem 2.2.28.
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3.3 Numerical examples

In this section numerical examples for the presented hybrid space-time discretiza-
tion will be presented to show the performance of this method.

Example 3.3.1. In this example we consider the spatial domains Ω = (0,1)d for
d = 1,2,3 and the simulation end time T = 1. Hence the space-time domains are
given by the (d+1) unit cubes Q = (0,1)d+1. On the boundary ΣD = ∂Ω ×(0,T )
we assume homogeneous Dirichlet boundary conditions and the given data f and
u0 are chosen such that the exact solutions are given by

u(x, t) = cos(πt)
d

∏
i=1

sin(πxi).

Further we decompose the space-time domains Q into several space-time subdo-
mains Qi, i = 1, . . . ,P. Where for d = 1 we use P = 16, for d = 2 we use P = 24 and
for d = 3 we use P = 96 space-time subdomains. For d = 1 and d = 2 these decom-
positions are shown in Figure 3.2. The initial triangulation for d = 1 is given by
32 triangles, by simply using two triangles for each space-time subdomain. For
d = 2,3 the space-time subdomains itself are considered as initial triangulations.
To analyze the convergence behavior of the presented hybrid space-time method
we apply several uniform refinement steps. For the stabilization parameter we
choose σ = 10p2 for the polynomial degrees p ∈ {1,2}.
For the iterative solution of the Schur complement system (3.10) we use the
GMRES method without any preconditioning with a relative error reduction of

εGMRES = 10−8. The local problems A
(i)
II , i = 1, . . . ,P are solved in parallel by

using the solver package PARDISO or by applying the GMRES method, where
a simple multigrid preconditioner is used.

In Tables 3.1–3.6 the number of required iterations and the errors in the energy
norm ‖u−uh‖HDG are given. We observe that the number of required iterations
for solving the Schur complement system (3.10) are growing slightly indicating the
need of using an appropriate preconditioner. Further, the expected convergence
rates with respect to the energy norm for linear and quadratic ansatz functions
can be observed.
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(a) Decomposition into P = 16 subdomains. (b) Decomposition into P = 24 subdomains.

Figure 3.2: Space-time decompositions for d = 1 and d = 2.

level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 32 80 48 5.9010−1 − 28

1 128 352 96 2.9501−1 1.00 38

2 512 1 472 192 1.4660−1 1.01 50

3 2 048 6 016 384 7.2877−2 1.01 65

4 8 192 24 320 768 3.6289−2 1.01 84

5 32 768 97 792 1 536 1.8098−2 1.00 110

6 131 072 392 192 3 072 9.0362−3 1.00 135

7 524 288 1 570 816 6 144 4.5147−3 1.00 166

8 2 097 152 6 287 360 12 288 2.2564−3 1.00 209

Theory: 1.00

Table 3.1: Numerical results for d = 1, p = 1 and P = 16 subdomains.
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level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 32 168 72 9.6081−2 − 40

1 128 720 144 2.3273−2 2.05 58

2 512 2 976 288 5.5544−3 2.07 76

3 2 048 12 096 576 1.3358−3 2.06 98

4 8 192 48 768 1 152 3.2540−4 2.04 116

5 32 768 195 840 2 304 8.0120−5 2.02 142

6 131 072 784 896 4 608 1.9863−5 2.01 172

7 524 288 3 142 656 9 216 4.9440−6 2.01 198

8 2 097 152 12 576 768 18 432 1.2333−6 2.00 236

Theory: 2.00

Table 3.2: Numerical results for d = 1, p = 2 and P = 16 subdomains.

level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 24 48 108 1.4177+0 − 25

1 192 576 432 9.1732−1 0.63 82

2 1 536 5 376 1 728 4.8790−1 0.91 127

3 12 288 46 080 6 912 2.4827−1 0.97 209

4 98 304 380 928 27 648 1.2480−1 0.99 365

5 786 432 3 096 576 110 592 6.2508−2 1.00 635

6 6 291 456 24 969 216 442 368 3.1276−2 1.00 1075

Theory: 1.00

Table 3.3: Numerical results for d = 2, p = 1 and P = 24 subdomains.

level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 24 144 216 6.4591−1 − 107

1 192 1 536 864 1.6417−1 1.98 273

2 1 536 13 824 3 456 4.4846−2 1.87 370

3 12 288 116 736 13 824 1.1423−2 1.97 509

4 98 304 958 464 55 296 2.8653−3 2.00 746

5 786 432 7 766 016 221 184 7.1658−4 2.00 1 125

Theory: 2.00

Table 3.4: Numerical results for d = 2, p = 2 with P = 24 subdomains.
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level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 96 192 768 1.1669+0 − 70

1 1 536 5 376 6 144 8.2292−1 0.50 145

2 24 576 104 448 49 152 4.7452−1 0.79 207

3 393 216 1 818 624 393 216 2.5066−1 0.92 323

4 6 291 456 30 277 632 3 145 728 1.2797−1 0.97 551

Theory: 1.00

Table 3.5: Numerical results for d = 3, p = 1 with P = 96 subdomains.

level elements dof uh dof λh ‖(u−uh,u−λh)‖HDG eoc iter
0 96 720 1 920 7.2073−1 − 391

1 1 536 17 280 15 360 2.5149−1 1.52 680

2 24 576 322 560 122 880 7.3177−2 1.78 889

3 393 216 5 529 600 983 040 1.9496−2 1.91 1 134

Theory: 2.00

Table 3.6: Numerical results for d = 3, p = 2 with P = 96 subdomains.
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In this chapter a multigrid approach for the space-time discretization (2.2) in-
troduced in Chapter 2 will be presented. Here we assume that the space-time
decompositions form so called space-time slabs. Two examples for space-time
meshes with space-time slabs are given in Figure 4.1 for d = 1.

For 0 = t0 < t1 < · · ·< tN−1 < tN = T let TNn
, n = 1, . . . ,N be the decomposition of

the n-th space-time slab into finite elements, i.e.

Qn =
⋃

τn
ℓ ∈TNn

τn
ℓ , with Qn := Ω × (tn−1, tn).

For each space-time slab we consider the discrete function space S
p
h
(TNn

) and by
An(·, ·) we denote the bilinear form (2.3) with respect to the space-time slab Qn

and the initial boundary Σn := Ω(tn−1)×{tn−1}. Then the linear system (2.7)
introduced in Chapter 2 is given by the following equations




A1
τ,h

B
2,1
τ,h A2

τ,h

B
3,2
τ,h A3

τ,h
. . .

. . .

B
N,N−1
τ,h AN

τ,h







u1

u2

u3
...
uN




=




f1

f2

f3
...
fN



. (4.1)

For n = 1, . . . ,N the matrices of (4.1) are given by

An
τ,h[ j, i] := An(ϕ

n
j ,ϕ

n
i ) for ϕn

i ,ϕ
n
j ∈ S

p
h(TNn

),

B
n+1,n
τ,h [k, j] :=−

〈
ϕn

j ,ϕ
n+1
k

〉
Σn+1

for ϕn
j ∈ S

p
h(TNn

),ϕn+1
k ∈ S

p
h(TNn+1

).

Moreover, the vectors on the right hand side of (4.1) are defined as

fn[i] := 〈 f ,ϕn
i 〉Qn

+ 〈gN,ϕ
n
i 〉ΣN∩∂Qn

for ϕn
j ∈ S

p
h(TNn

).

With the solution vectors un for n = 1, . . . ,N of the linear system (4.1) we obtain
an approximate solution on each space-time slab Qn.

To solve the linear system (4.1) one can simply apply a forward substitution
with respect to the blocks corresponding to a space-time slab. Hence one has to
invert the matrix An

τ,h for each space-time slab Qn, where for example a multigrid
solver can be applied. This is the usual way how time dependent problems are

69
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Σ0

Σ

x

t

(a) Tensor product space-time mesh.

Σ0

Σ

x

t

(b) Simplex space-time mesh.

Figure 4.1: Space-time meshes with space-time slaps for d = 1.

solved when implicit schemes are used [41, 42, 97]. But in this chapter we want
to apply a space-time multigrid scheme to solve the global linear system (4.1) at
once. Space-time multigrid methods have been studied earlier in [38, 44, 45, 107].
Other methods to solve the global linear system (4.1) are for example waveform
relaxation methods, which have been considered in [46, 47].

Next we will study the case when tensor product space-time meshes are used,
like in Figure 4.1(a). For an easier notation we assume, that we have a uniform
partition of the time interval (0,T ) into subintervals (tn−1, tn) for n = 1, . . . ,N,
i.e. tn = nτ with τ > 0. For tensor product space-time meshes the approximate
solution on the space-time slab Qn is then given by the ansatz

un
h(x, t) =

Nt

∑
ℓ=1

Nx

∑
j=1

un
ℓ, j ϕ j(x)ψℓ(t), with un

ℓ, j := un[ jNt + ℓ], (4.2)

and with basis functions

un
h ∈ S

p

h (TNn
) = span{ϕ j}Nx

j=1 ⊗ span{ψℓ}Nt

ℓ=1. (4.3)

For the tensor product case different polynomial degrees with respect to space
and time can be used, i.e. p := (px, pt). For the space-time discretization (2.2)
the ansatz (4.2) leads to the following matrices

An
τ,h = Aτ,h := Mh ⊗Kτ +Kh ⊗Mτ , B

n+1,n
τ,h = Bτ,h :=−Mh ⊗Nτ ,

with the mass and stiffness matrix

Mh[i, j] :=

∫

Ω

ϕ j(x)ϕi(x)dx, Kh[i, j] := ã(ϕ j,ϕi)
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for i, j = 1, . . . ,Nx. Note that the bilinear form ã(·, ·) results from the bilinear form
a(·, ·) by integrating only over the spatial domain Ω . The matrices with respect
to the time discretization are given by

Kτ [k, ℓ] :=−
tn∫

tn−1

ψℓ(t)∂tψk(t)dt+ψℓ(tn)ψk(tn), (4.4)

Mτ [k, ℓ] :=

tn∫

tn−1

ψℓ(t)ψk(t)dt, Nτ [k, ℓ] := ψℓ(tn)ψk(tn−1) (4.5)

for k, ℓ= 1, . . . ,Nt . Note that for the coupling matrix Nτ we have to evaluate the
ansatz function ψℓ at the time tn, because we have ψn−1

ℓ (tn−1) = ψn
ℓ (tn) = ψℓ(tn).

Further for n = 1, . . . ,N the right hand sides are given by

fn[ jNt + ℓ] :=

tn∫

tn−1

∫

Ω

f (x, t)ϕ j(x)ψℓ(t)dxdt

for j = 1, . . . ,Nx and ℓ = 1, . . . ,Nt . If for the spatial ansatz functions continuous
basis functions are used, then the stiffness matrix Kh reduces to the standard
finite element stiffness matrix

Kh[i, j] :=

∫

Ω

∇ϕ j(x) ·∇ϕi(x)dx for i, j = 1, . . . ,Nx.

Hence, for tensor product space-time meshes we conclude, that the use of contin-
uous ansatz functions in space leads to a standard finite element discretization
in space combined with a discontinuous Galerkin time stepping scheme in time.
This type of discretizations has been analyzed for example in [97].

4.1 Multigrid method

In this section a space-time multigrid method to solve the linear system (4.1)
will be introduced. For an introduction to multigrid methods see for example
[39,99,103,108]. For an easier notation we now write the linear system (4.1) as

Lτ,hx= f . (4.6)

To solve the linear system (4.6) with a multigrid technique, a hierarchical sequence
of space-time meshes TNL

is needed for L = 0, . . . ,ML. This space-time hierarchy
has to be chosen in an appropriate way and will depend on the discretization, see
Section 4.3. For each space-time decomposition TNL

we can compute the system
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matrix LτL,hL
for L = 0, . . . ,ML. On the last level ML we have to solve the linear

system (4.6) and therefore we have LτML
,hML

= Lτ,h.

With Sν
τL,hL

we denote the smoother, where ν ∈ N is the number of smoothing
steps which are used. For the smoothing operator we consider the damped block
Jacobi iteration

xk+1 = xk +ωt(D̃τL,hL
)−1
[
f −LτL,hL

xk
]
. (4.7)

By D̃−1
τL,hL

we denote an approximation of the inverse of the block diagonal matrix

DτL,hL
:= diag{An

τL,hL
}NL

n=1 where a block An
τL,hL

corresponds to the space-time slab

Qn. For the approximation of (DτL,hL
)−1 we apply one space multigrid iteration

for each space-time slab. When tensor product space-time meshes are used we
have to apply a multigrid solver on each space-time slab, where the system matrix
is given by

AτL,hL
:= MhL

⊗KτL
+KhL

⊗MτL
.

In this case the matrix AτL,hL
has tensor product structure, hence we can use

a standard tensor product multigrid, like in [14] to approximate the inverse of
the block diagonal matrix DτL,hL

. To get an approximation for the inverse of the
block diagonal matrix DτL,hL

for general simplex space-time slabs, like in Figure
4.1(b), we apply an algebraic multigrid solver to the system matrix AτL,hL

, as
implemented in the package hypre, see [28, 29].

For the prolongation operator PL we use the standard interpolation from coarse
space-time grids to the next fine space-time grids. Therefore the prolongation
operator will depend on the chosen space-time hierarchy. The restriction operator
is defined as the adjoint of the prolongation operator RL = (PL)⊤.

The definition of one complete multigrid cycle is given in Algorithm 4.2. With
ν1,ν2 ∈N we denote the number of pre- and post smoothing steps. Further γ ∈N

defines the cycle index, where a typical choice is γ ∈ {1,2}. For γ = 1 the multigrid
cycle in Algorithm 4.2 is the classical V-cycle, whereas for γ = 2 we have the so
called W-cycle. On the coarse level L = 0 we solve the linear system exactly by
using a LU-factorization for the system matrix Lτ0,h0

. For a given initial guess
we apply the space-time multigrid cycle of Algorithm 4.2 several times, until we
have reached a given relative error reduction εMG.

To prove convergence of the presented space-time multigrid method, we will use
the local Fourier mode analysis. First we will apply this type of analysis to
the simpler ODE case and afterwards we will use these results to analyze the
space-time two-grid cycle.
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MGCycle(x, f , L)
if L = 0 then

Coarse grid solver: x= (LτL,hL
)−1f

else

Pre-smoothing: x= Sν1

τL,hL
(x,f)

Compute defect: d= f −LτL,hL
x

Restriction: dL−1 =RLd

Initialize: wL−1 = 0

for all i = 1, . . . ,γ do

MGCycle(wL−1, dL−1, L−1)
end for

Prolongation: w = PLwL−1

Correction: x= x+w

Post-smoothing: x= Sν2

τL,hL
(x,f)

end if

Algorithm 4.2: Space-time multigrid cycle.

4.2 Time analysis

In this section we will consider for T > 0 the one-dimensional model problem

∂tu(t)+u(t) = f (t) for t ∈ (0,T ),

u(0) = u0.
(4.8)

For the discretization of the model problem (4.8) we will use the discontinuous
Galerkin approach as introduced at the beginning of this chapter. To solve the
related linear system we will apply the multigrid idea presented above. We will
see, that the analysis of the two-grid cycle for this simple one-dimensional problem
is strongly connected to the analysis of the more complicated space-time two-grid
cycle.

In what follows we first subdivide the simulation interval [0,T ] into N ∈N uniform
subintervals

0 = t0 < t1 < · · ·< tN−1 < tN = T, tn = nτ,

with the time step size τ = T
N
, see also Figure 4.3. By introducing the continuity

condition un
τ(tn−1) = un−1

τ (tn−1) in the weak sense we obtain for the time interval
(tn−1, tn) the following discrete variational problem:
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t0 t1 t2

τ τ
. . . tn−1 tn tn+1

τ τ
. . . tN−1 tN

τ

u0[2] = u0

u1[1]

u1[2]

u2[1]

u2[2]

uℓ[1]

uℓ[2]

uℓ+1[1]
uℓ+1[2]

uN [1]

uN [2]

Figure 4.3: DG time stepping scheme for pt = 1.

Find un
τ ∈ Ppt (tn−1, tn) such that

−
tn∫

tn−1

un
τ(t)∂tv

n
τ(t)dt+un

τ(tn)v
n
τ(tn)+

tn∫

tn−1

un
τ(t)v

n
τ(t)dt

=

tn∫

tn−1

f (t)vn
τ(t)dt+un−1

τ (tn−1)v
n
τ(tn−1)

(4.9)

is fulfilled for all vn
τ ∈ Ppt (tn−1, tn).

Using the basis functions

Ppt (tn−1, tn) = span{ψℓ}Nt

ℓ=1, Nt = pt +1,

the discrete variational problem (4.9) is equivalent to the system of linear alge-
braic equations

[Kτ +Mτ ]un = fn +Nτun−1,

with the matrices Kτ ,Mτ and Nτ as defined in (4.4)–(4.5). Moreover, the right
hand side is given by

fn[ℓ] :=

tn∫

tn−1

f (t)ψℓ(t)dt, ℓ= 1, . . . ,Nt .

On the time interval [tn−1, tn] we therefore can define the approximation

un
τ(t) =

Nt

∑
ℓ=1

un[ℓ]ψℓ(t).
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Overall we have to solve the linear system




Kτ +Mτ

−Nτ Kτ +Mτ

−Nτ Kτ +Mτ
. . .

. . .

−Nτ Kτ +Mτ







u1

u2

u3
...
uN




=




f1

f2

f3
...
fN



. (4.10)

The linear system (4.10) is closely related to the linear system (4.1) corresponding
to the full space-time discretization. Before we introduce the multigrid approach
for solving the linear system (4.10), we will first study the properties of the
discontinuous Galerkin discretization (4.9).

To do so, we consider for a function f : (tn−1, tn) → R the Radau quadrature of
order 2s−1

tn∫

tn−1

f (t)dt ≈ τ
s

∑
k=1

bk f (tn−1 + ckτ),

with the weights bk ∈ R+ and the integration points c1 = 0 and c2, . . . ,cs ∈ [0,1],
see also [42]. If the right hand side fn of the discontinuous Galerkin discretization
scheme (4.9) is approximated by the Radau quadrature of order 2pt + 1, i.e.
s = pt +1, we can prove the following theorem.

Theorem 4.2.1. The discontinuous Galerkin approximation (4.9) of the model
problem (4.8), introduced above, is equivalent to the (pt +1)-stage implicit Runge-
Kutta scheme RADAU IA, if the integral of the right hand side is approximated
by the Radau quadrature of order 2pt +1.

Proof. Approximating the right hand side of (4.9) by the Radau quadrature
rule of order 2pt +1 and by using integration by parts, the discontinuous Galerkin
scheme (4.9) is given by to following variational problem:

Find un
τ ∈ Ppt (tn−1, tn) such that

tn∫

tn−1

∂tu
n
τ(t)v

n
τ(t)dt+un

τ(tn−1)v
n
τ(tn−1)+

tn∫

tn−1

un
τ(t)v

n
τ(t)dt

= τ
pt+1

∑
k=1

bk f (tn−1 + ckτ)vn
τ(tn−1+ ckτ)+un−1

τ (tn−1)v
n
τ(tn−1)

(4.11)

is fulfilled for all vn
τ ∈ Ppt (tn−1, tn).
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In what follows, we will also apply the discontinuous collocation method intro-
duced in [40] to the model problem (4.8). Let c1 = 0 and c2, . . . ,cpt+1 ∈ [0,1] be
the integration points of the Radau quadrature of order 2pt +1 with the weights
b1, . . . ,bpt+1 ∈ R\{0}. Then the discontinuous collocation method is given by:

Find wn
τ ∈ Ppt(tn−1, tn) such that

wn
τ(tn−1)−wn−1

τ (tn−1) = τb1 [ f (tn−1)−∂tw
n
τ(tn−1)−wn

τ(tn−1)] ,

∂tw
n
τ(tn−1 + ckτ)+wn

τ(tn−1 + ckτ) = f (tn−1 + ckτ)
(4.12)

is fulfilled for all k = 2, . . . , pt +1.

In [40] it was shown, that the discontinuous collocation method (4.12) is equiv-
alent to the (pt + 1)-stage implicit Runge-Kutta scheme RADAU IA. Hence it
remains to show the equivalence of the discontinuous Galerkin method (4.11)
with the discontinuous collocation method (4.12). First we observe that ∂tu

n
τvn

τ

and un
τvn

τ are polynomials of degree at most 2pt . Therefore we can replace the in-
tegrals on the left hand side of (4.11) with the Radau quadrature of order 2pt +1.
Hence we obtain

τ
pt+1

∑
k=1

bk∂tu
n
τ(tn−1 + ckτ)vn

τ(tn−1 + ckτ)+un
τ(tn−1)v

n
τ(tn−1)

+ τ
pt+1

∑
k=1

bkun
τ(tn−1 + ckτ)vn

τ(tn−1 + ckτ)

= τ
pt+1

∑
k=1

bk f (tn−1 + ckτ)vn
τ(tn−1+ ckτ)+un−1

τ (tn−1)v
n
τ(tn−1),

(4.13)

with vn
τ ∈ Ppt(tn−1, tn). As test functions vn

τ we now consider the Lagrange poly-
nomials

ℓn
i (t) =

pt+1

∏
j=1

j 6=i

t − (tn−1 + c jτ)

τ(ci − c j)
for i = 1, . . . , pt +1.

Hence we have ℓn
i (tn−1+c jτ)= 0 for i 6= j and ℓn

i (tn−1+ciτ)= 1 for i= 1, . . . , pt +1.
First we use the test function vn

τ = ℓn
1 in (4.13) and we obtain

τb1∂tu
n
τ(tn−1)+un

τ(tn−1)+ τb1un
τ(tn−1) = τb1 f (tn−1)+un−1

τ (tn−1).

This implies, that the solution un
τ of (4.11) satisfies the first equation of (4.12).

For the test function vn
τ = ℓn

k, k = 2, . . . , pt +1 we further get

τbk∂tu
n
τ(tn−1+ ckτ)+ τbkun

τ(tn−1 + ckτ) = τbk f (tn−1 + ckτ).

Dividing this equation by the factor τbk 6= 0 we obtain, that the solution un
τ

of the discontinuous Galerkin scheme (4.11) also satisfies the second equation
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of the discontinuous collocation method (4.12). Hence, the solution un
τ of the

discontinuous Galerkin scheme (4.11) is a solution of the discontinuous collocation
method (4.12). The other direction of the proof is obtained by reverting the
arguments of above.

Remark 4.2.2. The RADAU IA scheme has been introduced in the PhD the-
sis [23] in 1969, see also [16]. Whereas the original discontinuous Galerkin
method was introduced by Reed and Hill [75] in 1973 to solve the hyperbolic neu-
tron transport equation. In [53] discontinuous Galerkin methods for ordinary
differential equations are considered, see also [18].

Remark 4.2.3. In the proof of Theorem 4.2.1 it is shown, that the jump of the
discrete solution at the time tn−1 is equal to the pointwise error multiplied with
the time step size τ and the weight b1, see equation (4.12). Hence the hight of the
jump can be used as a simple error estimator for adaptive time stepping schemes.

Remark 4.2.4. We obtain by replacing the integrals of (4.11) with the Lobatto
IIIC quadrature, see [42], the implicit Runge Kutta scheme Lobatto IIIC, which
has a different stability behaviour as the RADAU IA method.

Theorem 4.2.5. For s ∈N the s-stage RADAU IA scheme is of order 2s−1 and
the stability function R(z) is given by the (s−1,s) subdiagonal Padé approximation
of the exponential function ez. Furthermore the method is A-stable, i.e.

|R(z)|< 1 for z ∈ C with ℜ(z)< 0.

Proof. The proof can be found in [42].

Remark 4.2.6. For s ∈ N, the first (s− 1,s) subdiagonal Padé approximations
Ps−1,s(z) of the exponential function ez are given by

P0,1(z) =
1

1− z
, P1,2(z) =

6+2z

6−4z+ z2
,

P2,3(z) =
60+24z+3z2

60−36z+9z2− z3
, P3,4(z) =

840+360z+60z2+4z3

840−480z+120z2−16z3 + z4
.

Corollary 4.2.7. The stability function R(z) of the discontinuous Galerkin ap-
proximation with polynomial degree pt ∈N is given by the (pt , pt +1) subdiagonal
Padé approximation of the exponential function ez. Furthermore the method is
A-stable, i.e.

|R(z)|< 1 for z ∈ C with ℜ(z)< 0.

Proof. For the Dahlquist test equation ∂tu = λu,λ ∈ C we obtain by Theorem
4.2.1 that the discontinuous Galerkin scheme is equivalent to the RADAU IA
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method. Hence the two methods have the same stability function R(z). Applying
Theorem 4.2.5 completes the proof.

