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Abstract

This work is concerned with the calculation of effective, macroscopic material parameters
of materials with an inhomogeneous microstructure. On the microscopic scale, the calcu-
lation of a representative volume element of the material is done taking dynamical effects
into account. This makes it possible to study damping effects on the macroscopic scale.
The microstructures to be analyzed are mainly composed of trusses. They are calculated
with a newly developed boundary element formulation, which delivers analytical exact
results. A special interest is put on microstructures which, because of their deformation
mechanism, cause a negative Poisson’s ratio of a material on the macroscopic scale (aux-
etic materials). The calculation of adequate macroscopic material parameters is done with
different optimization techniques. Beside the classical gradient-based optimization pro-
cedures, also softcomputing methods like Genetic Algorithms and Neural Networks are
used. A number of numerical examples are presented where effective viscoelastic material
parameters are calculated. The Genetic Algorithm turned out to deliver the most reliable
results in the homogenization process, wheras the gradient-based methods may fail due to
the existence of local minima in the optimization function.

Zusammenfassung

Die vorliegende Arbeit behandelt die Berechnung effektiver, makroskopischer Eigenschaf-
ten von Materialien mit inhomogener Mikrostruktur. Auf mikroskopischer Ebene wird da-
bei die Berechnung eines repräsentativen Volumenelementes des zu untersuchenden Ma-
terials in der Dynamik durchgeführt, um Effekte wie beispielweise die innere Dämpfung
des makroskopischen Materials zu erfassen. Die zu untersuchenden Mikrostrukturen sind
meist einfache Balkentragwerke, die mit Hilfe einer neuentwickelten Randelementformu-
lierung analytisch exakt berechnet werden. In der vorliegenden Arbeit interessieren insbe-
sondere solche Strukturen, die durch ihre mikroskopische Kinematik negative Querkon-
traktionszahlen auf makroskopischer Ebene verursachen (auxetische Materialien). Die
Berechnung effektiver Materialparameter auf makroskopischer Ebene erfolgt mit Hilfe
verschiedener Optimierungsverfahren, wobei neben klassischen Gradientenverfahren auch
Softcomputing-Methoden wie Genetische Algorithmen und Neuronale Netze zum Ein-
satz kommen. Eine Reihe von Beispielrechnungen werden vorgestellt, bei denen effek-
tive viskoelastische Materialparameter verschiedener Mikrostrukturen berechnet werden.
Der Genetische Algorithmus liefert dabei die zuverlässigsten Ergebnisse, wohingegen die
klassischen Gradientenverfahren teilweise aufgrund lokaler Minima in der Optimierungs-
funktion fehlschlagen.
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1 INTRODUCTION

Nearly all common materials undergo a transverse contraction when being stretched in one
direction and a transverse expansion when being compressed. The magnitude of this trans-
verse deformation is governed by the Poisson’s ratio. Poisson’s ratios for various materials
are approximately 0.5 for rubbers, 0.3 for common steels, 0.1 to 0.4 for cellular solids such
as typical polymer foams, and nearly 0 for cork. These materials, possessing a positive
Poisson’s ratio, contract laterally when stretched and expand laterally when compressed.
Negative Poisson’s ratios are theoretically permissible but have not been observed in real
materials. Materials with a negative Poisson’s ratio behave counter-intuitively, meaning
that they become thicker in their perpendicular directions when being stretched. At first
sight, this seems impossible because one thinks that the volume of the material must be
conserved. However, there is no law of conservation of volume and in fact, all materials
with a Poisson’s ratio which differs from 0.5 do not ’conserve volume’.

Materials with a negative Poisson’s ratio are expected to have interesting mechanical prop-
erties such as high energy absorption and fracture resistance which may be useful in appli-
cations such as packing material, knee and elbow pads, robust shock absorbing material,
filters or sponge mops. Nevertheless, until now, no industrial applications have been real-
ized in terms of products which are ready for mass production. However, a considerable
number of patents has been given, which clearly shows the interest of industry in auxetic
materials. As an example, the manufacturing process of an auxetic polymeric material was
patented in US Patent 6878320 [29]. An example of the practical application of a partic-
ular value of Poisson’s ratio is the cork of a wine bottle. The cork must be easily inserted
and removed, yet it also must withstand the pressure from within the bottle. Rubber, with
a Poisson’s ratio of 0.5, could not be used for this purpose because it would expand when
being compressed into the neck of the bottle and would jam. Cork, by contrast, with a
Poisson’s ratio of nearly zero, is ideal in this application.

From a continuum mechanics point of view, there is no restriction for Poisson’s ratio to
be positive. This is known for a long time, but nobody made an effort to investigate this
behavior. In fact, the earliest example for a material with a negative Poisson’s ratio was
published in Science in 1987, ’Foam structures with a negative Poisson’s ratio’ by R.S.
LAKES [34]. LAKES converted a synthetic foam from its conventional, positive Poisson’s
ratio state to one having a negative Poisson’s ratio by a relatively simple process [6]. In
fact, the fabrication process is published in the Internet in form of a ’cooking recipe’
[33]. Since then several new negative Poisson’s ratio materials have been developed and
fabricated.

A negative Poisson’s ratio effect can be explained with the microstructural characteristics
of a material. Foams or composite structures having a specific microstructure exhibit this

1



2 1 Introduction

effect. Thus, when studying such materials it is necessary to ’bridge the length scales’
or, in other words, to investigate a certain microstructure and try to obtain the behavior of
it on a macroscopic scale. The problem of finding a micro-macro transition is subject of
many publications. This may be due to the fact that nearly every material exhibits a certain
microstructure. On the microscopic scale of a material, one can find heterogeneties such
as cracks, inclusions, fibres or others while one a macroscopic scale, the material may
be modeled perfectly isotropic. Thus, the bridge between microscopic and macroscopic
scale was always of great interest for researchers - either one was interested in finding
macroscopic properties of a material with a certain microstructure (homogenization) [37]
or there was a need for a microstructural explanation of a macroscopic phenomena (lo-
calization). Most papers recently published in the context of micro-macro considerations
are concerned with the latter problem, in particular there exist many publications which
are concerned with crack identification and the micromechanical implications [49]. In
the scope of this work, however, the attention is focused on the homogenization prob-
lem. The aim is to predict macroscopic material parameters of specific microstructures
which exhibit a negative Poisson’s ratio. Since it is expected that such materials have good
damping characteristics, the homogenization is done in a dynamic formulation. Dynamic
formulation, in this context, means that material parameters for a non-static constitutive
equation are calculated. Therefore, it is necessary to make a dynamic calculation of the
microstructure.

There is a big manifold of microstructures with a negative Poisson’s ratio. The repertoire
of such materials includes metallic foams, polymers or honeycomb-like structures. The
essence of all these different microstructures is that the effect is always caused by a spe-
cific kinematic mechanism. In fact, the effect can easily be shown by certain mechanisms
involving simple beam models. An example mechanism is given in Figure 1.1. The beams

unloaded under tensional load

Figure 1.1: Microstructure of an auxetic material

in this structure are rigidly connected. Due to their arrangement with the ’re-entrant’ cor-
ners at the joints, the whole structure expands when being subjected to a tensional load.
Thus, a material with a microstructure of this type would have a negative Poisson’s ratio.
Although it is hardly possible to fabricate a microstructure with small beams of constant
cross-section which are rigidly connected among each other, the ideal beam model is ad-
equate to study the behavior. It must be true that if a certain effect of the microstructure
causes a specific behavior on the macroscale, this effect is present at a perfect microstruc-
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ture as well as on a real, imperfect microstructure. Moreover, such an effect must be
present in a three-dimensional application as well as in a two-dimensional case. There-
fore, a calculation procedure for plane frameworks is needed in a first step. This problem
is found very commonly in mechanics and has been solved by many authors. Yet, within
this work, a new solution is introduced. The calculation of plane truss structures is solved
by a boundary integral method, delivering an exact solution in frequency domain. Thus,
the calculation of the microstructure is done as precise as possible.

With the results on the microscale, the homogenization is performed. Since homogeniza-
tion techniques and the corresponding publications are centered on the calculation of static
properties, a new method is proposed to calculate effective dynamic properties. The
homogenization in the static case delivers (under certain assumptions) exact results. In
frequency domain, however, this is not possible. For this reason, the homogenization is
formulated as an optimization problem, the task is to ’try to find macroscopic material pa-
rameters which describe the micromechanical behavior as good as possible’. A number of
different optimization procedures are used to solve the problem.

The work is arranged in the following way. Firstly, a presentation of the fundamental
equations of continuum mechanics is given, focused on the constitutive equation in the
elastic and viscoelastic case. The calculation of plane truss structures using a boundary
integral method is presented in chapter 3. Next, the theory of homogenization is given.
In chapter 5, the optimization procedure used for the homogenization are described and
finally, example calculations are presented in the static and dynamic case.

Throughout this work, Einsteins summation convention is used, i.e., summation is per-
formed if a term has repeated indices in a monomial.



4 1 Introduction



2 CONTINUUM MECHANICS

In this chapter, the basic notations and equations for the description of a continuous medium
are summarized. The main focus is put on the constitutive equations for elastic and vis-
coelastic material behavior. More detailed and extensive elaborations can be found in
well-known textbooks, e.g. [19], [11].

2.1 Kinematics of deformations

The term deformation refers to a change in the shape of a continuum between a reference
configuration and a current configuration. In the reference configuration, a particle of the
continuum occupies a point P with the position vector x and in the current configuration,
this particle occupies a point P̂ with the position vector x̂ as shown in Figure 2.1. The

current
configuration

reference
configuration

P
P̂

x
x̂

dx
dx̂

x+dx
x̂+dx̂

Q Q̂

u(x)

u(x+dx)

ζ1

ζ2

ζ3

Figure 2.1: Deformation of a body

difference of the position vectors x and x̂ is termed displacement, so the components of the
displacement vector u are given by

ui = x̂i− xi . (2.1)

A neighboring point Q has the position vector x + dx in the reference configuration and
x̂ + dx̂ in the current configuration. The connecting line element dx is mapped to the line
element dx̂ via

dx̂i = Fi jdx j . (2.2)

5



6 2 Continuum mechanics

Fi j are the components of the displacement gradient which are in a cartesian coordinate
system

Fi j = ui, j +δi j , (2.3)

where (·),i denotes the partial derivative with respect to xi and δi j is the Kronecker-delta
(see Appendix A.1). To obtain a measurement for the deformation, the square difference
in the magnitudes of the line elements are taken

dx̂kdx̂k−dxldxl = 2εi jdxidx j . (2.4)

The components εi j are the components of the so-called GREEN-LAGRANGIAN strain
tensor with

εi j =
1
2
(
FikFk j−δi j

)
=

1
2
(
ui, j +u j,i +ui,kuk, j

)
. (2.5)

In many technical applications only small deformations occur so that the term ui,kuk, j can
be neglected. Doing so, the infinitesimal strain tensor of linear continuum mechanics is
obtained with

εi j =
1
2
(
ui, j +u j,i

)
. (2.6)

From equation (2.6), it is obvious that the strain tensor is symmetric, i.e.,

εi j = ε ji . (2.7)

2.2 Equilibrium

The balance of linear momentum postulates that the change of momentum of a body must
be equal to the sum of all forces

d
dt

∫
Ω̂

ρ̂ ˙̂uidV =
∫
Ω̂

ρ̂ f̂idV +
∫

∂ Ω̂

t̂idA . (2.8)

In equation (2.8), the density is denoted by ρ , fi are the components of body forces acting
inside the body Ω̂ and ti are the components of forces acting on the boundary ∂ Ω̂ of the
body. All quantities refer to the current configuration, denoted by the ˆ symbol. t̂i can be
expressed by CAUCHY’s theorem

t̂i = σi jn̂ j (2.9)

where n̂i denote the components of the outward normal vector of the surface of the body
∂ Ω̂ and σi j are the components of the CAUCHY stress tensor. Equation (2.9) can be
inserted in (2.8) and the surface integral can be transformed into a volume integral via
GREEN’s theorem. Considering a single material point of body Ω̂ in the current configu-
ration, the equation of dynamic equilibrium

σi j, j + ρ̂ f̂i = ρ üi (2.10)

is obtained. In static calculations, the body is not accelerated and thus, inertia terms are
neglected. The üi are zero and equation (2.10) turns into the static equilibrium

σi j, j + ρ̂ f̂i = 0 . (2.11)
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2.3 Constitutive equation

To be able to solve mechanical problems, the constitutive equations have to be added to
the set of kinematic and balance equations. Within this work, the linear elastic and linear
viscoelastic constitutive equations are used.

2.3.1 Linear elasticity

The linear elastic constitutive equation postulates a linear relationship between each com-
ponent of stress and strain. As a prerequisite to this relationship, it is necessary to establish
the existence of a strain energy density W that is a homogeneous quadratic function of the
strain components. The strain energy density function should have coefficients such that
W ≥ 0 in order to insure the stability of the body, with W (0) = 0 corresponding to a natural
or zero energy state. For Hooke’s law it is

W =
1
2

Ci jkl εi j εkl . (2.12)

The constitutive equation, i.e., the stress-strain relation, is obtained by

σi j =
∂W
∂εi j

, (2.13)

yielding the generalized Hooke’s law

σi j = Ci jklεkl (2.14)

with the fourth order elasticity tensor Ci jkl which has 34 = 81 components. Taking into
account the symmetry of the stress and strain tensor, these 81 coefficients are reduced
to 36 distinct elastic constants. From the strain energy density, the symmetric material
tensor

Ci jkl = Ckli j (2.15)

obviously yields 21 independent elastic constants in the general case.

Introducing the notation

σσσ =

 σ11 σ12 σ33
σ22 σ23

sym. σ33

→ [σ11 σ22 σ33 σ12 σ23 σ13]
T (2.16)

for σσσ and

εεε =

 ε11 ε12 ε33
ε22 ε23

sym. ε33

→ [ε11 ε22 ε33 2ε12 2ε23 2ε13]
T (2.17)
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for εεε , Hooke’s law is often written in matrix form
σ11
σ22
σ33
σ12
σ23
σ13

=


C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213
C3333 C3312 C3323 C3313

C1212 C1223 C1213
sym. C2323 C2313

C1313




ε11
ε22
ε33

2ε12
2ε23
2ε13

 . (2.18)

The matrix notation (also termed VOIGT’s notation) for the tensor equation is commonly
found in literature. Equation (2.18) is valid for the most general case of an anisotropic
material, i.e., a material with different properties in different directions. If the material
properties are equal in all directions, it is called isotropic and the number of independent
constants of the material tensor reduces from 21 to 2. Using the Lame constants λ and µ ,
the stress strain relationship is

σ11
σ22
σ33
σ12
σ23
σ13

=


2µ +λ λ λ 0 0 0

2µ +λ λ 0 0 0
2µ +λ 0 0 0

µ 0 0
sym. µ 0

µ




ε11
ε22
ε33
2ε12
2ε23
2ε13

 , (2.19)

or in indical notation
σi j = 2µεi j +λδi jεkk . (2.20)

In between isotropic and anisotropic material, there exist various types of materials, for ex-
ample orthotropic materials which have 9 independent constants. For isotropic materials,
also other choices of 2 constants are possible, e.g., Young’s modulus

E =
µ(2µ +3λ )

µ +λ
(2.21)

and Poisson’s ratio

ν =
λ

2(µ +λ )
. (2.22)

Solving Hooke’s law (2.19) for the strain and using equations (2.21) and (2.22), the com-
plementary relationship

ε11
ε22
ε33
2ε12
2ε23
2ε13

=
1
E


1 −ν −ν 0 0 0

1 −ν 0 0 0
1 0 0 0

(1+ν) 0 0
sym. (1+ν) 0

(1+ν)




σ11
σ22
σ33
σ12
σ23
σ13

 (2.23)

is obtained. In the general, anisotropic case, the complementary relationship is

ε = C−1
σ , (2.24)
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where the inverse of C is called flexibility tensor.

Meaning of Poisson’s ratio

The physical meaning of the Poisson’s ratio ν becomes clear if a body under an uniaxial
stress condition is considered, i.e., only σ11 6= 0. Using the first two rows of equation
(2.23),

ν =−Eε22

σ11
=−ε22

ε11
(2.25)

is obtained. Figure 2.2 shows a body under this uniaxial stress state. The physical di-

σ11

σ11

¯̀ `b̄b

x3

x2

x1

undeformed

deformed

Figure 2.2: Physical meaning of Poisson’s ratio

mension in x1 direction is `, in x2 and x3 direction it is b. The longitudinal deformation
is

`− ¯̀

`
= ε11 , (2.26)

and the lateral deformation is
b− b̄

b
= ε22 . (2.27)

Thus, Poisson’s ratio is the ratio of the lateral tensile strain to the longitudinal contractile
strain.