In what follows, we will consider a global multigrid scheme, as introduced in
Section 4.1, for the solution of (4.10). For an easier notation we write the linear
system (4.10) as

[IN ⊗ (Kτ +Mτ)+UN ⊗Nτ ]x=: Lτ x= f , (4.14)

with the matrix

UN :=




0

−1 0

−1 0
. . .

. . .

−1 0




∈ RN×N .

For the global multigrid scheme we assume a nested sequence of decompositions
TNL

with time step size τL for L = 0, . . . ,ML. Moreover we use the geometric
restriction and prolongation operators RL and PL. For the smoother we apply a
fixed number ν ∈ N of damped block Jacobi iterations

xk+1 = xk +ωtD
−1
τL

[
f −LτL

xk
]
, (4.15)

with the block diagonal matrix DτL
:= diag{KτL

+MτL
}NL

n=1 and with the damping
parameter ωt ∈ (0,2).

In what follows, we will study the two-grid cycle for solving the linear system
(4.10). Using the definition of the smoother (4.15) we find for a given time step
size τL that the error of the (k+1)-th Jacobi iteration for ν ∈ N is given by

x−xk+1,ν =: ek+1,ν =
[
I −ωtD

−1
τL
LτL

]ν
ek,ν =: Sν

τL
ek,ν . (4.16)

Moreover the (k+1)-th error of the two-grid cycle is given by

x−xk+1 =: ek+1 = Sν2
τL

[
I −PLL−1

2τL
RLLτL

]
Sν1

τL
ek =: MτL

ek. (4.17)

To ensure mesh independent convergence of the two-grid cycle we need that the
spectral radius of the iteration matrix MτL

is smaller than one, i.e.

ρ(MτL
)≤ q < 1,

with a constant q independent of the time step size. The computation of the
spectral radius for arbitrary two-grid iteration matrices is in general not trivial,
because the inverse of the coarse grid operator L2τL

is involved. Moreover the
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iteration matrix MτL
is not symmetric in our case. To overcome this problem

we transform the equation (4.14) into the frequency domain, where we apply
the analysis based on exponential Fourier modes. This type of analysis was
introduced in [12] where the rigorous analysis was done in [13] and it is used for
a large class of problems, see for example [90, 99, 108]. The analysis is regarded
to special model problems, namely those with periodic boundary conditions on
rectangular domains. For general boundary conditions this type of analysis can
be used to study the local behavior of the two-grid algorithm, therefore it is also
called local Fourier mode analysis.

For time periodic solutions the problem (4.8) changes to

∂tu(t)+u(t) = f (t) for t ∈ (0, t), u(0) = u(T ). (4.18)

For the discretization of the problem (4.18) with a discontinuous Galerkin time
stepping method we therefore have to solve the linear system (4.14), i.e.

[
IN ⊗ (Kτ +Mτ)+ŨN ⊗Nτ

]
x= f ,

where the matrix ŨN is given by the circulant matrix

ŨN :=




0 −1

−1 0

−1 0
. . .

. . .

−1 0




∈ RN×N . (4.19)

4.2.1 Smoothing analysis

In this subsection we will use the local Fourier mode analysis to study the smooth-
ing behavior of the iteration matrix Sν

τL
. To transform the problem (4.14) into

the frequency domain we need the following theorem.

Theorem 4.2.8 (Discrete Fourier transform). For m ∈N let u ∈R2m, then there
holds

u=
m

∑
k=1−m

ûkϕ(θk), ϕ(θk)[ℓ] := eiℓθk , ℓ= 1, . . . ,2m, θk :=
kπ

m
,

with the coefficients

ûk :=
1

2m
(u,ϕ(−θk))2 =

1

2m

2m

∑
ℓ=1

u[ℓ]ϕ(−θk)[ℓ], for k = 1−m, . . . ,m.
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Proof. The proof can be found in [108, Theorem 7.3.1] for example.

Definition 4.2.9 (Fourier modes, Fourier frequencies). Let NL ∈ N. Then the
vector valued function ϕ(θk)[ℓ] := eiℓθk , ℓ = 1, . . . ,NL is called Fourier mode with
frequency

θk ∈ΘL :=

{
2kπ

NL
: k = 1− NL

2
, . . . ,

NL

2

}
⊂ (−π ,π ].

The frequencies ΘL are further separated into low and high frequencies

Θ low
L :=ΘL ∩ (−π

2
,
π

2
],

Θ
high
L :=ΘL ∩

(
(−π ,−π

2
]∪ (

π

2
,π ]
)
=ΘL \Θ low

L .

In the following we denote by NL ∈ N the number of time steps for the level
L ∈ N0 and by Nt = pt +1 ∈ N we denote the degrees of freedom with respect to
one time step, see also (4.3). With the next lemma we transform a given vector
corresponding to the problem (4.14) into the frequency domain.

Lemma 4.2.10. The vector u= (u1,u2, . . . ,uNL
)⊤ ∈ RNL Nt for NL−1,Nt ∈ N and

NL = 2NL−1 can be written as

u=
NL−1

∑
k=1−NL−1

ψL(θk,U) = ∑
θk∈ΘL

ψL(θk,U),

with the vectors

ψL
n (θk,U) :=UΦL

n(θk), ΦL
n(θk)[ℓ] :=ϕ(θk)[n] for n = 1, . . . ,NL and ℓ= 1, . . . ,Nt

and the coefficent matrix

U = diag(ûk[1], . . . , ûk[Nt ]) ∈ CNt×Nt

with the coefficients

ûk[ℓ] :=
1

NL

NL

∑
i=1

ui[ℓ]ϕ(−θk)[i] for k = 1−NL−1, . . . ,NL−1.

Proof. For a fixed index ℓ ∈ {1, . . . ,Nt} we apply Theorem 4.2.8 to the vector
ũℓ ∈ RNL with ũℓ[n] := un[ℓ], n = 1, . . . ,NL. Further by using the definition of
the coefficient ûk[ℓ] and the definition of the vector ψL

n (θk) the statement of the
lemma follows with

un[ℓ] = ũℓ[n] =
NL−1

∑
k=1−NL−1

ûk[ℓ]ϕ(θk)[n]
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=
NL−1

∑
k=1−NL−1

ûk[ℓ]Φ
L
n(θk)[ℓ]

=
NL−1

∑
k=1−NL−1

U [ℓ, ℓ]ΦL
n(θk)[ℓ]

=
NL−1

∑
k=1−NL−1

ψL
n (θk,U)[ℓ] = ∑

θk∈ΘL

ψL
n (θk,U)[ℓ].

Remark 4.2.11. Note that in Lemma 4.2.10 the vector ψL =ψL(θk,U) depends
on the frequency θk ∈ ΘL and on the coefficent matrix U ∈ CNt×Nt , where the
coefficent matrix U can be computed via the given vector u= (u1,u2, . . . ,uNL

)⊤.
In the following we will study the mapping properties of the system matrix LτL

and
the smoother Sν

τL
with respect to the vector ψL = ψL(θk,U). Since the coefficent

matrix U will be fixed and since we have to study the mapping properties of LτL

and Sν
τL

with respect to the frequencies θk ∈ΘL we will use the simpler notation

ψL = ψL(θk). The dependence of the vector ψL with the coefficent matrix U is
given in the following definition.

Definition 4.2.12 (Fourier space). For NL,Nt ∈ N let the vector ΦL(θk) ∈ CNtNL

be defined as in Lemma 4.2.10 with frequency θk ∈ΘL. Then we define the linear
space of Fourier modes with frequency θk as

ΨL(θk) := span
{
ΦL(θk)

}

=
{
ψL(θk) ∈ CNtNL :ψL

n (θk) =UΦL
n(θk), n = 1, . . . ,NL and U ∈ CNt×Nt

}
.

Before we can study the mapping properties of the system matrix LτL
and the

smoother Sν
τL

we have to prove the following lemma.

Lemma 4.2.13. For NL,Nt ∈ N let ψL(θk) ∈ΨL(θk). Then the following shifting
equality holds true

ψL
n−1(θk) = e−iθkψL

n (θk) for n = 2, . . . ,NL.

Proof. By using the definition of the blockwise Fourier mode ψL(θk) ∈ΨL(θk)
we get the statement of the lemma for n = 2, . . . ,NL with

ψL
n−1(θk)[ℓ] =

Nt

∑
i=1

U [ℓ, i]ΦL
n−1(θk)[i] =

Nt

∑
i=1

U [ℓ, i]ϕ(θk)[n−1] =
Nt

∑
i=1

U [ℓ, i]ei(n−1)θk

= e−iθk

Nt

∑
i=1

U [ℓ, i]einθk = e−iθk

Nt

∑
i=1

U [ℓ, i]ϕ(θk)[n]
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= e−iθk

Nt

∑
i=1

U [ℓ, i]ΦL
n(θk)[i] = e−iθkψL

n (θk)[ℓ]

for ℓ= 1, . . . ,Nt .

For the system matrix LτL
we are now able describe the Fourier symbol.

Lemma 4.2.14. For NL,Nt ∈N let ψL(θk) ∈ΨL(θk). Then for the system matrix
LτL

as defined in (4.14) there holds
(
LτL
ψL(θk)

)
n
= (KτL

+MτL
−λnNτL

)ψL
n (θk) for n = 1, . . . ,NL,

with

λn :=

{
e−iθk n 6= 1,

0 n = 1.

Proof. By using the representation (4.14) of the matrix LτL
we get for a fixed

but arbitrary j = 1, . . . ,Nt

(
LτL
ψL(θk)

)
n
[ j] =

NL

∑
m=1

Nt

∑
i=1

(
INL

[n,m](KτL
+MτL

)[ j, i]+UNL
[n,m]NτL

[ j, i]
)
ψL

m(θk)[i]

=
Nt

∑
i=1

(KτL
+MτL

)[ j, i]ψL
n(θk)[i]+

Nt

∑
i=1

NτL
[ j, i]

NL

∑
m=1

UNL
[n,m]ψL

m(θk)[i].

With the definition of the matrix UNL
we obtain for n 6= 1

=
Nt

∑
i=1

(KτL
+MτL

)[ j, i]ψL
n(θk)[i]−

Nt

∑
i=1

NτL
[ j, i]ψL

n−1(θk)[i].

Applying Lemma 4.2.13 gives the statment of this lemma for n 6= 1

=
Nt

∑
i=1

(
KτL

+MτL
− e−iθkNτL

)
[ j, i]ψL

n(θk)[i]

=
((

KτL
+MτL

−λnNτL

)
ψL

n (θk)
)
[ j].

For n = 1 we observe that

NL

∑
m=1

UNL
[n,m]ψL

m(θk)[i] = 0,

and hence we conclude that
(
LτL
Φk
)

n
[ j] =

((
KτL

+MτL

)
ψL

n (θk)
)
[ j].
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Remark 4.2.15. Lemma 4.2.14 shows, that the system matrix LτL
is not a self

mapping on the Fourier space ΨL(θk), i.e.

LτL
: ΨL(θk)9ΨL(θk),

since KτL
+MτL

−λnNτL
∈CNt×Nt is not constant with respect to n. But for periodic

solutions, see (4.18) we have due to the circulant matrix ŨN, see (4.19)

KτL
+MτL

−λnNτL
= KτL

+MτL
− e−iθk NτL

,

which implies that LτL
is a self mapping on the Fourier space ΨL(θk) in this case.

Since λn = e−iθk for all n 6= 1 the mapping LτL
is closely related to the case with

periodic solutions.

With the next lemma we will compute the Fourier symbol for the smoother Sν
τL

for ν = 1.

Lemma 4.2.16. For NL,Nt ∈ N let ψL(θk) ∈ΨL(θk). Then for the smoother Sν
τL
,

there holds for ν = 1 and ωt ∈ R

(
S1

τL
ψL(θk)

)
n
= Snψ

L
n (θk) for n = 1, . . . ,NL,

with the local iteration matrix

Sn := (1−ωt)INt
+λnωt(KτL

+MτL
)−1NτL

, λn :=

{
e−iθk n 6= 1,

0 n = 1.

Proof. Let ψL(θk) ∈ΨL(θk). Then for n = 1, . . . ,NL we obtain
(
S1

τL
ψL(θk)

)
n
=
((

INLNt
−ωtD

−1
τL
LτL

)
ψL(θk)

)
n
.

Since D−1
τL

is a block diagonal matrix we obtain

=ψL
n (θk)−ωt(KτL

+MτL
)−1
(
LτL
ψL(θk)

)
n
.

Applying Lemma 4.2.14 leads to the statement of this lemma with

=ψL
n (θk)−ωt(KτL

+MτL
)−1 (KτL

+MτL
−λnNτL

)ψL
n (θk)

=
(
(1−ωt)INt

+λnωt(KτL
+MτL

)−1NτL

)
ψL

n (θk).

To analyze the smoothing behaviour of the damped block Jacobi smoother (4.15)
we have to estimate the spectral radius of the local iteration matrix

Sn = (1−ωt)INt
+λnωt(KτL

+MτL
)−1NτL

∈ CNt×Nt .

Hence, we have to compute the eigenvalues of the matrix (KτL
+MτL

)−1NτL
.
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Theorem 4.2.17. The eigenvalues of the matrix (KτL
+MτL

)−1NτL
∈ RNt×Nt are

given by

σ((KτL
+MτL

)−1NτL
) = {0,α(τL)},

where α(τL) = R(−τL), and R(z) is the A-stability function of the given discon-
tinuous Galerkin time stepping scheme.

Proof. First we notice, that the eigenvalues of the matrix (KτL
+MτL

)−1NτL

are independent of the basis {ψk}Nt

k=1
which is used to compute the matrices

KτL
,MτL

and NτL
. Hence we will use special basis functions {ψk}Nt

k=1 where the
eigenvalues of the matrix (KτL

+MτL
)−1NτL

are easy to compute. In particular we
use polynomials ψk ∈ Pp(0,τL) with the property

ψk(τL) =

{
1 k = 1,

0 k 6= 1
for k = 1, . . . ,Nt .

In what follows, we will study the A-stability of the discontinuous Galerkin dis-
cretization. We therefore consider for λ ∈C with ℜ(λ )< 0 the model problem

∂tu(t) = λu(t), t ∈ (0,τL) and u(0) = u0.

This leads to the linear system

(KτL
−λMτL

)u1 = u0NτL
v,

with the vector v[1] = 1 and v[k] = 0 for k = 2, . . . ,Nt and with the solution vector
u1 ∈ RNt for the first step. Therefore the value at the endpoint τL of the discrete
solution is given by

u1 = u0v
⊤ (KτL

−λMτL
)−1

NτL
v ∈ R.

Hence the stability function R(z) with z = λτL is given by

R(z(λ ,τL)) = v
⊤ (KτL

−λMτL
)−1

NτL
v. (4.20)

Multiplying the equation (4.20) with the vector v results in

(KτL
−λMτL

)−1
NτL
v = R(z(λ ,τL))v.

For λ = −1 this implies, that the vector v is an eigenvector with eigenvalue
α(τL) = R(−τL) of the matrix (KτL

−λMτL
)−1

NτL
. Since the matrix NτL

has rank
one, all the other eigenvalues have to be zero.
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Remark 4.2.18. Theorem 4.2.17 holds true for any single step method. Hence
any single step method is A-stable if and only if

|R(z(λ ,τL))|= ρ((KτL
−λMτL

)−1
NτL

)< 1 for all z ∈ C with ℜ(z)< 0.

Now we are able to compute the spectral radius of the local iteration matrix
Sn = (1−ωt)INt

+λnωt(KτL
+MτL

)−1NτL
∈ CNt×Nt .

Lemma 4.2.19. Let pt ∈ N0. Then for the smoother Sν
τL

the spectral radius of

the local iteration matrix Sn = (1−ωt)INt
+λnωt(KτL

+MτL
)−1NτL

is given by

ρ (Sn) =

{
|1−ωt | n = 1,

max
{
|1−ωt | , Ŝ(ωt ,α(τL),θk)

}
n 6= 1,

with
(
Ŝ(ωt ,α,θk)

)2
:= (1−ωt)

2 +2ωt(1−ωt)α cos(θk)+α2ω2
t ,

where α = α(t) is the (pt , pt + 1) subdiagonal Padé approximation of the expo-
nential function e−t .

Proof. For n = 1 we have λn = 0 and therefore the eigenvalues are given by

σ(Sn) := σ
(
(1−ωt)INt

+λnωt(KτL
+MτL

)−1NτL

)
= {1−ωt} .

Hence the spectral radius is given by ρ(Sn)= |1−ωt |. For n 6= 1 we have λn = e−iθk

and since INt
is the identity matrix the eigenvalues of the local iteration matrix

Sn are given by

σ(Sn) = 1−ωt + e−iθk ωtσ((KτL
+MτL

)−1NτL
).

With Theorem 4.2.17 we are now able to compute the spectrum of the iteration
matrix Sn

σ(Sn) =
{

1−ωt ,1−ωt + e−iθk ωtα(τL)
}
.

Hence we obtain the spectral radius

ρ(Sn) = max
{
|1−ωt | ,

∣∣∣1−ωt + e−iθkωtα(τL)
∣∣∣
}
.

Simple calculations lead to
∣∣∣1−ωt + e−iθkωtα(τL)

∣∣∣
2

= (1−ωt)
2 +2ωt(1−ωt)α(τL)cos(θk)+(α(τL))

2ω2
t ,

which completes the proof.

To prove the convergence of the block Jacobi smoother introduced in (4.15), we
will estimate the spectral radius of the local iteration matrix Sn ∈CNt×Nt with the
following lemma.
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Lemma 4.2.20. Let pt ∈ N0 and ωt ∈ (0,1], then the spectral radius of the local
iteration matrix Sn = (1−ωt)INt

+λnωt(KτL
+MτL

)−1NτL
is strictly bounded by one,

i.e.

ρ (Sn)< 1.

Proof. In view of Lemma 4.2.19 we have to estimate for a fixed n ∈ {1, . . . ,NL}
the function

max
{
|1−ωt | , Ŝ(ωt ,τL,θk)

}
.

For ωt ∈ (0,1] we clearly have that |1−ωt | < 1. Furthermore we can estimate
Ŝ(ωt ,τL,θk) by

∣∣(Ŝ(ωt ,τL,θk)
)∣∣2 =

∣∣(1−ωt)
2 +2ωt(1−ωt)α(τL)cos(θk)+(α(τL))

2ω2
t

∣∣

≤ (1−ωt)
2 +2ωt(1−ωt) |α(τL)|+ |α(τL)|2 ω2

t .

Since α(τL) = R(−τL) is the A-stability function for z =−τL, see Theorem 4.2.17,
and by using the fact that the discontinuous Galerkin scheme is A-stable, see
Corollary 4.2.7, we have |α(τL)|< 1 for τL > 0. Hence we obtain the statment of
this lemma with

< (1−ωt)
2 +2ωt(1−ωt)+ω2

t

= (1−ωt +ωt)
2 = 1.

Theorem 4.2.21. For any damping parameter ωt ∈ (0,1] the block Jacobi smooth-
er introduced in (4.15) converges for any initial guess x0 to the exact solution
of

LτL
x= f .

Proof. For an arbitrary but fixed n ∈ {1, . . . ,NL} the n-th error component e1
n

of the first damped block Jacobi iteration is given by

e1
n =

(
S1

τL
e0
)

n
,

with the initial error e0 = x−x0. In what follows, we will transform the initial
error e0 into the frequency domain by applying Lemma 4.2.10

=

(
S1

τL

(

∑
θk∈ΘL

ψL(θk)

))

n

,
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where the Fourier vectors ψL(θk), θk ∈ ΘL depend on the constant coefficent
matrix U =U(e0) ∈ CNt×Nt resulting from the initial vector e0. Since Sν

τL
, ν = 1,

is a linear operator we have

= ∑
θk∈ΘL

(
S1

τL
ψL(θk)

)
n
.

Using Lemma 4.2.16 leads to

= ∑
θk∈ΘL

(
(1−ωt)INt

+λnωt(KτL
+MτL

)−1NτL

)
ψL

n (θk)

= ∑
θk∈ΘL

Snψ
L
n (θk).

Further computations show that for n ≥ ν we have

Sν
n =

(
(1−ωt)INt

+ e−iθkωt(KτL
+MτL

)−1NτL

)ν
.

As the spectral radius ρ
(
(1−ωt)INt

+ e−iθk ωt(KτL
+MτL

)−1NτL

)
is strictly smaller

then one, see Lemma 4.2.20, we conclude, that Sν
n contracts as ν → n. Further-

more for n < ν the local iteration matrix Sν
n is given by

Sν
n =

n−1

∑
j=0

(
ν

ν − j

)
(1−ωt)

ν− j
(

ωte
−iθk(KτL

+MτL
)−1NτL

) j

.

Hence we can estimate the spectral radius by

ρ(Sν
n ) = ρ

(
n−1

∑
j=0

(
ν

ν − j

)
(1−ωt)

ν− j
(

ωte
−iθk(KτL

+MτL
)−1NτL

) j

)

≤
n−1

∑
j=0

(
ν

ν − j

)
(1−ωt)

ν− jω
j

t ρ

((
e−iθk(KτL

+MτL
)−1NτL

) j
)

≤
n−1

∑
j=0

(
ν

ν − j

)
(1−ωt)

ν− jω
j

t

[
ρ
(
(KτL

+MτL
)−1NτL

)] j

≤
ν

∑
j=0

(
ν

ν − j

)
(1−ωt)

ν− jω
j

t

[
ρ
(
(KτL

+MτL
)−1NτL

)] j

=
[
1−ωt +ωtρ

(
(KτL

+MτL
)−1NτL

)]ν
.

Since ρ
(
(KτL

+MτL
)−1NτL

)
= |α(τL)|< 1, see Theorem 4.2.17 we conclude that

∣∣1−ωt +ωtρ
(
(KτL

+MτL
)−1NτL

)∣∣< 1.

Hence we obtain
Sν

n → 0 as ν → ∞.
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This implies, that the n-th component eν
n of the ν-th Jacobi iteration converges

to zero as ν tends to infinity, i.e.

eν
n → 0 for ν → ∞.

Hence xν → x as the number of iterations ν tends to infinity.

Remark 4.2.22. In Theorem 4.2.21 the uniform convergence of the damped block
Jacobi smoother with respect to the blocks is proven for ωt ∈ (0,1]. Otherwise, to
prove convergence of the smoother one can simply compute the spectral radius of
the iteration matrix

SτL
=




(1−ωt)INt

ωt(KτL
+MτL

)−1NτL
(1−ωt)INt

. . .
. . .

ωt(KτL
+MτL

)−1NτL
(1−ωt)INt


 ,

which simply is
ρ(SτL

) = |1−ωt | .
Hence the damped block Jacobi smoother converges also for a damping parameter

ωt ∈ (0,2).

Choosing a damping parameter ωt ∈ (1,2) leads to a convergent smoother but not
to a uniform convergent one. This means that the error can grow for some blocks
if we use a damping parameter ωt ∈ (1,2). This implies that for a good smoother
we have to use a damping parameter ωt ∈ (0,1].

For a convergent multigrid scheme we need that the applied smoother reduces the
error with respect to the high frequencies Θ high fast. In view of Theorem 4.2.21
this motivates the following definition.

Definition 4.2.23 (Smoothing factor). For the damped block Jacobi iteration
introduced in (4.15) we define the smoothing factor as

µS := max
{

ρ (Sn) : θk ∈Θ
high
L and n ∈ {1, . . . ,NL}

}

with

Sn = (1−ωt)INt
+λnωt(KτL

+MτL
)−1NτL

and λn =

{
e−iθk n 6= 1,

0 n = 1.

To analyze the smoothing behavior, we have to prove the following lemma for an
arbitrary α ∈ R+.
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Lemma 4.2.24. Let α ∈ R with α ≥−1. Then for the function

(
Ŝ(ωt ,α,θk)

)2
= (1−ωt)

2 +2ωt(1−ωt)α cos(θk)+α2ω2
t

the following min-max principle holds true

inf
ωt∈(0,1]

sup
θk∈[ π

2 ,π]

Ŝ(ωt ,α,θk) =

{
α√

1+α2
α ≥ 0,

|α| α < 0
∈ [0,1],

with the optimal parameter

ω∗
t =

{
1

1+α2 α ≥ 0,

1 α < 0
and θ∗ =

{
π
2

α ≥ 0,

π α < 0.

Proof. Since Ŝ(ωt ,α,θk)≥ 0 we will study the function

(
Ŝ(ωt ,α,θk)

)2
= (1−ωt)

2 +2ωt(1−ωt)α cos(θk)+α2ω2
t .

For ωt ∈ (0,1] only the terms with α and cos(θk) can get negative. Hence we first
consider the case when α is positive, i.e. α ≥ 0. In this case we simply have

argsup
θk∈[ π

2 ,π]

Ŝ(ωt ,α,θk) =
π

2
for ωt ∈ (0,1].