Admissible values for Poisson’s ratio

To derive a range of admissible values for Poisson’s ratio of isotropic materials, it is use-
ful to subdivide the stress and strain tensor into a hydrostatic and deviatoric part. The
hydrostatic part

εεε
hyd =

 εm 0 0
0 εm 0
0 0 εm

 , εm =
εii

3
(2.28)
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describes a pure volume change and the deviatoric part

εεε
dev =

 ε11− εm ε12 ε13
ε12 ε22− εm ε23
ε13 ε23 ε33− εm

 (2.29)

describes the change of shape of a body. The stress tensor is subdivided analogously.
Using the shear modulus

G =
E

2(1+ν)
(2.30)

and the bulk modulus
K =

E
3(1−2ν)

(2.31)

as independent constants, Hooke’s law for the two parts can be expressed with

σ
hyd
kk = 3Kε

hyd
kk (2.32)

and

σ
dev
i j = 2Gε

dev
i j . (2.33)

The corresponding strain energy functions are

W hyd =
3K
2

ε
hyd
ii ε

hyd
j j (2.34)

and

W dev = Gε
dev
ii ε

dev
j j . (2.35)

The strain energy function (2.12) is a homogeneous quadratic form, which means that for
a deformed body, both W hyd > 0 and W dev > 0. From this,

G =
E

2(1+ν)
> 0 (2.36)

K =
E

3(1−2ν)
> 0 (2.37)

is obtained, resulting in

E > 0 (2.38)
−1 < ν < 0.5 . (2.39)

The restriction for Young’s modulus to be positive could have been suspected from com-
mon sense. The possibility for Poisson’s ratio to be negative, however, is against an en-
gineer’s intuition because it means that a material under compression becomes thinner in
cross section.

For non-isotropic materials, Poisson’s ratio has no bounds under the prerequisite of posi-
tive definiteness of strain energy density, as has been shown in a recent publication [54].

Two-dimensional elasticity Many problems in continuum mechanics can satisfactorily be
treated in a two-dimensional theory. Two cases can be distinguished:
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• plane stress

The geometry of the body is that of a plate, i.e., one dimension is much smaller than
the other two and the applied load is distributed uniformly over the thickness and act
in that plane. The elastic constitutive equation is

σi j =
(

Ci jkl−
Ci j33

C3333
Ckl33

)
εkl = Qi jkl εkl ; i, j,k, l = 1,2 (2.40)

or, written in matrix form σ11
σ22
σ12

=

 Q1111 Q1122 Q1112
Q2211 Q2222 Q2212
Q1211 Q1222 Q1212

 ε11
ε22
ε12

 . (2.41)

The Qi jkl are called reduced stiffness factors [1]. Derivations are not given here, the
reader is referred to well-known textbooks, e.g. [19], [11].

• plane strain

The geometry of the body is essentially that of a prismatic cylinder with one dimen-
sion much larger than the others. The loads are uniformly distributed with respect
to the large dimension and act perpendicular to it. The corresponding equations and
derivations can be found in literature.

2.3.2 Linear viscoelasticity

The linear elastic constitutive equation has been elaborated in the previous chapter. This
relationship between stress and strain is time-independent, in other words if an elastic ma-
terial is subjected to a suddenly applied loading state held constant thereafter, it responds
instantaneously with a state of deformation which remains constant [11, 17]. The lin-
ear viscoelastic constitutive equation, in contrast, exhibits a time-dependent reaction on
an applied load state. The phenomena occurring in the reaction of a viscoelastic mate-
rial are called creep and relaxation. They can be demonstrated by the so-called standard
test for viscoelastic solids: A Heaviside stress σ(t) = σ0H(t) is applied to a material (see
Appendix A.2 for the definition of the Heaviside function). The response consists of an
instant reaction ε0 and a creep phase during which the strain continuously increases over
the time (see Figure 2.3). At the exact time when the stress load is released, the strain ε is
held constant. The stress slowly decreases during the so-called relaxation phase. Conse-
quently, the current stress state is not only determined by the current strain state but also
by the history of strain. The same applies to the current strain, which does not only de-
pend on the current stress state but also on the stress history. While the theory of elasticity
accounts for materials which have the capacity to store energy and completely release it,
the theory of viscoelasticity describes materials in which energy is only stored partially. A
certain amount of energy is dissipated during the creep and relaxation phase, i.e., damping
occurs. Physically, the damping of a material is caused by molecular phenomena, e.g.,
inner friction.
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σ

σ0

ε

ε0

t

t

creep phase

relaxation phase

Figure 2.3: Creep and relaxation

Integral formulation

As has been mentioned above, the stress strain relation of a viscoelastic material requires
the complete stress-strain history. This memory function of a material can mathemati-
cally be described by an hereditary integral. In the one-dimensional case, the viscoelastic
constitutive equation reads

ε(t) =
t∫

0

J(t− t̄)
dσ(t̄)

dt̄
dt̄ . (2.42)

The function J(t) is the so-called creep function. It describes the strain of a of a body
which is loaded with a Heaviside stress function as given in Figure 2.4.

σ

σ0

t t

J(t)

J(t) = ε(t)
σ0

Figure 2.4: Creep function

The hereditary integral in equation (2.42) can be derived by approximating a non-constant
stress function σ(t) with a sequence of infinitesimal step functions (see Figure 2.5). The
approximated stress is

σ(t)≈∑
j

∆σ jH(t− t̄) . (2.43)

Using the rule of linear superposition, the strain yields

ε(t)≈∑
j

∆σ jJ(t− t̄) , (2.44)
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σ

dσ(t̄)

t

σ(t)

t̄ t

Figure 2.5: Derivation of the hereditary integral

where all stress steps, starting at t = 0, are taken into account. Considering infinitesimal
small stress steps,

ε(t) =
t∫

0

J(t− t̄)dσ , (2.45)

is obtained, which can be written as (dσ(t̄) = dσ(t̄)
dt̄ dt̄)

ε(t) =
t∫

0

J(t− t̄)
dσ(t̄)

dt̄
dt̄ . (2.46)

In the three-dimensional case, J is, analogously to the theory of elasticity, replaced by a
fourth-oder tensor Ji jkl . The viscoelastic constitutive equation is then

εi j(t) =
t∫

0

Ji jkl(t− t̄)
dσkl(t̄)

dt̄
dt̄ . (2.47)

Rheological models

Another, very descriptive derivation for the theory of viscoelasticity is the usage of rheo-
logical models. These models consist of the simple elements spring and dash-pot.

The spring is the representation of Hooke’s law in the one-dimensional case, stating that
the stress is proportional to the strain, i.e.,

σ = Eε . (2.48)

The dash-pot is the representation of the viscous material behavior which states that the
stress is not proportional to the strain ε , but to the time rate of change ε̇

σ = η
dε

dt
= ηε̇ . (2.49)
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Viscous behavior is often found in liquids, therefore, translating equation (2.49) into shear
stress and shear strain,

τ = µ γ̇ (2.50)

describes the constitutive equation of a viscous fluid with the viscosity coefficient µ .

Linear viscoelastic material behavior is a combination of the two simple cases. Springs and
dash-pots can be combined in a parallel manner, which results in a KELVIN-VOIGT model
(see Figure 2.6). The corresponding differential equation can be derived by considering

E

η

Figure 2.6: KELVIN-VOIGT model

the equilibrium of forces

1
η

σ +
1
E

d
dt

σ =
d
dt

ε . (2.51)

If springs and dash-pots are arranged sequentially, the MAXWELL model is obtained (see
Figure 2.7). The corresponding differential equation can be derived by considering the

E η

Figure 2.7: MAXWELL model

compatibility of deformation

σ = E ε +η
d
dt

ε . (2.52)

Both models exhibit weaknesses: A stepwise change of strain results in an infinite stress
in the KELVIN-VOIGT model and in the MAXWELL MODEL, the stress always relaxes to
a value of 0. The most simple model without these deficiencies is the so-called Three-
Parameter-Model. It consists of two springs and one dash-pot, see Figure 2.8. The consti-
tutive equation for this model is

p
d
dt

σ = E
(

ε +q
d
dt

ε

)
, (2.53)
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E1

E2

η

Figure 2.8: Three-Parameter-Model for a solid

with
p =

η

E1 +E2
E =

E1E2

E1 +E2
q =

η

E2
. (2.54)

In general, a further combination of KELVIN-VOIGT and MAXWELL models is possible.
An arbitrary number of elements can be chosen. The differential equation of such a model
has the form

N

∑
k=0

pk
dk

dtk σ =
M

∑
k=0

qk
dk

dtk ε . (2.55)

The parameters pk and qk can be expressed in terms of spring and dash-pot coefficients,
however, the expressions become very complicated if many parameters are involved. A
transformation of equation (2.55) into an integral form like equation (2.42) is possible.

Frequency domain formulation

If mechanical systems are loaded harmonically with respect to time, their behavior can be
analyzed in frequency domain. The viscoelastic constitutive equation (2.55) then reads

F {σ}
N

∑
k=0

pk(iω)k = F {ε}
N

∑
k=0

qk(iω)k , (2.56)

where F denotes the Fourier-transformation and ω is the excitation frequency. Thus, the
differential equation is replaced by two polynomials and the time-dependence of equation
(2.55) is replaced by a frequency-dependence. Equation (2.56) can be solved for σ(ω)

σ(ω) =

N
∑

k=0
pk(iω)k

N
∑

k=0
qk(iω)k

ε(ω) = G(iω) ε(ω) =
[
Gstorage(ω)+ iGloss(ω)

]
ε(ω) , (2.57)

where G(iω) is the complex modulus which can be split up into a real and imaginary
part. The real part Gstorage is called storage modulus because it accounts for the amount of
energy that is stored while the imaginary part Gloss is called loss modulus since it accounts
for the amount of energy that is lost due to energy dissipation.
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Fractional derivatives

In order to adjust the parameters of the proposed viscoelastic constitutive equation to mea-
sured data, it can be useful to introduce fractional derivatives [38]. The physical meaning
of fractional derivatives within the framework of rheological models can be explained by
considering the equation for the spring and the dash-pot. The spring equation

σ = Eε = E
d(0)

dt(0) ε (2.58)

can be interpreted as having a ’0-th derivative’ of the strain, while the dash-pot equation

σ = F ε̇ = η
d(1)

dt(1) ε . (2.59)

has the first derivative of ε with respect to time. A more general element can be defined
with

σ = η̃
dα

dtα
ε , α ∈ R+ (2.60)

which introduces the order of derivative as an additional parameter. Such an element is
also called ’spring-pot’ [31]. This model is only suitable to give an idea of the fractional
derivative parameter and in a strict sense, one can not speak of a rheological model any
more because the involved parameters can not be attributed to springs or dash-pots. Despite
this fact, a viscoelastic constitutive equation with fractional derivatives has the advantage
that it can adapt a measured material behavior more easily [46].

The generalized viscoelastic constitutive equation is then

N

∑
k=0

pk
dαk

dtαk
σ =

M

∑
k=0

qk
dβk

dtβk
ε . (2.61)

2.4 Auxetic Materials

2.4.1 The term auxetic

The linear elastic constitutive equation of materials was discussed in chapter 2.3.1. In
the isotropic case, the behavior of a material can be characterized via two independent
parameters, e.g., Young’s modulus E and Poisson’s ratio ν . From a continuum mechanics
point of view, there is no restriction for Poisson’s ratio to be positive, see equation (2.39).

The physical meaning of a negative Poisson’s ratio is shown in Figure 2.9, where a tensile
load is applied to an initially undeformed material (dashed line). If the Poisson’s ratio
is positive, it exhibits a lateral contraction (see Figure 2.9 a) ) while a material with a
negative Poisson’s ratio expands in lateral direction (see Figure 2.9 b) ). Materials with
such a counterintuitive behavior are referred to as auxetic materials. The term auxetic
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a) Non-auxetic b) Auxetic

Figure 2.9: Schematic deformation of a material

comes from the greek word ’αυχετoς ’ meaning ’that which may be increased in size’.
There are other terms, for example dilational which actually means widening. In this
context, the term arise because solids with a negative Poisson’s ratio easily undergo volume
changes. Another term is anti-rubber which is very descriptive because most rubbers have
a Poisson’s ratio close to the isotropic upper limit of 0.5. Thus, auxetic materials represent
the exact opposite of rubbery materials. An overview of auxetic materials is given in
[14, 15]

2.4.2 Origin of auxetic behavior

From a literature review, it can be stated that the auxetic effect is attributed to a nonstandard
microstructure [34, 39]. Mostly, simplified models of beam-type microstructures are used.
Several models have been discussed for the explanation of the auxetic effect. The most
plausible microstructure which allows for the explanation of the auxetic behavior is a non-
convex microstructure. Non-convex, in this context, means that the microstructure features
re-entrant corners, see Figure 2.10. If a material is composed of these star-shaped cells and

Figure 2.10: Causing mechanism of auxetic material

pulled in longitudinal direction, the kinematic mechanism causes it to expand laterally.
Many other types of microstructures have been proposed (see Figure 2.11). The reader is
referred to the publications [14, 47, 51] where a variety of these mechanisms are presented.
However, all of them have some kind of re-entrant corners and the causing mechanism is
always similar.
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Figure 2.11: Auxetic microstructures

2.4.3 Naturally occurring materials

Our everyday experience tells us that when a material is stretched, it will become thinner
in cross-section. Nobody expects a material to increase in cross-section which is not sur-
prising because there are no known examples for natural materials that behave auxetically
on the macroscale. On the molecular scale, however, a number of examples exist. The α-
cristobalite polymorph of crystalline silica for example is auxetic. A description, including
the deformation mechanism is given in [14]. Other examples for Auxetics on the molecular
scale exist, for example the single-crystal materials arsenic and cadmium [14]. Until now,
however, it was not yet possible to create a material consisting only of auxetic molecules
and thus exposing auxetic behavior on the macroscale. Another group of natural auxetic
material are biomaterials, although it is difficult to determine exact properties of them in
the natural state. Skin, for example, is said to be auxetic [35, 55], as well as cancerous
bone with a cellular microstructure [57]. There might be other examples, however, since it
is not possible to perform measurements of material constants, auxetic biomaterials remain
a rather speculative phenomenon. Moreover, other effects might influence the behavior of
these ’materials’, such as muscle contraction or chemical reactions.

2.4.4 Man-made auxetic materials and structures

A variety of man-made auxetic materials have been developed and fabricated in recent
years. One can distinguish between honeycomb-like structures, open-cell foams and poly-
meric materials.

Honeycomb-like structures

A representative example for a honeycomb-like structure is the re-entrant honeycomb
membrane fabricated by K. EVANS from the University of Exeter. Figure 2.12 shows the
material and a schematic model. The polymeric material with cell dimensions of ≈ 1mm
was fabricated by laser ablation. Similar microstructures could be produced without great
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≈ 1mm

Figure 2.12: Cellular auxetic material

effort, which leads to the possibility of ’tailoring’ a material, i.e., producing a microstruc-
ture which has specific characteristics, for example a given Poisson’s ratio.

Foams

The pioneering work in the field of auxetic foams was done by RODERIC LAKES from
the University of Wisconsin, he was the first to introduce a negative Poisson’s ratio foam
material [34]. The foam was produced from a conventional low density open-cell polymer
foam by causing the ribs of each cell to permanently protrude inward, resulting in a re-
entrant structure. Both conventional and auxetic foams are shown in Figure 2.13.

≈ 2mm

a)
auxetic foam b) non-auxetic foam

Figure 2.13: Auxetic and non-auxetic foam
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An analysis of this polymeric cellular material was then given in [7], where the behaviour
under torsional vibration was analyzed and compared to a conventional material. Disper-
sion of standing waves and cut-off frequencies were observed. Furthermore, this wave
dispersion was studied in a more detailed paper [8], including a numerical investigation
of the material. An industrial application is given in [36]. The auxetic foam was used as
a seat cushion material. By investigating the pressure distributions on a seated subject, it
was found that the auxetic material exerts a reduced peak pressure.

Polymers

A further group of auxetic materials are liquid crystal polymers (LCPs). Each LCP chain

Figure 2.14: Polymeric auxetic material (schematic)

consists of a series of rods interconnected terminally or laterally by flexible spacers, as
shown in Figure 2.14. Then, as the structure is stretched, the rods attached laterally rotate
perpendicular to the main chain, pushing neighbouring chains apart. This increases the
inter-chain distance and may give rise to the auxetic effect.

2.4.5 Industrial applications

Potential applications for auxetic materials have been shown in many publications. Since
they are suspected to have good damping characteristics, they could be used as structural
parts for noise insulation[43, 44, 44]. Another direct application is in seals and gaskets. A
conventional gasket tends to be squeezed out between, for example, the flages of a pipe.
If the gasket could be made to be auxetic, however, it would contract in on itself, pro-
ducing a tighter seal. Auxetic materials could also be used in applications where shock
absorption is of importance. It is suspected that a variety of auxetic materials have better
indentation resistance than their conventional counterparts. The reason is that if an object
impacts an auxetic material, material flows into the vicinity of the impact as a result of
lateral contraction accompanying the longitudinal compression due to the impacting ob-
ject. Hence the material densifies under the impact on both the longitudinal and transverse
directions, leading to increased indentation resistance. For non-auxetic materials, on the
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other hand, material ’flows’ away in the lateral direction, leading to a reduction in density
and, therefore, a reduction in the indentation resistance.

In [22] for example, a study of the implications of using auxetic materials in the design
of smart structures is presented. By using auxetic materials as core and piezoelectric ac-
tuators as face layers, the shape control of a sandwich beam is investigated. In [10], a
fastener based on negative Poisson’s ratio foam is designed. The insertion of the fastener
is facilitated by the lateral contraction which the material exhibits under compression. The
removal is then blocked by the elastic expansion under tension.

Auxetic materials research is still at a stage where no specific materials or applications
have reached series-production readiness. However, there are many possible applications
which show that there might be a great potential in such materials.
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3 CALCULATION OF TRUSS STRUCTURES

In the previous chapter, different microstructures were presented which cause materials to
have a negative Poisson’s ratio. Mostly, beam-type models were used because they provide
a very descriptive explanation of the auxetic effect. The beam is one of the most important
constructional element in structural mechanics. A constructional element is called beam if
one physical dimension is considerably larger than the other two. A beam carries lateral
load by bending, if the load is parallel to the axis, one speaks of a bar rather than a beam.