This gives for the case α ≥ 0

inf
ωt∈(0,1]

sup
θk∈[ π

2 ,π]

Ŝ(ωt ,α,θk) = inf
ωt∈(0,1]

Ŝ(ωt ,α,
π

2
).

Since

(
Ŝ(ωt ,α,

π

2
)
)2

= (1−ωt)
2 +α2ω2

t ,

we find that

arginf
ωt∈(0,1]

Ŝ(ωt ,α,
π

2
) =

1

1+α2
and Ŝ(

1

1+α2
,α,

π

2
) =

α√
1+α2

.

For the case α < 0 we have

argsup
θk∈[ π

2 ,π]

Ŝ(ωt ,α,θk) = π for ωt ∈ (0,1].

Because of

(
Ŝ(ωt ,α,π)

)2
= (1−ωt)

2 −2ωt(1−ωt) |α|+ |α|2 ω2
t = (1−ωt(1+ |α|))2
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Figure 4.4: Optimal damping parameter ω∗ =ω∗(τL) for different polynomial de-
grees pt and different time step sizes τL.

we find that

arginf
ωt∈(0,1]

Ŝ(ωt ,α,π) = 1 and Ŝ(1,α,π) = |α| ,

which completes the proof.

With the next lemma we will show, that the smoothing factor µS is strictly
bounded by one, if we use the optimal damping parameter ω∗

t = ω∗
t (τL).

Lemma 4.2.25. For the optimal choice of the damping parameter

ω∗
t (τL) :=

{
1

1+(α(τL))
2 α(τL)≥ 0,

1 α(τL)< 0

the smoothing factor µS of the damped block Jacobi iteration (4.15) is bounded by

µS ≤
1√
2
.
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Proof. In view of Lemma 4.2.19 we have to estimate

max
θk∈Θ

high
L

{
|1−ω∗

t | , Ŝ(ω∗
t ,α(τL),θk)

}

with

(
Ŝ(ω∗

t ,α,θk)
)2

:= (1−ω∗
t )

2 +2ω∗
t (1−ω∗

t )α cos(θk)+α2(ω∗
t )

2.

Since Ŝ(ω∗
t ,α,θk) is symmetric with respect to the frequencies θk, we only have to

estimate the function Ŝ(ω∗
t ,α,θk) for the frequencies θk ∈Θ

high
L ∩ [π

2
,π ]. Applying

Lemma 4.2.24 for α = α(τL) gives the estimate

max
θk∈Θ

high
L

Ŝ(ω∗
t ,α(τL),θk)≤ sup

θk∈[ π
2 ,π]

Ŝ(ω∗
t ,α(τL),θk) =





α(τL)√
1+(α(τL))

2
α(τL)≥ 0,

|α(τL)| α(τL)< 0.

(4.21)

Since α(τL) is the (pt , pt +1) subdiagonal Padé approximation of the exponential
function, see Lemma 4.2.19, we have

−0.0980762 ≈ 5−3
√

3

2
≤ α(τL)≤ 1 for τL ≥ 0.

Combining this estimate with the results of (4.21) we end up with

max
θk∈Θ

high
L

Ŝ(ω∗
t ,α,θk)≤

{
1√
2

α ≥ 0,

3
√

3−5
2

α < 0
≤ 1√

2
.

Simple calculations show that

sup
θk∈[ π

2 ,π]

Ŝ(ω∗
t ,α,θk)≥ |1−ω∗

t | ,

which completes the proof.

Remark 4.2.26. Because α(τL) is the (pt , pt +1) subdiagonal Padé approxima-
tion of the exponential function e−t we have that α(τL)→ 1 as τL → 0 and hence
ω∗ ≈ 1

2
for τL close to zero, see also Figure 4.4. It turns out, that the estimate

of Lemma 4.2.25 is also true for a uniform damping parameter ω∗ = 1
2
. But for

large time steps τL a better smoothing behaviour is obtained when the optimal
damping parameter ω∗ = ω∗(τL) as given in Lemma 4.2.25 is used.

To show the convergence behaviour of the damped block Jacobi smoother (4.15)
with respect to the time step size τL, we will prove the following lemma for an
arbitrary α ∈ R.
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Lemma 4.2.27. For α ∈ R and the optimal choice for the damping parameter

ω∗
t =

{
1

1+α2 α ≥ 0,

1 α < 0

the following estimate holds true

max
θk∈ΘL

Ŝ(ω∗
t ,α,θk)≤

|α|(1+ |α|)
1+α2

.

Proof. For the optimal damping parameter ω∗
t we have

(
Ŝ(ω∗

t ,α,θk)
)2

=
α2

1+α2
+

2α3

(1+α2)2
cos(θk).

For the case α ≥ 0 we therefore obtain

argsup
θk∈[0,π]

Ŝ(ω∗
t ,α,θk) = 0.
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Thus we have

(
Ŝ(ω∗

t ,α,0)
)2

=
α2 +α4 +2α3

(1+α2)2
=

α2(1+α)2

(1+α2)2
.

For the case α < 0 we find that

argsup
θk∈[0,π]

Ŝ(ω∗
t ,α,θk) = π

and thus
(
Ŝ(ω∗

t ,α,0)
)2

=
α2 +α4 +2 |α|3

(1+α2)2
=

α2(1+ |α|)2

(1+α2)2
.

The statement of this lemma follows with the fact that

max
θk∈ΘL

Ŝ(ω∗
t ,α,θk)≤ sup

θk∈[0,π]
Ŝ(ω∗

t ,α,θk).

Remark 4.2.28. For sufficiently small values of α = α(τL), i.e. for sufficiently
large time step sizes τL it is shown in Lemma 4.2.27, that the convergence factor
Ŝ(ω∗

t ,α(τL),θ
∗
k ) of the block Jacobi smoother (4.15) is close to zero, see also

Figure 4.5. Hence the block Jacobi smoother (4.15) is already a very good iterative
solver.

Remark 4.2.29. All the estimates above are valid for arbitrary polynomial de-
grees pt ∈ N0. For the limit case pt → ∞ the function α(τL) is given by

α(τL) = e−τL ,

since α(t) is the (pt , pt +1) subdiagonal the Padé approximation of the exponen-
tial function e−t . Hence, the choice of the best damping parameter ω∗ and the
smoothing factors converge also to a limit function.

4.2.2 Two-grid analysis

In this subsection we will analyze the two-grid cycle for solving the linear system
(4.14). For the (k+1)-th two-grid iteration the error is given by

ek+1 =MτL
ek := Sν2

τL

[
I −PLL−1

2τL
RLLτL

]
Sν1

τL
ek. (4.22)

In what follows, we will apply the local Fourier mode analysis to analyze the
local convergence behaviour of the two-grid iteration matrix MτL

. This type of
analysis will be exact, if we consider periodic solutions, see (4.18). To do so, we
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will compute the Fourier symbol of the two-grid iteration matrix MτL
. In Lemma

4.2.14 we already derived the local Fourier symbol for the system matrix LτL
as

L̂τL
(θk) := KτL

+MτL
− e−iθk NτL

∈ CNt×Nt .

Whereas the local Fourier symbol for the smoother Sν
τL

is given by

Ŝν
τL
(θk,ωt) :=

(
(1−ωt)INt

+ e−iθk ωt(KτL
+MτL

)−1NτL

)ν
∈ CNt×Nt ,

see Lemma 4.2.16. For the local parts this motivates to use the so called stencil
notation for the upcoming operators. For the system matrix LτL

we therefore
have the stencil

L̃τL
:=
[
−NτL

KτL
+MτL

0
]
,

and one smoothing iteration Sν
τL
, ν = 1, is given in stencil notation by

S̃1
τL

:=
[
−ωt(KτL

+MτL
)−1NτL

(1−ωt)INt
0
]
.

For periodic solutions this leads to the following mapping properties

LτL
: ΨL(θk)→ΨL(θk) and Sν

τL
: ΨL(θk)→ΨL(θk). (4.23)

In what follows, we will analyze the mapping properties of the restriction and the
prolongation operator. To do so, we first have to prove the following lemma.

Lemma 4.2.30. The mapping γ : Θ low
L →Θ

high
L with

γ(θk) := θk − sign(θk)π

is a one to one mapping.

Proof. Let θk ∈Θ low
L . By definition we have

θk =
2kπ

NL
with k ∈

{
1− NL

4
, . . . ,

NL

4

}
.

For the mapping γ we then obtain

γ(θk) = θk − sign(θk)π =
2kπ

NL
− sign(θk)π =

2(k− sign(θk)
NL

2
)π

NL
=

2k̂π

NL
,

with

k̂ = k− sign(θk)
NL

2
∈
{

1− NL

2
, . . . ,−NL

4

}
∪
{

NL

4
+1, . . . ,

NL

2

}
.

This implies that γ(θk)∈Θ
high
L and that sign(γ(θk))=−sign(θk). Hence we have

γ(γ(θk)) = γ(θk)− sign(γ(θk))π = γ(θk)+ sign(θk)π = θk.

which completes the proof.
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Lemma 4.2.31. The vector u= (u1,u2, . . . ,uNL
)⊤ ∈ RNL Nt for NL−1,Nt ∈ N and

NL = 2NL−1 can be written as

u= ∑
θk∈θ low

L

[
ψL(θk)+ψ

L(γ(θk))
]

where the vector ψL(θk) ∈ CNtNL is defined as in Lemma 4.2.10.

Proof. Applying Lemma 4.2.10 and Lemma 4.2.30 proves the statement of this
lemma with

u= ∑
θk∈ΘL

ψL(θk) = ∑
θk∈Θ low

L

ψL(θk)+ ∑
θk∈Θ

high
L

ψL(θk)

= ∑
θk∈Θ low

L

ψL(θk)+ ∑
θk∈Θ low

L

ψL(γ(θk)) = ∑
θk∈Θ low

L

[
ψL(θk)+ψ

L(γ(θk))
]
.

Lemma 4.2.31 motivates the following definition.

Definition 4.2.32 (Space of harmonics). For NL,Nt ∈N and for a low frequency
θk ∈Θ low

L let the vector ΦL(θk) ∈ CNtNL be defined as in Lemma 4.2.10. Then the
linear space of harmonics with frequency θk is given by

EL(θk) := span
{
ΦL(θk),Φ

L(γ(θk))
}

=
{
ψL(θk) ∈ CNtNL :ψL

n (θk) =U1Φ
L
n(θk)+U2Φ

L
n(γ(θk)),

n = 1, . . . ,NL and U1,U2 ∈ CNt×Nt
}
.

Under the assumption of periodic solutions the mappings (4.23) imply the fol-
lowing mapping properties

LτL
: EL(θk)→EL(θk) and Sν

τL
: EL(θk)→EL(θk), (4.24)

with the mapping for the system matrix LτL

(
U1

U2

)
7→
(
L̂τL

(θk) 0

0 L̂τL
(γ(θk))

)(
U1

U2

)
(4.25)

and with the mapping for the smoother Sν
τL

(
U1

U2

)
7→
(
Ŝν

τL
(θk,ωt) 0

0 Ŝν
τL
(γ(θk),ωt)

)(
U1

U2

)
. (4.26)

In what follows, we will analyze the two-grid cycle on the space of harmonics
EL(θk) for frequencies θk ∈ Θ low

L . To do so, we further have to investigate the
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mapping properties of the restriction and prolongation operators RL and PL.
The restriction operator is given by

RL :=




R1 R2

R1 R2

. . .
. . .

R1 R2


 ∈ RNtNL×NtNL−1 , (4.27)

whereas the prolongation operator is given by

PL :=




R⊤
1

R⊤
2

R⊤
1

R⊤
2

. . .

. . . R⊤
1

R⊤
2




= (RL)⊤ ∈ RNtNL−1×NtNL , (4.28)

with the local prolongation matrices

R⊤
1 := M−1

τL
M̃1

τL
and R⊤

2 := M−1
τL

M̃2
τL
,

where for basis functions {ψk}Nt

k=1 ⊂ Ppt (0,τL) and {ψ̃k}Nt

k=1 ⊂ Ppt (0,2τL) the local
projection matrices from coarse to fine grids are defined as

M̃1
τL
[k, ℓ] :=

τL∫

0

ψ̃ℓ(t)ψk(t)dt and M̃2
τL
[k, ℓ] :=

2τL∫

τL

ψ̃ℓ(t)ψk(t + τ)dt

for k, ℓ = 1, . . . ,Nt . To prove the mapping properties of the restriction operator
RL we need the following lemma.

Lemma 4.2.33. Let ψL(θk) ∈ΨL(θk) for θk ∈ΘL. Then there holds

ψL
2n(θk) = ψL

n (2θk),

for n = 1, . . . ,NL−1.

Proof. Let ψL(θk)∈ΨL(θk). Hence we have ψ
L
n (θk) =UΦL

n(θk) for n = 1, . . . ,NL.
Then for ΦL

2n(θk) with n ∈ {1, . . . ,NL−1} we obtain for ℓ= 1, . . . ,Nt that

ΦL
2n(θk)[ℓ] = ϕ2n(θk) = ei2nθk =ϕn(2θk) =Φ

L
n(2θk)[ℓ].

Hence we conclude the statement of this lemma with

ψL
2n(θk) =UΦL

2n(θk) =UΦL
n(2θk) =ψ

L
n (2θk).

The next lemma shows the mapping property of the restriction operator.
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Lemma 4.2.34. Let θk ∈ Θ low
L . Then the following mapping property for the

restriction operator RL holds true

RL : EL(θk)→ΨL−1(2θk),

with the mapping
(

U1

U2

)
7→
(
R̂(θk) R̂(γ(θk))

)(U1

U2

)
∈ CNt×Nt

and the Fourier symbol

R̂(θk) := e−iθk R1 +R2.

Proof. Let ψL(θk) ∈ EL(θk) for some frequency θk ∈Θ low
L with the linear com-

bination ψL
n (θk) = U1Φ

L
n(θk)+U2Φ

L
n(γ(θk)). Then for the Fourier mode ΦL(θℓ)

with frequency θℓ ∈ΘL there holds for a fixed n ∈ {1, . . . ,NL−1} that

(
RLΦL(θℓ)

)
n
= R1Φ

L
2n−1(θℓ)+R2Φ

L
2n(θℓ).

Since ΦL(θℓ) ∈ΨL(θℓ) we further obtain by using Lemma 4.2.13

=
[
e−iθℓR1 +R2

]
ΦL

2n(θℓ).

Applying Lemma 4.2.33 gives

=
[
e−iθℓR1 +R2

]
ΦL−1

n (2θℓ).

Using this result for the vector ψL(θk) leads to

(
RLψL(θk)

)
n
= R̂(θk)U1Φ

L−1
n (2θk)+ R̂(γ(θk))U2Φ

L−1
n (2γ(θk)).

For i = 1, . . . ,Nt we further have that

ΦL−1
n (2γ(θk))[i] = ϕn(2γ(θk)) = ein2γ(θk) = ein2θk−isign(θk)2π

= ein2θk = ϕn(2θk) =Φ
L−1
n (2θk)[i].

Hence we obtain

(
RLψL(θk)

)
n
=
[
R̂(θk)U1 + R̂(γ(θk))U2

]
ΦL−1

n (2θk),

which completes the proof.

For the prolongation operator the mapping property will be proven in the follow-
ing lemma.



98 4 Space-time multigrid methods

Lemma 4.2.35. Let θk ∈ Θ low
L . Then the following mapping property for the

prolongation operator PL holds true

PL : ΨL−1(2θk)→EL(θk),

with the mapping

U 7→
(

P̂(θk)

P̂(γ(θk))

)
U ∈ C2Nt×Nt

and the Fourier symbol

P̂(θk) :=
1

2

[
eiθkR⊤

1 +R⊤
2

]
.

Proof. For θk ∈Θ low
L let ψL−1(2θk) ∈ΨL−1(2θk) with ψ

L−1
n̂ (2θk) =UΦL−1

n̂ (2θk)
for n̂ ∈ {1, . . . ,NL−1}. We then define ψL(θk) ∈ΨL(θk) as ψL

n (θk) = UΦL
n(θk) for

n ∈ {1, . . . ,NL}. Then we have
(
PLψL−1(2θk)

)
2n̂−1

= R⊤
1 ψ

L−1
n̂ (2θk).

With Lemma 4.2.33 we further obtain

= R⊤
1 ψ

L
2n̂(θk).

Applying Lemma 4.2.13 results in

= eiθkR⊤
1 ψ

L
2n̂−1(θk).

Similar computations as above give
(
PLψL−1(2θk)

)
2n̂

= R⊤
2 ψ

L−1
n̂ (2θk) = R⊤

2 ψ
L
2n̂(θk).

Hence we have for n ∈ {1, . . . ,NL}

(
PLψL−1(2θk)

)
n
=

{
eiθk R⊤

1 ψ
L
n (θk) n odd,

R⊤
2 ψ

L
n (θk) n even

∈ CNt .

If the image of the prolongation operator PL should be contained in EL(θk) we
therefore have to fulfil the following equations

U1Φ
L
n(θk)+U2Φ

L
n(γ(θk)) = eiθk R⊤

1 UΦL
n(θk) for n odd,

U1Φ
L
n(θk)+U2Φ

L
n(γ(θk)) = R⊤

2 UΦL
n(θk) for n even

(4.29)

for n = 1, . . . ,NL. Further computations show for ℓ= 1, . . . ,Nt that

ΦL
n(γ(θk))[ℓ] = ϕn(γ(θk)) = einγ(θk) = einθk−isign(θk)nπ =ϕn(θk)e

isign(θk)nπ
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=ΦL
n(θk)[ℓ]

{
1 n even,

−1 n odd.

Hence the equations (4.29) are equivalent to the system of linear equations

U1 −U2 = eiθkR⊤
1 U,

U1 +U2 = R⊤
2 U.

Solving for U1 and U2 results in

U1 =
1

2

[
eiθkR⊤

1 +R⊤
2

]
= P̂(θk)U,

U2 =
1

2

[
−eiθk R⊤

1 +R⊤
2

]
=

1

2

[
ei(θk−sign(θk)π)R⊤

1 +R⊤
2

]

=
1

2

[
eiγ(θk)R⊤

1 +R⊤
2

]
= P̂(γ(θk))U,

which completes the proof.

Remark 4.2.36. In view of Lemma 4.2.34 and Lemma 4.2.35 the stencil nota-
tions for the restriction and prolongation operator RL and PL are given by

R̃L :=
[
R1 R2 0

]
and P̃L :=

1

2

[
0 R⊤

2 R⊤
1

]
.

For the two-grid operator MτL
it now remains to prove the mapping property

of the coarse grid operator L−1
2τL

. Under the assumption of periodic solutions we
have for θk ∈ΘL−1 by using (4.23) that

L−1
2τL

: ΨL−1(θk)→ΨL−1(θk),

with the Fourier symbol

L̂−1
2τL

(θk) =
(

KτL
+MτL

− e−iθk NτL

)−1

= (L̂2τL
(θk))

−1 ∈ CNt×Nt .

Lemma 4.2.37. The frequency mapping

β : Θ low
L →ΘL−1 with θk 7→ 2θk

is a one to one mapping.

Proof. For θk ∈Θ low
L we obtain

β (θk) = 2θk = 2
2kπ

NL
=

2kπ
NL

2

=
2kπ

NL−1
∈ΘL−1.
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The proof of this lemma follows by using the identity

k ∈
{

1− NL

4
, . . . ,

NL

4

}
=

{
1− NL−1

2
, . . . ,

NL−1

2

}
.

With Lemma 4.2.37 we now conclude for θk ∈Θ low
L the following mapping prop-

erty of the coarse grid operator

L−1
2τL

: ΨL−1(2θk)→ΨL−1(2θk). (4.30)

We are now able to prove the following theorem for the two-grid operator MτL
.

Theorem 4.2.38. Let θk ∈Θ low
L . Under the assumption of periodic solutions the

following mapping property for the two-grid operator MτL
holds true

MτL
: EL(θk)→EL(θk),

with the mapping

(
U1

U2

)
7→ M̂(θk)

(
U1

U2

)

and the iteration matrix

M̂(θk) :=

(
Ŝν2

τL
(θk,ωt) 0

0 Ŝν2
τL
(γ(θk),ωt)

)
K(θk)

(
Ŝν1

τL
(θk,ωt) 0

0 Ŝν1
τL
(γ(θk),ωt)

)

with

K(θk) := I2Nt
−
(

P̂(θk)

P̂(γ(θk))

)
(L̂2τL

(2θk))
−1

(
R̂(θk)

⊤

R̂(γ(θk))
⊤

)⊤(L̂τL
(θk) 0

0 L̂τL
(γ(θk))

)
.

Proof. The statement of this theorem is a direct consequence of Lemma 4.2.34,
Lemma 4.2.35 and the mapping properties (4.23) and (4.30).

We now write the initial error e0 = x−x0 as

e0 = ∑
θk∈Θ low

L

[
ψL(θk)+ψ

L(γ(θk))
]
,

with ψL(θk)+ψ
L(γ(θk)) ∈ EL(θk) for all θk ∈Θ low

L , see Lemma 4.2.31. In view of
Theorem 4.2.38 we can analyze the convergence of the two-grid cycle by simply
computing the largest spectral radius of M̂(θk) ∈ C2Nt×2Nt with respect to the
low frequencies θk ∈Θ low

L . This motivates the following definition.
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Definition 4.2.39 (Two-grid convergence factor). For the two-grid iteration ma-
trix MτL

we define the asymptotic convergence factor as

ρ(MτL
) := max

{
ρ
(
M̂(θk)

)
: θk ∈Θ low

L

}
.

For the simplest case, i.e. for the polynomial degree pt = 0, we have to compute
the spectral radius of the 2×2 iteration matrix M̂(θk). Using one pre and post
smoothing step, i.e. ν1 = ν2 = 1, we find that the spectral radius of M̂(θk)∈C2×2

is given by

ρ
(
M̂(θk)

)
=

∣∣∣∣∣
4(1+ τL)

2 (sin(θk))
2 + τ2

L(1+2τL − e2iθk)

(2+ τL(2+ τL))2
(
(1+2τL)e2iθk −1

)
∣∣∣∣∣ .

Further calculations show that the maximum of ρ
(
M̂(θk)

)
with respect to the

low frequencies θk ∈Θ low
L is obtained for θ∗

k = π
2
. Hence for this simple case we

can compute the asymptotic convergence factor as

ρ(MτL
) =

1

2+2τl + τ2
L

∈ [0,
1

2
] for all τL ≥ 0.

For periodic solutions we therefore conclude, that the two-grid cycle converges
for any τL ≥ 0 to the exact solution, since ρ(MτL

)≤ 1
2
for all τL ≥ 0. Furthermore

we obtain, that the asymptotic convergence factor ρ(MτL
) gets very small for

large time step sizes, i.e. ρ(MτL
) =O(τ−2

L ). This results from the fact, that the
smoother itself is already an efficient iterative solver for large time step sizes.

For higher polynomial degrees pt we have to compute the eigenvalues of the
2(pt +1)×2(pt +1) iteration matrix M̂(θk), which is in general not a trivial task.
To overcome this problem we compute for all frequencies θk ∈Θ low

L the eigenvalues
of M̂(θk) numerically to find the asymptotic convergence factor ρ

(
M̂(θk)

)
for a

given time step sizes τL.

With respect to the time step sizes τL ∈ [10−6,106] and for different polynomial
degrees pt ∈ {0,1, . . . ,5} the theoretical average convergence factors ρ

(
M̂(θk)

)

are plotted as solid lines in the Figures 4.6–4.11. In each plot the convergence
factors are compared for a different number of smoothing iterations ν1 = ν2 = ν
with ν ∈ {1,2,5}. It can be seen, that for higher polynomial degrees pt ≥ 1 the
theoretical convergence rates are almost smaller by a factor of two compared to
the theoretical convergence rates of the lowest order case pt = 0. In addition
we see, that the theoretical convergence factors are close to zero for large time
step sizes τL. This results from the fact, that the smoother itself is already a
good iterative solver for the given problem, see also Remark 4.2.28. Furthermore
for odd polynomial degrees pt we observe a peak in the plots for the theoretical
convergence rates. This behaviour can be explained due to the fact, that for odd
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polynomial degrees the (pt , pt + 1) subdiagonal Padé approximation of e−t has
exactly one zero for t > 0. Hence for one τ∗L > 0 we have α(τ∗L) = 0 which implies
for the smoothing factor µS = 0, see Lemma 4.2.27. Hence the application of only
one smoothing iteration results in an exact solver.

Furthermore we compare the theoretical results of the local Fourier mode analysis
with the numerical results for solving the equation

LτL
x= f

with the two-grid cycle. In particular we use NL = 1024 time steps with a zero
right hand side, i.e. f = 0. As an initial vector x0 we use a random vector with
values between zero and one. The convergence of the two-grid cycle is measured
with

max
k=1,...,Niter

∥∥rk+1
∥∥

2∥∥rk
∥∥

2

, with rk := f −LτL
xk,

where Niter ∈ N, Niter ≤ 250 is the number of used two-grid iterations until we
have reached a given relative error reduction of εMG. To measure the asymptotic
behaviour of the two-grid cycle we have to use εMG = 10−140, since in the pre-
asymptotic range the convergence rates of two-grid cycle are in the most cases
smaller than in the asymptotic range. The measured convergence rates of the
two-grid cycle are plotted as dots, triangles and squares in Figures 4.6–4.11.
Here we observe that the theoretical results from the local Fourier mode analysis
completely agree with the numerical results, even if the applied Fourier mode
analysis is only a rigorous analysis when periodic solutions are assumed.

4.3 Space-time analysis

In this section we analyze the two-grid cycle for solving the discretized space-
time problem (2.2) introduced at the beginning of this chapter. In particular
we analyze the case when tensor product space-time elements are used. For
simplicity we assume that Ω is a one-dimensional domain. The analysis for
higher dimensions is more technical, but the techniques stay the same as for the
one dimensional case. Hence we have to solve the linear system




Aτ,h

Bτ,h Aτ,h

Bτ,h Aτ,h
. . .

. . .

Bτ,h Aτ,h







u1

u2

u3
...
uN




=




f1

f2

f3
...
fN



, (4.31)
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Figure 4.6: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 0 and numerical convergence rates for Nt = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).
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Figure 4.7: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 1 and numerical convergence rates for Nt = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).
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Figure 4.8: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 2 and numerical convergence rates for Nt = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).



106 4 Space-time multigrid methods

10
−6 10

−4
10

−2 1 10
2

10
4

10
6

−0.1

0

0.1

0.2

0.3

0.4

time step size τL

co
n
ve
rg
en
ce

fa
ct
or

ρ
(M

τ L
)

ν = 1, analysis
ν = 2, analysis
ν = 5, analysis
ν = 1, experiment
ν = 2, experiment
ν = 5, experiment

10
−6 10

−4
10

−2 1 10
2

10
4

10
6

10
−59

10
−49

10
−39

10
−29

10
−19

10
−9

10
1

time step size τL

co
n
ve
rg
en
ce

fa
ct
or

ρ
(M

τ L
)

ν = 1, analysis
ν = 2, analysis
ν = 5, analysis
ν = 1, experiment
ν = 2, experiment
ν = 5, experiment

Figure 4.9: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 3 and numerical convergence rates for Nt = 1024 time steps. Log-
linear plot (top) and Log-log plot (bottom).
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Figure 4.10: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 4 and numerical convergence rates for Nt = 1024 time steps.
Log-linear plot (top) and Log-log plot (bottom).
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Figure 4.11: Average convergence factor ρ (MτL
) for different time step sizes τL,

pt = 5 and numerical convergence rates for Nt = 1024 time steps.
Log-linear plot (top) and Log-log plot (bottom).
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with the following matrices Aτ,h and Bτ,h

Aτ,h := Mh ⊗Kτ +Kh ⊗Mτ , Bτ,h :=−Mh ⊗Nτ .

Here we assume, that we have a uniform decomposition of the simulation interval
[0,T ] with time step size τ and that we also have a uniform decomposition of the
one dimensional domain Ω = (0,1) with mesh size h. Furthermore we use piece-
wise linear continuous ansatz functions to approximate the solutions in space.
Hence we have to deal with the standard one dimensional mass and stiffness
matrices

Mh =
h

6




4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 4



, Kh =

1

h




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2



.

4.3.1 Smoothing analysis

In this subsection we study the smoothing behaviour of the damped block Jacobi
smoother (4.7). The iteration matrix of the damped block Jacobi is given by

Sν
τL,hL

=
[
I −ωt(DτL,hL

)−1LτL,hL

]ν
,

where DτL,hL
is a block diagonal matrix with blocks AτL,hL

. For the analysis we
can use the results which we obtained in the last section, where we have analyzed
the two-grid cycle for the simpler ODE case.

In the following we denote by NLt
∈ N the number of time steps for the level

L ∈ N0, by Nt = pt +1 ∈ N we denote the degrees of freedom with respect to the
polynomial degree pt and with NLx

∈ N we denote the degrees of freedom with
respect to the space discretization for the Level L.

We start by transforming the problem (4.31) into the frequency domain. To do
so, we first have to prove the following lemma.

Lemma 4.3.1. Let u = (u1,u2, . . . ,uNLt
)⊤ ∈ RNtNLx NLt for Nt ,NLx

,NLt
∈ N where

we assume that NLx
and NLt

are even numbers. Furthermore we assume that

un ∈ RNtNLx and un,r ∈ RNt

for n = 1, . . . ,NLt
and r = 1, . . . ,NLx

. Then the vector u can be written as

u= ∑
θx∈ΘLx

∑
θt∈ΘLt

ψLx,Lt(θx,θt)
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with the vectors

ψLx,Lt
n,r (θx,θt) :=UΦLx,Lt

n,r (θx,θt), ΦLx,Lt
n,r (θx,θt) :=ΦLt

n (θt)ϕ
Lx(θx)[r]

for n = 1, . . . ,NLt
, r = 1, . . . ,NLx

and with the coefficient matrix

U := diag(ûx,t [1], . . . , ûx,t [Nt]) ∈ CNt×Nt

with the coefficients for θx ∈ΘLx
and θt ∈ΘLt

ûx,t [ℓ] :=
1

NLx

1

NLt

NLx

∑
r=1

NLt

∑
n=1

un,r[ℓ]ϕ(−θx)[r]ϕ(−θt)[n].

Proof. For u = (u1,u2, . . . ,uNLt
)⊤ ∈ RNtNLx NLt we define for s = 1, . . . ,NLx

the

vector ws ∈ RNLt Nt as ws
n[ℓ] := un,s[ℓ]. Applying Lemma 4.2.10 to the vector ws

results in

ui,s[ℓ] =w
s
i [ℓ] = ∑

θt∈ΘLt

ψLt(θt) = ∑
θt∈ΘLt

Ut [ℓ, ℓ]ϕ(θt)[i],

with

Ut [ℓ, ℓ] = ŵs
t [ℓ] =

1

NL

NLt

∑
n=1

un,s[ℓ]ϕ(−θt)[n].

Next we define for a fixed n ∈ {1, . . . ,NLt
} and a fixed ℓ ∈ {1, . . . ,Nt} the vector

zn,ℓ ∈RNLx as zn,ℓ[s] := un,s[ℓ]. By using Theorem 4.2.8 with respect to the vector
zn,ℓ we obtain for s = 1, . . . ,NLx

un,s[ℓ] = z
n,ℓ[s] = ∑

θx∈ΘLx

ẑn,ℓ
x ϕ(θx)[s],

with

ẑn,ℓ
x =

1

NLx

NLx

∑
r=1

un,r[ℓ]ϕ(−θx)[r].

By combining the results from above we obtain the statement of this lemma
with

ui,s[ℓ] = ∑
θx∈ΘLx

∑
θt∈ΘLt

ϕ(θx)[s]ϕ(θt)[i]
1

NLx

1

NLt

NLx

∑
r=1

NLt

∑
n=1

un,r[ℓ]ϕ(−θx)[r]ϕ(−θt)[n]

= ∑
θx∈ΘLx

∑
θt∈ΘLt

ûx,t [ℓ]ϕ(θx)[s]ϕ(θt)[i]
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= ∑
θx∈ΘLx

∑
θt∈ΘLt

U [ℓ, ℓ]ΦLx,Lt

i,s (θx,θt)[ℓ]

= ∑
θx∈ΘLx

∑
θt∈ΘLt

ψ
Lx,Lt

i,s (θx,θt)[ℓ].

Lemma 4.3.1 motivates the following definition.

Definition 4.3.2 (Fourier space). For Nt ,NLx
,NLt

∈N and the frequency θx ∈ΘLx

and θt ∈ΘLt
let the vector ΦLx,Lt(θx,θt) ∈CNtNLx NLt be defined as in Lemma 4.3.1.

Then we define the linear space of Fourier modes with frequencies (θx,θt) as

ΨLx,Lt
(θx,θt) := span

{
ΦLx,Lt(θx,θt)

}

=
{
ψLx,Lt(θx,θt) ∈ CNtNLx NLt :ψLx,Lt

n,r (θx,θt) :=UΦLx,Lt
n,r (θx,θt),

n = 1, . . . ,NLt
,r = 1, . . . ,NLx

and U ∈ CNt×Nt
}
.

To analyze the mapping properties of the occurring operators, we need the fol-
lowing shifting results.

Lemma 4.3.3. For Nt ,NLx
,NLt

∈ N and the frequencies θx ∈ ΘLx
, θt ∈ ΘLt

let
ψLx,Lt(θx,θt) ∈ΨLx,Lt

(θx,θt). Then the following shifting equalities hold true

ψ
Lx,Lt

n−1,r(θx,θt) = e−iθtψLx,Lt
n,r (θx,θt),

ψ
Lx,Lt

n,r−1(θx,θt) = e−iθxψLx,Lt
n,r (θx,θt)

for n = 2, . . . ,NLt
and r = 2, . . . ,NLx

.

Proof. As in the proof of Lemma 4.2.13 the statement of this lemma follows by
the fact, that

ϕ(θ)[n−1] = ei(n−1)θ = e−iθ einθ = e−iθϕ(θ)[n],

which can be applied for the frequencies in space θx ∈ΘLx
and the frequencies in

time θt ∈ΘLt
.

In the next lemma the Fourier symbol for the space-time operator LτL,hL
will be

computed.

Lemma 4.3.4. For the frequencies θx ∈ΘLx
and θt ∈ΘLt

we consider the vector
ψLx,Lt(θx,θt) ∈ΨLx,Lt

(θx,θt). Then for n = 2, . . . ,NL−t and r = 2, . . . ,NLx
−1 there

holds
(
LτL,hL

ψLx,Lt (θx,θt)
)

n,r
= L̂τL,hL

(θx,θt)ψ
Lx,Lt
n,r (θx,θt),
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where the Fourier symbol is given by

L̂τL,hL
(θx,θt) :=

hL

3
(2+ cos(θx))

[
KτL

+h−2
L β (θx)MτL

− e−iθt NτL

]
∈ CNt×Nt ,

with the function

β (θx) := 6
1− cos(θx)

2+ cos(θx)
∈ [0,12].

Proof. Let ψLx,Lt (θx,θt) ∈ΨLx,Lt
(θx,θt) then we have for n = 2, . . . ,NLt

(
LτL,hL

ψLx,Lt(θx,θt)
)

n
= BτL,hL

ψ
Lx,Lt

n−1 (θx,θt)+AτL,hL
ψLx,Lt

n (θx,θt).

Applying Lemma 4.3.3 results in

=
(

e−iθt BτL,hL
+AτL,hL

)
ψLx,Lt

n (θx,θt).

Hence, we have to study the action of Aτ,h and Bτ,h onto the vector ψLx,Lt
n (θx,θt).

By using the definition of Bτ,h we obtain for r = 2, . . . ,NLx
−1 and ℓ= 1, . . . ,Nt

(
BτL,hL

ψLx,Lt
n (θx,θt)

)
r
[ℓ] =−

NLx

∑
s=1

Nt

∑
k=1

MhL
[r,s]NτL

[ℓ,k]ψLx,Lt
n,s (θx,θt)[k]

=−
Nt

∑
k=1

hL

6

(
ψ

Lx,Lt

n,r−1(θx,θt)[k]+4ψLx,Lt
n,r (θx,θt)[k]+ψ

Lx,Lt

n,r+1(θx,θt)[k]
)

NτL
[ℓ,k].

Applying Lemma 4.3.3 leads to

=−hL

6

Nt

∑
k=1

NτL
[ℓ,k]

(
e−iθx +4+ eiθx

)
ψLx,Lt

n,r (θx,θt)[k]

=−hL

3
(2+ cos(θx))

Nt

∑
k=1

NτL
[ℓ,k]ψLx,Lt

n,r (θx,θt)[k]

=−hL

3
(2+ cos(θx))

(
NτL
ψLx,Lt

n,r (θx,θt)
)
[ℓ].

Next we study the action of the matrix Aτ,h onto the local vector ψLx,Lt
n (θx,θt).

(
AτL,hL

ψLx,Lt
n (θx,θt)

)
r
[ℓ] =

NLx

∑
s=1

Nt

∑
k=1

MhL
[r,s]KτL

[ℓ,k]ψLx,Lt
n,s (θx,θt)[k]

+
NLx

∑
s=1

Nt

∑
k=1

KhL
[r,s]MτL

[ℓ,k]ψLx,Lt
n,s (θx,θt)[k]
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=
hL

3
(2+ cos(θx))

Nt

∑
k=1

KτL
[ℓ,k]ψLx,Lt

n,s (θx,θt)[k]

+
Nt

∑
k=1

1

hL

(
−ψLx,Lt

n,r−1(θx,θt)[k]+2ψLx,Lt
n,r (θx,θt)[k]−ψLx,Lt

n,r+1(θx,θt)[k]
)

MτL
[ℓ,k].

Using Lemma 4.3.3 results in

=
hL

3
(2+ cos(θx))

(
KτL
ψLx,Lt

n,r (θx,θt)
)
[ℓ]

+
2

hL
(1− cos(θx))

Nt

∑
k=1

MτL
[ℓ,k]ψLx,Lt

n,r (θx,θt)[k]

=

([
hL

3
(2+ cos(θx))KτL

+
2

hL
(1− cos(θx))MτL

]
ψLx,Lt

n,r (θx,θt)

)
[ℓ].

Hence we have

(
LτL,hL

ψLx,Lt(θx,θt)
)

n,r
=

hL

3
(2+ cos(θx))

(
KτL

− e−iθt NτL

)
ψLx,Lt

n,r (θx,θt)

+
2

hL
(1− cos(θx))MτL

ψLx,Lt
n,r (θx,θt)

=
hL

3
(2+ cos(θx))

(
KτL

+6h−2
L

1− cos(θx)

2+ cos(θx)
MτL

− e−iθt NτL

)
ψLx,Lt

n,r (θx,θt)

=
hL

3
(2+ cos(θx))

(
KτL

+h−2
L β (θx)MτL

− e−iθt NτL

)
ψLx,Lt

n,r (θx,θt),

which completes the proof.

Remark 4.3.5. We note, that the Fourier symbol L̂τL,hL
(θx,θt) for the space-time

operator LτL,hL
is closely related to the Fourier symbol L̂τL

= KτL
+MτL

−e−iθt NτL

which we obtained for the ODE case, see also Lemma 4.2.14. The major difference
is the additional weight h−2

L β (θx) in front of the local time mass matrix MτL
.

If we assume periodicity in space and time, i.e.

u(t,0) = u(t,1) for t ∈ (0,T ),

u(0,x) = u(T,x) for x ∈ Ω = (0,1),
(4.32)

we conclude with Lemma 4.3.4, the following mapping property

LτL,hL
: ΨLx,Lt

(θx,θt)→ΨLx,Lt
(θx,θt),

U 7→ L̂τL,hL
(θx,θt)U.

(4.33)

Next we study the mapping property of the iteration matrix Sν
τL,hL

.
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Lemma 4.3.6. For the frequencies θx ∈ΘLx
and θt ∈ΘLt

we consider the vector
ψLx,Lt(θx,θt)∈ΨLx,Lt

(θx,θt). Then under the assumption of periodic solutions, see
(4.32), there holds for n = 2, . . . ,NLt

and r = 2, . . . ,NLx
−1 that

(
S1

τL,hL
ψLx,Lt(θx,θt)

)
n,r

= ŜτL,hL
(θx,θt)ψ

Lx,Lt
n,r (θx,θt)

where the Fourier symbol is given by

ŜτL,hL
(θx,θt) := (1−ωt)INt

+ωte
−iθt

(
KτL

+h−2
L β (θx)MτL

)−1
NτL

∈ CNt×Nt ,

with the function β (θx) as defined in Lemma 4.3.4.

Proof. Let ψLx,Lt(θx,θt) ∈ ΨLx,Lt
(θx,θt), then for a fixed n = 2, . . . ,NLt

and a
fixed r = 2, . . . ,NLx

−1 we have that

(
S1

τL,hL
ψLx,Lt(θx,θt)

)
n,r

=
((

INtNLxNLt
−ωt(DτL,hL

)−1LτL,hL

)
ψLx,Lt(θx,θt)

)
n,r

=
(

INt
−ωt

(
ÂτL,hL

(θx)
)−1 L̂τL,hL

(θx,θt)
)
ψLx,Lt

n,r (θx,θt)

=: ŜτL,hL
(θx,θt)ψ

Lx,Lt
n,r (θx,θt)

with

ÂτL,hL
(θx) :=

hL

3
(2+ cos(θx))KτL

+
2

hL
(1− cos(θx))MτL

=
hL

3
(2+ cos(θx))

[
KτL

+h−2
L β (θx)MτL

]
.

Further calculations give

(
ÂτL,hL

(θx)
)−1 L̂τL,hL

(θx,θt) =
(
ÂτL,hL

(θx)
)−1
[
KτL

+h−2
L β (θx)MτL

− e−iθt NτL

]

= INt
− e−iθt

[
KτL

+h−2
L β (θx)MτL

]−1
NτL

.

Hence we have

ŜτL,hL
(θx,θt) = INt

−ωt

(
INt

− e−iθt
(
KτL

+h−2
L β (θx)MτL

)−1
NτL

)

= (1−ωt)INt
+ωte

−iθt
(
KτL

+h−2
L β (θx)MτL

)−1
NτL

,

which completes the proof.

In view of Lemma 4.3.6 the following mapping property holds true, when period-
icity in space and time assumed

Sν
τL,hL

: ΨLx,Lt
(θx,θt)→ΨLx,Lt

(θx,θt),

U 7→ (ŜτL,hL
(θx,θt))

νU.
(4.34)
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(b) Full space-time coarsening.

Figure 4.12: Low and high frequencies θx and θt for semi coarsening and full
space-time coarsening.

Next we will analyze the smoothing behaviour for the high frequencies. To do
so, we consider two coarsening strategies. We will study the case when semi
coarsening with respect to time is applied and the case when we apply full space-
time coarsening. This motivates the following definition.

Definition 4.3.7. Let NLt
,NLx

∈ N. Then we define the set of frequencies

ΘLx,Lt
:=

{
(
2kπ

NLx

,
2ℓπ

NLt

) : k = 1− NLx

2
, . . . ,

NLx

2
and ℓ= 1− NLt

2
, . . . ,

NLt

2

}
⊂ (−π ,π ]2.

Next we define the low and high frequencies with respect to semi coarsening in
time

Θ low,s
Lx,Lt

:=ΘLx,Lt
∩ (−π ,π ]× (−π

2
,
π

2
],

Θ
high,s
Lx,Lt

:=ΘLx,Lt
\Θ low,s

Lx,Lt
.

Furthermore we define the low and high frequencies with respect to full space-time
coarsening

Θ low,f
Lx,Lt

:=ΘLx,Lt
∩ (−π

2
,
π

2
]2,

Θ
high,f
Lx,Lt

:=ΘLx,Lt
\Θ low,f

Lx,Lt
.

In Figure 4.12 the high and low frequencies are illustrated for the two coarsen-
ing strategies. Next we define the smoothing factors with respect to these two
coarsening strategies.
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Definition 4.3.8 (Smoothing factors). Let ŜτL,hL
(θx,θt) be the symbol of the

block Jacobi smoother. Then we define the smoothing factor with respect to semi-
coarsening in time as

µs
S := max

{
ρ(ŜτL,hL

(θx,θt)) : (θx,θt) ∈Θ
high,s
Lx,Lt

}
.

Furthermore the smoothing factor with respect to full space-time coarsening is
given by

µ f
S := max

{
ρ(ŜτL,hL

(θx,θt)) : (θx,θt) ∈Θ
high,f
Lx,Lt

}
.

To analyze the smoothing behaviour we need the following lemma to compute
the eigenvalues of the Fourier symbol ŜτL,hL

(θx,θt).

Lemma 4.3.9. The eigenvalues of the iteration matrix

(
KτL

+h−2
L β (θx)MτL

)−1
NτL

∈ RNt ,Nt

are given by

σ
((

KτL
+h−2

L β (θx)MτL

)−1
NτL

)
= {0,α(θx,µ)}

were µ := τLh−2
L is a discretization parameter and α(θx,µ) = R(−µβ (θx)) is de-

fined by the A-stability function R(z) of the given time discretization, which is
given by the (pt , pt +1) subdiagonal Padé approximation of the exponential func-
tion ez.

Proof. The statement of this lemma follows simply by using λ =−h−2
L β (θx) in

the proof of Theorem 4.2.17.

Now we are able to compute the spectral radius for the Fourier symbol ŜτL,hL
(θx,θt).

Lemma 4.3.10. The spectral radius of the Fourier symbol ŜτL,hL
(θx,θt) is given

by

ρ
(
ŜτL,hL

(θx,θt)
)
= max

{
|1−ωt | , Ŝ(ωt ,α(θx,µ),θt)

}

with

(
Ŝ(ωt ,α,θt)

)2
:= (1−ωt)

2 +2ωt(1−ωt)α cos(θt)+α2ω2
t

where α(θx,µ) = R(−µβ (θx)) and R(z) is the (pt , pt + 1) subdiagonal Padé ap-
proximation of the exponential function ez and µ := τLh−2

L is a discretization
parameter.



4.3 Space-time analysis 117

Proof. The Fourier symbol ŜτL,hL
(θx,θt) has the same structure as the Fourier

symbol which is analyzed in Lemma 4.2.19. Hence the statement of this lemma
follows by applying Lemma 4.3.9 in the same way as in Lemma 4.2.19.

Next we study the smoothing behaviour of the damped block Jacobi iteration for
the case when semi-coarsening with respect to time is applied.

Lemma 4.3.11. For the function

(
Ŝ(ωt ,α,θt)

)2
:= (1−ωt)

2 +2ωt(1−ωt)α cos(θt)+α2ω2
t

with α = α(θx,µ) as defined in Lemma 4.3.9 and even polynomial degrees pt the
following min-max principle holds true

inf
ωt∈(0,1]

sup
θt∈[ π

2
,π ]

θx∈[0,π]

Ŝ(ωt ,α(θx,µ),θt) =
1√
2

for any discretization parameter µ ≥ 0 with the optimal parameters

ω∗
t =

1

2
, θ∗

t =
π

2
and θ∗

x = 0.

Proof. Since we consider even polynomial degrees pt , we conclude that the
(pt , pt +1) subdiagonal Padé approximation R(z) of the exponential function ez is
positive for all z ≤ 0. Hence we also have that α(θx,µ) = R(−µβ (θx)) is positive
for all µ ≥ 0 and θx ∈ [0,π ]. Since ωt ∈ (0,1] we obtain that

θ∗
t := argsup

θt∈[ π
2 ,π]

Ŝ(ωt ,α(θx,µ),θt) =
π

2
.

Since α(0,µ) = 1 and |α(θx,µ)| ≤ 1 for all θx ∈ [0,π ] and µ ≥ 0 we conclude
that

θ∗
x := argsup

θx∈[0,π]
Ŝ(ωt ,α(θx,µ),θ

∗) = 0.

Hence we have to find the infimum of
(
Ŝ(ωt ,α(θ∗

x ,µ),θ
∗
t )
)2

= (1−ωt)
2 +ω2

t ,

which is obtained for ω∗
t = 1

2
. This implies that

(
Ŝ(ω∗

t ,α(θ∗
x ,µ),θ

∗
t )
)2

=
1

2
,

which completes the proof.

With the next lemma we can bound the smoothing factor µs
S for the case when

semi coarsening with respect to time is used.
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Lemma 4.3.12. Let Ŝ(ωt ,α(θx,µ),θt) be defined as in Lemma 4.3.12. Then for
the choice ω∗

t = 1
2
and any polynomial degree pt ∈ N0 the following bound holds

true

sup
θt∈[ π

2
,π ]

θx∈[0,π]

Ŝ(ωt ,α(θx,µ),θt)≤
1√
2
.

Proof. For even polynomial degrees pt we can apply Lemma 4.3.11 to end up
with the stated bound. For odd polynomial degrees the (pt , pt +1) subdiagonal
Padé approximation R(z) of the exponential function ez is negative for large nega-
tive values of z. If the value of α(θ∗

x ,µ) = R(−µβ (θ∗
x )) for the optimal parameter

θ∗
x ∈ [0,π ] is positive we end up with the bound of Lemma 4.3.11, otherwise if

α(θ∗
x ,µ) is negative we have that

θ∗
t := argsup

θt∈[ π
2 ,π]

Ŝ(ωt ,α(θ∗
x ,µ),θt) = π .