A structure consisting of straight beams connected at joints is called truss. Several studies
are known for the calculation of trusses. Since in structural mechanics, the Finite Element
Method (FEM) is mostly applied in practice, many publications exist with different ele-
ment types and formulations for truss structures [4, 58]. As an alternative to the FEM, the
Boundary Element Method (BEM) has been developed in recent years for the numerical
solution of various engineering mechanic problems. In this chapter, a Boundary Element
formulation is presented which provides an exact solution for the calculation of plane truss
structures in statics and in frequency domain.

3.1 Basic Equations and Fundamental Solutions

3.1.1 Beam

The most common theory to describe the behavior of a beam is Euler-Bernoulli’s theory
of bending. Assuming that Young’s modulus E and the moment of inertia I are constant
over the beam length, it can be written via the well-known fourth order partial differential
equation

EI
∂ 4

∂x4 w+ρA
∂ 2w
∂ t2 = q , (3.1)

where ρ is the density of the beam material and A is the area of cross-section. The time- and
space-dependency of the deflection w = w(x, t) and the vertical load q = q(x, t) was skipped
for the sake of brevity in equation (3.1). In static calculations, Euler-Bernoulli’s theory of
bending is sufficiently accurate, especially for slender beams with a large length/width
ratio [3]. However, in the description of beams with a relatively small length/width ratio
and in dynamic calculations, the shear deformation and rotatory inertia of a beam requires a
more precise theory. Therefore, TIMOSHENKO [52] developed a refined theory of bending
in which the deflection w does not only depend on the rotation ϕ but also on the angle of

23
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q
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Euler-BernoulliTimoshenko

w

Figure 3.1: Simple beam, shear angle

shear γ at the neutral axis (see Figure 3.1). Thus, the first derivative of the deflection is

∂

∂x
w(x, t) =−ϕ(x, t)+ γ(x, t) . (3.2)

The theory can be written in the following coupled system of differential equations[
κGA ∂ 2

∂x2 −ρA ∂ 2

∂ t2 κGA ∂

∂x

−κGA ∂

∂x EI ∂ 2

∂x2 −κGA−ρI ∂ 2

∂ t2

]
︸ ︷︷ ︸

Bt

[
w
ϕ

]
=−

[
q
m

]
. (3.3)

In equation (3.3), G is the shear modulus and m is a momentum load on the beam (see
Figure 3.1). The so-called shear coefficient κ gives the ratio of the average shear strain
on a section to the shear strain at the centroid (for details, see, e.g., [53]). Its value is
dependent on the shape of cross-section, but also, as pointed out by Cowper [12], on the
material’s Poisson ratio and, moreover, for dynamic problems on the considered frequency
range. Different approximations exist, e.g., that of ROARK for only static deflections with
κ = 0.9 for a circular and κ = 5/6 for rectangular cross sections [42].

The two coupled differential equations of second order (3.3) can as well be written in one
fourth order differential equation by eliminating the state ϕ

EI
∂ 4w
∂x4 +ρA

∂ 2w
∂ t2 −ρI(1+

E
κG

)
∂ 4w

∂ t2∂x2 +ρA
ρI

κGA
∂ 4w
∂ t4

= q− I
κGA

(E
∂q
∂x2 −ρ

∂ 2q
∂ 2t

) . (3.4)

Neglecting the shear deformation and rotatory inertia (i.e., G→∞ and ρI→ 0) in equations
(3.3) or (3.4), the Euler-Bernoulli beam equation (3.1) is obtained. Here, however, equa-
tion (3.3) is used because this form is more suitable for the following considerations.



3.1 Basic Equations and Fundamental Solutions 25

For harmonic loadings q = q̂(x, t)eiωt and m = m̂(x, t)eiωt with the same excitation fre-
quency ω or only one type of excitation, both responses can also assumed to be harmonic
with this frequency and their amplitudes ŵ and ϕ̂ are described by[

κGA ∂ 2

∂x2 −ρAω2 κGA ∂

∂x

−κGA ∂

∂x EI ∂ 2

∂x2 −κGA−ρIω2

]
︸ ︷︷ ︸

Bω

[
ŵ
ϕ̂

]
=−

[
q̂
m̂

]
. (3.5)

The fundamental solutions for Timoshenko’s beam theory in frequency domain are the
responses of an infinite beam to a unit impulsive force q̂∗(x) = δ (x− ξ ) and to a unit
impulsive moment m̂∗(x) = δ (x− ξ ), respectively, at the point ξ . With δ (x− ξ ), the
Dirac delta distribution is denoted (see Appendix A.2). Using a short operator notation,
the fundamental solution matrix G is defined by

BωG =−Iδ (x−ξ ), (3.6)

or, in detail,[
κGA ∂ 2

∂x2 −ρAω2 κGA ∂

∂x

−κGA ∂

∂x EI ∂ 2

∂x2 −κGA−ρIω2

][
ŵ∗q(x,ξ ) ŵ∗m(x,ξ )
ϕ̂∗q (x,ξ ) ϕ̂∗m(x,ξ )

]
=−

[
δ (x−ξ ) 0
0 δ (x−ξ )

]
. (3.7)

Following the ideas of HÖRMANDER [28], the fundamental solutions can be found from a
scalar function ψ via the ansatz[

ŵ∗q(x,ξ ) ŵ∗m(x,ξ )
ϕ̂∗q (x,ξ ) ϕ̂∗m(x,ξ )

]
︸ ︷︷ ︸

G

=

[
EI ∂ 2

∂x2 −κGA−ρIω2 −κGA ∂

∂x

κGA ∂

∂x κGA ∂ 2

∂x2 −ρAω2

]
︸ ︷︷ ︸

Bco
ω

ψ (3.8)

with the matrix of cofactors Bco
ω of the operator matrix Bω (see Appendix A.3 for the

definition of the cofactor matrix). With

(Bω)−1 =
Bco

ω

det(Bω)
, (3.9)

the more convenient form

BωG = BωBco
ω ψ = det(Bω)Bω(Bω)−1︸ ︷︷ ︸

I

ψ =−Iδ (x−ξ ) (3.10)

is achieved. The two roots of det(Bω) = 0 are

λ1,2 =−ω2

2

( 1
c2
`

+
1
c2

s

)
± 1

c2
`

√(
1−

c2
`

c2
s

)2

+4
c2
`A

ω2I

 , (3.11)
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with the longitudinal and shear wave speeds

c` =

√
E
ρ

(3.12)

cs =

√
κG
ρ

. (3.13)

Thus, the problem is reduced to find a solution of the iterated Helmholtz operator(
∂ 2

∂x2 −λ1

)(
∂ 2

∂x2 −λ2

)
ψ =−δ (x−ξ )

κGA EI
. (3.14)

From several publications, e.g., from CHENG et al. [9], one knows its solution

ψ =
1

2κGA EI(λ1−λ2)

[
e−
√

λ1r
√

λ1
− e−

√
λ2r

√
λ2

]
(3.15)

with
r =| x−ξ | . (3.16)

Finally, the operator Bω is applied on the scalar function ψ . The fundamental solutions
due to a unit force impulse and a unit moment impulse at x = ξ are then found to be

ŵ∗q(x,ξ ) =
1

2κGA
1

λ1−λ2

[
e−
√

λ1r
√

λ1

(
λ1−

κGA−ρIω2

EI

)

−e−
√

λ2r
√

λ2

(
λ2−

κGA−ρIω2

EI

)]
(3.17a)

ϕ̂
∗
q (x,ξ ) =

1
2EI

2H(x−ξ )−1
λ1−λ2

[
−e−
√

λ1r + e−
√

λ2r
]

(3.17b)

ŵ∗m(x,ξ ) =−ϕ̂
∗
q (x,ξ ) (3.17c)

ϕ̂
∗
m(x,ξ ) =

1
2EI

1
λ1−λ2

[
e−
√

λ1r
√

λ1

(
λ1−

ρAω2

κGA

)
− e−

√
λ2r

√
λ2

(
λ2−

ρAω2

κGA

)]
.

(3.17d)

More detailed derivations of the fundamental solutions are given in [21] or [45].

In the static case, i.e., for ω → 0, the fundamental solutions simplify to:

ŵ∗q(x,ξ ) =
1

12EI

[
r3−6

EI
κGA

r
]

(3.18a)

ϕ̂
∗
q (x,ξ ) =− r2

4EI
[2H(x−ξ )−1] (3.18b)

ŵ∗m(x,ξ ) =
r2

4EI
[2H(x−ξ )−1] (3.18c)

ϕ̂
∗
m(x,ξ ) =− r

2EI
, (3.18d)
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corresponding to the derivation given in [3].

3.1.2 Bar

If only longitudinal loads act on a beam, it is called bar. The governing equation for the
longitudinal deformation u = u(x, t) is of second order

EA
∂ 2u
∂x2 −ρA

∂ 2u
∂ t2 =−n , (3.19)

where n = n(x, t) is the distributed load in axial direction. For time-harmonic loads n =
n̂(x, t)eiωt with the excitation frequency ω , the response can also be assumed to be time-
harmonic. This results in the following differential equation

∂ 2û(x)
∂x2 +

(
ω

c`

)2

û(x) =− n̂(x)
EA

(3.20)

with the longitudinal wave speed c`, see equation (3.12).

The adequate fundamental solution of the bar equation (3.20), i.e., the axial displacement
response of an infinite bar to a unit harmonic axial point force n̂∗(x) = δ (x−ξ ) acting at
point ξ , is well-known to be [21]

û∗(x,ξ ) =
−1

2kEA
sin(kr) , k =

ω

c`
. (3.21)

Its correctness can easily be demonstrated, since its first and second derivative, respec-
tively, is

∂ û∗(x,ξ )
∂x

=
−1

2EA
cos(kr)

∂ r
∂x

=
−1

2EA
cos(kr)[2H(x−ξ )−1] (3.22)

∂ 2û∗(x,ξ )
∂x2 =

k
2EA

sin(kr)− cos(kr)
EA

δ (x−ξ ) , (3.23)

such that

`∫
0

[
∂ 2û∗(x,ξ )

∂x2 + k2û∗(x,ξ )
]

u(x)dx

=−
`∫

0

cos(k|x−ξ |)
EA

δ (x−ξ )u(x)dx =
−u(ξ )

EA
for ξ in [0, `] . (3.24)

In the static case equation (3.21) simplifies to

u∗(x,ξ ) =
−r

2EA
. (3.25)



28 3 Calculation of Truss Structures

3.2 Integral Equation

The most general methodology to derive from differential equations equivalent integral
equations is the method of weighted residuals. The weighted residuum of the beam equa-
tion (3.5) is

`∫
0

(
Bω

[
ŵ(x)
ϕ̂(x)

]
+
[

q̂(x)
m̂(x)

])T [ ŵ∗q(x,ξ ) ŵ∗m(x,ξ )
ϕ̂∗q (x,ξ ) ϕ̂∗m(x,ξ )

]
dx =

[
0
0

]
. (3.26)

As weighting function, the matrix of fundamental solutions is chosen. Performing two
integrations by part and taking into account the filtering effect of the Dirac distribution,
the differential operator Bω is shifted from ŵ(x) and ϕ̂(x) on the matrix of fundamental
solutions. The following (exact) equation is obtained

[
ŵ(ξ )
ϕ̂(ξ )

]
=

`∫
0

[
ŵ∗q(x,ξ ) ϕ̂∗q (x,ξ )
ŵ∗m(x,ξ ) ϕ̂∗m(x,ξ )

][
q̂(x)
m̂(x)

]
dx

+
[[

ŵ∗q(x,ξ ) ϕ̂∗q (x,ξ )
ŵ∗m(x,ξ ) ϕ̂∗m(x,ξ )

][
Q̂(x)
M̂(x)

]
−
[

Q̂∗q(x,ξ ) M̂∗q(x,ξ )
Q̂∗m(x,ξ ) M̂∗m(x,ξ )

][
ŵ(x)
ϕ̂(x)

]]x=`

x=0
. (3.27)

The corresponding shear force and bending moment terms are given in Appendix B.

The above described transformation of a differential equation into an equivalent integral
equation can similarly be applied to the bar equation (3.20). The bar equation, weighted
with the fundamental solution (3.21)

`∫
0

[
d2û(x)

dx2 −h2û(x)+
n̂(x)
EA

]
u∗(x,ξ )dx = 0 (3.28)

is integrated by parts two times over the problem domain, i.e., here, over the bar length `.
This gives

[
û′(x)u∗(x,ξ )− û(x)

∂u∗(x,ξ )
∂x

]`

0
+

`∫
0

[
∂ 2u∗(x,ξ )

∂x2 −h2u∗(x,ξ )
]

û(x)dx

=−
`∫

0

n̂(x)
EA

u∗(x,ξ )dx . (3.29)
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Taking the filtering effect of the Dirac distribution δ (x− ξ ) into account, the following
integral expression for the axial displacement at an arbitrary point ξ ∈ [0, `] is achieved

û(ξ ) =
[

EAû′(x)u∗(x,ξ )− û(x)EA
∂u∗(x,ξ )

∂x

]x=`

x=0
+

`∫
0

n̂(x)u∗(x,ξ )dx

=
[
N̂(x)u∗(x,ξ )− û(x)N̂∗(x,ξ )

]x=`

x=0 +
`∫

0

n̂(x)u∗(x,ξ )dx . (3.30)

The second boundary state N̂∗(x,ξ ) is given in Appendix B.

3.3 Boundary (Element) Equations by Collocation

In beam problems, always two of the state variables (ŵ, ϕ̂,M̂, Q̂) at each boundary point,
i.e., at x = 0 and x = `, are unknown, while in a bar problem only one of the state variables
(û, N̂) has to be determined. Hence, plane framework problems are, in general, a combina-
tion of both, so that three of the six state variables (û, ŵ, ϕ̂, N̂,M̂, Q̂) are unknown at each
of the two boundary points and, consequently, one needs also three boundary equations
at these two boundary points. The simplest way to evaluate the above systems (3.27) and
(3.30) at these two points, is to perform point collocation at ξ = 0 and ξ = `, resulting
in

[
I−K(0,0) F(0,0) K(`,0) −F(`,0)
−K(0, `) F(0, `) I+K(`,`) −F(`,`)

]
u(0)
t(0)
u(`)
t(`)


=

`∫
0

[
F(x,0)
F(x, `)

] n̂(x)
q̂(x)
m̂(x)

dx (3.31)

with

K(x,ξ ) =

 N̂∗(x,ξ ) 0 0
0 Q̂∗q(x,ξ ) M̂∗q(x,ξ )
0 Q̂∗m(x,ξ ) M̂∗m(x,ξ )

 (3.32)

F(x,ξ ) =

 û∗(x,ξ ) 0 0
0 ŵ∗q(x,ξ ) ϕ̂∗q (x,ξ )
0 ŵ∗m(x,ξ ) ϕ̂∗m(x,ξ )

 (3.33)

u(x) =

 û(x)
ŵ(x)
ϕ̂(x)

 (3.34)
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t(x) =

 N̂(x)
Q̂(x)
M̂(x)

 . (3.35)

System (3.31) has the form

[E] [d] = [r] (3.36)

with the 6× 12 matrix E, the vector of all 12 boundary values d and the load vector r.
In Appendix B, equation (3.31) is given in detailed form. Matrix E can be considered as
an "element matrix" analogical to an element matrix used in Finite Element calculations.
Contrary to the FEM, E is not symmetric and also forces and bending moments appear
as degrees of freedom. With equation (3.31), a single beam calculation can easily be
performed because 6 of the overall 12 boundary values are given as boundary conditions.
Thus, the remaining 6 unknown values can be calculated with the 6 available equations.
Values for the state variables of inner points can be calculated using (3.27) and (3.30).

3.4 Assembling of System Matrix

Plane truss structures are composed of multiple beams which are connected among each
other. It is straightforward to calculate element equation (3.31) for each single beam and
transform it into a global coordinate system. Then, taking into account transition condi-
tions at the coupling points of the beams, a system of linear equations for the truss structure
can be assembled. At a first glance, it seems that the calculation is not possible because
there are only 6 equations for a total of 12 unknown boundary values per beam. However,
taking into account the boundary conditions at the supports and transition conditions at the
connection points, 6 equations per beam suffice to calculate a truss structure.

3.4.1 Global Coordinates

As a first step to the assembling of a system matrix, it is meaningful to transform the el-
ement equation (3.31) into a global coordinate system. Figure 3.2 shows the local and
global systems. The local values for the deformation u1,2

loc, w1,2
loc, ϕ

1,2
loc and the forces and

bending moments M1,2
loc , Q1,2

loc, N1,2
loc are transformed into a global coordinate system. The

usual sign convention for local values is found in Figure 3.2: At node 1, forces and defor-
mations point into opposite directions, while at node 2, they have the same direction. In
the global coordinate system, both forces and also deformations at node 1 and 2 have the
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u1
loc

ϕ1
loc

w1
loc

M1
loc

Q1
loc

N1
loc

u2
loc

w2
loc

ϕ2
loc

M2
loc

Q2
loc

N2
loc

u1,M1

w1,F1
y

ϕ1,F1
x

u2,M2

w2,F2
y

ϕ2,F2
x

1

2

1

2

α α

local: global:

Figure 3.2: Local and global coordinates

same direction. Using the sine and cosine functions, it can be seen that
u1

loc
w1

loc
ϕ1

loc
M1

loc
Q1

loc
N1

loc

=


cos(α) −sin(α)
sin(α) cos(α) 0

1
−1

0 −cos(α) −sin(α)
sin(α) −cos(α)


︸ ︷︷ ︸

T1


u1

w1

ϕ1

M1

Q1

N1

 (3.37)

and
u2

loc
w2

loc
ϕ2

loc
M2

loc
Q2

loc
N2

loc

=


cos(α) −sin(α)
sin(α) cos(α) 0

1
−1

0 cos(α) sin(α)
−sin(α) cos(α)


︸ ︷︷ ︸

T2


u2

w2

ϕ2

M2

Q2

N2

 . (3.38)

Incorporating equations (3.37) and (3.38) into (3.36), an element equation in global coor-
dinates is obtained

[E]
[

T1 0
0 T2

]
︸ ︷︷ ︸

Ẽ

[
d̃
]
= [r̃] . (3.39)

The vector d̃ contains all 12 boundary values in global coordinates. The load vector r̃ can
be transformed analogically.
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3.4.2 Assembling

The assembling of the system matrix is done in the following way:

• rows:
The element equations of the single beams are arranged row-wise, i.e., the first six
rows of the system matrix contain entries of equations for element 1, rows 7 through
12 are occupied by entries of element equation 2 and so on.

• columns:
The columns of the system matrix represent the unknown boundary values of the
beam ends (nodes). It depends on the boundary and transition conditions which
unknowns are represented, however, the first columns represent unknowns of node
1, then 2 and so on.

Which unknowns are used in the columns and how exactly they are arranged (”according
to the boundary/transition conditions”) is demonstrated by the following examples.

3.4.3 Boundary Conditions

As a first example, a single beam problem with rigid supports on both ends is considered,
see Figure 3.3. The deformation values are all set to 0, except for the deflection w̄ on

w

u

x

1 2

w̄

Figure 3.3: Single beam example

the right hand side. No further loads act on the system, so the load vector on the right
hand side is 0. Figure 3.4 shows how the boundary conditions are incorporated into the
element matrix. On the left hand side, the element matrix Ẽ (see equation (3.39) ) is shown
with different hatchings for the columns of deformations and forces of nodes 1 and 2. On
the right hand side, the Figure shows the system matrix (denoted by A) and load vector
(denoted by f).

The columns of the deformation values of the matrix Ẽ are deleted, except for the column
of w2 which is multiplied with w̄ and put into the load vector on the right hand side. The
columns for M1,Q1,N1,M2,Q2,N2 remain as unknowns in the system matrix A which
now has 6 rows and 6 columns. The non-symmetric system can be solved with a standard
solver for linear equations, e.g. LU-decomposition. With equations (3.27) and (3.30),
deformation values at arbitrary points along on the beam can be calculated.
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u1 w1 ϕ1 M1 Q1 N1 u2 w2 ϕ2 M2 Q2 N2

·0
·w̄

M1 Q1 N1 M2 Q2 N2

=

Ẽ A

f

Figure 3.4: Assembling of system matrix

3.4.4 Transition Conditions

The application of transition conditions at the connection points of truss structures is more
complicated than in a deformation-based calculation procedure like the FEM. This is due to
the fact that in the boundary element equation (3.31), forces and bending moments appear
as degrees of freedom. If a rigid connection of n beams is considered (see Figure 3.5), the
deformation values of all beam ends must be equal, i.e.,

u1 = u2 = · · ·= un (3.40a)
w1 = w2 = · · ·= wn (3.40b)
ϕ1 = ϕ2 = · · ·= ϕn . (3.40c)

The forces and bending moments, however, must satisfy the condition that their sums are
0, so

∑Fx = 0 = Fx1 +Fx2 + . . .Fxn (3.41a)

∑Fy = 0 = Fy1 +Fy2 + . . .Fyn (3.41b)

∑M = 0 = M1 +M2 + . . .Mn . (3.41c)

The example in Figure 3.6 is considered to demonstrate the assembling. For all three
beams, element matrices Ẽ and load vectors r̃ are set up in a global coordinate system. The
six equations of each element are arranged on top of each other in the system matrix. With
un(x) and tn(x), deformation and force vectors of beam n are denoted, see also equations
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1

2

n

1

2

n

Figure 3.5: Transition conditions of a rigid connection

(3.34) and (3.35). Again, according to the given boundary conditions of the beams, entries
of the element matrices are deleted or shifted to the right hand side. In this case, entries
u1(0), u2(`) and t3(`) are deleted, since they are known to be 0. The complementary state
variables t1(0), t2(`) and u3(`) are put into the system matrix. At the connection point,
deformation values must be equal, so the entries of u1(`), u2(0) and u3(0) are put into
the same columns of the system matrix A. In order to satisfy the condition that the sum
of forces and bending moments at the connection point must be 0, the following is done:
matrix block of t1(`) is put into the system matrix with a negative sign. Entries of t2(0)
and t3(0) are then written below these two blocks. Thus,

−t1(`) = t2(0)+ t3(0) (3.42)

is satisfied. In the system matrix, only t2(0) and t3(0) appear as degrees of freedom,
but t1(`) can easily be calculated via (3.42). Figure 3.7 shows the prescribed procedure
schematically. The resulting system of linear equations is quadratic and thus can be com-
puted with an adequate solver.

3.4.5 Combined Transition/Boundary Conditions

In an arbitrary truss structure, a combination of boundary and transition conditions may
occur. Figure 3.8 shows such a case: at the connection point of two beams is a vertical

1

2

3

Figure 3.6: Simple truss structure
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=

Figure 3.7: Assembling of system matrix

support. Firstly, the two beams are treated as if there was no support, i.e., the matrix

1
2

Figure 3.8: Connection point of two beam with a vertical support

entries for the deformation are put in the same columns. Entries for the forces and bending
moments are also put in the same columns, entries of beam 1 are multiplied with −1, see
Figure 3.9. After this, the support at the connection point is considered. The deflection
is set to 0 here, thus, the entries for w can be erased. The blank column is used for the
unknown force at the connection point. For this, the following is done: a load of size 1
is put on the right end of the left beam. The resulting load vector is inserted into the free
columns of the system matrix. The resulting system can be solved. In principle, the load
can as well be put on the left end of the right beam.

3.4.6 Solving the System Matrix

In general, the system matrix is fully populated and not symmetric. It is not possible to
generate a symmetric matrix with the prescribed method, however, if the element equa-
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Figure 3.9: Assembling of system matrix

tions (rows in system matrix) and the degrees of freedom (columns in system matrix) are
arranged in a specific way, a banded system matrix can be obtained. This is a clear parallel
to the Finite Element Method, where one also has local element matrices, which are put
into a symmetric, banded system matrix. The example structure shown in Figure 3.10 is
used to explain the implication of a ”good” element numbering. The structure consists of

a) example structure b) discretization

Figure 3.10: Example structure and discretization scheme

10×10 square cells with four beams on the edges. The system matrix for the 220 beams
and 121 nodes is assembled for two different discretizations. In the first discretization,
the numbering of the elements is done randomly and in the second one, node numbers
and beam numbers start at the left bottom of the structure, going up line-wise as shown in
Figure 3.10. The resulting system matrices are shown in Figure 3.11. If the discretization
is done randomly, matrix entries are scattered over the entire matrix. To be precise, there
are groups of entries: the six equations of one element (six lines) and degrees of free-
dom of one node (columns) form one group. The second system matrix exhibits a banded
structure. Since the element numbering is done line-wise, there is a band of entries on the
diagonal of the matrix. Below the diagonal, there is another band of entries because the el-
ement entries of one line of elements are connected with the neighboring lines of elements.
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a) random discretization
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b) ordered discretization

Figure 3.11: Occupancy of system matrix

In this discretization, the bandwidth of the system matrix is determined by the maximum
difference of node numbers of a beam element. However, it must be emphasized that this
statement can not be generalized like in the FEM.

3.4.7 Example Calculation

The following plane truss structure (see Figure 3.12) is considered which consists of six
rigidly connected beams. The beams consist of steel (Young’s modulus E = 2.1 · 1011

P

wp

q0(ω)

2m

1m

1m

Figure 3.12: Plane frame of six rigidly fixed beams: Geometry, support, and loading

N/m2, Poisson’s ratio ν = 0.3, and material density ρ = 7850 kg/m3) with a rectangular
cross section A with b = h = 0.1m. The shear coefficient is chosen to be κ = 5/6. The
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excitation is a frequency-dependent point load of intensity q0(ω) = 1000 N acting at the
centre of the upper beam.

Euler-Bernoulli / Timoshenko

Firstly, a comparison is made between Euler-Bernoulli’s theory of bending and Timo-
shenko’s theory of bending. The truss structure is calculated with the prescribed boundary
element method for both theories. Euler-Bernoulli results can easily be obtained by set-
ting κGA→ ∞. The truss structure is calculated up to a frequency of 900 Hz, increasing
the excitation frequency in steps of 10 rad/sec (≈ 1.592 Hz). For comparison, the deflec-
tion response wP at the center point P on the first frame floor is plotted in Figure 3.13
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Figure 3.13: Comparison between Euler-Bernoulli and Timoshenko theory

for both theories over the considered frequency range. The static deflection (ω → 0) is
3.242 ·10−6m for Euler-Bernoulli’s theory and 3.100 ·10−6m for Timoshenko’s theory of
bending, which is a difference of less than 5%. Thus, the shear deformation is negligible,
which could be expected because the beams have a length/width ratio of of 10 and 20,
respectively. This statement about static calculations can be found in many publications,
for example [3]: ”... the difference of beam reactions determined by Euler-Bernoulli’s
and by Timoshenko’s beam theory depends on the actual geometry, but is in general very
small.”.
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In a frequency range up to 300Hz, there is still no significant difference between both
theories. However, in higher frequencies, starting from the third eigenfrequency, a shift
of eigenfrequencies can be observed. The shift is small at the third eigenfrequency but
increases for the higher frequencies.

BEM / FEM

Since the Finite Element Method is the most established numerical procedure for the cal-
culation of engineering structures, a comparison is made between the prescribed Boundary
Element Method and the FEM. Two Finite Element calculations are performed using 32
and 64 Timoshenko beam elements. As stiffness matrix, a cubic Lagrange-element with
4 degrees of freedom (derived from an 8-degrees of freedom element via static condensa-
tion) is used (see Appendix C). The mass matrix takes into account the rotatory inertia, a
detailed derivation of the element is given in [30]. In longitudinal direction, linear shape
functions are used, the resulting element matrix can also be found in [30]. In Figure 3.14,
the results of the BEM and FEM calculations are shown. Again, the deflection wP at the
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Figure 3.14: Comparison between BEM and FEM

center point P on the first frame floor is plotted versus the excitation frequency. As can
be seen, the BEM and FEM results show a good agreement up to a frequency of approx-
imately 250 Hz. With a higher excitation frequency, however, the FEM results become
inaccurate. The coarse FEM descretization with 32 elements is less precise than the finer
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discretization with 64 elements - a typical result of the FEM where the solution usually
converges to the exact solution when the mesh is made finer.

More results concerning the comparison between the proposed method and the FEM can
be found in [21, 2].



4 MICROMECHANICS AND HOMOGENIZATION

Nearly all materials present a certain heterogeneous microstructure, although they seem
to be homogeneous on a macroscopic scale. Heterogeneities such as cracks, cavities, in-
clusions, laminations, grain boundaries or irregular crystal lattices may occur on a micro-
scopic scale but still the macroscopic behavior can be homogeneous. A good example for
such a material is steel, which clearly has a heterogeneous microstructure but exhibits an
isotropic behavior on the macroscale. If one were to attempt to perform a direct numerical
simulation of such a heterogeneous material, the consideration of all microscale details
would require an extremely fine spatial discretization. The resulting system of equations
would contain literally billions of numerical unknowns and would be beyond the capac-
ity of computing machines for the foreseeable future. Furthermore, a complete, detailed
description of a micro-heterogeneous structure is in many cases not possible or necessary.
For these reasons, homogenization techniques were developed which aim at predicting the
overall, effective behavior of heterogeneous structures. The literature on the homogeniza-
tion problem is very extensive. A good overview can be found in [37, 60, 20].

4.1 Representative Volume Element

The principle of homogenization can be explained as follows. A body Ω with a char-
acteristic length scale L is considered (see Figure 4.1). The surface of Ω is termed Γ

which is subdivided into Γt and Γu with Γ = Γu ∪Γt . On Γu, the displacements are pre-
scribed and on Γt , the tractions are prescribed. The body consists of a material with a
microstructure which has a characteristic length scale `. Microstructure ingredients such
as matrix-inclusions, granular micro-topologies, etc. have the characteristic length scale d
(see Figure 4.1).

For the analysis on the macroscopic length scale L, the body Ω is replaced by a similar but
quasi-homogeneous body Ω∗. The body Ω∗ is bounded by the same external boundaries Γt
and Γu with the same prescribed tractions and displacements but contrary to Ω, it consists
of a homogeneous material with yet unknown properties. The aim of the homogenization
process is to calculate the properties of Ω∗ such that its mechanical behavior is equiva-
lent to that of Ω. Thus, the microstructure is replaced by a homogeneous medium which
represents the smeared microstructural behavior.

In order to find properties of the homogeneous material, a specific portion of the mi-
crostructure is considered. From this portion, the properties of the corresponding homoge-
neous material are calculated. Since the homogeneous material must have approximately

41
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P

L

Ω

P

L

Ω∗

`

d

RVE

Γt Γu Γ∗t Γ∗u

Figure 4.1: Principle of homogenization

the same mechanical properties as the microheterogeneous body Ω, this portion must in-
clude all important details of the microstructure. Therefore, it is called Representative
Volume Element (RVE). For the volume element to be representative, all microstructural
details must be included in a statistically correct manner, otherwise the RVE does not re-
flect the microstructure correctly and the homogeneous properties to be calculated will
also not be correct. Thus, the size of the RVE must be large enough to contain all neces-
sary information for the description of the given microstructure so the characteristic length
scale d has to be much smaller than `. On the other hand, the size of the RVE can not be
too big because it is assumed to be a material point on the macroscopic scale L. Thus, for
the choice of an appropriate RVE the condition

d� `� L (4.1)

must be fulfilled. This condition is termed scale separation. Many authors also speak of
a structural hierarchy [32] of materials. The scale difference that is required depends on
many factors, so no numerical value can be given.

Besides the scale separation, the condition of macroscopic homogeneity must be fulfilled.
This means that the microscopic details must be distributed homogeneously within the
body Ω. If this is not the case, no appropriate RVE can be found and it does not make
sense to calculate effective properties. An example for a macroscopically inhomogeneous
material is a graded material, i.e., a material which has a continuous variation of material
properties.

Within the scale consideration shown in Figure 4.1, a material point on the macroscale
is assigned a volume portion on the microscale. To define a homogeneous mechanical
equivalent to the heterogeneous RVE, the volume average of the volume V of the stress
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and strain, respectively is taken

〈σi j〉=
1
V

∫
V

σi j(x)dV (4.2)

〈εi j〉=
1
V

∫
V

εi j(x)dV , (4.3)

where the symbol 〈·〉 denotes that 〈σi j〉 and 〈εi j〉 are averaged quantities.

If the homogeneous material is assumed to be purely elastic, the constitutive equation on
the macroscale is

〈σi j〉= C∗i jkl 〈εkl〉 , (4.4)

with the effective elasticity tensor C∗i jkl which is is defined as the relation between the two
averaged quantities 〈σi j〉 and 〈εkl〉.

4.2 Classical homogenization approaches

4.2.1 Voigt - Reuss bounds

A classical technique to determine effective properties of microstructured materials is the
computation of upper and lower bounds according to VOIGT [56] and REUSS [41]. The
theory is based on HILL’s condition which states that the strain energy on the microscale
must be equal to the strain energy on the macroscale. Thus,

〈W micro〉 != W macro (4.5)
1
2
〈σσσ(x) : εεε(x)〉 !=

1
2
〈σσσ(x)〉 : 〈εεε(x)〉 (4.6)

must be satisfied (see equation (2.12) for the definition of the strain energy).

Within the computation of VOIGT bounds for the material properties, the RVE is subjected
to a number of reference deformation states. It is assumed that the microscopic strain state
is equal in every spatial point of the RVE, i.e.,

〈εi j〉= εi j(x) = const . (4.7)

The implication of this assumption can be pictured by considering a one-dimensional two-
phase material. The state of strain is assumed to be uniform over the whole RVE, which can
only be accomplished by re-ordering the two phases of the material in parallel manner (see
Figure 4.2). As boundary conditions, the displacements along boundaries are prescribed.
The VOIGT bound provides upper bounds for the sought material parameters.
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specified
displacement

specified
displacement

constant strain

Figure 4.2: Intuitive interpretation of VOIGT approximation

An analogous approach was introduced by REUSS. Contrary to VOIGT, the state of stress
is assumed to be constant, i.e.,

〈σi j〉= σi j(x) = const . (4.8)

The interpretation of this approach is shown in Figure 4.3. Since the stress is assumed to

specified
traction

specified
traction

constant stress

Figure 4.3: Intuitive interpretation of REUSS approximation

be constant over the RVE, the two phases are put in series and the traction is prescribed
along the boundaries. The REUSS bound provides lower bounds for the sought material
parameters.