For a negative α(θ∗
x ,µ) this implies that

sup
θt∈[ π

2
,π ]

θx∈[0,π]

Ŝ(ω∗
t ,α(θx,µ),θt)≤

1

2
(1+ |α(θ∗

x ,µ)|).

Since any subdiagonal (pt , pt +1) Padé approximation R(z) is bounded from below
by R(z)≥ 1

2
(5−3

√
3) for all z < 0 we get the estimate

≤ 3

4
(
√

3−1)<
1√
2
.

With Lemma 4.3.12 we conclude, that the smoothing factor with respect to semi-
coarsening in time is bounded by

µs
S ≤

1√
2
.

Hence, by applying the damped block Jacobi smoother with the optimal damping
parameter ω∗

t = 1
2
, the error components with respect to the high frequencies

Θ
high,s
Lx,Lt

are damped by a factor of at least 1√
2
. To study the smoothing behaviour

when full space-time coarsening is applied, we consider the following lemma.

Lemma 4.3.13. For the optimal choice of the damping parameter ω∗
t = 1

2
there

holds

sup
θt∈[0,π]

Ŝ(ω∗
t ,α,θt) =

1

2
(1+ |α|)
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with the optimal parameter

θ∗
t =

{
0 α ≥ 0,

π α > 0.

Proof. Let α ∈ R. For the optimal damping parameter ω∗
t = 1

2
we have

(
Ŝ(ω∗

t ,α,θt)
)2

=
1

4

(
1+2α cos(θt)+α2

)
.

First we will study the case α ≥ 0. Hence we have

θ∗
t := argsup

θt∈[0,π]
Ŝ(ω∗

t ,α,θt) = 0.

For the case α < 0 we further obtain

θ∗
t := argsup

θt∈[0,π]
Ŝ(ω∗

t ,α,θt) = π .

This implies that

(
Ŝ(ω∗

t ,α,θt∗)
)2

=
1

4

(
1+2 |α|+α2

)
=

1

4
(1+ |α|)2 ,

which completes the proof.

Lemma 4.3.13 shows, that we obtain a good smoothing behaviour for the high

frequencies with respect to the space discretization, i.e. θx ∈Θ
high
Lx

, if α =α(θx,µ)
is sufficiently small for any frequency θx ∈ [π

2
,π ]. Hence we conclude by combining

Lemma 4.3.12 with Lemma 4.3.13, that a good smoothing behaviour is obtained

for all frequencies (θx,θt) ∈ Θ
high,f
Lx,Lt

, if the function α = α(θx,µ) is sufficiently
small. This results in a restriction on the discretization parameter µ. With the
next lemma we will analyze the behaviour of the smoothing factor µ f

S with respect
to the discretization parameter µ for even polynomial degrees pt ∈ N0.

Lemma 4.3.14. Let pt ∈N0 be even. Then for the optimal choice of the damping
parameter ω∗

t = 1
2
there holds

sup
θt∈[0,π ]

θx∈[ π
2 ,π]

Ŝ(ω∗
t ,α(θx,µ),θt) =

1

2
(1+R(−3µ))

where R(z) is the (pt , pt +1) subdiagonal Padé approximation of the exponential
function ez.
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Proof. In view of Lemma 4.3.13 it remains to compute the supremum

sup
θx∈[ π

2 ,π]

1

2
(1+ |α(θx,µ)|).

Since for even polynomial degrees pt the function α(θx,µ) =R(−µβ (θx)) is mono-
tonically decreasing with respect to β (θx), the supremum is obtained for β (θx)= 3

since β (θx) ∈ [3,12] for θx ∈ [π
2
,π ]. This implies that θ∗

x = π
2
and we obtain the

statement of the lemma with

sup
θt∈[0,π ]

θx∈[ π
2 ,π]

Ŝ(ω∗
t ,α(θx,µ)),θt) = Ŝ(ω∗

t ,α(θ∗
x ,µ),θ

∗
t ) =

1

2
(1+ |α(θ∗

x ,µ)|)

=
1

2
(1+R(−3µ)).

Remark 4.3.15. Lemma 4.3.14 is only proven for even polynomial degrees, but
the statement of this lemma is also true for odd polynomial degrees pt . Only
the proof gets more complicated, since the Padé approximation R(z), z ≤ 0 is not
monotonically decreasing for odd polynomial degrees.

Remark 4.3.16. In view of Lemma 4.3.14 we obtain a good smoothing behaviour

for the high frequencies in space θx ∈ Θ
high
Lx

, i.e. µ f
S ≤ 1√

2
, if the discretization

parameter µ is large enough, i.e.

µ ≥ µ∗
pt

with R(−3µ∗
pt
) =

√
2−1. (4.35)

Hence we are able to compute the critical discretization parameter µ∗
pt
with respect

to the polynomial degree pt

µ∗
0 =

√
2

3
≈ 0.4714045208,

µ∗
1 =

1

3
(−3−

√
2+

√
11+12

√
2)≈ 0.2915022565,

µ∗
2 ≈ 0.2938105446,

µ∗
3 ≈ 0.2937911168,

µ∗
∞ ≈ 0.2937911957.

To compute the critical discretization parameter µ∗
∞ we used the fact, that the

(pt , pt + 1) subdiagonal Padé approximation R(z) converges to the exponential
function ez for z ≤ 0 as pt → ∞.
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Figure 4.13: Smoothing factor Ŝ(ω∗
t ,α(θx,µ),θt)

2 for θx,θt ∈ [0,π ] with the dis-
cretization parameter µ = 1 and pt = 0.
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Figure 4.14: Smoothing factor Ŝ(ω∗
t ,α(θx,µ),θt)

2 for θx,θt ∈ [0,π ] with the dis-
cretization parameter µ = 100 and pt = 0.
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Figure 4.15: Smoothing factor Ŝ(ω∗
t ,α(θx,µ),θt)

2 for θx,θt ∈ [0,π ] with the dis-
cretization parameter µ = 0.01 and pt = 0.

Remark 4.3.17. Lemma 4.3.13 shows, that for all frequencies (θx,θt) ∈ ΘLx,Lt

the following bound holds true

Ŝ(ω∗
t ,α(θx,µ)),θt)≤

1

2
(1+ |R(−β (θx)µ)|)≤ 1.

Only for θx = 0 we have that β (θx) = 0, which implies R(−β (θx)µ)) = 1. Hence
if the discretization parameter µ = τLh−2

L is large enough we have that

|R(−β (θx)µ)| ≈ 0

for almost all frequencies θx ∈ΘLx
, which implies a good smoothing behaviour for

almost all frequencies, see also Figure 4.13–4.15. Only the frequencies θx ∈ΘLx

which are close to zero imply Ŝ(ω∗
t ,α(θx,µ)),θt) ≈ 1. Hence for a large dis-

cretization parameter µ the smoother itself is almost a good iterative solver, only
the frequencies θx ∈ ΘLx

which are close to zero, i.e. very few low frequencies
θx ∈Θ low

Lx
, spoil this effect. To obtain also a perfect solver for a large discretiza-

tion parameter µ we can simply apply a correction step after one damped block
Jacobi iteration by restricting the defect in space several times until we arrive at
a very coarse problem. For this small problem one can solve the coarse correction
exactly by solving these small problems forward in time. Afterwards we correct
the solution by prolongating the coarse corrections back to the fine space-grids.
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4.3.2 Two-grid analysis

In this subsection we study the convergence behaviour of the two-grid cycle. The
iteration matrices for the two-grid cycles with respect to semi-coarsening and full
space-time coarsening are given by

Ms
τL,hL

:= Sν2

τL,hL

[
I −PLx,Lt

s

(
L2τL,hL

)−1RLx,Lt
s LτL,hL

]
Sν1

τL,hL
,

Mf
τL,hL

:= Sν2

τL,hL

[
I −PLx,Lt

f

(
L2τL,2hL

)−1RLx,Lt

f LτL,hL

]
Sν1

τL,hL
,

with the restriction and prolongation matrices

RLx,Lt
s := INLx

⊗RLt , RLx,Lt

f :=RLx
x ⊗RLt ,

PLx,Lt
s := INLx

⊗PLt , PLx,Lt

f := PLx
x ⊗PLt .

The restriction and prolongation matrices with respect to time, i.e. RLt and
PLt are given by (4.27) and (4.28). Further, for the one dimensional case, the
restriction and prolongation matrices with respect to space are given by

RLx
x :=

1

2




2 1

1 2 1
. . .

. . .
. . .

1 2 1

1 2




∈ RNLx×NLx−1 , (4.36)

PLx
x := (RLx

x )⊤ ∈ RNLx−1×NLx . (4.37)

To analyze the two-grid iteration matrices Ms
τL,hL

and Mf
τL,hL

we need the fol-
lowing lemma.

Lemma 4.3.18. Let u= (u1,u2, . . . ,uNLt
)⊤ ∈RNtNLx NLt for Nt ,NLx

,NLt
∈N where

we assume that NLx
and NLt

are even numbers. Furthermore we assume that

un ∈ RNtNLx and un,r ∈ RNt

for n = 1, . . . ,NLt
and r = 1, . . . ,NLx

. Then the vector u can be written as

u= ∑
(θx,θt)∈Θ

low,f
Lx ,Lt

[
ψLx,Lt(θx,θt)+ψ

Lx,Lt (γ(θx),θt)

+ψLx,Lt(θx,γ(θt))+ψ
Lx,Lt(γ(θx),γ(θt))

]
,

with the shifting operator

γ(θ) := θ − sign(θ)π

and the vector ψLx,Lt(θx,θt) ∈ CNtNLxNLt defined as in Lemma 4.3.1.
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Proof. Using Lemma 4.3.1 and Lemma 4.2.30 results in the statement of this
lemma with

u= ∑
θx∈ΘLx

∑
θt∈ΘLt

ψLx,Lt(θx,θt)

= ∑
θx∈Θ low

Lx

∑
θt∈Θ low

Lt

ψLx,Lt(θx,θt)+ ∑
θx∈Θ

high
Lx

∑
θt∈Θ low

Lt

ψLx,Lt (θx,θt)

+ ∑
θx∈Θ low

Lx

∑
θt∈Θ

high
Lt

ψLx,Lt(θx,θt)+ ∑
θx∈Θ

high
Lx

∑
θt∈Θ

high
Lt

ψLx,Lt(θx,θt)

= ∑
(θx,θt)∈Θ

low,f
Lx ,Lt

[
ψLx,Lt (θx,θt)+ψ

Lx,Lt(γ(θx),θt)

+ψLx,Lt(θx,γ(θt))+ψ
Lx,Lt(γ(θx),γ(θt))

]
.

Lemma 4.3.18 motivates the following definition.

Definition 4.3.19 (Space of harmonics). For Nt ,NLx
,NLt

∈N and the frequencies

(θx,θt) ∈ Θ low,f
Lx,Lt

let the vector ΦLx,Lt(θx,θt) ∈ CNtNLxNLt be defined as in Lemma
4.3.1. Then we define the linear space of harmonics with frequencies (θx,θt) as

ELx,Lt
(θx,θt) := span

{
ΦLx,Lt(θx,θt),Φ

Lx,Lt(γ(θx),θt),

ΦLx,Lt(θx,γ(θt)),Φ
Lx,Lt(γ(θx),γ(θt))

}

=
{
ψLx,Lt(θx,θt) ∈ CNtNLx NLt :

ψLx,Lt
n,r (θx,θt) =U1Φ

Lx,Lt
n,r (θx,θt)+U2Φ

Lx,Lt
n,r (γ(θx),θt)

+U3Φ
Lx,Lt
n,r (θx,γ(θt))+U4Φ

Lx,Lt
n,r (γ(θx),γ(θt)),

for all n = 1, . . . ,NLt
,r = 1, . . . ,NLx

and U1,U2,U3,U4 ∈ CNt×Nt
}
.

Under the assumption of periodic solutions, see (4.32), Lemma 4.3.4 implies
the following mapping property for the system matrix LτL,hL

for all frequencies

(θx,θt) ∈Θ low,f
Lx,Lt

LτL,hL
: ELx,Lt

(θx,θt)→ELx,Lt
(θx,θt)



U1

U2

U3

U4


 7→




L̂τL,hL
(θx,θt)U1

L̂τL,hL
(γ(θx),θt)U2

L̂τL,hL
(θx,γ(θt))U3

L̂τL,hL
(γ(θx),γ(θt))U4


=: L̃τL,hL

(θx,θt)




U1

U2

U3

U4


 ,

(4.38)
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where L̃τL,hL
(θx,θt) ∈ C4Nt×4Nt is a block diagonal matrix. With the same argu-

ments we obtain with Lemma 4.3.6 the mapping property for the smoother for
all frequencies (θx,θt) ∈Θ low,f

Lx,Lt

Sν
τL,hL

: ELx,Lt
(θx,θt)→ELx,Lt

(θx,θt)



U1

U2

U3

U4


 7→




(ŜτL,hL
(θx,θt))

νU1

(ŜτL,hL
(γ(θx),θt))

νU2

(ŜτL,hL
(θx,γ(θt)))

νU3

(ŜτL,hL
(γ(θx),γ(θt)))

νU4


=:

(
S̃τL,hL

(θx,θt)
)ν




U1

U2

U3

U4


 ,

(4.39)

with the block diagonal matrix S̃τL,hL
(θx,θt) ∈ C4Nt×4Nt .

To analyze the two-grid cycle on the space of harmonics ELx,Lt
(θx,θt) for frequen-

cies (θx,θt) ∈Θ low,f
Lx,Lt

we further have to investigate the mapping properties of the
restriction and prolongation operators for the two different coarsening strategies
RLx,Lt

s ,RLx,Lt

f and PLx,Lt
s ,PLx,Lt

f . The next lemma shows the mapping properties
for the restriction and prolongation operators with respect to space.

Lemma 4.3.20. Let RLx
x and PLx

x be the restriction and prolongation matrices
as defined in (4.36). For θx ∈Θ low

Lx
let ϕLx(θx) ∈CNLx and ϕLx−1(2θx) ∈CNLx−1 be

defined as in Theorem 4.2.8. Then there holds

(
RLx

x ϕ
Lx(θx)

)
[r] = R̂x(θx)ϕ

Lx−1(2θx)[r],

for r = 2, . . . ,NLx−1 − 1 with the Fourier symbol R̂x(θx) := 1+ cos(θx). For the
prolongation operator we further have

(
PLx

x ϕ
Lx−1(2θx)

)
[s] =

(
P̂x(θx)ϕ

Lx(θx)+ P̂x(γ(θx))ϕ
Lx(γ(θx))

)
[s],

for s = 2, . . . ,NLx
−1 with the Fourier symbol P̂x(θx) := 1

2
R̂x(θx).

Proof. To prove this lemma one can use the same techniques as used in the
proofs of Lemma 4.2.34 and Lemma 4.2.35, or see [99] for example.

Definition 4.3.21. For Nt ,NLx
,NLt

∈ N and the frequencies (θx,θt) ∈ Θ low,f
Lx,Lt

let

the vector ΦLx,Lt−1(θx,θt) ∈ CNtNLxNLt−1 be defined as in Lemma 4.3.1. Then we
define the linear space with frequencies (θx,2θt) as

ΨLx,Lt−1(θx,2θt) := span
{
ΦLx,Lt−1(θx,2θt),Φ

Lx,Lt−1(γ(θx),2θt)
}

=
{
ψLx,Lt−1(θx,2θt) ∈ CNtNLx NLt−1 :

ψLx,Lt−1
n,r (θx,2θt) =U1Φ

Lx,Lt−1
n,r (θx,2θt)+U2Φ

Lx,Lt−1
n,r (γ(θx),2θt)

for all n = 1, . . . ,NLt
,r = 1, . . . ,NLx

and U1,U2 ∈ CNt×Nt
}
.
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For the semi-coarsening case the next lemma shows the mapping property for the
restriction operator RLx,Lt

s .

Lemma 4.3.22. The restriction operator RLx,Lt
s fulfils the following mapping

property

RLx,Lt
s : ELx,Lt

(θx,θt)→ΨLx,Lt−1(θx,2θt)

with the mapping




U1

U2

U3

U4


 7→ R̃s(θt)




U1

U2

U3

U4




and the matrix

R̃s(θt) :=

(
R̂(θt) 0 R̂(γ(θt)) 0

0 R̂(θt) 0 R̂(γ(θt))

)

with the Fourier symbol R̂(θt) ∈ CNt×Nt as defined in Lemma 4.2.34.

Proof. Let ΦLx,Lt (θx,θt) ∈ΨLx,Lt
(θx,θt) and ΦLx,Lt−1(θx,2θt) ∈ΨLx,Lt−1(θx,2θt)

be defined as in Lemma 4.3.1. Then for n = 1, . . . ,NLt−1 and r = 1, . . . ,NLx
we

have

(
RLx,Lt

s ΦLx,Lt (θx,θt)
)

n,r
=

NLx

∑
s=1

NLt

∑
m=1

INLx
[r,s]RLt [n,m]ΦLx,Lt

m,s (θx,θt)

=ϕLx(θx)[r]
NLt

∑
m=1

RLt [n,m]ΦLt
m (θt)

=ϕLx(θx)[r]
(
RLtΦLt (θt)

)
n
.

Using Lemma 4.2.34 leads to

= R̂(θt)Φ
Lt−1
n (2θt)ϕ

Lx(θx)[r]

= R̂(θt)Φ
Lx,Lt−1
n,r (θx,2θt).

Applying this result on the vector ψLx,Lt (θx,θt)∈ ELx,Lt
(θx,θt) with (θx,θt)∈Θ f

Lx,Lt

results in

(
RLx,Lt

s ψLx,Lt (θx,θt)
)

n,r
= R̂(θt)U1Φ

Lx,Lt−1
n,r (θx,2θt)

+ R̂(θt)U2Φ
Lx,Lt−1
n,r (γ(θx),2θt)

+ R̂(γ(θt))U3Φ
Lx,Lt−1
n,r (θx,2γ(θt))
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+ R̂(γ(θt))U4Φ
Lx,Lt−1
n,r (γ(θx),2γ(θt)).

Since ΦLx,Lt−1
n,r (θx,2γ(θt)) =Φ

Lx,Lt−1
n,r (θx,2θt) we further obtain

=
[
R̂(θt)U1+ R̂(γ(θt))U3

]
ΦLx,Lt−1

n,r (θx,2θt)

+
[
R̂(θt)U2+ R̂(γ(θt))U4

]
ΦLx,Lt−1

n,r (γ(θx),2θt),

which completes the proof.

Lemma 4.3.23. Under the assumptions of periodic solutions (4.32) the following
mapping property for the restriction operator holds true

RLx,Lt

f : ELx,Lt
(θx,θt)→ΨLx−1,Lt−1(2θx,2θt)

with the mapping



U1

U2

U3

U4


 7→ R̃f(θx,θt)




U1

U2

U3

U4




and the matrix

R̃f(θx,θt) :=
(
R̂(θx,θt) R̂(γ(θx),θt) R̂(θx,γ(θt)) R̂(γ(θx),γ(θt))

)

with the Fourier symbol

R̂(θx,θt) := R̂x(θx)R̂(θt) ∈ CNt×Nt ,

where R̂x(θx) ∈ C is defined as in Lemma 4.3.20.

Proof. For the frequencies (θx,θt) ∈ Θ low
Lx,Lt

let ΦLx,Lt(θx,θt) ∈ΨLx,Lt
(θx,θt) and

ΦLx−1,Lt−1(2θx,2θt) ∈ΨLx−1,Lt−1(2θx,2θt) be defined as in Lemma 4.3.1. Then for
n = 1, . . . ,NLt−1 and r = 2, . . . ,NLx−1 −1 we have

(
RLx,Lt

f ΦLx,Lt (θx,θt)
)

n,r
=

NLx

∑
s=1

NLt

∑
m=1

RLx
x [r,s]RLt [n,m]ΦLx,Lt

m,s (θx,θt)

=

(
NLx

∑
s=1

RLx
x [r,s]ϕLx(θx)[r]

)(
NLt

∑
m=1

RLt [n,m]ΦLt
m (θt)

)

=
(
RLx

x ϕ
Lx(θx)

)
[r]
(
RLtΦLt (θt)

)
n
.

Applying Lemma 4.3.20 and Lemma 4.2.34 leads to

= R̂x(θx)R̂(θt)Φ
Lt−1
n (2θt)ϕ

Lx−1(2θx)[r]
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= R̂(θx,θt)Φ
Lx−1,Lt−1
n,r (2θx,2θt).

Using this result on the vector ψLx,Lt(θx,θt) ∈ ELx,Lt
(θx,θt) with (θx,θt) ∈ Θ f

Lx,Lt

results in
(
RLx,Lt

f ψLx,Lt(θx,θt)
)

n,r
= R̂(θx,θt)U1Φ

Lx−1,Lt−1
n,r (2θx,2θt)

+ R̂(γ(θx),θt)U2Φ
Lx−1,Lt−1
n,r (2γ(θx),2θt)

+ R̂(θx,γ(θt))U3Φ
Lx−1,Lt−1
n,r (2θx,2γ(θt))

+ R̂(γ(θx),γ(θt))U4Φ
Lx−1,Lt−1
n,r (2γ(θx),2γ(θt)).

With the relations

ΦLx−1,Lt−1(2θx,2θt) =Φ
Lx−1,Lt−1(2γ(θx),2θt)

=ΦLx−1,Lt−1
n,r (2θx,2γ(θt))

=ΦLx−1,Lt−1
n,r (2γ(θx),2γ(θt))

we obtain the statement of this lemma with
(
RLx,Lt

f ψLx,Lt(θx,θt)
)

n,r
=
[
R̂(θx,θt)U1

+ R̂(γ(θx),θt)U2

+ R̂(θx,γ(θt))U3

+ R̂(γ(θx),γ(θt))U4

]
ΦLx−1,Lt−1

n,r (2θx,2θt).

With the next lemmata we will analyze the mapping properties of the prolonga-
tion operators PLx,Lt

s and PLx,Lt

f .

Lemma 4.3.24. For (θx,θt) ∈ Θ f
Lx,Lt

the prolongation operator PLx,Lt
s fulfils the

following mapping property

PLx,Lt
s : ΨLx,Lt−1(θx,2θt)→ELx,Lt

(θx,θt)

with the mapping

(
U1

U2

)
7→




P̂(θt) 0

0 P̂(θt)

P̂(γ(θt)) 0

0 P̂(γ(θt))



(

U1

U2

)
=: P̃s(θt)

(
U1

U2

)

and the Fourier symbol P̂(θt) ∈ CNt×Nt defined as in Lemma 4.2.35.
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Proof. Let ψLx,Lt−1(θx,2θt)∈ΨLx,Lt−1(θx,2θt) for (θx,θt)∈Θ f
Lx,Lt

. Then we have
for n = 1, . . . ,NLt

and r = 1, . . . ,NLx
that

(
PLx,Lt

s ψLx,Lt−1(θx,2θt)
)

n,r
=

NLx

∑
s=1

NLt

∑
m=1

INLx
[r,s]PLt [n,m]ψLx,Lt−1

m,s (θx,2θt)

=
NLt

∑
m=1

PLt [n,m]ψLx,Lt−1
m,r (θx,2θt)

=
NLt

∑
m=1

PLt [n,m]
[
(ϕLx(θx)[r]U1)Φ

Lt−1
m (2θt)

+(ϕLx(γ(θx))[r]U2)Φ
Lt−1
m (2θt)

]
.

Since ϕLx(θx)[r]U1 ∈ CNt×Nt and ϕLx(γ(θx))[r]U2 ∈ CNt×Nt we further obtain by
applying Lemma 4.2.35 that

= P̂(θt)(ϕ
Lx(θx)[r]U1)Φ

Lt
n (θt)

+ P̂(γ(θt))(ϕ
Lx(θx)[r]U1)Φ

Lt
n (γ(θt))

+ P̂(θt)(ϕ
Lx(γ(θx))[r]U2)Φ

Lt
n (θt)

+ P̂(γ(θt))(ϕ
Lx(γ(θx))[r]U2)Φ

Lt
n (γ(θt)).

With the definition of the Fourier mode ΦLx,Lt
n,r (θx,θt) we get

= P̂(θt)U1Φ
Lx,Lt
n,r (θx,θt)

+ P̂(γ(θt))U1Φ
Lx,Lt
n,r (θx,γ(θt))

+ P̂(θt)U2Φ
Lx,Lt
n,r (γ(θx),θt)

+ P̂(γ(θt))U2Φ
Lx,Lt
n,r (γ(θx),γ(θt)),

which completes the proof.