For the special case of materials with n phases which have piecewise constant properties,
the VOIGT and REUSS bounds can be calculated as [37]

C∗(Voigt) =
n

∑
α=1

cαCα (4.9)

C∗−1
(Reuss) =

n

∑
α=1

cαC−1
α , (4.10)

where Ci are the properties of the phases and ci are the volume fractions of the phases.
The real properties of the material lie in-between these bounds

C∗(Reuss) < C∗ < C∗(Voigt) . (4.11)

The quality of these bounds heavily depends on the considered microstructure. For fiber
reinforced materials, for example, the VOIGT bound may even deliver an exact solution.
This is the case if the fibers are aligned in one direction and are perfectly bonded. The
VOIGT bound then delivers the exact solution for the Young’s modulus in direction of the



4.2 Classical homogenization approaches 45

fibers. Perpendicular to this direction, the REUSS bound would deliver an exact solution.
In the general case (i.e., the fibers are not aligned), however, the VOIGT and REUSS bounds
are only rough estimates of the material properties.

4.2.2 Hashin - Shtrikman bounds

Improved bounds for effective material behavior have been developed by HASHIN and
SHTRIKMAN. Details of the derivation and proofs can be found in the literature [23, 59]
. The approach is based on variational principles using the concept of polarization of
micro-macro mechanical fields. They represent the tightest possible bounds. In case of a
two phase material with piecewise constant material properties, the bounds of the effective
bulk modulus

K1 +
c2

1
K2−K1

+ 3c1
3K1−4G1

≤ K∗ ≤ K2 +
c1

1
K1−K2

+ 3c2
3K2−4G2

(4.12)

and the bounds of the effective shear modulus

G1 +
5G1c2

5G1
G2−G1

+ 6c1(K1+2G1)
3K1+4G1

≤ G∗ ≤ G2 +
5G2c1

5G2
G1−G2

+ 6c2(K2+2G2)
3K2+4G2

(4.13)

are derived, where the elastic constants Kn and Gn and the volume fraction cn of the con-
stituents for n = 2 materials serve as input data.

The VOIGT - REUSS and HASHIN - SHTRIKMAN bounds are classical homogenization
techniques for multi-phase microstructures. In this context they are mentioned for the
sake of completeness because cellular materials posses at least one phase with a vanishing
stiffness. Therefore, the lower bounds for both bounding techniques are 0, e.g.

C∗(Reuss)→ 0 (4.14)

for the REUSS bound. This makes the bounding techniques unsuitable for cellular materi-
als.

4.2.3 Strain energy based homogenization

BECKER and HOHE have developed a homogenization procedure for the determination of
material parameters of cellular materials. An overview is given in [24, 27]. Like the VOIGT

- REUSS bounds, the procedure is also based on a strain energy approach. Equivalence of
the mechanical behavior of the Representative Volume Element and the effective medium
is assumed, if the average strain energy density is equal for both volume elements

1
V

∫
ΩRV E

W (εi j)dΩRV E
!=

1
V

∫
ΩRV E

W ∗(ε∗i j)dΩRV E (4.15)
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where W and W ∗ denote the strain energy of the heterogeneous and homogeneous medium
for equivalent strain states. Equivalence of the micro and macro strain states εi j, ε∗i j is
assumed if the volume average of the infinitesimal strain tensors is equal

1
V

∫
ΩRV E

εi jdΩRV E =
1
V

∫
ΩRV E

ε
∗
i jdΩRV E . (4.16)

If a linear elastic behavior of the material on the macroscale is assumed, the following
values for the tensorial components are derived

Ci jkl =



2W ∗(ε(i j))
1

ε∗2
(i j)

if i = j,k = l, i = k
1
2W ∗(ε(i j))

1
ε∗2

(i j)
if i 6= j,k 6= l, i = k, j = l(

W ∗(ε(i j),ε(kl))−W ∗(ε(i j))
−W ∗(ε(kl))

) 1
ε∗(i j)ε

∗
(kl)

if i = j,k = l, i 6= k
1
4

(
W ∗(ε(i j),ε(kl))−W ∗(ε(i j))
−W ∗(ε(kl))

) 1
ε∗(i j)ε

∗
(kl)

if i 6= j,k 6= l, i 6= k or j 6= l
1
2

(
W ∗(ε(i j),ε(kl))−W ∗(ε(i j))
−W ∗(ε(kl))

) 1
ε∗(i j)ε

∗
(kl)

if i = j,k 6= l

. (4.17)

W ∗(ε(i j),ε(kl)) denotes the strain energy density in the Representative Volume Element
subjected to a strain state where all components of the strain tensor except ε(i j) and ε(kl)
are equal to 0. The brackets () denote that no summation is performed. Thus, the Repre-
sentative Volume Element is considered to be deformed by a number of reference strain
states for which the strain energy has to be evaluated. The procedure was developed for
cellular materials, where the cell walls consist of straight beams. Deformations and strain
energy can be calculated analytically in this case. A generalization for more general mi-
crostructure geometries is given in [25, 26].

4.2.4 Surface average based approach

Within the scale consideration shown in Figure 4.1, a material point on the macroscale
is assigned a volume portion on the microscale. To define a homogeneous mechanical
equivalent to the heterogeneous RVE, a surface average based approach is used. The stress
distribution in the Representative Volume Element consisting of the given microstructure
is assumed to be equivalent to a stress distribution of the effective medium if

1
Γ

∫
Γi

RV E

ti dΓ =
1
Γ

∫
Γi

RV E

〈ti〉dΓ (4.18)

holds, where ti is the traction vector on the surface Γ of the Representative Volume Element
and Γi is a certain part of its boundary. Equation (4.18) describes a redistribution of the
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stress components along the surface of the Representative Volume Element during the
homogenization process. A second equivalence condition interrelates the strain states on
the microscopic and macroscopic scale. An average strain state for the Representative
Volume Element is defined by means of the difference in the displacements of opposite
surfaces of the volume element. If the difference in the displacements of opposite surfaces
is not constant along the surface, the surface integral of this quantity is taken. Thus, the
macroscopic strain can be expressed by

〈εi j〉=
1

2V

∫
ΓRV E

(
uin j +u jni

)
dΓ, (4.19)

where V denotes the volume of the RVE and ni are the components of the outward normal
vector on ΓRV E . Thus, the heterogeneous microstructure is smeared over the RVE (see Fig-
ure 4.4). With the averaged stress and strain, the effective macroscopic material properties

σσσ ,εεε 〈σσσ〉,〈εεε〉

Figure 4.4: Stress and strain on the micro- and macroscale

are calculated via
〈σi j〉= C∗i jkl 〈εkl〉 , (4.20)

with the effective elasticity tensor C∗i jkl which is defined as the relation between the two
averaged quantities 〈σi j〉 and 〈εkl〉.

The advantage of this approach is that it only requires the tractions and deformations on
the boundary of the RVE. No energetic considerations like in the strain energy based ho-
mogenization are made. Thus, it can not only be applied in the static case, but also in
dynamics. Since the materials discussed in this work are assumed to have a periodic mi-
crostructure, it is meaningful to do a dynamic calculation in frequency domain. The reason
is that in frequency domain, periodic boundary conditions can be applied to the RVE. In
time domain, this is not possible because wave propagation phenomena take place. Thus,
if a wave is running through the RVE, the tractions and displacements on one edge are
different from the tractions and displacements on the opposing edge. It is not possible to
fulfill the periodicity, which is postulated from the fact that the material consists of equally
shaped cells. In a frequency domain calculation, in contrast, the RVE is situated in a steady
state where periodicty can be fulfilled.
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Calculation on Microscale

The aim of homogenization is to calculate effective properties, which in the elastic case
means that the components of C∗i jkl of equation (4.4) need to be found. C∗i jkl has 21 inde-
pendent components in the general, anisotropic case. The RVE is subjected to a number of
strain states. A useful choice of load states is

〈σi j〉 or 〈εkl〉=

 β 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 β 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 β

 ,

 0 β 0
β 0 0
0 0 0

 ,

 0 0 0
0 0 β

0 β 0

 ,

 0 0 β

0 0 0
β 0 0

 . (4.21)

The RVE can either be subjected to a strain load where the stress is computed or vice versa.
The load factor β can be chosen arbitrarily. The states in (4.21) assure that all unknowns
in C∗i jkl can be computed. If the cases are not independent, linear combinations of the
equations occur and there are not enough equations to compute all tensor components of
C∗i jkl [13].

In 2-D, 3 independent load cases suffice. To assure that all material parameters can be
determined, the three loadcases shown in Figure 4.5 can be applied. If the plane stress

ε11 6= 0 ε22 6= 0 ε12 6= 0

Figure 4.5: Independent load cases in 2-D

case is considered, all Qi jkl of equation (2.41) can be calculated. This can easily be seen,
because the three loadcases correspond to the three rows of equation (2.41).

Boundary Conditions

The cellular structures are assumed to be periodic, i.e., they consist of equally shaped unit
cells. If the microstructure is deformed, neighboring cells undergo the same deformation
pattern. The whole macroscopic body consists of identical parts that fit into each other. In
Figure 4.6, a two-dimensional unit cell is shown in deformed and undeformed state. The
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Figure 4.6: Periodic boundary conditions

corner nodes are named with arabic numbers 1 to 4 and the edges are named with roman
numbers I to IV . Periodic boundary conditions are achieved by pairing opposite faces
and linking the corresponding degrees of freedom with each pair of faces. Thus, for the
displacement vectors u of the nodes or edges, the following symbolic equations must be
fulfilled

uII = uIV +u2 ; uIII = uI +u4 ; u3 = u2 +u4 . (4.22)

The displacements at the ’slave faces’, II and III, are determined by those of the ”master
faces”, I and IV , and of the ’master nodes’ 2 and 4. See also [24, 5] for a more detailed
description. If the stresses t are discretized in addition to the displacements like in the
method described in chapter 3, they have to fulfill anti-periodic conditions, i.e.,

tII =−tIV ; tIII =−tI ; . (4.23)

For unit cells which are symmetric in an undeformed and deformed state, the periodic
boundary conditions simplify to symmetric boundary conditions (see Figure 4.7). Due

Figure 4.7: Periodic boundary conditions due to symmetry

to the symmetry of unit cell and boundary conditions, the deformations on the left edge
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correspond to the deformations on the right edge and the tractions on the upper edge are
equal to the tractions on the lower edge.

The periodicity of the boundary conditions needs to be fulfilled in a static calculation as
well as in a dynamic calculation. This makes a dynamic calculation in frequency domain
meaningful.

4.2.5 Unit Cell versus RVE

Within this work, cellular solids are considered which consist of simple beams. Such
structures are found quite often in literature, they can represent sandwich cores or sim-
plified models of foam-like materials. As has been mentioned before, it is assumed that
the material is periodic, i.e., it consists of equally shaped cells. For sandwich cores, this
assumption is well justified, real materials, of course, have an imperfect microstructure,
where neighbouring cells have a slightly different geometry. The cork tree, for example,
consists of hexagonal cells as can be seen in Figure 4.8. A model for this material is

Figure 4.8: Microstructure of cork, idealized model and unit cell

also shown in Figure 4.8. The model consists of perfect hexagonal cells, neglecting small
imperfections of the real material. In order to calculate effective, homogeneous material
properties, this model would be sufficiently accurate to represent the microstructure. If the
assumption of periodicity is made, it is very easy to find a RVE, because if the microstruc-
ture consists of identical units, the smallest unit contains all information and is therefore
representative. In statics, effective properties can be calculated from this single unit cell.
In a frequency domain calculation, however, one unit cell does not suffice to obtain repre-
sentative results. The reason is that higher modes of deformation may occur when using
a different number of unit cells. This can be explained by considering the example given
in Figure 4.9. A unit cell is loaded with a force on the left and right hand side. The cell is
calculated in frequency domain, i.e., the load is harmonic and thus, the resulting strain

ε =
∆`

`
(4.24)

is also harmonic. Another calculation is done using 3× 3 cells. Both strains are plotted
over a frequency range of 0..106 Hz in logarithmic scale, see Figure 4.10. On the left hand
side, the whole frequency range is plotted, whereas on the right hand side, only a small
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`

`

Figure 4.9: Example calculation of 1 and 3×3 unit cells

range is plotted. It can be seen that the results from both calculations are not identical. At
approximately 3.4 ·105 Hz, an eigenfrequency is missing in the single unit cell calculation
and at 2.3 · 105 Hz, the eigenfrequencies of both calculations are different. Therefore,
it is necessary to calculate multiple unit cells to obtain characteristic microscale results.
A simple and pragmatic approach is to calculate a specific number of unit cell and then
average the results.
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Figure 4.10: Strain of 1 and 3×3 unit cells
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5 OPTIMIZATION

The term optimization refers to the study of problems in which one seeks to minimize or
maximize a function by systematically choosing the values of variables from an allowed
set. In the context of this work, optimization techniques are used to obtain macroscopic
material parameters, i.e, ’try to find material parameters on the macroscopic scale which
describe the micromechanical properties as good as possible’.

Within the scope of this work, the Simplex Method and the Sequential Quadratic Program-
ming Method are used. They represent gradient-based optimization techniques. These al-
gorithms often exhibit weaknesses in non-convex problems, which means that they can run
into local minima of the search space. Therefore, two global optimization techniques, a
Genetic Algorithm and a Neural Network are also applied to the optimization problem.

5.1 Simplex Algorithm

The Simplex Algorithm is a classical optimization algorithm. Subject to constraints, an
optimization function f (x1,x2, . . . ,xn) is minimized or maximized. The method uses the
concept of a simplex, which is a polytope of (n + 1) vertices in n dimensions: a line
segment on a line, a triangle on a plane, a tetrahedron in three-dimensional space and so
forth. The simplex is defined by the constraints.

A starting point is chosen, which is the first vertex of the simplex. The vertex of the
simplex with the largest function value is reflected in the center of gravity of the remaining
vertices and the function value at this new point is compared with the remaining function
values. Depending on the outcome of this test the new point is accepted or rejected, a
further expansion move may be made, or a contraction may be carried out. When no
further progress can be made the sides of the simplex are reduced in length and the method
is repeated [40].

5.2 SQP - Sequential Quadratic Programming

Sequential quadratic programming methods are the standard general purpose algorithms
for solving nonlinear optimization problems.
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In general, the optimization task can be stated by

min f (x) (5.1a)
g j(x) = 0, j = 1, . . . ,me (5.1b)
g j(x)≥ 0, j = me +1, . . . ,m (5.1c)
xlower ≤ x≤ xuppper (5.1d)

where f (x) is the function to be minimized and equations (5.1b-5.1d) are constraints. A
solution of the nonlinear optimization problem can be obtained by considering the related
Lagrange-function, which is defined as

L(x,u) = f (x)−
m

∑
j=1

u jg j(x) (5.2)

with the Lagrange-multipliers u j. The SQP-method is an iterative approach. In the k-th
iteration step a new solution point xk+1 is calculated via

xk+1 = xk +αkdk . (5.3)

The parameter αk is the positive step size and dk is the search direction. To obtain dk =
(x−xk), the quadratic subproblem

min
(

gT (x−xk)+
1
2
(x−xk)T Hk(x−xk)

)
(5.4)

needs to be solved with

gi(xk)+
∂gi(xk)

∂xi
= 0 i = 1, . . . ,me (5.5)

gi(xk)+
∂gi(xk)

∂xi
≥ 0 i = me +1, . . . ,m . (5.6)

The quadratic subproblem is obtained by approximating the Lagrange-function with a
Taylor-series, neglecting higher order terms. It can be solved using any Quadratic Pro-
gramming method. In equation (5.4), Hk denotes the Hessian matrix. Often, Hk is approx-
imated with the BROYDEN-FLETCHER-GOLDFARB-SHANNON (BFGS) procedure

Hk+1 = Hk
HkskskHk

sT
k Hksk

+
ykyT

k
yT

k sk
(5.7)

with

sk = xk+1−λk (5.8)
yk = ∇xL(xk+1,λk)−∇xL(xk,λk) , (5.9)

where λk is an estimate of a Lagrange-multiplier. After the computation of the descent
direction dk an appropriate step length parameter αk must be determined. This can be
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done by defining a merit function, which is minimized. Usually, the extended Lagrangian
function

L(x,u,s) = f (x)+
m

∑
i=me+1

ui(gi(x)− si)+
1
2

m

∑
i=me+1

ui(gi(x)− si)2 . (5.10)

is used. Other merit functions are also possible. An extensive overview of SQP-methods
is given in [18] or [48].

5.2.1 Local Minima

The problem of local minima in optimization can be explained with a simple example. The
function

f (x) =
1
4

x4− 13
3

x3 +25x2−56x+60 (5.11)

shall be minimized within the limits

0 < x < 10 . (5.12)

With simple differentiation the function’s minima are found to be at (2, 52
3 ) and (7, 83

12).
For the minimization, the MATLAB-routine fmincon, which uses a Sequential Quadratic
Programming Method, is used. The starting point is chosen to be xstart = 3.9. With a
requested precision of 10−5, the iteration stops after only 7 steps, the search path of the
algorithm is shown in Figure 5.1. As can be observed, the gradient-based method always
searches a new point in the direction of the function’s slope. Due to the chosen starting
point, the algorithm runs into the local minimum at x = 2, the global minimum at x = 7 is
not found. This is a general problem of gradient-based optimization procedures: Depend-
ing on the starting point, these algorithms can run into local minima. On the other hand,
the search is relatively quick.

5.3 Genetic Algorithm

Genetic Algorithms are stochastic search techniques that use principles inspired by evolu-
tionary biology such as inheritance, mutation, natural selection, and recombination. The
fundamental idea is to randomly create a number of solutions for a problem, select the
best ones and modify them with techniques adopted from nature to obtain an optimal so-
lution.

At the beginning of a Genetic Algorithm, a population with a specific number of candidate
solutions (individuals) is generated. The individuals represent the solutions of an optimiza-
tion problem. In general they can be created randomly, however, if there is information for
admissible solutions (restrictions, etc.) it is advisable to use it in order to quicken the opti-
mization. An individual is made up of a number of chromosomes (sometimes also termed
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Figure 5.1: Local minimum of SQP optimization

genomes) which represent a particular aspect of the solution. One common approach is
to encode solutions as binary strings with each chromosome containing either 1 or 0 (see
Figure 5.2). The binary code can represent integers or real-valued parameters of the so-

0 1 101100100110100111101

One aspect of solution

Figure 5.2: Binary coded individual

lution. Another, similar approach is to encode solutions directly with integers or decimal
numbers (one number =̂ one chromosome). This coding can often be ’intuitively closer to
the problem space’ [16].

After the creation of the first population, each individual is evaluated according to a fitness
function, i.e., for every individual, a fitness value is calculated which rates the ’quality’ of
the individual. For a minimization problem, a very low fitness value reflects a good quality,
whereas for a maximization problem it reflects a poor quality. Next, the population is
sorted by the fitness value - the individual with the best fitness takes in first place, followed
by the second-best and so on. A number n of the poorest individuals are usually eradicated
(survival of the fittest), these individuals are not allowed to produce offspring while the
better ones constitute the parent population for the next generation. The forming of the
offspring generation is done using any or all of the genetic operators:
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• Selection
individuals are chosen for later breeding. Common procedures for selection are:

– Proportional fitness
an individuals chance to reproduce is proportional to its fitness value

– Tournament selection
randomly selected individuals in a subgroup compete and the fittest one is se-
lected

• Recombination
selected individuals are recombined. Usually, chromosome exchange and crossover
are used:

– Chromosome exchange
between two individuals, the m-th chromosome is exchanged with a probability
qce.

– One-point-crossover
with a probability qco, two selected individuals exchange chromosome groups
from a specific chromosome position A to the end (see Figure 5.3).

1 0 1 011010011110 0 1 1 0 0 0 1 1

1 0 1 10110010011010011110

1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1

1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 10110010

Figure 5.3: One-point-crossover

– Two-point-crossover
with a probability qco, two selected individuals exchange chromosome groups
from a specific position A to a position B (see Figure 5.4).

• Mutation
The value of a chromosome is mutated with a probability pmu, thus, for a binary-
coded individual one chromosome value is changed from 1 to 0 or vice-versa (see
Figure 5.5).

Next to the individuals that are generated by recombination or mutation, also newly cre-
ated individuals can be added to the new generation or the best individuals of the parent
generation are left unchanged and added to the new generation (elite selection strategy).
Once the new population is created, one iteration step is completed and the new individuals
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1 0

1 0 1 10110010011010011110

1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1

1 0 1 10110010010

1 0 0 0 1 1 0 0 1 1 0 0 0 1 1

1 0 0 1 0 1 0 0 1

11010011

Figure 5.4: Two-point-crossover

1 0 1 10110010011010011110

1 0 1 101100100101011111 0 1 0 0

Figure 5.5: Mutation

are evaluated and used to create the following generation. The iteration is halted if a spe-
cific number of iterations is exceeded or if the best individual of a generation has reached
a specific fitness. Figure 5.6 shows the above described steps in a flowchart.

initial
population

recom−
bination

new
population

new 
individuals

terminate?evaluation

yes

no
mutation

Figure 5.6: Genetic algorithm

Genetic algorithms are often applied as an approach to solve global optimization prob-
lems. They are in particular useful in problem domains that have a complex fitness land-
scape as recombination is designed to move the population away from local minima that
a traditional gradient-based algorithm might run into. There exist many different forms of
Genetic Algorithms and the user usually has to set a broad range of parameters.
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5.4 Neural Network

Neural networks are composed of simple elements, neurons, operating in parallel. The
network function is determined primarily by the connections between the neurons. These
connections are adjusted or weighted during a training or learning phase so that a particular
input leads to a specific output. When the training is finished, the adjusted network can
be used to solve a problem. See Figure 5.7 for the training of the Neural Network. The

input
data

compare
output target

calculate output
with neural network

target
data

adjust
weights satisfactory?

output yesno 
terminate

Figure 5.7: Training of Neural Network

training phase is much more time-consuming than the actual application, which makes a
neural network particularly suitable for real-time applications.

Neural networks are inspired from nature. The human brain consists of a large number of
neurons which perform a simple ’calculation’ and give their output to other neurons. The
biological neurons are ’adjusted’ (trained) and act in a parallel manner. Figure 5.8 is a
schematic drawing of a Neural Network that consists of an input layer, a hidden layer and
an output layer. The input layer consists of nin neurons, corresponding to one set of input
data with nin elements. The number of neurons in the hidden layer can be chosen somewhat
arbitrarily. Theoretically, it is possible to construct a Neural Network with more than one
hidden layer although most applications feature only a single hidden layer. The output
layer consists of nout neurons, corresponding to an output data set with nout elements.

The neurons of the layers have weighted connections among each other. Thus, one neuron
of the hidden layer has nin weighted inputs, as can be seen in Figure 5.9. The output of the
neuron is calculated via

a2
1 = f 1(n) , (5.13)

where n is the sum of all outputs of the input layer

n =
nin

∑
i=1

ai ·w1,i +b , (5.14)

f is a transfer function and b is a bias. Typical choices for f are the sigmoid function
f = 1/(1+e−x) or the tangens hyperbolicus function. The transfer function f is employed
for the network to be able to identify nonlinear interrelationships.
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Figure 5.8: Neural Network with one hidden layer
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Figure 5.9: Single neuron
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The training of the Neural Network can be done using the backpropagation algorithm. The
summary of the technique is as follows:

• Present a training sample to the Neural Network.

• Compare the network’s output to the desired output from that sample. Calculate the
error in each output neuron.

• For each neuron, calculate what the output should have been, and a scaling factor,
how much lower or higher the output must be adjusted to match the desired output.

• Adjust the weights of each neuron to lower the local error.

• Repeat the steps above on the neurons at the previous level.

The training is finished if certain criteria are fulfilled, for example if a specific error tol-
erance is reached or if the number of iterations exceeds a given value. As the algorithm’s
name implies, the errors (and therefore the learning) propagate backwards from the output
nodes to the inner nodes. So backpropagation is used to change the network’s modifiable
weight accordingly to the error.

The advantage of a Neural Network is the very quick application. After the very time-
consuming training, the application of the Network is much quicker than other optimiza-
tion procedures.
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6 EFFECTIVE PROPERTIES IN STATICS

The surface average based homogenization strategy proposed in section 4.2.4 is now real-
ized in the static case using the optimization techniques given in chapter 5. Since in statics,
an analytic solution of the homogenization problem is possible, the analysis is mainly done
to test the different optimization procedures with respect to what they can accomplish and
what advantages and disadvantages they have. The following example calculations are
done in the two-dimensional case, the generalization to the 3-D case is possible without
further considerations. Firstly, a number of beam-type microstructures are examined. Sec-
ondly, a plate is considered with a star-shaped hole.

6.1 Beam-type microstructures

In order to calculate effective properties of a material, the components Qi jkl of the linear
elastic constitutive equation have to be determined. The plane stress case is considered on
the macroscopic scale, so the 6 distinct Qi jkl of σ11

σ22
σ12

=

 Q1111 Q1122 Q1112
Q2211 Q2222 Q2212
Q1211 Q1222 Q1212

 ε11
ε22
ε12

 (6.1)

are sought.

Three different unit cells (see Figure 6.1) are used for the numerical study. The cell walls
consist of steel with a Young’s modulus of E = 2.1× 1011N/m2 and a quadratic cross-
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0.2`
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0.2`
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0.2`

0.2`

0.5`

Figure 6.1: Microstructures for numerical study

section of A = 10−8m2. The unit cells are calculated with the boundary element formu-
lation described in chapter 3. In the static case, a Finite Element formulation could have
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been applied as well because a FEM calculation with shape functions of order three (e.g.
Hermite-polynomials) gives exact results in the static case. The unit cells are subjected
to the three independent load cases shown in section 4.2.4 (see Figure 4.5). As boundary
conditions, the deformation at the boundary points are prescribed and the forces at these
points are calculated. Thus, as a result on the microscale, a set of stresses (σ11,σ22,σ12)
and strains (ε11,ε22,ε12) is obtained for each loadcase.

After the calculation on the microscale, an optimization procedure is used to obtain ad-
equate material parameters Qi jkl of equation (6.1). The optimization is formulated as a
minimization problem, i.e., certain parameters need to be found to minimize a target func-
tion. An optimal solution is found if the function value is 0. As target function, the mean
square error between the stress on micro- and macroscale is used

f =
3

∑
n=1

(
σ

micro
11 n −σ

macro
11 n

)2
+
(
σ

micro
22 n −σ

macro
22 n

)2
+
(
σ

micro
12 n −σ

macro
12 n

)2
. (6.2)

In equation (6.2), n denotes the loadcase, so the difference of stress is summed up over
all three loadcases. The stress components on the microscale σmicro

i j n have to be calculated
only once – with respect to the optimization they are constant input data. The stress on
the macroscopic scale σmacro

i j n , however, is calculated repeatedly for different Qi jkl in the
course of the optimization via equation (6.1).

In the following sections, results are presented for the four different optimization strate-
gies.

Genetic Algorithm

Each individual of a Genetic Algorithm has a fitness value which reflects the individuals
quality. The fitness value is calculated from a fitness function which in the present case
is the target function f in equation (6.2). The material parameters Qi jkl represent the
chromosomes of the individuals. There are a total of 9 Qi jkl , however, due to the symmetry,
6 of them are independent. Therefore, each individual consists of 6 chromosomes.

A Genetic Algorithm has a broad range of parameters that need to be set. Parameters
such as population size or type of genetic operators need to be chosen. For the present
application, the following parameters were used:

• A population size of 100 individuals is chosen

• The starting population is created randomly

• New individuals are created via 2-point-crossover

• The mutation of an individual is done accordingly to the standardized normal distri-
bution

• 50 individuals are created newly in one generation, the remaining 50 are created as
offspring of the previous generation
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• The optimization is stopped after a maximum of 500 iterations or if the best fitness
value is smaller than 10−5

These parameters were determined in a trial-and-error process and have shown to deliver
good results. Figure 6.2 shows the performance of the Genetic Algorithm. The fitness
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Figure 6.2: Performance of Genetic Algorithm

value of the best individual of a generation is plotted versus the number of generations. The
plot is done for the star-shaped cell on the right hand side of Figure 6.1. Since the starting
population is generated randomly, three optimization runs were done. At the beginning of
the optimization, the progress of the algorithm is good, but after 40−50 generations, the
improvement of the fitness value is rather small. The sought material parameters were all
found with the Genetic Algorithm, see Table 6.1. The deviation from the exact solution
is given in Table 6.2. The exact solution can be calculated by solving the constitutive
equation (6.1) for the sought Qi jkl . This is done for the three independent loadcases. In
the first loadcase, for example, only the strain ε11 is not equal to 0, so the corresponding
equation is  σ11

σ22
σ12

=

 Q1111 Q1122 Q1112
Q2211 Q2222 Q2212
Q1211 Q1222 Q1212

 ε11
ε22 = 0
ε12 = 0

 . (6.3)

Equation (6.3) can be solved for Q1111, Q2211 and Q1211.
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Neural Network

A Neural Network is now used to determine effective properties of the given microstruc-
tures. In a first step, a Neural Network needs to be created and trained to solve the given
problem.

Training of Neural Network

For the training, adequate examples must be given and on the basis of these examples, the
network is trained. One training example consists of the following components:

• Learning data
The three loadcases given in Figure 4.5 are used with only one strain component
not equal to 0 at a time. For each loadcase (given εi j), the corresponding stress
is calculated using equation (6.1). The resulting 9 values (3 loadcases × 3 stress
components) for the stress form one set of learning data.

• Learning targets
The learning targets consist of the 6 Qi jkl which had to be chosen in equation (6.1)
to generate the learning data. The Qi jkl are chosen somewhat arbitrarily, however, it
is meaningful to systematically cover a certain admissible range.

The choice of training examples is very important. For example, if the sought values for
Qi jkl lie outside the range of the training examples, the Neural Network can not be trained
properly and will deliver poor results. In the present application, the choice of training
examples is difficult since à priori, no prediction can be made whether a component Qi jkl
has the value 1 or 106.

Training: calculations with equation (6.1)

learning data

σ11, σ22, σ12 (LF 1)
σ11, σ22, σ12 (LF 2)
σ11, σ22, σ12 (LF 3)

...

←→

targets

Q1111 Q2222
Q1122 Q1112
Q2212 Q1212

...


1 set of
learning
data



n6 sets
of
learning
data

Figure 6.3: Training data of Neural Network

Figure 6.3 shows the data for the training of the Neural Network. Another problem is the
fact that chosen values for Qi jkl have to be combined among each other. If n different
values for one component are chosen, all combinations for the other 5 components must
be made. Thus, the whole training set consists of n6 examples, so the training becomes
very extensive.
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For the present application, the following parameters for the training of the Neural Network
have proved to deliver good results:

• A backpropagation network is used with one hidden layer.

• In the training phase, 3 different values for the components Qi jkl are used. With 6
independent Qi jkl , there are a total of 36 = 729 combinations.

• As transfer functions, linear functions are used.

The backpropagation method is used to determine the weights of the neurons. In Figure
6.4, three typical training runs are shown. For the initial weights, random numbers were

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  50  100  150  200

m
ea

n 
sq

ua
re

 e
rro

r

epochs

training run (1)
training run (2)
training run (3)

Figure 6.4: Training of Neural Network

chosen, so the training was different in the three runs.

Application of Neural Network

After the training of the Neural Network, it is applied to the parameter identification. The
unit cells are subjected to the three independent load cases shown in Figure 4.5. The
resulting 9 stress values are the input data for the Neural Network. The output of the
Neural Network, of course, consists of the 6 unknown Qi jkl (see Figure 6.5). The sought
material parameters were found, see Table 6.1. The deviation from the exact solution is
given in Table 6.2.

Simplex Algorithm

The Simplex Algorithm uses an optimization function f (x) with n independent variables
(x = x1,x2, ...xn). Equation (6.2) is used here for the homogenization. The six independent
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Application of Neural Network: Calculation on Unit Cell

input data

σ11, σ22, σ12 (lc 1)
σ11, σ22, σ12 (lc 2)
σ11, σ22, σ12 (lc 3)

←→

sought parameters

Q1111 = ? Q2222 = ?
Q1122 = ? Q1112 = ?
Q2212 = ? Q1212 = ?


1 set of
data

Figure 6.5: Data for application of Neural Network

Qi jkl are the sought variables of the optimization function. The function nag_opt_simplex
(e04ccc) of the NAG-library [50] was used for the implementation. The following param-
eters were used:

• Random values are used as starting points

• The optimization stops if f < 10−5 or a maximum of 10000 iterations is reached

• Formulation as unconstrained problem, i.e., no constraints for values of Qi jkl are
made

Figure 6.6 shows typical optimization runs. The mean square error is plotted versus the
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Figure 6.6: Optimization with Simplex algorithm

number of iterations. A comparatively large number of iterations is needed until an accept-
able value for the mean square error is reached. However, one iteration step only needs
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a little computing time. The sought material parameters were found with the Simplex
Algorithm, see Table 6.1.

SQP: Sequential Quadratic Programming

Analogously to the Simplex Algorithm, equation (6.2) is used as optimization function
for the Sequential Quadratic Programming method. The method does not only need the
optimization function itself, but also the first derivatives of it. Equation (6.2) can be dif-
ferentiated with respect to the 6 Qi jkl , so no numerical procedures like Finite Differences
have to be used. The function nag_opt_nlin_sqp (e04unc) of the NAG-library was used
for the implementation. The following parameters were used:

• Random values are used as starting points

• The optimization stops if f < 10−5 or a maximum of 10000 iterations is reached

• Formulation as unconstrained problem, i.e., no constraints for values of Qi jkl are
made

Figure 6.7 shows typical optimization runs. The mean square error is plotted versus the
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Figure 6.7: Optimization with SQP method

number of iterations. Since the derivatives of the optimization function (6.2) are used,
the SQP method only needs very few iteration steps until the postulated value for the
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mean square error is reached. The sought material parameters were found with the SQP
algorithm, see Table 6.1.