Lemma 4.3.25. Under the assumptions of periodic solutions (4.32) the following
mapping property for the prolongation operator holds true

PLx,Lt

f : ΨLx−1,Lt−1(2θx,2θt)→ELx,Lt
(θx,θt)

with the mapping

U 7→




P̂(θx,θt)

P̂(γ(θx),θt)

P̂(θx,γ(θt))

P̂(γ(θx),γ(θt))


U =: P̃f(θx,θt)U
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and the Fourier symbol

P̂(θx,θt) := P̂x(θx)P̂(θt),

where P̂(θt) is defined as in Lemma 4.2.35.

Proof. Let ψLx−1,Lt−1(2θx,2θt) ∈ ΨLx−1,Lt−1(2θx,2θt) for (θx,θt) ∈Θ f
Lx,Lt

. Then
we have for n = 1, . . . ,NLt

and r = 2, . . . ,NLx
−1 that

(
PLx,Lt

f ψLx−1,Lt−1(2θx,2θt)
)

n,r
=

NLx

∑
s=1

NLt

∑
m=1

PLx
x [r,s]PLt [n,m]ψLx−1,Lt−1

m,s (2θx,2θt)

=

(
NLx

∑
s=1

PLx
x [r,s]ϕLx−1(2θx)[s]

)(
NLt

∑
m=1

PLt [n,m]ΦLt−1
m (2θt)

)
.

Using Lemma 4.2.35 gives

=
(
P̂x(θx)ϕ

Lx(θx)[r]+ P̂x(γ(θx))ϕ
Lx(γ(θx))[r]

)

×
(
P̂(θt)UΦ

Lt
n (θt)+ P̂(γ(θt))UΦ

Lt
n (γ(θt))

)

Using the definition of the Fourier mode ΦLx,Lt
n,r (θx,θt) leads to

= P̂(θx,θt)UΦ
Lx,Lt
n,r (θx,θt)+ P̂(γ(θx),θt)UΦ

Lx,Lt
n,r (γ(θx),θt)

+ P̂(θx,γ(θt))UΦ
Lx,Lt
n,r (θx,γ(θt))+ P̂(γ(θx),γ(θt))UΦ

Lx,Lt
n,r (γ(θx),γ(θt)),

which completes the proof.

Assuming periodicity in space and time (4.32) we further obtain with Lemma
4.2.37 the mapping property for the coarse grid operator, when semi coarsening
with respect to time is applied

(
L2τL,hL

)−1
: ΨLx,Lt−1(θx,2θt)→ΨLx,Lt−1(θx,2θt)(

U1

U2

)
7→
(
L̃s

2τL,hL
(θx,2θt)

)−1
(

U1

U2

)
∈ C2Nt×Nt

(4.40)

with the matrix

(
L̃s

2τL,hL
(θx,2θt)

)−1

:=

((
L̂2τL,hL

(θx,2θt)
)−1

0

0
(
L̂2τL,hL

(γ(θx),θt)
)−1

)
∈ C2Nt×2Nt .

With respect to full space-time coarsening we further conclude the following map-
ping property
(
L2τL,2hL

)−1
: ΨLx−1,Lt−1(2θx,2θt)→ΨLx−1,Lt−1(2θx,2θt)

U 7→
(
L̃f

2τL,2hL
(2θx,2θt)

)−1

U ∈ CNt×Nt ,
(4.41)
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with
(
L̃f

2τL,2hL
(2θx,2θt)

)−1

:=
(
L̂2τL,2hL

(2θx,2θt)
)−1 ∈ CNt×Nt .

Now we are able to prove the following theorems.

Theorem 4.3.26. Let (θx,θt) ∈Θ low,f
Lx,Lt

. Under the assumptions of periodic solu-
tions (4.32) the following mapping property for the two-grid operator Ms

τL,hL
with

respect to semi coarsening in time holds true

Ms
τL,hL

: ELx,Lt
(θx,θt)→ELx,Lt

(θx,θt),

with the mapping



U1

U2

U3

U4


 7→ M̃s

µ(θk,θt)




U1

U2

U3

U4




and the iteration matrix

M̃s
µ(θk,θt) :=

(
S̃τL,hL

(θx,θt)
)ν2 K̃s(θx,θt)

(
S̃τL,hL

(θx,θt)
)ν1 ∈ C4Nt×4Nt

with

K̃s(θx,θt) := I4Nt
−P̃s(θt)

(
L̃s

2τL,hL
(θx,2θt)

)−1

R̃s(θt)L̃τL,hL
(θx,θt).

Proof. The statement of this theorem follows by using Lemma 4.3.22, Lemma
4.3.24 and the mapping properties (4.38), (4.39) and (4.40).

Theorem 4.3.27. Let (θx,θt) ∈Θ low,f
Lx,Lt

. Under the assumptions of periodic solu-

tions (4.32) the following mapping property for the two-grid operator Mf
τL,hL

with
respect to full space-time coarsening holds true

Mf
τL,hL

: ELx,Lt
(θx,θt)→ELx,Lt

(θx,θt),

with the mapping



U1

U2

U3

U4


 7→ M̃f

µ(θk,θt)




U1

U2

U3

U4




and the iteration matrix

M̃f
µ(θk,θt) :=

(
S̃τL,hL

(θx,θt)
)ν2 K̃f(θx,θt)

(
S̃τL,hL

(θx,θt)
)ν1 ∈ C4Nt×4Nt

with

K̃f(θx,θt) := I4Nt
−P̃f(θx,θt)

(
L̃f

2τL,2hL
(2θx,2θt)

)−1

R̃f(θx,θt)L̃τL,hL
(θx,θt).
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Proof. The statement of this theorem is a direct consequence of Lemma 4.3.23,
Lemma 4.3.25 and the mapping properties (4.38), (4.39) and (4.41).

In view of Lemma 4.3.18 we can now represent the initial error e0 = x−x0 as

e0 = ∑
(θx,θt)∈Θ

low,f
Lx ,Lt

[
ψLx,Lt(θx,θt)+ψ

Lx,Lt (γ(θx),θt)

+ψLx,Lt(θx,γ(θt))+ψ
Lx,Lt (γ(θx),γ(θt))

]

=: ∑
(θx,θt)∈Θ

low,f
Lx ,Lt

ψ̃(θx,θt),

with ψ̃(θx,θt) ∈ ELx,Lt
(θx,θt) for all (θx,θt) ∈ Θ low,f

Lx,Lt
. Using Theorem 4.3.26 and

Theorem 4.3.27 we now can analyze the convergence behaviour of the two-grid
cycles by simply computing the largest spectral radius of M̃s

µ(θk,θt) or M̃f
µ(θk,θt)

with respect to the frequencies (θx,θt) ∈ Θ low,f
Lx,Lt

. This motivates the following
definition.

Definition 4.3.28 (Two-grid convergence factors). For the two-grid iterations
matrices Ms

τL,hL
and Mf

τL,hL
we define the asymptotic convergence factors as

ρ(M̂s
µ) := max

{
ρ(M̃s

µ(θk,θt)) : (θx,θt) ∈Θ low,f
Lx,Lt

with θx 6= 0
}
,

ρ(M̂f
µ) := max

{
ρ(M̃f

µ(θk,θt)) : (θx,θt) ∈Θ low,f
Lx,Lt

with θx 6= 0
}
.

Remark 4.3.29. In the definition of the two-grid convergence factors we have
neglected all frequencies (0,θt) ∈ Θ low,f

Lx,Lt
since the Fourier symbol with respect to

the Laplacian is zero for θx = 0, see also the remarks in [99, chapter 4].

To derive the average convergence factors ρ(M̂s
µ) and ρ(M̂f

µ) for a given dis-
cretization parameter µ ∈ R+ and a given polynomial degree pt ∈ N0 we have to
compute the eigenvalues of

M̃s
µ(θk,θt) ∈ C4Nt×4Nt and M̃f

µ(θk,θt) ∈ C4Nt×4Nt , (4.42)

with Nt = pt +1 for each low frequency (θx,θt) ∈Θ low,f
Lx,Lt

. Since it is very difficult
to find an algebraic exact expression for the eigenvalues of the iteration matrices
(4.42), we will compute the eigenvalues numerically. In particular we will compute
the average convergence factors for the domain Ω = (0,1) with a decomposition
into 1024 uniform sub intervals, i.e. NLx

= 1023. Furthermore we will analyze the
two-grid cycles for NLt

= 256 time steps.

With respect to the discretization parameter µ = τLh−2
L ∈ [10−6,106] and for dif-

ferent polynomial degrees pt ∈ {0,1,2} the theoretical convergence factors ρ(M̂s
µ)
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are plotted as solid lines in Figure 4.16–4.18. In each plot the theoretical con-
vergence factors are compared with respect to a different number of smoothing
steps ν1 = ν2 = ν ∈ {1,2,5}. We observe, that the theoretical convergence rates
are always bounded by ρ(M̂s

µ) ≤ 1
2
. For the case when semi coarsening with

respect to time is applied we conclude, that the two-grid cycle converges for any
discretization parameter µ. Furthermore for polynomial degrees pt ≥ 1 we see,
that the theoretical convergence rates are much smaller than the convergence
rates for the lowest order case pt = 0.

Furthermore we have compared the theoretical results with the numerical results
for solving the equation

LτL,hL
x= f

with the two-grid cycle when semi coarsening with respect to time is applied. For
the numerical test we use a zero right hand side, i.e. f = 0 and as an initial vector
x0 we use a random vector with values between zero and one. The convergence
of the two-grid cycle is measured with

max
k=1,...,Niter

∥∥rk+1
∥∥

2∥∥rk
∥∥

2

, with rk := f −LτL,hL
xk,

where Niter ∈ N, Niter ≤ 250 is the number of used two-grid iterations until we
have reached a given relative error reduction of εMG = 10−140. The measured
numerical convergence rates are plotted in Figures 4.16–4.18 as dots, triangles
and squares. We observe, that the numerical results completely agree with the
theoretical results, even if the applied Fourier mode analysis is only a rigorous
analysis when periodicity in space and time is assumed.

In Figures 4.19–4.21 the theoretical convergence factors ρ(M̂s
µ) for the two-grid

cycle Mf
τL,hL

with respect to full space-time coarsening are plotted with respect

to the discretization parameter µ ∈ [10−6,106] for different polynomial degrees
pt ∈ {0,1,2}. We observe, that the theoretical convergence factors are bounded
by ρ(M̂f

µ)≤ 1
2
if the discretization parameter µ is large enough, i.e. for µ ≥ µ∗.

In Remark 4.3.16 we already computed these critical values µ∗ for several polyno-
mial degrees pt . As before we compared the theoretical results with the numerical
results when full space-time coarsening is applied. In Figures 4.19–4.21 the mea-
sured numerical convergence rates are plotted as dots, triangles and squares. We
observe, that the theoretical results agree with the numerical results.

Overall we conclude, that the two-grid cycle always converges to the exact solution
of the linear system (4.31) when semi coarsening with respect to time is applied.
Furthermore, if the discretization parameter µ is large enough, we also can apply
full space-time coarsening, which leads to a smaller coarse problem compared to
the semi coarsening case.
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Figure 4.16: Average convergence factor ρ(M̂s
µ) for different discretization pa-

rameter µ, pt = 0 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.17: Average convergence factor ρ(M̂s
µ) for different discretization pa-

rameter µ, pt = 1 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.18: Average convergence factor ρ(M̂s
µ) for different discretization pa-

rameter µ, pt = 2 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.19: Average convergence factor ρ(M̂f
µ) for different discretization pa-

rameter µ, pt = 0 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.20: Average convergence factor ρ(M̂f
µ) for different discretization pa-

rameter µ, pt = 1 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.21: Average convergence factor ρ(M̂f
µ) for different discretization pa-

rameter µ, pt = 2 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Remark 4.3.30. For the two-grid analysis above we used for the applied block
Jacobi smoother

Sν
τL,hL

=
[
I −ωt(DτL,hL

)−1LτL,hL

]ν
(4.43)

the exact inverse of the diagonal matrix DτL,hL
= diag

{
AτL,hL

}NLt

n=1
. For practical

reasons we will use an approximation D̃−1
τL,hL

for the inverse of the diagonal matrix
DτL,hL

by applying one multigrid iteration with respect to the blocks AτL,hL
. Hence

the smoother (4.43) changes to

Sν
τL,hL

:=
[
I −ωt

(
I −MτL,hL

)
(DτL,hL

)−1LτL,hL

]ν
, (4.44)

with the matrix MτL,hL
:= diag

{
Mx

τL,hL

}NLt

n=1
where Mx

τL,hL
is the iteration matrix

of the applied multigrid scheme with respect to the matrix AτL,hL
. In the case that

the iteration matrix Mx
τL,hL

is given by a two-grid cycle, we further obtain the
following representation

Mx
τL,hL

= Sx,νx
2

τL,hL

[
I −PLx

x A−1
τL,2hL

RLx

x AτL,hL

]
Sx,νx

1

τL,hL
,

with a damped Jacobi smoother with respect to space

Sx,νx

τL,hL
:=

[
I −ωx

(
Dx

τL,hL

)−1

AτL,hL

]νx

, Dx
τL,hL

:= diag
{2h

3
KτL

+
2

h
MτL

}NLx

r=1

and the restriction and prolongation operators

RLx

x :=RLx
x ⊗ INt

and PLx

x := PLx
x ⊗ INt

.

With the different smoother (4.44) we also have to analyze the two different two-
grid iteration matrices

Ms
τL,hL

:= Sν2

τL,hL

[
I −PLx,Lt

s

(
L2τL,hL

)−1RLx,Lt
s LτL,hL

]
Sν1

τL,hL
, (4.45)

Mf
τL,hL

:= Sν2

τL,hL

[
I −PLx,Lt

f

(
L2τL,2hL

)−1RLx,Lt

f LτL,hL

]
Sν1

τL,hL
. (4.46)

Hence it remains to analyze the mapping property of the operator MτL,hL
on

the space of harmonics ELx,Lt
(θx,θt). By several computations we find under the

assumptions of periodic solutions (4.32) that

MτL,hL
: ELx,Lt

(θx,θt)→ELx,Lt
(θx,θt)

with the mapping



U1

U2

U3

U4


 7→

(
M̃τL,hL

(θx) 0

0 M̃τL,hL
(θx)

)



U1

U2

U3

U4


 , (4.47)
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and the iteration matrix

M̃τL,hL
(θx) := S̃x,νx

1

τL,hL
(θx)Kx

τL,hL
(θx)S̃x,νx

2

τL,hL
(θx) ∈ C2Nt×2Nt ,

Kx
τL,hL

(θx,θt) := I2Nt
−P̃x(θx)Ã

−1
τL,2hL

(2θx)R̃x(θx)ÃτL,hL
(θx) ∈ C2Nt×2Nt ,

with the matrices

ÃτL,hL
(θx) :=

(
ÂτL,hL

(θx) 0

0 ÂτL,hL
(γ(θx))

)
∈ C2Nt×2Nt ,

Ã−1
τL,2hL

(2θx) :=
(
ÂτL,2hL

(2θx)
)−1 ∈ CNt×Nt

S̃x,νx

τL,hL
(θx) :=

((
ŜτL,hL

(ωx,θx)
)νx

0

0
(
ŜτL,hL

(ωx,γ(θx))
)νx

)
∈ C2Nt×2Nt ,

R̃x(θx) :=
(
R̂x(θx)INt

R̂x(γ(θx))INt

)
∈ C2Nt×Nt ,

P̃x(θx) :=

(
P̂x(θx)INt

P̂x(γ(θx))INt

)
∈ CNt×2Nt

and the Fourier symbols

ÂτL,hL
(θx) :=

hL

3
(2+ cos(θx))KτL

+
2

hL
(1− cos(θx))MτL

∈ CNt×Nt ,

ŜτL,hL
(ωx,θx) := INt

−ωx

(
2hL

3
KτL

+
2

hL

MτL

)−1

ÂτL,hL
(θx) ∈ CNt×Nt .

Hence we can analyze the modified two-grid iteration matrices (4.45) by tak-
ing the additional approximation with the mapping (4.47) into account. For the
smoothing steps νx

1 = νx
2 = 2 and the damping parameter ωx =

2
3
the theoretical

convergence rates with respect to semi coarsening in time are plotted in Figures
4.22–4.24 for the discretization parameter µ ∈ [10−6,106] with respect to the poly-
nomial degrees pt ∈ {0,1,2}. We observe, that the theoretical convergence rates
are always bounded by ρ(Ms

µ) ≤ 1
2
. Further we notice that the derived theoret-

ical convergence rates are a little bit higher for small discretization parameters
µ, compared to the case when the exact inverse of the diagonal matrix DτL,hL

is
used. The measured numerical rates are plotted as dots, triangles and squares in
Figures 4.22–4.24. We observe, that the theoretical convergence rates coincide
with the numerical results.

In Figures 4.25–4.27 the convergence of the two-grid cycle for the full space-time
coarsening case is studied. Here we see, that the computed convergence rates are
very close to the results which we obtained for the case when the exact inverse of
the diagonal matrix DτL,hL

is used.
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Figure 4.22: Average convergence factor ρ(Ms
µ) for different discretization pa-

rameter µ, pt = 0 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.23: Average convergence factor ρ(Ms
µ) for different discretization pa-

rameter µ, pt = 1 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.24: Average convergence factor ρ(Ms
µ) for different discretization pa-

rameter µ, pt = 2 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.25: Average convergence factor ρ(Mf
µ) for different discretization pa-

rameter µ, pt = 0 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.26: Average convergence factor ρ(Mf
µ) for different discretization pa-

rameter µ, pt = 1 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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Figure 4.27: Average convergence factor ρ(Mf
µ) for different discretization pa-

rameter µ, pt = 2 and numerical convergence rates for Nt = 256 time
steps and Nx = 1023.
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4.4 Numerical examples

In this section applications of the space-time multigrid approach, introduced in
Section 4.1 will be presented. In the last Section 4.3 the two-grid cycles with
respect to semi coarsening in time and full space-time coarsening have been an-
alyzed. There we concluded, that semi coarsening with respect to time is always
possible and that full space-time coarsening can be applied, if the discretization
parameter µL = τLh−2

L is large enough, i.e. µL ≥ µ∗. Hence, also for the multigrid
cycle we are able to apply full space-time coarsening only, if µL ≥ µ∗. Whereas
for µL < µ∗ we have to apply semi coarsening with respect to time. When semi
coarsening is applied, we have for the next coarser level

µL−1 = 2τLh−2
L = 2µL.

This implies that the discretization parameter µL−1 gets larger when semi coars-
ening with respect to time is used. Hence, if µL−k ≥ µ∗ for k < L we can apply
full space-time coarsening to reduce the computational costs. If full space-time
coarsening is applied, we have

µL−1 = 2τL (2hL)
−2 =

1

2
µL,

which results in a smaller discretization parameter µL−1. We therefore will com-
bine semi coarsening in time or full space-time coarsening in the right way, to
get to the next coarser space-time level. For different discretization parameters
µ = cµ∗, c ∈ { 1

10
,1,10} this coarsening strategy is shown in Figure 4.28 for 8 time

and 4 space levels. The restriction and prolongation operators for the space-time
multigrid scheme are then defined by the given coarsening strategy.

Next we will study some examples to show the performance of this space-time
multigrid approach.

Example 4.4.1 (Tensor product space-time elements). In this example we con-
sider the spatial domain Ω = (0,1)3 and the simulation interval (0,T ) with T = 1.
The initial decomposition for the spatial domain Ω is given by 12 tetrahedra. We
will use several uniform refinement levels to study the convergence behaviour of
the space-time multigrid solver with respect to the space-discretization. For the
coarsest time level we will use one time step, i.e. τ0 = 1. The ansatz functions
in space are given by piecewise linear continuous functions and for the time dis-
cretization we will use piecewise linear discontinuous ansatz functions, i.e. pt = 1.
Hence we have to solve the linear system (4.6) for the given ansatz functions. To
test the performance of the space-time multigrid method we will use a zero right
hand side, i.e. f = 0 and as an initial guess x0 we will use a random vector with
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(a) Discretization parameter on the finest space-time level: µ7 = 10µ∗.
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(b) Discretization parameter on the finest space-time level: µ7 = µ∗.
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(c) Discretization parameter on the finest space-time level: µ7 = 0.1µ∗.

Figure 4.28: Space-time coarsening for different discretization parameter µL.
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time levels
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

sp
ac
e
le
ve
ls

0 1 7 7 7 7 7 7 7 8 8 9 9 9 9 9

1 1 7 7 7 7 7 7 7 8 8 9 9 9 9 9

2 1 7 7 7 7 7 8 7 8 8 9 9 9 9 9

3 1 7 7 7 7 8 8 8 8 8 9 9 9 9 9

4 1 7 7 7 8 8 8 8 8 8 8 9 9 9 9

5 1 7 7 7 7 7 8 8 8 8 8 9 9 9 9

Table 4.1: Multigrid iterations for Example 4.4.1.

values between zero and one. For the space-time multigrid solver we will use the
following settings with respect to time

ν1 = ν2 = 2, ωt =
1

2
, γ = 1.

We will apply for each block AτL,hL
one geometric multigrid iteration to approx-

imate the inverse of the diagonal matrix DτL,hL
. For this multigrid cycle we will

use the the following settings

νx
1 = νx

2 = 2, ωx =
2

3
, γx = 1.

For the smoother we use a damped block Jacobi smoother. We will apply the
described space-time multigrid solver until we have reached a given relative error
reduction of εMG = 10−8. In Table 4.1 the iteration numbers for several space
and time levels are given. We observe, that the iteration numbers stay bounded
independent of the mesh size hLx

, the time step size τLt
and the number of used

time steps NLt
= 2Lt .

Example 4.4.2 (High order time discretizations). In this example we will study
the convergence of the space-time multigrid method with respect to different
polynomial degrees pt , which are used for the underlying time discretization. To
do so, we will consider the spatial domain Ω = (0,1)2 and the simulation interval
(0,T ) with T = 1024. For the space-time discretization we will use tensor product
space-time elements with piecewise linear continuous ansatz functions in space.
For the discretization in time we will use a fixed time step size τ = 1. For the
initial triangulation of the spatial domain Ω we will consider 4 triangles, which
will be refined uniformly several times. For the space-time multigrid approach
we will use the same settings as in Example 4.4.1. We solve the linear system
(4.6) with a zero right hand side, i.e. f = 0 and for the initial vector x0 we will
use a random vector with values between zero and one. We apply the space-time
multigrid solver until we have reached a relative error reduction of εMG = 10−8. In
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polynomial degree pt

0 1 2 3 4 5 10 15 20 25 30 35 40 45
sp
ac
e
le
ve
ls

0 7 7 6 6 6 6 5 5 4 4 4 4 5 5

1 7 7 7 7 7 7 7 7 7 7 7 7 7 7

2 7 7 7 7 7 7 7 7 7 7 7 7 7 7

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7

4 7 7 7 7 7 7 7 7 7 7 7 7 7 7

5 7 7 7 7 7 7 7 7 7 7 7 7 7 7

6 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Table 4.2: Multigrid iterations with respect to the polynomial degree pt .

Table 4.2 the iteration numbers for different polynomial degrees pt and different
space levels are given. We observe, that the iteration numbers are bounded,
independent of the ansatz functions which are used for the time discretization.

Example 4.4.3 (Simplex space-time elements). In this example we study the
space-time multigrid approach when simplex space-time elements are used for
discretizing the model problem (2.1) by the discontinuous Galerkin scheme (2.2).
We consider the spatial domains Ω = (0,1)d for d = 1,2,3 and the simulation
end time T = 1. Hence, the space-time domains are given by the unit cubes
Q = (0,1)d+1. We decompose the space-time domains Q with (d+1) dimensional
simplices. For d = 1 we will use 2 triangles, for d = 2 we will use 6 tetrahedra and
for d = 3 we will use 24 pentatopes for the initial decompositions. We further
apply several uniform refinement steps to analyze the performance of the pre-
sented solver. To solve the linear system (4.6) for this example, we will apply the
preconditioned GMRES method, where the preconditioner is given by one cycle
of the space-time multigrid method. For the penalty parameter we use σ = 15

and as a polynomial degree we choose p = 1. To approximate the inverse of the
diagonal matrix DτL,hL

we will use an algebraic multigrid solver as implemented
in the package hypre, see [28,29]. As in the previous examples we use a zero right
hand side and a random initial vector x0 with values between zero and one. Since
we are using uniform decompositions for the space-time domains Q, we obtain
for the discretization parameter µ for any level that

µ = τh−2 ≈ h−1 ≥ 1.