Discussion of results

The calculation of effective parameters of the 3 given microstructures was successfully
accomplished by all optimization procedures. The calculated parameters are given in Table
6.1. The correctness of the found Qi jkl were verified using equation (6.1). Due to the

microstructure (1)

Gen. Alg. Neur. Net Simplex SQP

Q1111 8.3307 ·102 8.3307 ·102 8.3307 ·102 8.3307 ·102

Q1122 4.9789 ·102 4.9789 ·102 4.9789 ·102 4.9789 ·102

Q1112 1.6636 ·10−7 −4.0000 ·10−10 −4.9000 ·10−10 −2.2205 ·10−19

Q2222 8.3307 ·102 8.3307 ·102 8.3307 ·102 8.3307 ·102

Q2212 1.0595 ·10−7 −1.0720 ·10−7 −1.3000 ·10−10 −4.4409 ·10−19

Q1212 3.0141 ·10−3 3.0150 ·10−3 3.0150 ·10−3 3.0150 ·10−3

microstructure (2)
Gen. Alg. Neur. Net Simplex SQP

Q1111 4.1349 ·102 4.1349 ·102 4.1349 ·102 4.1349 ·102

Q1122 −3.2750 ·10−1 −3.2750 ·10−1 −3.2750 ·10−1 −3.2750 ·10−1

Q1112 −5.6623 ·10−8 2.2500 ·10−8 −1.0000 ·10−11 −4.4409 ·10−19

Q2222 4.1349 ·102 4.1349 ·102 4.1349 ·102 4.1349 ·102

Q2212 −5.0256 ·10−8 −1.2300 ·10−8 −2.1000 ·10−10 8.8818 ·10−19

Q1212 1.5120 ·10−3 1.5119 ·10−3 1.5119 ·10−3 1.5119 ·10−3

microstructure (3)
Gen. Alg. Neur. Net Simplex SQP

Q1111 2.1149 ·102 2.1149 ·102 2.1149 ·102 2.1149 ·102

Q1122 −8.1308 ·101 −8.1308 ·101 −8.1308 ·101 −8.1308 ·101

Q1112 3.9604 ·10−8 −5.0000 ·10−10 8.0000 ·10−11 −5.4210 ·10−23

Q2222 2.1149 ·102 2.1149 ·102 2.1149 ·102 2.1149 ·102

Q2212 2.1499 ·10−8 1.0000 ·10−9 −2.4000 ·10−10 4.3368 ·10−22

Q1212 1.5119 ·10−3 1.5119 ·10−3 1.5119 ·10−3 1.5119 ·10−3

Table 6.1: Results of optimization
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symmetry of the unit cells, the components Q1111 and Q2222 are always equal, i.e., the
stiffness in horizontal and vertical direction is the same. Moreover, the components Q1112
and Q2212 are always 0.

microstructure (1)

exact solution Gen. Alg. Neur. Net Simplex SQP

Q1111 8.3307·102 - - - -
Q1122 4.9789·102 - - - -
Q1112 0 < 10−6 < 10−9 < 10−9 < 10−18

Q2222 8.3307·102 - - - -
Q2212 0 < 10−6 < 10−6 < 10−9 < 10−18

Q1212 3.0150·10−3 < 10−6 - - -

microstructure (2)

exact solution Gen. Alg. Neur. Net Simplex SQP

Q1111 4.1349·102 - - - -
Q1122 −3.2750·10−1 - - - -
Q1112 0 < 10−7 < 10−7 < 10−10 < 10−18

Q2222 4.1349·102 - - - -
Q2212 0 < 10−7 < 10−7 < 10−9 < 10−18

Q1212 1.5119·10−3 < 10−6 - - -

microstructure (3)

exact solution Gen. Alg. Neur. Net Simplex SQP

Q1111 2.1149·102 - - - -
Q1122 −8.1308·101 - - - -
Q1112 0 < 10−7 < 10−9 < 10−10 < 10−22

Q2222 2.1149·102 - - - -
Q2212 0 < 10−7 < 10−8 < 10−9 < 10−21

Q1212 1.5119·10−3 - - - -

Table 6.2: Results of optimization: deviation from exact solution

As expected, all optimization procedures have determined the sought material parameters
correctly. Since numerical procedures were used, the solutions are only correct to a certain
precision. Therefore, the components Q1112 and Q2212 are not exactly 0.

The numerical cost to obtain a solution was quite different. The Simplex method, which
is the least complicated of all procedures, needed a large number of (quick) iterations. In
comparison to that, the SQP method was much faster, which is logical because the first
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derivatives of the optimization function is used by the method. Thus, more information
about the problem is given to the algorithm, resulting in a significant improvement in
performance. The Genetic Algorithm also delivered good results, although it was not as
quick as the SQP method.

The Neural Network was, compared to the first three procedures, rather difficult to use
for the given problem. Firstly, the training of the Network is numerically very expensive.
Secondly, it is hard to find suitable training examples. The number of training examples
increases rapidly the more values for the single components Qi jkl are used because all
combinations of the components have to be made. However, once the training is complete
the Neural Network delivers good, quick results. It depends on the intended application
whether the use of a Neural Network is meaningful: If the computation of parameters
needs to be done for a lot of different microstructures, it makes sense to train a Neural
Network once and then apply it many times. On the other hand, if only a single compu-
tation of material parameters is needed, the other optimization procedures are definitely
more suitable.

6.2 Plane stress microstructure

The calculation of effective static properties is now done for a plate in plane stress. The
microstructure given in Figure 6.8 is considered. The calculation of the plate is done with

20 elements

10 elements
0.12`

0.28`

0.1`

`

Figure 6.8: Microstructure for numerical study

the Boudary Element Method, a discretization of 20 elements on the outer edges and 10
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elements on one part of the inner edge according to Figure 6.8 is used. The material of the
plate is steel with a Young’s modulus of E = 2.1×1011N/m2 and a Poisson’s ratio of 0.3.
The plate is loaded with a prescribed displacement of 0.05` on the left and right hand side,
while the upper and lower edges can deform freely, see Figure 6.9. These homogeneous

ū = 0.05` ū = 0.05`

Figure 6.9: Loadcase of microstructure

boundary conditions do not fulfill the periodicity conditions, because neighbouring cells
do not undergo the same deformation pattern. This is neglected, however, because both
the deformation and the tractions on the cell edges are averaged. Thus, after the averaging
process, periodicity is fulfilled. The averaging is pictured in Figure 6.10. With this, analo-

undeformed deformed uavg

σavg

Figure 6.10: Averaging of deformation and tractions

gously to the beam-type microstructures, a set of averaged stresses and strains is obtained.
In the present case, only the stress σmicro

11 and the strains εmicro
11 and εmicro

22 are not equal to
0

σ
micro
11 6= 0, ε

micro
11 6= 0, ε

micro
11 6= 0 (6.4)

σ
micro
22 = 0, σ

micro
12 = 0, ε

micro
12 = 0 . (6.5)

These stresses and strains are the input data for the optimization process, where effective
properties are calculated. On the macroscopic scale, the constitutive equation

σ
macro
i j =

E
(1+ν)

ε
macro
i j +

νE
(1+ν)(1−2ν)

δi j ε
macro
kk (6.6)
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is applied. Analogously to the beam-type microstructures, an optimization process is ap-
plied to obtain adequate material parameters on the macroscopic scale. From the results
of the beam-type microstructures, it can be stated that the Genetic Algorithm delivers the
most reliable results, so it is applied as optimization procedure. The target function for the
optimization is identical to the one used for the beam-type cells, however, here only one
loadcase is used so equation (6.2) simplifies

f =
(
σ

micro
11 −σ

macro
11

)2
+
(
σ

micro
22 −σ

macro
22

)2
+
(
σ

micro
12 −σ

macro
12

)2
. (6.7)

The stresses σmicro
i j are constant input data with respect to the optimization procedure,

whereas σmacro
i j are repeatedly calculated during the optimzation process via equation

(6.7).

A Genetic Algorithm is used to solve the optimization problem. The fitness function (6.7)
has the 2 paramters E and ν as unknown values, so each individual consists of 2 chromo-
somes. The following settings were used for the Genetic Algorithm:

• A population size of 100 individuals is chosen

• The starting population is created randomly

• New individuals are created via 1-point-crossover

• The mutation of an individual is done accordingly to the standardized normal distri-
bution

• 50 individuals are created newly in one generation, the remaining 50 are created as
offspring of the previous generation

• The optimization is stopped after a maximum of 1000 iterations or if the best fitness
value is smaller than 10−5

The parameters were determined in a trial-and-error process and have shown to deliver
good results.

Figure 6.11 shows the performance of the Genetic Algorithm. The fitness value of the best
individual of a generation is plotted versus the number of generations. Since the starting
population is generated randomly, three optimization runs were done.

All three optimization runs were successful. A Youngs’s modulus of 7.50×1010N/m2 and
a Poisson’s ratio of −0.143 was calculated. This result was verified using the constitutive
equation (6.6) and the averaged stresses and strains on the microscale.
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Figure 6.11: Performance of Genetic Algorithm
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7 EFFECTIVE PROPERTIES IN DYNAMICS

In this chapter, the prescribed homogenization strategy is realized in the dynamic case, i.e.,
the microstructure is calculated in frequency domain with a harmonic excitation. Due to
inertia, the response of the unit cell is frequency dependent: if a harmonic stress is given,
the strain is frequency dependent and vice-versa. The frequency dependence is also given
on the macroscopic scale, thus, a frequency dependent macroscopic constitutive equation
is required. Here, a viscoelastic constitutive equation is chosen on the macroscale.

In statics, it has been shown that the homogenization problem can be solved analytically.
The stress and strain can be calculated and the constitutive equation can be solved for the
unknown material parameters. The same can be done in frequency domain as well, but
only if one specific frequency ω is considered at a time. It is possible to calculate stress
and strain for an excitation frequency ω and obtain material parameters for this frequency.
This can be done repeatedly, so material parameters for a number of frequencies can be
computed. However, it is desirable to not only have material parameters for a specific
frequency but for a whole frequency range. Thus, the aim is to obtain parameters of a
consitutive equation like

σ(ω) =

N
∑

k=0
qk(iω)k

N
∑

k=0
pk(iω)k

ε(ω) , (7.1)

see also equation (2.57). pk and qk are parameters which cover a large frequency range. To
obtain adequate values for these parameters, it is necessary to calculate the stress σmicro(ω)
and strain εmicro(ω) on the microscale for a number of frequencies, covering a specific
range. Either the stress is given and the strain is calculated or vice-versa. In the macro-
scopic constitutive equation, e.g., equation (7.1) the parameters pk and qk have to be found
to correspond to the microscale results. For example, if a microscopic strain εmicro(ω)
is prescribed, the frequency response σmicro(ω) must correspond to a macroscopic stress
σmacro(ω), where σmacro(ω) is a function of the material parameters pk and qk, i.e.,

σ
micro(ω) != σ

macro(ω, pk,qk) . (7.2)

To satisfy equation (7.2), the mean square error between stress on the micro- and macroscale
is taken and the difference is minimized(

σ
micro(ω)−σ

macro(ω, pk,qk)
)2→ 0 . (7.3)

At this point, an optimization procedure is required. The parameters of the constitutive
equation must be chosen such that the difference between micro- and macroscale are as

77
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small as possible. Since the stress on the microscale can only be calculated for discrete
frequencies the mean square error of equation (7.3) is summed up over a number of discrete
frequency steps

f =
ωend

∑
ωstart

(
σ

micro(ω)−σ
macro(ω, pk,qk)

)2→ 0 . (7.4)

If a microscopic stress is given, the stress must be replaced by the strain in equations (7.3)
and (7.4).

From the results in the static case, it can be stated that the Neural Network is not suitable to
solve the optimization problem. The reason is that in the training phase, training examples
must be chosen with specific values for the sought material parameters. In order to cover
a range for pk and qk, a very large number of training examples would be necessary. Thus,
only the gradient-based optimization procedures and the Genetic Algorithm are used for
the optimization.

The chapter consists of 3 parts. Firstly, effective properties are calculated within a small
frequency range, i.e., from the static case (ω→ 0) up to the first eigenfrequency. Secondly,
a broader frequency range is covered. For both frequency ranges, beam-type microstruc-
tures are analyzed. In the last section, a plate in plane stress state is investigated.

7.1 Beam cells in small frequency range

The microstructure shown in Figure 7.1 is used for the following considerations. The cell

0.2`

0.1`
0.2`

0.5`

u = ū · e i ω t u = ū · e i ω t

Figure 7.1: Geometry and load case of the unit cell

is analzed in frequency domain. A harmonic strain in one direction is applied to the cell
(see also Figure 7.1). The procedure presented in chapter 2 is used for the calculation
because it delivers exact results.

Since the considered microstructure is assumed to be periodic, the opposing nodes of the
cell must have the same deformation and the forces of the node pairs must be equal in
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magnitude but opposite in direction. Due to the symmetry of the cell periodicity is fulfilled,
e.g., the reaction force of the node on the left hand side corresponds to the applied load on
the right hand side.

The cell consists of beams with a quadratic cross section of 0.1 ·`×0.1 ·`. The microstruc-
ture material is steel with a Young’s modulus of E = 2.1 · 1011N/m2. The frequency re-
sponse for an applied displacement amplitude of ū = 0.001` is calculated on a logarithmic
scale up to a frequency of 18 kHz.

On the macroscale, the one-dimensional constitutive equation

σ(ω) = G(iω) ε(ω) =

N
∑

k=1
qk(iω)k

M
∑

k=1
pk(iω)k

ε(ω) (7.5)

is used (see also equation (2.55)). Equation (7.5) has to be fulfilled for a frequency range
0..ωmax. Contrary to the static (1-D) case, a larger number of parameters have to be de-
termined. The number of parameters is somewhat arbitrary, it depends on the considered
frequency range how many parameters have to be used. For the present case, it has turned
out that a total M +N = 14 parameters are sufficient to deliver good results for the consid-
ered frequency range.

For the formulation of the homogenization problem as an optimization problem, the mean
square error technique is used. The square difference of the stress on micro- and macroscale
must be 0 for the optimal parameters on the macroscale

f =
ωmax

∑
ω=0

(
σ

micro(ω)−σ
macro(ω, pk,qk)

)2→ 0 . (7.6)

7.1.1 Genetic Algorithm

The fitness value of the individuals quality is calculated via equation (7.6). A total number
of M + N = 14 parameters is used, so each individual consists of 14 chromosomes. In a
trial and error process, the following parameters of the Genetic Algorithm have shown to
be suitable for the present application:

• A population size of 1000 individuals is chosen

• The starting population is created randomly

• New individuals are created via 2-point-crossover

• The mutation of an individual is done accordingly to the standardized normal distri-
bution

• 250 individuals are created newly in one generation, the remaining 750 are created
as offspring of the previous generation
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• The optimization is stopped after a maximum of 50000 iterations or if the best fitness
value f < 10−5.

The proceeding of the optimization is shown in Figure 7.2. Since the first generation is
created randomly and also during the optimization, genetic operators are applied randomly,
the proceeding of the optimization is different in all the optimization runs. The fitness value
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Figure 7.2: Optimization with Genetic Algorithm

of the best individual is plotted versus the number of generations. It can be seen that in
all three cases, a relatively small fitness values was obtained, however, after a different
number of generations. The obtained values for pk and qk are given in Table 7.1. Contrary
to the static case, there is more than one set of parameters which describes the behavior
accurately. Figure 7.3 shows the behavior on the micro- and macroscale. The modulus
G(ω) is plotted versus the frequency. On the microscale (solid line), G(ω) is

G(ω) =
σmicro

εmicro (7.7)

with the stress and strain σmicro,εmicro of the unit cell, whereas for the three macroscale
results, equation (7.5) was solved for ε(ω) and plotted for the three optimization runs with
the respective parameters pk and qk given in Table 7.1.

7.1.2 Simplex Algorithm

The Simplex Algorithm is used to determine the macroscale parameters. The optimization
function (7.5) with the 14 parameters is minimized. Like in the static case, the function
nag_opt_simplex (e04ccc) of the NAG-library was used with the following settings:
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optimization (1) f = 0.02996

k qk pk

1 1.7617 ·101 1.5469 ·107

2 2.2672 ·102 1.8152 ·108

3 −1.7471 ·10−14 1.2785 ·105

4 1.8300 ·100 1.4790 ·106

5 3.3705 ·10−3 1.0693 ·104

6 4.2695 ·10−3 3.0166 ·103

7 1.7815 ·10−19 4.0734 ·101

optimization (2) f = 0.08141

k qk pk

1 4.9398 ·100 4.1763 ·106

2 4.0007 ·102 3.8899 ·108

3 −1.6224 ·10−14 4.3765 ·105

4 2.1568 ·100 2.7570 ·106

5 1.2825 ·10−16 6.7831 ·103

6 2.9828 ·10−3 4.8445 ·103

7 5.0153 ·10−5 2.0826 ·101

optimization (3) f = 0.02313

k qk pk

1 7.6350 ·10−5 6.3904 ·101

2 2.0017 ·102 1.6060 ·108

3 −7.0055 ·10−14 4.0609 ·105

4 1.1501 ·100 1.1117 ·106

5 4.4045 ·10−16 5.5493 ·103

6 1.7722 ·10−3 1.8973 ·103

7 2.6157 ·10−5 1.5891 ·101

Table 7.1: Obtained material parameters by Genetic Algorithm
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Figure 7.3: Genetic Algorithm results on the micro- and macroscale
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• Random values are used as starting points

• The optimization stops if f < 10−5 or a maximum of 10000 iterations is reached

• Formulation as unconstrained problem, i.e., no constraints for values of pk and qk
are made.

The courses of three optimization runs are shown in Figure 7.4. The fitness value is plotted
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Figure 7.4: Optimization using Simplex algorithm

versus the number of iterations. As can be seen, the optimization did not end with an
optimal value close to 0 in all three runs. One optimization run found a local minimum of
the optimization function, which is due to a ’wrong’ starting point. The calculated material
parameters and final values of the optimization function are given in Table 7.2.

Analogously to the Genetic Algorithm, Figure 7.5 shows the comparison of the micro-
and macroscale. For the first and third optimization run, the micro- and macroscale results
fit relatively well. The calculated parameters of the second run, however, show a rather
poor fit, which could have already been expected from the final value of the optimization
function ( f = 40.36443).