Hence we can apply for all space-time levels full space-time coarsening, i.e. the
standard geometric coarsening for simplicial meshes. In the Tables 4.3–4.5 the
iteration numbers for the preconditioned GMRES method are given for a relative
error reduction of εGMRES = 10−8. We observe, that the iteration numbers stay
bounded independent of how many refinement steps are used.
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level elements dof iter
0 2 2 1

1 8 16 4

2 32 80 5

3 128 352 6

4 512 1 472 6

5 2 048 6 016 6

6 8 192 24 320 6

7 32 768 97 792 6

8 131 072 392 192 6

9 524 288 1570 816 6

10 2 097 152 6 287 360 6

Table 4.3: Multigrid iterations for d = 1.

level elements dof iter
0 6 4 1

1 48 104 4

2 384 1 168 5

3 3072 10 784 6

4 24 576 92 224 6

5 196 608 761 984 6

6 1 572 864 6 193 408 6

7 12 582 912 49 938 944 6

Table 4.4: Multigrid iterations for d = 2.

level elements dof iter
0 24 25 1

1 384 968 6

2 6 144 22 312 9

3 98 304 421 040 9

4 1 572 864 7 287 520 9

Table 4.5: Multigrid iterations for d = 3.

4.5 Parallelization

One big advantage of the presented space-time multigrid approach is, that it
can be parallelized with respect to time. The idea of solving time dependent
problems parallel in time is not new. For example the parareal algorithm has
become popular in the last years. This algorithm has been introduced in [55]
and has been analyzed in [7,33,58,59,87]. A lot of applications can be found, for
example, in [30,31,34,35,80]. Other methods to solve evolution equations parallel
in time are multiple shooting methods, which have been introduced in [51, 71].
Multigrid methods for parabolic problems have been introduced in [38] and have
been further developed in [44, 45, 47, 57, 101, 102, 107]. The main difference with
the approach in this work is the line wise smoother which is used, i.e. the damped
block Jacobi smoother (4.7).

The application of this damped block Jacobi smoother can be done in parallel
with respect to time. For each space-time slab we have to apply one multigrid
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cycle in space to approximate the inverse of the diagonal matrix DτL,hL
. The

application of this space multigrid cycle can be done also in parallel, where one
may use parallel packages like in [28,29,43]. Hence the problem (4.6) can be fully
parallelized with respect to space and time, see also Figures 4.29.

The next example will show the parallel performance of this space-time multigrid
approach.

Example 4.5.1 (Parallel computations). In this example we consider the spatial
domain Ω = (0,1)3, which is decomposed into 49 152 tetrahedra. For the dis-
cretization in space we will use piecewise linear continuous ansatz functions and
for the time discretization we will use piecewise linear discontinuous functions
with a fixed time step size τ = 10−1. For the space-time multigrid settings we
apply the same configuration as in Example 4.4.1.

To show the parallel performance with respect to time, we first study the weak
scaling behaviour of the presented multigrid approach. To do so, we use a fixed
number of time steps per core, i.e. 4 time steps for each core. Furthermore we
increase the number of cores when we increase the number of time steps. Hence
the computational costs for one space-time multigrid cycle stay almost the same
for each core. Only the costs for the communication grows, since the space-time
hierarchy gets bigger, when we increase the number of time steps. In Table 4.6
the measured times for solving the linear system (4.6) for a different number of
time steps are given. We obtain, that the multigrid iterations stay bounded, if
we increase the problem size. Further we see, that the computational costs stay
almost bounded if we increase the number of cores, see also Figure 4.30. Only
for one and two cores we obtain better results for the measured solving times,
because in these cases almost no communication is needed.

To test the strong scaling behaviour, we fix the problem size. In particular we will
use 4 096 time steps, which results in a linear system with 61 202 432 unknowns.
Then we increase the number of cores, which then results in smaller problems per
computing core. In Table 4.6 the measured times are given for a different number
of cores. We see, that the computational costs are almost divided by two, if we
double the number of cores, see also the Figure 4.31. For one core we obtain a
better performance, because no communication is involved. The computational
costs when using P = 2 048 cores are a little bit higher, since the problem size per
core gets to small.

All the parallel computations of this example were performed on the Vienna
Scientific Cluster VSC-2.
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x

t

(a) Parallelization only in time direction.

x

t

(b) Full space-time parallelization.

Figure 4.29: Communication pattern on a fixed level.
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cores time steps dof iter time
1 4 59 768 9 6.8
2 8 119 536 9 8.1
4 16 239 072 9 9.2
8 32 478 144 9 9.2

16 64 956 288 9 9.2
32 128 1 912 576 9 9.3
64 256 3 825 152 9 9.1

128 512 7 650 304 9 9.4
256 1 024 15 300 608 9 9.4
512 2 048 30 601 216 9 9.4

1 024 4 096 61 202 432 9 9.4
2 048 8 192 122 404 864 9 9.5

Table 4.6: Weak scaling results with solving times in [s].

cores time steps dof iter time
1 4 096 61 202 432 9 6 960.7
2 4 096 61 202 432 9 3 964.8
4 4 096 61 202 432 9 2 106.2
8 4 096 61 202 432 9 1 056.0

16 4 096 61 202 432 9 530.4
32 4 096 61 202 432 9 269.5
64 4 096 61 202 432 9 135.2

128 4 096 61 202 432 9 68.2
256 4 096 61 202 432 9 34.7
512 4 096 61 202 432 9 17.9

1 024 4 096 61 202 432 9 9.4
2 048 4 096 61 202 432 9 5.4

Table 4.7: Strong scaling results with solving times in [s].
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Figure 4.30: Weak scaling results.
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Figure 4.31: Strong scaling results.



5 APPLICATIONS

In this chapter we will apply the space-time discretization scheme (2.2) introduced
in Chapter 2 and the hybrid space-time formulation (3.7) as given in Chapter 3
to the Navier-Stokes equations, i.e. for ν > 0 we consider the following problem

∂tu−ν∆u+(u ·∇x)u+∇xp = f in Q,

div(u) = 0 in Q,

u= gD on ΣD,

ν (∇xu)nx− pnx = 0 on ΣN ,

u= u0 on Σ0.

(5.1)

Space-time methods for flow problems have been studied for example in [52, 92–
94, 100]. In the first section we will introduce the space-time discretization for
the Navier-Stokes problem (5.1). A hybrid discretization scheme will be derived
in Section 5.2 and in the last section we will apply this method to simulate the
flow in a pump.

5.1 Space-time discretizations

In this section we derive a space-time discretization scheme for the problem (5.1).
This scheme is based on the space-time formulation (2.2) as introduced in Chapter
2. First we will define the discrete function spaces which we use to approximate
the model problem (5.1). Let p ∈ N0, then we define the spaces of piecewise
polynomials

V
p+1

h (TN) :=
[
S

p+1
h (TN)

]d

=
{
vh ∈ [L2(Q)]d : vh|τℓ ∈

[
Pp+1(τℓ)

]d
for all τℓ ∈ TN,vh = 0 on ΣD

}

Q
p
h(TN) :=

{
qh ∈ L2(Q) : qh|τℓ ∈ Pp(τℓ) for all τℓ ∈ TN

}
.

In the first equation of the model problem (5.1) the vector valued heat equation
is contained. This part will be discretized by the space-time formulation (2.2).
This motivates to define the following bilinear form.

A(uh,vh) :=
d

∑
i=1

[b(uh[i],vh[i])+νa(uh[i],vh[i])] (5.2)

151
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Next we will derive a discretization scheme for the gradient of the pressure, i.e.
∇xp. To do so, we multiply the gradient of the pressure with a test function
vh ∈V

p+1
h

(TN) and integrate over the space-time domain Q. Hence we have

−
∫

Q

∇xp(x, t) ·vh(x, t)d(x, t) =−
N

∑
ℓ=1

∫

τℓ

∇xp(x, t) ·vh(x, t)d(x, t).

Integration by parts yields

=
N

∑
ℓ=1

∫

τℓ

p(x, t)div(vh(x, t))d(x, t)−
N

∑
ℓ=1

∫

∂τℓ

p(x, t)vh(x, t) ·nxds(x,t)

=
N

∑
ℓ=1

∫

τℓ

p(x, t)div(vh(x, t))d(x, t)−
∫

ΣN

p(x, t)vh(x, t) ·nxds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[pvh]Γkℓ,x
(x, t)ds(x,t).

By rewriting the jump terms we have

=
N

∑
ℓ=1

∫

τℓ

p(x, t)div(vh(x, t))d(x, t)−
∫

ΣN

p(x, t)vh(x, t) ·nxds(x,t)

− ∑
Γkℓ∈IN

∫

Γkℓ

[
[p]Γkℓ,x

(x, t) · 〈vh〉Γkℓ
(x, t)+ 〈p〉Γkℓ

(x, t) [vh]Γkℓ,x
(x, t)

]
ds(x,t).

If we assume that the pressure p is continuous we obtain

=
N

∑
ℓ=1

∫

τℓ

p(x, t)div(vh(x, t))d(x, t)− ∑
Γkℓ∈IN

∫

Γkℓ

〈p〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t)

−
∫

ΣN

p(x, t)vh(x, t) ·nxds(x,t).

This motivates to define the bilinear form

B(vh, ph) :=
N

∑
ℓ=1

∫

τℓ

ph(x, t)div(vh(x, t))d(x, t)

− ∑
Γkℓ∈IN

∫

Γkℓ

〈ph〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t).

(5.3)
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If we assume, that u is a classical solution of the model problem (5.1) we have
for qh ∈ Q

p
h(TN)

B(u,qh) =
N

∑
ℓ=1

∫

τℓ

qh(x, t)div(u(x, t))d(x, t)

− ∑
Γkℓ∈IN

∫

Γkℓ

〈qh〉Γkℓ
(x, t) [u]Γkℓ,x

(x, t)ds(x,t) = 0.

(5.4)

Hence we will use the formulation (5.4) to discretize the second equation of the
model problem (5.1). Finally we define a stabilization term for the pressure

D(ph,qh) := σp ∑
Γkℓ∈IN

hkℓ

∫

Γkℓ

[ph]Γkℓ
(x, t) · [qh]Γkℓ

(x, t)ds(x,t). (5.5)

Now we are able to formulate the discretization scheme for the model problem
(5.1).

Find uh = uh,0 +EgD with uh,0 ∈V
p+1

h (TN) and ph ∈ Q
p
h(TN), such that

A(uh,vh)+ 〈(uh ·∇x)uh,vh〉Q −B(vh, ph) = 〈f ,vh〉Q + 〈u0,vh〉Σ0
,

B(uh,qh)+D(ph,qh) = 0
(5.6)

for all vh ∈V
p+1

h
(TN) and qh ∈ Q

p
h
(TN).

Remark 5.1.1. In the discrete formulation (5.6) the nonlinearity is treated in
the simplest way. For discontinuous Galerkin schemes it is possible to apply an
upwind technique for the nonlinear convective term, see [79].

Lemma 5.1.2 (Stability condition). For the decomposition TN and the discrete
subspace

Ṽ
p+1

h (TN) :=
{
vh ∈V

p+1
h (TN)∩C(TN) : vh = 0 on ΣD ∪Σ0 ∪ΣT

}
⊂V

p+1
h (TN),

let the stability estimate

sup

06=vh∈Ṽ
p+1

h
(TN)

∫
Q ∇xph(x, t) ·vh(x, t)d(x, t)

‖vh‖[H1(Q)]
d

≥ cS‖ph‖L2(Q) (5.7)

be fulfilled for all ph ∈ Q
p
h(TN)∩C(TN), then the following stability estimate

sup

06=vh∈V
p+1

h
(TN)

B(vh, ph)

‖vh‖DG

≥ c̃S‖ph‖L2(Q) (5.8)

holds for all ph ∈ ker(D) = Q
p
h(TN)∩C(TN), with the vector valued energy norm

‖vh‖2
DG

:=
d

∑
i=1

‖vh[i]‖2
DG.
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Proof. For vh ∈ Ṽ
p+1

h (TN) and i = 1, . . . ,d we observe that

‖vh[i]‖2
DG = ‖vh[i]‖2

A +‖vh[i]‖2
B

=
N

∑
ℓ=1

‖∇xvh[i]‖2

[L2(τℓ)]
d +

N

∑
ℓ=1

hℓ‖∂tvh[i]‖2
L2(τℓ)

≤ (1+hmax)
N

∑
ℓ=1

[
‖∇xvh[i]‖2

[L2(τℓ)]
d +‖∂tvh[i]‖2

L2(τℓ)

]

= (1+hmax)
N

∑
ℓ=1

‖∇vh[i]‖2

[L2(τℓ)]
d+1 ≤ (1+hmax)‖vh[i]‖2

H1(Q),

with hmax := max{hℓ : ℓ= 1, . . . ,N}. Hence we have

‖vh‖DG ≤
√

1+hmax‖vh‖[H1(Q)]
d .

Further, for ph ∈ Q
p
h(TN)∩C(TN) and vh ∈ Ṽ

p+1
h (TN) we obtain

B(vh, ph) =
N

∑
ℓ=1

∫

τℓ

ph(x, t)div(vh(x, t))d(x, t)

− ∑
Γkℓ∈IN

∫

Γkℓ

〈ph〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t)

=
N

∑
ℓ=1

∫

τℓ

ph(x, t)div(vh(x, t))d(x, t)

=

∫

Q

ph(x, t)div(vh(x, t))d(x, t)=−
∫

Q

∇xph(x, t) ·vh(x, t)d(x, t).

Hence we have

sup

06=vh∈V
p+1

h
(TN)

B(vh, ph)

‖vh‖DG

≥ sup

06=vh∈Ṽ
p+1

h
(TN)

B(vh, ph)

‖vh‖DG

= sup

06=vh∈Ṽ
p+1

h
(TN)

−
∫

Q ∇xph(x, t) ·vh(x, t)d(x, t)

‖vh‖DG

≥ 1√
1+hmax

sup

06=vh∈Ṽ
p+1

h

−
∫

Q ∇xph(x, t) ·vh(x, t)d(x, t)

‖vh‖[H1(Q)]
d

≥ cS√
1+hmax

‖ph‖L2(Q).
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Remark 5.1.3. If we compare the stability estimate (5.7) with the standard sta-
bility estimate for the stationary case, i.e.

sup

06=vh∈
[
S

p+1
h

(TN)
]d+1

∫
Q ∇ph(x, t) ·vh(x, t)d(x, t)

‖vh‖[H1(Q)]
d+1

≥ cS‖ph‖L2(Q),

we observe, that in the stability estimate (5.7) only the spatial gradient ∇x appears
instead of the full gradient ∇. Hence, to prove the stability estimate (5.7) for the

finite element pairing (V p+1
h (TN),Q

p
h(TN)), one has to modify the standard proof

for the stability estimate of the standard Taylor-Hood elements.

Remark 5.1.4. For the linearized Navier-Stokes equations the stability result of
Lemma 5.1.2 implies with the stability estimate for the bilinear form A(·, ·), see
Theorem 2.2.21, the unique solvability of the discrete variational problem

Find uh,0 ∈V
p+1

h (TN) and ph ∈ Q
p
h(TN), such that

A(uh,0,vh)−B(vh, ph) = 〈f ,vh〉Q + 〈u0,vh〉Σ0
−A(EgD,vh),

B(uh,0,qh)+D(ph,qh) =−B(EgD,qh)

for all vh ∈V
p+1

h (TN) and qh ∈ Q
p
h(TN).

Furthermore, by assuming quasi uniform decompositions TN and by using standard
arguments we observe the following error estimate in the energy norms

‖u−uh‖DG
+‖p− ph‖L2(Q) ≤ chmin{s,p+2}−1

[
|u|

[Hs(TN)]
d+1 + |p|Hs−1(TN)

]
, (5.9)

with uh = uh,0 +EgD and s ≥ 2.

In what follows, we will introduce the equivalent system of algebraic equations
for the discrete problem (5.6). For the discrete function spaces V

p+1
h (TN) and

Q
p
h(TN) we define the basis functions

V
p+1

h
(TN) = span{ϕℓ=1}Mu

ℓ , uh,0(x, t) =
Mu

∑
ℓ=1

u[ℓ]ϕℓ(x, t) for uh,0 ∈V
p+1

h
(TN),

Q
p
h
(TN) = span{ψn}Mp

n=1 , ph(x, t) =
Mp

∑
n=1

p[n]ψn(x, t) for ph ∈ Q
p
h
(TN).

We define the nonlinear operator

(Khu) [k] := A(uh,ϕk)+ 〈(uh ·∇x)uh,ϕk〉Q
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for uh = EgD +∑
Mu

ℓ=1u[ℓ]ϕℓ and the matrices

Bh[m, ℓ] := B(ϕℓ,ψm), Dh[m,n] := D(ψn,ψm),

for k, ℓ = 1, . . . ,Mu and m,n = 1, . . . ,Mp. Then the discrete variational problem
(5.6) is equivalent to the system of algebraic equations

(
Kh −Bh

⊤

Bh Dh

)(
u

p

)
=

(
fu

fp

)
, (5.10)

with the vectors

fu[k] := 〈f ,ϕk〉Q + 〈u0,ϕk〉Σ0
,

fp[m] :=−B(EgD,ψm)

for k = 1, . . . ,Mu and m = 1, . . . ,Mp. To solve the nonlinear problem (5.10) we
apply a fixed point scheme or Newton’s method.

Example 5.1.5. In this example we consider the spatial domain Ω = (0,1)2 and
the simulation time T = 1. The Neumann and Dirichlet space-time boundaries
are given by

ΣN := {(1,x2) ∈ R2 : 0 ≤ x2 ≤ 1}× [0,T ],

ΣD := (∂Ω × [0,T ])\ΣN.

The given data f , gD and u0 are chosen, such that the solutions u and p of (5.1)
are given by the regular functions

u(x1,x2, t) =

(
t(1− x1)cos(x2)

t sin(x2)

)
, p(x1,x2, t) =−ν t cos(x2)

with ν = 1. For the initial decomposition of the space-time domain Q = (0,1)3 we
use N = 6 tetrahedra, as given in Figure 2.4a. To study the convergence behaviour
of the numerical approach (5.6) we apply several uniform refinement steps. Fur-
ther we use the element pairings (V 1

h (TN),Q
0
h(TN)) and (V 2

h (TN),Q
1
h(TN)), i.e.

p = 0 and p = 1, to compute approximations for the given exact solution. As
a stabilization parameter we use σ = 10(p+1) and σp = 10. To solve the nonlin-
ear system (5.10) we apply Newton’s method, where each linear problem is solved
with the solver package PARDISO [82, 83]. In the Tables 5.1–5.2 the numerical
errors are given in the energy norms ‖u−uh‖DG

and ‖p− ph‖L2(Q). We observe,
that the convergence rates behave as expected.
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level elements dof uh dof ph ‖u−uh‖DG
eoc ‖p− ph‖L2(Q) eoc

0 6 16 6 5.9776−1 − 3.1450−1 −
1 48 248 48 2.9742−1 1.01 2.4636−1 0.35

2 384 2 512 384 1.6879−1 0.82 2.1774−1 0.18

3 3 072 22 304 3 072 9.7794−2 0.79 1.6074−1 0.44

4 24 576 187 456 24 576 4.9947−2 0.97 9.1229−2 0.82

5 196 608 1 536 128 196 608 2.2355−2 1.16 4.0581−2 1.17

Theory: 1.00 1.00

Table 5.1: Numerical results for the finite element pairing (V 1
h (TN),Q

0
h(TN)).

level elements dof uh dof ph ‖u−uh‖DG
eoc ‖p− ph‖L2(Q) eoc

0 6 54 24 1.0881−1 − 1.7006−1 −
1 48 684 192 3.1840−2 1.77 1.9859−2 3.10

2 384 6 552 1 536 7.9904−3 1.99 4.0378−3 2.30

3 3 072 56 880 12 288 1.9818−3 2.01 9.6060−4 2.07

4 24 576 473 184 98 304 4.9134−4 2.01 2.3394−4 2.04

Theory: 2.00 2.00

Table 5.2: Numerical results for the finite element pairing (V 2
h (TN),Q

1
h(TN)).

5.2 Hybrid space-time discretizations

In this section a hybrid discretization scheme with respect to the problem (5.1)
will be derived. As in Chapter 3 we introduce a decomposition of the space-time
domain Q ⊂ Rd+1 into non-overlapping subdomains Qi for i = 1, . . . ,P. We will
use the same notations as in Chapter 3 for the interface Σ , the interior facets on
the interface Σh and the decompositions TNi

for the subdomains Qi with interior
facets INi

. On the interface Σ we define for p ∈N0 the following discrete functions
spaces of piecewise polynomials

V
p+1

h (Σh) :=
{
µh ∈ [L2(Σ)]d : µh|Γkℓ

∈
[
Pp+1(Γkℓ)

]d
for all Γkℓ ∈ Σh

}
,

Q
p
h(Σh) :=

{
ηh ∈ L2(Σ) : ηh|Γkℓ

∈ Pp(Γkℓ) for all Γkℓ ∈ Σh

}
.

Summing up all local decompositions TNi
for i= 1, . . . ,P results in a decomposition

of the space-time domain Q, i.e.

Q = T N :=
P⋃

i=1

⋃

τ i
ℓ∈TNi

τ i
ℓ.

With respect to the decomposition TN we can use the space-time formulation (5.6)
to get an approximation for the problem (5.1). On each subdomain Qi we will
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apply the space-time formulation (5.6). To do so, we define for uh,vh ∈V
p+1

h (TN)
and ph,qh ∈ Q

p
h(TN) the following local bilinear forms

A(i)(uh,vh) :=
d

∑
i=1

[
b(i)(uh[i],vh[i])+νa(i)(uh[i],vh[i])

]
,

B(i)(vh, ph) :=
Ni

∑
ℓ=1

∫

τ i
ℓ

ph(x, t)div(vh(x, t))d(x, t)

− ∑
Γkℓ∈INi

∫

Γkℓ

〈ph〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t),

D(i)(ph,qh) := σp ∑
Γkℓ∈INi

hkℓ

∫

Γkℓ

[ph]Γkℓ
(x, t) · [qh]Γkℓ

(x, t)ds(x,t)

for i = 1, . . . ,P. Further we define the local right hand sides

F(i)(vh) := 〈f ,vh〉Qi
+ 〈u0,vh〉Σ0∩∂Qi

,

for all i = 1, . . . ,P. With these local bilinear forms we obtain

〈(uh ·∇x)uh,vh〉Q −B(vh, ph) =
P

∑
i=1

[
〈(uh ·∇x)uh,vh〉Qi

−B(i)(vh, ph)
]

+ ∑
Γkℓ∈Σh

∫

Γkℓ

〈ph〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t).

(5.11)
Furthermore we have

B(uh,qh)+D(ph,qh) =
P

∑
i=1

[
B(i)(uh,qh)+D(i)(ph,qh)

]

− ∑
Γkℓ∈Σh

∫

Γkℓ

〈qh〉Γkℓ
(x, t) [uh]Γkℓ,x

(x, t)ds(x,t)

+σp ∑
Γkℓ∈Σh

hkℓ

∫

Γkℓ

[ph]Γkℓ
(x, t) · [qh]Γkℓ

(x, t)ds(x,t).

(5.12)

To reduce the coupling on the interface Σ , we will rewrite the coupling terms of
(5.11) and (5.12) by introduce the new variables

λh|Γkℓ
(x, t) := 〈uh〉Γkℓ

(x, t), µh|Γkℓ
(x, t) := 〈vh〉Γkℓ

(x, t),

ρh|Γkℓ
(x, t) := 〈ph〉Γkℓ

(x, t), ηh|Γkℓ
(x, t) := 〈qh〉Γkℓ

(x, t),

for (x, t) ∈ Γkℓ and Γkℓ ∈ Σh. With these new variables we obtain

∑
Γkℓ∈Σh

∫

Γkℓ

〈ph〉Γkℓ
(x, t) [vh]Γkℓ,x

(x, t)ds(x,t) = ∑
Γkℓ∈Σh

∫

Γkℓ

ρh(x, t) [vh]Γkℓ,x
(x, t)ds(x,t)
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= ∑
Γkℓ∈Σh

∫

Γkℓ

ρh(x, t)
(
vh|τk

·nk,x+vh|τℓ ·nℓ,x(x, t)
)

ds(x,t)

=
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

ρh(x, t)
(
vh|τℓ ·nℓ,x(x, t)

)
ds(x,t).

Further we have

∑
Γkℓ∈Σh

∫

Γkℓ

〈qh〉Γkℓ
(x, t) [uh]Γkℓ,x

(x, t)ds(x,t) = ∑
Γkℓ∈Σh

∫

Γkℓ

ηh(x, t) [uh]Γkℓ,x
(x, t)ds(x,t)

=
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

ηh(x, t)
(
uh|τℓ ·nℓ,x(x, t)

)
ds(x,t).

For the remaining coupling term in (5.12) we need the following definition.

Definition 5.2.1 (Hybrid jump). Let Γkℓ ∈ Σh be a facet on the interface Σ with
the outer unit normal vector nk = (nk,x,nk,t)

⊤ with respect to the element τk. For
a discrete function ph ∈ Q

p
h(TN) and a function ρh ∈ Q

p
h(Σh) the hybrid jump for

the element τk is given by

[ph/ρh]∂τk
(x, t) :=

[
ph|τk

(x, t)−ρh(x, t)
]
nk for (x, t) ∈ Γkℓ a.e.

With this definition of the hybrid jump we obtain

[ph]Γkℓ
(x, t) · [qh]Γkℓ

(x, t) = 2 [ph/ρh]∂τk
(x, t) · [qh/ηh]∂τk

(x, t)

+2 [ph/ρh]∂τℓ
(x, t) · [qh/ηh]∂τℓ

(x, t).

Hence we have

∑
Γkℓ∈Σh

hkℓ

∫

Γkℓ

[ph]Γkℓ
(x, t) · [qh]Γkℓ

(x, t)ds(x,t)

= 2
P

∑
i=1

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

hkℓ

∫

Γkℓ

[ph/ρh]∂τℓ
(x, t) · [qh/ηh]∂τℓ

(x, t)ds(x,t).

For each subdomain Qi, i = 1, . . . ,P this motivates to define the local bilinear
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forms

c
(i)
A (uh,λh;vh,µh) :=

d

∑
j=1

c(i)(uh[ j],λh[ j];vh[ j],µh[ j]),

c
(i)
B (vh,µh; ph,ρh) :=−

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

∫

Γkℓ

ρh(x, t)
(
vh|τℓ ·nℓ,x(x, t)

)
ds(x,t),

c
(i)
D (ph,ρh;qh,ηh) := 2σp

Ni

∑
ℓ=1

∑
Γkℓ∈Σh

Γkℓ⊂∂τ i
ℓ

hkℓ

∫

Γkℓ

[ph/ρh]∂τℓ
(x, t) · [qh/ηh]∂τℓ

(x, t)ds(x,t).

(5.13)
With the local bilinear forms (5.13), we are now able to formulate the hybrid
space-time discretization scheme.

Find uh = uh,0 +EgD with uh,0 ∈ V
p+1

h (TN), λh ∈ V
p+1

h (Σh), ph ∈ Q
p
h(TN) and

ρh ∈ Q
p
h(Σh), such that

P

∑
i=1

[
A(i)(uh,vh)+ c

(i)
A (uh,λh;vh,µh)+ 〈(uh ·∇x)uh,vh〉Qi

−B(i)(vh, ph)− c
(i)
B (vh,µh; ph,ρh)

]
=

P

∑
i=1

F(i)(vh),

P

∑
i=1

[
B(i)(uh,qh)+ c

(i)
B (uh,λh;qh,ηh)

+D(i)(ph,qh)+ c
(i)
D (ph,ρh;qh,ηh)

]
= 0

(5.14)

holds for all vh ∈V
p+1

h
(TN), µh ∈V

p+1
h

(Σh), qh ∈ Q
p
h
(TN) and ηh ∈ Q

p
h
(Σh).

Next we will introduce the equivalent system of algebraic equations for the dis-
crete variational problem (5.14). To do so, we define for each space-time decom-
positions TNi

, i = 1, . . . ,P the following basis functions

V
p+1

h (TNi
) = span

{
ϕi
ℓ

}Mi
u

ℓ=1
, ui

h,0(x, t) =
Mi

u

∑
ℓ=1

u
(i)
I [ℓ]ϕi

ℓ(x, t) for ui
h,0 ∈V

p+1
h (TNi

),

Q
p
h(TNi

) = span
{

ψ i
n

}Mi
p

n=1
, pi

h(x, t) =

Mi
p

∑
n=1

p
(i)
I [n]ψ i

n(x, t) for pi
h ∈ Q

p
h(TNi

).

Furthermore, on the interface Σ we introduce the following basis functions

V
p+1

h
(Σh) = span

{
ϕΣ

s

}MΣ
u

s=1
, λh(x, t) =

MΣ
u

∑
s=1

λΣ [s]ϕ
Σ
s (x, t) for λh ∈V

p+1
h

(Σh),
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Q
p
h(Σh) = span

{
ψΣ

t

}MΣ
p

t=1
, ρh(x, t) =

MΣ
p

∑
t=1

ρΣ [t]ψ
Σ
t (x, t) for ρh ∈ Q

p
h(Σh).

Then the discrete variational problem (5.14) is equivalent to the system of alge-
braic equations





K

(1)
II −B

(1)
II

⊤

B
(1)
II D

(1)
II





A

(1)
IΣ −B

(1)
IΣ

D
(1)
IΣ




. . .
...


K

(p)
II −B

(p)
II

⊤

B
(p)
II D

(p)
II





A

(p)
IΣ −B

(p)
IΣ

D
(p)
IΣ





A

(1)
Σ I

B
(1)
Σ I D

(1)
Σ I


 · · ·


A

(p)
Σ I

B
(p)
Σ I D

(p)
Σ I





AΣΣ

DΣΣ











u

(1)
I

p
(1)
I




...

u

(p)
I

p
(p)
I




(
λΣ

̺Σ

)




=





f

(1)
u,I

f
(1)
p,I




...
f

(p)
u,I

f
(p)
p,I




(
fλ ,Σ

fρ,Σ

)




,

(5.15)
with the nonlinear operator

(
K
(i)
II u

(i)
I

)
[k] := A(i)(uh,ϕ

i
k)+ c

(i)
A (uh,0;ϕi

k,0)+
〈
(uh ·∇x)uh,ϕ

i
k

〉
Qi

for uh = EgD +∑
Mi

u

ℓ=1u
(i)
I [ℓ]ϕi

ℓ and the local matrices

B
(i)
II [m, ℓ] := B(i)(ϕi

ℓ,ψ
i
m),

D
(i)
II [m,n] := D(i)(ψ i

n,ψ
i
m)+ c

(i)
D (ψ i

n,0;ψ i
m,0),

for k, ℓ = 1, . . . ,Mi
u and m,n = 1, . . . ,Mi

p. Furthermore the coupling matrices are
given by

A
(i)
IΣ [k,s] := c

(i)
A (0,ϕΣ

s ;ϕi
k,0), A

(i)
Σ I[r, ℓ] := c

(i)
A (ϕi

ℓ,0;0,ϕΣ
r ),

B
(i)
IΣ [k, t] := c

(i)
B (ϕi

k,0;0,ψΣ
t ), B

(i)
Σ I[o, ℓ] := c

(i)
B (ϕi

ℓ,0;0,ψΣ
o ),

D
(i)
IΣ [m, t] := c

(i)
D (0,ψΣ

t ;ψ i
m,0), D

(i)
Σ I[o,n] := c

(i)
D (ψ i

n,0;0,ψΣ
o )

and the matrices with respect to the interface Σ are defined as

A
(i)
ΣΣ [r,s] := c

(i)
A (0,ϕΣ

s ;0,ϕΣ
r ), D

(i)
ΣΣ [o, t] := c

(i)
D (0,ψΣ

t ;0,ψΣ
o ),

for

k, l = 1, . . . ,Mi
u m,n = 1, . . . ,Mi

p r,s = 1, . . . ,MΣ
u o, t = 1, . . . ,MΣ

p .
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Further, the right hand sides are given by

f
(i)
u,I [k] := F(i)(ϕi

k) =
〈
f ,ϕi

k

〉
Qi
+
〈
u0,ϕ

i
k

〉
Σ0∩∂Qi

,

f
(i)
p,I[m] :=−B(i)(EgD,ψ

i
m),

fλ ,Σ [r] :=−
P

∑
i=1

c
(i)
A (EgD,0;0,ϕΣ

r ),

fρ,Σ [o] :=−
P

∑
i=1

c
(i)
B (EgD,0;0,ψΣ

o ).

Remark 5.2.2. The nonlinearity in the system of algebraic equations (5.15) is

only contained in the operators K
(i)
II , i = 1, . . . ,P. To solve this nonlinear problem,

one can apply a fixed point method or Newton’s method, where in each iteration
a linear problem has to be solved. Since the nonlinearity is only contained in the

operators K
(i)
II , we only have to linearize the operators K

(i)
II by a linear operator

K̃
(i)
II . Hence the linear system, which has to be solved in each fixed point iteration

or Newton step has the same structure as the system (5.15). In particular, if the

assumption of Lemma 5.1.2 is fulfilled and if further the linear operators K̃
(i)
II ,

i = 1, . . . ,P are invertible we can invert each block

K̃

(i)
II −B

(i)
II

⊤

B
(i)
II D

(i)
II


 .

Hence we can compute the Schur complement system




AΣΣ

DΣΣ


−

P

∑
i=1


A

(i)
Σ I

B
(i)
Σ I D

(i)
Σ I




K̃

(i)
II −B

(i)
II

⊤

B
(i)
II D

(i)
II




−1
A

(1)
IΣ −B

(i)
IΣ

D
(i)
IΣ






(
λΣ

̺Σ

)
=

(
f̃λ ,Σ

f̃ρ,Σ

)
,

(5.16)

with the right hand side

(
f̃λ ,Σ

f̃ρ,Σ

)
:=

(
λΣ

̺Σ

)
−

P

∑
i=1


A

(i)
Σ I

B
(i)
Σ I D

(i)
Σ I




K̃

(i)
II −B

(i)
II

⊤

B
(i)
II D

(i)
II




−1
f

(i)
u,I

f
(i)
p,I


 .

Further, the local solutions are given by

u

(i)
I

p
(i)
I


=


K̃

(i)
II −B

(i)
II

⊤

B
(i)
II D

(i)
II




−1


f

(i)
u,I

f
(i)
p,I


−


A

(1)
IΣ −B

(i)
IΣ

D
(i)
IΣ



(
λΣ

̺Σ

)


for i = 1, . . . ,P. For the solution of the Schur complement system (5.16) we can
use for example the GMRES method, where the inversion of the local problems
can be done in parallel, either by using a direct approach, or by a suitable iterative
scheme.
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level dof uh dof ph dof λh dof ρh ‖(u−uh,u−λh)‖HDG
eoc ‖p− ph‖L2(Q) eoc

0 120 24 216 36 3.0715−1 − 2.5234−1 −
1 1 248 192 864 144 1.9538−1 0.65 2.3727−1 0.09

2 11 136 1 536 3 456 576 1.2347−1 0.66 1.9567−1 0.28

3 93 696 12 288 13 824 2 304 6.8429−2 0.85 1.2649−1 0.63

4 768 000 98 304 55 296 9 216 3.1597−2 1.11 6.0021−2 1.08

5 6 217 728 786 432 221 184 36 864 1.3373−2 1.24 2.3086−2 1.38

Theory: 1.00 1.00

Table 5.3: Numerical results for the finite element pairing (V 1
h (TN),Q

0
h(TN)) and

(V 1
h (Σh),Q

0
h(Σh)).

level dof uh dof ph dof λh dof ρh ‖(u−uh,u−λh)‖HDG
eoc ‖p− ph‖L2(Q) eoc

0 336 96 432 108 2.6865−2 − 1.6555−2 −
1 3264 768 1728 432 7.5822−3 1.83 4.7767−3 1.79

2 28416 6144 6912 1728 1.8787−3 2.01 1.1237−3 2.09

3 236544 49152 27648 6912 4.6254−4 2.02 2.7143−4 2.05

4 1929216 393216 110592 27648 1.1443−4 2.02 6.6604−5 2.03

Theory: 2.00 2.00

Table 5.4: Numerical results for the finite element pairing (V 2
h (TN),Q

1
h(TN)) and

(V 2
h (Σh),Q

1
h(Σh)).

Example 5.2.3. In this example we consider the spatial domain Ω = (0,1)2 with
the simulation interval [0,T ] with T = 1. For the boundary conditions we use the
same setting as in Example 5.1.5. We also use the same data f , gD and u0 as
in Example 5.1.5, i.e. we study the hybrid formulation (5.14) for approximating
the exact solution

u(x1,x2, t) =

(
t(1− x1)cos(x2)

t sin(x2)

)
, p(x1,x2, t) =−ν t cos(x2)

with ν = 1. Further we decompose the space-time domain Q into P = 24 space-
time subdomains Qi, i = 1, . . . ,P and the space-time subdomains itself are consid-
ered as the initial decompositions for each subdomain, see also Figure 3.2(b). As
in Example 5.1.5 we apply several uniform refinement steps to analyze the con-
vergence behaviour of the presented hybrid space-time formulation (5.14). We
use the finite element pairings for p = 0 and p = 1 with the stabilization param-
eters σ = 10(p+ 1) and σp = 10. The nonlinear equations (5.15) are solved by
applying Newton’s method. For the solution of the arising linear system of each
Newton step we solve the Schur complement system (5.16) with the GMRES
method without any preconditioning. The local problems are solved in parallel
by using the solver package PARDISO. In the Tables 5.3–5.4 the errors in the
energy norms ‖(u−uh,u−λh)‖HDG

and ‖p− ph‖L2(Q) are given. We observe,
that the convergence rate for the energy errors behave as expected.
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Figure 5.1: Lobe pump - spatial domain Ω(t).

5.3 Applications

In this section we apply the hybrid discretization scheme (5.14) to simulate the
flow in a pump. The initial spatial domain Ω ⊂ R2 of the pump is given in
Figure 5.1. The pump consists of two rotating parts, which are called lobes. The
magnitudes of the angular velocities for the two lobes are the same, only the sign
is different, see also Figure 5.1. In particular, for 0 < Ta < T the magnitudes of
the angular velocities are given by

ω(t) :=
4π

2T −Ta

{
t2(3Ta−2t)

T 3
a

t ≤ Ta,

1 t > Ta

∈ C1(R).

Hence we have

ω(0) = 0 and
d

dt
ω(t)|t=0 = 0.

The angular velocities for the two lobes are then defined as

ω1(t) :=




0

0

−ω(t)


 and ω2(t) :=




0

0

ω(t)


 .
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With these angular velocities we define the angle for the lobes as

ϕ(t) :=

t∫

0

ω(s)ds.

Hence we have
ϕ(T ) = 2π ,

which implies, that at the time t = T exactly one rotation is performed. Further
the velocities on the lobes are defined as

gD,1(x, t) := ω1(t)×r1(x, t) and gD,2(x, t) := ω2(t)×r2(x, t),

where r1,r2 ∈ R3 are the vectors from the centers of the lobes to the boundary
points x, i.e. r1(x, t) := (x, t)− (c1, t) and r2(x, t) := (x, t)− (c2, t). On the
boundary ΣD the velocity is zero, i.e. gD(x, t)= 0 for (x, t)∈ΣD. On the boundary
ΣN we apply homogeneous Neumann boundary conditions, as defined in (5.1).

Since the spatial domain Ω is a two dimensional domain, we have

Q = Ω × [0,T ]⊂ R3.

For T = 100 and Ta = 50 the space-time domain Q is shown in Figure 5.2. Because
the space-time domain Q is a bounded subset in R3 we can use a standard meshing
tool, like [85], to generate a space-time decomposition into tetrahedra. The space-
time mesh which we are using for the simulation consists of N = 766 105 elements,
see also Figure 5.2. To apply the hybrid space-time discretization scheme (5.14),
we subdivide the space-time decomposition into P = 64 subdomains, see also
Figure 5.3. For the space-time discretization scheme (5.14) we use for the viscosity
constant ν = 1

2
the stabilization parameters , σ = 20 and σp = 10 for p = 1. For

the solution of the nonlinear equations (5.15) we apply Newton’s method, where
the linear system in each Newton step is solved via the Schur complement system
(5.16). We apply the Newton’s method until we have reached a relative error
reduction of εN = 10−10, which results in 6 Newton steps which have to be used
to solve the nonlinear problem (5.15).

The resulting velocity field is plotted for different time steps in the Figures 5.4–
5.11. We observe, that the flow is transported from the right side of the pump
to the left side via the cavities of the rotating lobes. Between the two lobes we
see, that the magnitude of the velocity has its maximum, where additional local
refinement in the space-time domain Q would be needed, to resolve these local
phenomena.
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Figure 5.2: Space-time domain Q for the lobe pump.

Figure 5.3: Space-time decomposition into P = 64 subdomains.
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Figure 5.4: Lobe pump - velocity field for t = 32.

Figure 5.5: Lobe pump - velocity field for t = 40.
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Figure 5.6: Lobe pump - velocity field for t = 53.

Figure 5.7: Lobe pump - velocity field for t = 60.
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Figure 5.8: Lobe pump - velocity field for t = 70.

Figure 5.9: Lobe pump - velocity field for t = 80.
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Figure 5.10: Lobe pump - velocity field for t = 90.

Figure 5.11: Lobe pump - velocity field for t = 100.



6 CONCLUSIONS AND OUTLOOK

In this work discretization schemes, to approximate time dependent problems
by a numerical approach, have been introduced and studied. Moreover, a fast
solver for the arising linear systems has been formulated and analyzed by using
the so called local Fourier mode analysis. The main difference of the presented
approach of this work to the more common time stepping schemes is, that in this
work the discrete solution is obtained by decomposing the space-time domain
Q = Ω × (0,T ) into finite elements. This results in an approach which allows
the use of almost arbitrary space-time decompositions for the space-time domain
Q. For moving spatial domains Ω = Ω(t) these space-time methods lead to a
continuous approximation for the motion of the domain Ω . This results in the
advantage, that bigger time step sizes can be used for approximating the exact
solution. Moreover these methods allow the use of local refinements in the space-
time domain Q.

In particular, a space-time discretization scheme for the heat equation, as a model
problem, has been derived by using a discontinuous Galerkin approach. For
the discretization of the Laplace operator an interior penalty Galerkin approach
has been used, whereas for the first order time derivative an upwind scheme in
time has been applied. This discretization scheme has been analyzed in Chapter
2, where error estimates with respect to the energy norm have been proven.
Moreover, several numerical examples confirmed these error estimates.

Based on the discontinuous Galerkin space-time discretization of Chapter 2, a
hybrid space-time formulation has been introduced in Chapter 3 by defining a
new unknown variable λh on the interface of the space-time subdomains. With
this formulation the unknowns on each space-time subdomain can be eliminated,
which results in the Schur complement system (3.10), where the unknowns of the
Schur complement system are given by the introduced interface variable λh. This
allows the use of parallel solution algorithms in space and time. Furthermore,
error estimates for the related energy norms have been proven and numerical
examples confirm the proven estimates.

In the main part of this work a space-time multigrid approach has been analyzed
by applying the local Fourier mode analysis. This multigrid approach is based on
so called space-time slabs, which are natural, if a standard discretization scheme
in space and time is used. Under the assumption of periodic boundary conditions
the two-grid cycle for this approach has been studied, where the asymptotic con-
vergence rates have been computed for arbitrary polynomial degrees with respect

171
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t

xu0 = 1− x

u = 0u = 1

Q

(a) Space-time domain Q for a moving domain
Ω .

(b) Adaptive space-time mesh.

Figure 6.1: Space-time domain Q for a moving one-dimensional spatial domain
Ω and the resulting adaptive space-time mesh.

to time. The measured convergence rates completely agree with the theoreti-
cal results which have been obtained by the local Fourier mode analysis. One
advantage of this multigrid approach is, that each space-time slab can be solved
separately. Hence, the linear systems resulting from the space-time discretizations
can be solved in parallel with respect to time. For a tensor product space-time
discretization the parallel performance of this approach has been studied at the
end of Chapter 4.

In Chapter 5 the space-time discretization schemes introduced in Chapter 2 and
Chapter 3 have been applied to the Navier-Stokes equations. Here numerical
examples also showed the expected order of convergence with respect to the en-
ergy norm. Further, to show the advantage of this discretization schemes, this
approach has been applied to simulate the flow in a two-dimensional pump.

To apply these methods to more complicated three-dimensional geometries, one
has to implement a four-dimensional mesh generator. For spatial domains Ω
which do not change in time one can simply generate a four-dimensional de-
composition, by decomposing the tensor product space-time elements into sim-
plices. For moving three-dimensional spatial domains the decomposition of a
four-dimensional space-time domain is more complicated, but not impossible.

Another advantage of the presented approach is, that it is possible to apply mesh
refinements local in the space-time domain. For example, singularities in the
solution can occur local in the space-time domain Q, if the spatial domain is
moving in time. For the moving spatial domain Ω(t) = (0, 1

2
+
∣∣t − 1

2

∣∣) the heat
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equation has been solved with the data as given in Figure 6.1(a). A simple residual
error estimator has been used to apply adaptive refinements in space and time.
The resulting adaptive space-time mesh is given in Figure 6.1(b), where most of
the refinements take place near the singularity and almost uniform refinement
has been used where the solution is smooth enough.

An interesting research topic would be the application of these space-time meth-
ods to other partial differential equations with first or second order time deriva-
tives, as for example the bidomain equations, which are used to simulate the
electrical activity of the heart. Further, one may study the coupling of this ap-
proaches with other discretization schemes, as for example the coupling with
boundary element methods, where the coupling interface is in general a complex
four-dimensional manifold.
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[111] A. Üngör and A. Sheffer. Tent-Pitcher: A Meshing Algorithm For Space-
Time Discontinuous Galerkin Methods. Proceedings, 9th International
Meshing Roundtable, Sandia National Laboratories, pages 111–122, 2000.



 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

 
Vol. 1 Steffen Alvermann 

 Effective Viscoelastic Behaviour 
of Cellular Auxetic Materials 
2008 
ISBN 978-3-902465-92-4 

  

Vol. 2 Sendy Fransiscus Tantono 

 The Mechanical Behaviour of a Soilbag 
under Vertical Compression 
2008 
ISBN 978-3-902465-97-9 

  

Vol. 3 Thomas Rüberg 

 Non-conforming FEM/BEM Coupling in Time Domain 
2008 
ISBN 978-3-902465-98-6 

  

Vol. 4 Dimitrios E. Kiousis 

 Biomechanical and Computational Modeling of 
Atherosclerotic Arteries 
2008 
ISBN 978-3-85125-023-7 

  

Vol. 5 Lars Kielhorn 

 A Time-Domain Symmetric Galerkin BEM 
for Viscoelastodynamics 
2009 
ISBN 978-3-85125-042-8 

  

Vol. 6 Gerhard Unger 

 Analysis of Boundary Element Methods 
for Laplacian Eigenvalue Problems 
2009 
ISBN 978-3-85125-081-7 



 

Monographic Series TU Graz  

Computation in Engineering and Science 

 

 
Vol. 7 Gerhard Sommer 

 Mechanical Properties of Healthy and Diseased 
Human Arteries 
2010 
ISBN 978-3-85125-111-1 

  

Vol. 8 Mathias Nenning 

 Infinite Elements for  
Elasto- and Poroelastodynamics 
2010 
ISBN 978-3-85125-130-2 

  

Vol. 9 Thanh Xuan Phan 

 Boundary Element Methods for 
Boundary Control Problems 
2011 
ISBN 978-3-85125-149-4 

  

Vol. 10 Loris Nagler 

 Simulation of Sound Transmission through 
Poroelastic Plate-like Structures 
2011 
ISBN 978-3-85125-153-1 

  

Vol. 11 Markus Windisch 

 Boundary Element Tearing and Interconnecting 
Methods for Acoustic and Electromagnetic 
Scattering 
2011 
ISBN: 978-3-85125-152-4 

 

 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

Vol. 12 Christian Walchshofer 

 Analysis of the Dynamics at the Base of a Lifted 
Strongly Buoyant Jet Flame Using Direct Numerical 
Simulation 

2011 
ISBN 978-3-85125-185-2 

  

Vol. 13 Matthias Messner 

 Fast Boundary Element Methods in Acoustics 

2012 
ISBN 978-3-85125-202-6 

Vol. 14 Peter Urthaler 

 Analysis of Boundary Element Methods for Wave 
Propagation in Porous Media 

2012 
ISBN 978-3-85125-216-3 

  

Vol. 15 Peng Li 

 Boundary Element Method for Wave Propagation in 
Partially Saturated Poroelastic Continua 

2012 
ISBN 978-3-85125-236-1 

  

Vol. 16 Jörg Schriefl 

 Quantification of Collagen Fiber Morphologies in 
Human Arterial Walls 
2012 
ISBN 978-3-85125-238-5 
 

Vol. 17 Thomas S. E. Eriksson 

 Cardiovascular Mechanics  
2013 
ISBN 978-3-85125-277-4 

 



Monographic Series TU Graz  

Computation in Engineering and Science 

 

Vol. 18 Jianhua Tong 

 Biomechanics of Abdominal Aortic Aneurysms 

2013 
ISBN 978-3-85125-279-8 

Vol. 19 Jonathan Rohleder 

 Titchmarsh–Weyl Theory and Inverse Problems 
for Elliptic Differential Operators 
2013 
ISBN 978-3-85125-283-5 
 

Vol. 20 Martin Neumüller 

 Space-Time Methods 
2013 
ISBN 978-3-85125-290-3 

  

  

  

  

  

  

  

  

  

 