7.1.3 SQP - Sequential Quadratic Programming

The Sequential Quadratic Programming method is used to minimize the optimization func-
tion (7.6). The following parameters were used:

• Random values are used as starting points

• The optimization stops if f < 10−5 or a maximum of 1000 iterations is reached
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optimization (3) f = 0.02313

k qk pk

1 −2.3120 ·10−1 8.7004 ·104

2 9.9885 ·102 9.9986 ·108

3 −6.3275 ·100 1.6585 ·106

4 3.8550 ·100 5.0101 ·105

5 2.2212 ·100 1.3758 ·106

6 8.6224 ·10−2 −1.2021 ·104

7 9.6364 ·10−3 5.3747 ·103

optimization (2) f = 4.03644

k qk pk

1 4.2969 ·100 4.6088 ·106

2 3.7837 ·100 −9.4540 ·106

3 −4.3263 ·101 −6.5015 ·106

4 2.0501 ·101 6.1724 ·106

5 −5.3712 ·101 −4.1837 ·106

6 −1.1843 ·101 1.6728 ·106

7 −7.7912 ·100 −1.8432 ·106

optimization (3) f = 0.08141

k qk pk

1 −1.2788 ·10−1 −8.1114 ·104

2 −2.4249 ·10−1 −3.2711 ·104

3 −1.7395 ·10−1 −3.9820 ·104

4 −4.3973 ·10−2 −2.8295 ·104

5 −1.0598 ·10−1 −3.9454 ·104

6 −4.0095 ·10−2 −1.1223 ·102

7 −3.0264 ·10−4 −1.5512 ·102

Table 7.2: Obtained material parameters by Simplex Algorithm
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Figure 7.5: Simplex results on the micro- and macroscale
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• Formulation as unconstrained problem, i.e., no constraints for values of pk and qk
are made

Figure 7.6 shows typical optimization runs. The fitness value is plotted versus the number
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Figure 7.6: Optimization using SQP algorithm

of iterations. The SQP method was able to obtain a value f < 1 in two runs. One opti-
mization run was only able to find a local minimum of the function. This can be seen from
the final value of the optimization of f = 31.2730 and also from the results for G(ω) on
micro- and macroscale. See Table 7.3 for the obtained values for the parameters pk and qk
and Figure 7.6 for results on both scales.

7.1.4 Discussion of results

All three optimization procedures were able to find adequate material parameters on the
macroscopic scale. It can already be seen from the fitness value or final value of the op-
timization function, respectively, how good the parameters fit the microscopic properties.
The Simplex Algorithm and the Sequential Quadratic Programming method both have
problems with local minima. If a ’wrong’ starting point is used for the optimization, they
may deliver poor results. The Simplex Algorithm is much slower than the SQP method,
which is obvious since it does not use the first derivatives of the optimization function. The
Genetic Algorithm is the most reliable of all optimization procedures. No starting point
is required, and it always delivers good results. However, it takes much more computing
time to obtain results.
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optimization (1) f = 31.2730

k qk pk

1 2.3801 ·103 1.7790 ·106

2 −2.1948 ·104 2.9126 ·106

3 −3.5378 ·104 9.0371 ·104

4 −2.0615 ·104 −9.9309 ·105

5 −6.5232 ·103 −1.7844 ·102

6 −9.5146 ·102 5.9092 ·103

7 1.1842 ·104 1.2702 ·100

optimization (2) f = 0.0942

k qk pk

1 2.7349 ·108 2.3917 ·1011

2 −7.8132 ·108 −2.5963 ·1011

3 3.0370 ·108 −1.1559 ·1011

4 3.0801 ·108 −4.0479 ·1010

5 1.2956 ·108 7.1634 ·1010

6 −3.1951 ·106 −2.2324 ·108

7 4.4835 ·105 2.8131 ·108

optimization (3) f = 0.0961

k qk pk

1 −1.7145 ·10−1 −1.2534 ·102

2 −6.7364 ·10−1 −1.0430 ·102

3 −9.4824 ·10−1 4.1414 ·101

4 1.6859 ·100 1.8603 ·101

5 −1.8562 ·10−1 −1.0769 ·102

6 2.6000 ·10−5 −2.8079 ·10−2

7 −6.5400 ·10−4 −4.2114 ·10−1

Table 7.3: Obtained material parameters by SQP
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Figure 7.7: SQP results on the micro- and macroscale
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7.2 Beam cells in large frequency range

Effective properties for a broader frequency range are determined for both auxetic and non-
auxetic microstructures in this chapter. The following two microstructures given in Figure
7.8 are used for the numerical study. Both cells consist of beams with a quadratic cross

0.2`

0.1`
0.2`

0.5`

0.2`

0.3`

0.5`

Figure 7.8: Auxetic and non-auxetic microstructures

section of 0.1`× 0.1`. The microstructure material is PMMA with a slight damping (see
Appendix D). A frequency range from 0 up to 3×103 kHz is chosen. Due to the existence
of higher eigenmodes for more than one unit cell (see section 4.2.5), the microstructures
are calculated multiple times. Calculations were done for 1, 2×2, ...n×n unit cells up to
n = 5 and the results were averaged. The loadcase for both cells is given in Figure 7.9.
Again, a displacement amplitude is applied on the left and right hand side of the cell.

u = ū · e i ω t u = ū · e i ω t

Figure 7.9: Loadcase

On the macroscale, the constitutive equation

σi j(ω) =
E(ω)

(1+ν(ω))
εi j(ω)+

ν(ω)E(ω)
(1+ν(ω))(1−2ν(ω))

δi j εkk(ω) (7.8)

is applied. For Young’s modulus, the viscoelastic model

E(ω) = Ē
1+q1(iω)α1 +q2(iω)α2

1+ p1(iω)α1 + p2(iω)α2
. (7.9)

with fractional derivatives and 7 parameters is used. The same model but with possible
different parameters is used for Poisson’s ratio

ν(ω) = ν̄
1+ q̃1(iω)α̃1 + q̃2(iω)α̃2

1+ p̃1(iω)α̃1 + p̃2(iω)α̃2
. (7.10)
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Again, the choice of these models is somewhat arbitrary. For the considered frequency
range, they have shown to be sufficient. A number of trials with fewer parameters were not
successful, as well as models with more parameters, yet without fractional derivatives.

From the results of the previous chapter, it can be stated that the Genetic Algorithm is
the most reliable optimization procedure to obtain the sought material parameter. The
gradient-based optimization techniques were quicker, however, the results are not reliable.
Thus, a Genetic Algorithm is applied here. The following parameters were used to deter-
mine the material parameters:

• A population size of 1000 individuals is chosen

• The starting population is created randomly

• New individuals are created via 2-point-crossover

• The mutation of an individual is done accordingly to the standardized normal distri-
bution, mutation probability is 10%

• 150 individuals are created newly in one generation, the remaining 850 are created
as offspring of the previous generation

• The optimization is stopped after a maximum of 50000 iterations or if the best fitness
value f < 10−5.

The results of the optimization are depicted in the following Figures. Figures 7.10 and
7.11 show the Young’s modulus and Poisson’s ratio for the auxetic microstructure, while
in Figures 7.12 and 7.13, Young’s modulus and Poisson’s ratio for the non-auxetic mi-
crostructure are shown. In each diagram, the microscopic and macroscopic results are
plotted versus the frequency.

As can be seen, the optimization was not able to fit each single eigenfrequency of the
microstructure results. However, the general tendency is preserved. In all four result plots,
it can be seen that for small frequencies, the fitted parameters converge into the static
solution. The obtained material parameters for ν and E are given in Table 7.4 for the
auxetic microstructure and in Table 7.5 for the non-auxetic material.

The slightly viscoelastic material on the microscopic scale had virtually no effect on the
homogenization process. There were still eigenfrequencies on the microscale which cause
that the search of the material parameters is very difficult.

For the optimization, it can be observed that there is no difference whether an auxetic or
non-auxetic microstructure is used as input data. This could have been expected à priori,
because the same mathematical problem (with slightly different parameters) needs to be
solved by the optimization procedure.
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Figure 7.10: Young’s modulus for auxetic microstructure

-1

-0.5

 0

 0.5

 1

 10  100  1000

microscale
macroscale

ν
[−

]

frequency [kHz]

Figure 7.11: Poisson’s ratio for auxetic microstructure
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Figure 7.12: Young’s modulus for non-auxetic microstructure
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Figure 7.13: Poisson’s ratio for non-auxetic microstructure
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Young’s modulus

k Ē pk qk αk

1 2.560 ·104 2.358 ·10−6 1.842 ·10−8 1.057 ·100

2 2.432 ·10−8 1.448 ·10−12 1.099 ·100

Poisson’s ratio

k ν̄ p̃k q̃k α̃k

1 −0.376 4.995 ·10−8 1.598 ·10−8 1.497 ·100

2 1.534 ·10−8 1.162 ·10−7 1.335 ·100

Table 7.4: Obtained material parameters for auxetic material

Young’s modulus

k Ē pk qk αk

1 1.581 ·105 1.057 ·10−6 2.666 ·10−8 1.057 ·100

2 1.448 ·10−12 1.856 ·10−8 1.389 ·100

Poisson’s ratio

k ν̄ p̃k q̃k α̃k

1 0.307 1.869 ·10−11 1.407 ·10−8 1.424 ·100

2 5.147 ·10−9 8.443 ·10−10 1.573 ·100

Table 7.5: Obtained material parameters for non-auxetic material
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7.3 Plate cells

Until here, a number of beam-type examples were presented in dynamics. In addtion to
that, a plate in plane stress is now investigated. The same geometry as in section 6.2 is
used. For comparison, a plate without a hole is calculated. The discretization of the plates
are given in Figure 7.14. Again, the Boundary Element Method is used for the calculation
so that only the edges of the structure have to be discretized. For the cell with the star-

20 elements

10 elements0.12`

0.28`

0.1`

` `

20 elements

Figure 7.14: Microstructures for numerical study

shaped hole, the same discretization as in statics is used with 20 elements on each of the
outer edges and 10 elements on one part of the inner edge. The plate without hole only
has 20 elements on each outer edge. The loading of the cells is also done accordingly to
section 6.2, however, with a harmonic excitation on the left and right hand side (see Figure
7.15). The material of the plate is steel with a Young’s modulus of E = 2.1× 1011N/m2

ū = 0.05 `eiω t ūū ū

` `

Figure 7.15: Loading of microstructures

and a Poisson’s ratio of 0.3.
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Just like in the previous considerations, a surface averaging of the stresses and strains
is done. With theses stresses and strains, Young’s modulus and Poisson’s ratio can be
calculated on the microscale via the constitutive equation

σ
micro
i j (ω) =

E(ω)
(1+ν(ω))

ε
micro
i j (ω)+

ν(ω)E(ω)
(1+ν(ω))(1−2ν(ω))

δi j ε
micro
kk (ω) (7.11)

The next step to be done is, of course, to find adequate parameters for Young’s modulus
and Poisson’s ratio on the macroscopic scale, e.g. parameters of viscoelastic models like
the ones calculated in section 7.2

E(ω) = Ē
1+qk(iω)αk

1+ pk(iω)αk
k = 1, ..,n (7.12)

ν(ω) = ν̄
1+ q̃k(iω)α̃k

1+ p̃k(iω)α̃k
k = 1, ..,n . (7.13)

However, the results of the microscale computation do not allow a computation of macro-
scopic parameters like in case of the beam-type structures. In Figures 7.16 and 7.17, both
Young’s modulus and Poisson’s ratio on the microscale are plotted versus the frequency
for the two considered microstructures.
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Figure 7.16: Young’s modulus and Poisson’s ratio on microscale for plate

It can be seen that E and ν converge to the static solution in the low frequencies. In the
case of the the plate without hole, Young’s modulus is E = 2.1×1011N/m2 and Poisson’s
ratio is ν = 0.3 for frequencies close to 0, according to the input data of the plate. The
plate with the star-shaped hole converges into the static solution of E = 7.50×1010N/m2

and ν = −0.143 given in section 6.2. Thus, the frequency solution in the low frequency
range is well confirmed.

In higher frequencies, however, all four plots expose a behavior which can not be used
for a macroscopic material model. Contrary to the results of the beam-type cells, the
results do not show a general tendency, i.e., they do not lie in the vicinity of a specific
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Figure 7.17: Young’s modulus and Poisson’s ratio on microscale for plate with hole

value. The eigenfrequencies of the structure cause an extremly oscillating course over the
frequency. Physically not admissible values (e.g. E � 0, ν � 0.5) are included in the
frequency response of the structure, which makes the finding of adequate parameters of a
macrocopic material model impossible or at least not meaningful.

Thus, with the proposed method which uses a frequency domain calculation and an aver-
aging procedure of the surface values, the homogenization process can not be done for the
plates. It seems that the frequency response of a plate is, because of its oszillating shape
caused by the eigenfrequencies, not admissible to serve as input data for the homogeniza-
tion process. A number of test calculations showed that even if a microstructure material
with an extremely high damping can not improve this oszillating shape. Therefore, it must
be stated that other techniques have to be developed to calculate effective properties of a
plate in dynamics.

One way which could be discussed to obtain effective properties of the plate structures is
the calculation of the microstructure in time domain instead of frequency domain. In this
context, however, other problems arise. One problem to be solved is the finding of adequate
boundary conditions for the unit cell calculation. Within the method presented in this work,
the periodicity condition is fulfilled, i.e., the fact that neighboring cells behave equally can
be accounted for in the microstructure calculation. In a time domain calculation, however,
within the unit cell wave propagation phenomena take place, which means that periodicity
can in general not be fulfilled. In addition to that, the size of the unit cell can not be varied
like in the procedure given in section 4.2.5.
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8 CONCLUSIONS

Virtually all materials expose a specific microstructure. The microstructure constituents
of a material, of course, determine the macroscopcic properties of the material. Cer-
tain microstructures cause a material to expand on a macroscopic scale when transversely
stretched and contract when transversely compressed. These materials are termed auxetic
materials. The microstructural effect which cause this effect can be explained with simple
kinematic mechanisms of beam-type microstructures. A number of auxetic materials have
been fabricated. Besides the cellular microstructures, also foams with a negative Poisson’s
ratio have been produced.

Within the scope of this work, a new numerical procedure for the calculation of plane truss
structures was developed. A big variety of computation algorithms exist for this problem.
However, the proposed boundary element formulation is superior to the existing proce-
dures with respect to accuracy since it delivers analytical exact results in statics and in
frequency domain. In the context of this work, the procedure was used for the computa-
tion of the beam-type microstructures. Thus, the microstructure results are as precise as
possible.

The computation of effective, macroscopic parameters of a material with a specific mi-
crostructure is termed homogenization. Homogenization techniques and the corresponding
publications are only centered on the static case, therefore, an approach with a dynamical
formulation for this problem is introduced. The calculation of the microscale is done in
frequency domain, accounting for the fact that the considered materials are composed of
equally shaped cells. Thus, periodicity must be preserved which is not possible in a time
domain formulation because of wave propagation phenomena.

Within the proposed homogenization procedure, a numerical optimization procedure is
needed to calculate effective material properties. Two gradient-based procedures, a Sim-
plex algorithm and a SQP algorithm, were used. These optimization procedures have prob-
lems with local minima, which makes them unreliable for the given problem. Depending
on the starting point of the optimization, they might run into a local minimum and only
deliver poor results. A Neural Network was also applied to the homogenization problem.
For a Neural Network to deliver good results, it must be trained properly. Since a very
large number of training examples are needed for the training, the Neural Network is not
suitable for the given problem. À priori, there is no information about the range in which
the values for the material parameters lie. Thus, a very broad range of numerical values
for a parameter must be covered, which makes the training extremly extensive. The most
reliable results were accomplished by the Genetic Algorithm. Although the numerical cost
is – compared to the gradient-based procedures – relatively high, the Genetic Algorithm
delivers good, reliable results.
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96 8 Conclusions

A number of numerical examples were presented. Effective properties in the static case
were determined with the four different optimization procedures. Here, an optimization
is actually not necessary, however, the optimization procedures were tested with respect
to what they can accomplish. Next, the homogenization was performed in dynamics, i.e.,
viscoelastic material properties were determined for different microstructures. The first
problem which needs to be solved for the homogenization in dynamics is the choice of a
proper constitutive equation. The constitutive equation must be able to reflect microstruc-
tural effects properly. Since the behavior on the microscopic scale is frequency dependent,
a viscoelastic constitutive equation was chosen. However, the choice of how many param-
eters are to be used is somewhat arbitrary. For a small frequency range, a total number
of 14 parameters was sufficient. For a broader frequency range, a viscoelastic model with
fractional derivatives and 7 parameters for Young’s modulus and Poisson’s ratio was suf-
ficient. The homogenization of the plane stress microstructure could not be accomplished
due to the strongly oscillating frequency response of the structure. This problem should be
subject to further research.



A MATHEMETICAL PRELIMINARIES

A.1 Kronecker delta

The Kronecker Delta is defined by

δi j =
{

1 : i = j
0 : else (A.1)

A.2 Dirac delta distribution and Heaviside function

Sometimes it is also referred to as the unit impulse function although it is not a function as
defined in the strictest mathematical sense. The Delta Dirac distribution has the property

δ (x−ξ ) = 0 ∀x 6= ξ . (A.2)

At x = ξ it has a certain value such that

∞∫
−∞

δ (x−ξ )dx = 1 (A.3)

holds. The integral of the Dirac delta distribution is the Heaviside function.

H(x) =
x∫

−∞

δ (x)dx =
{

0 : x < 0
1 : x > 0 . (A.4)

In Figure A.1, Dirac distribution and Heaviside function are shown for ξ = 0.

0 0

1

0 0x x

δ (x) H(x)

Figure A.1: Dirac delta distribution and Heaviside function
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98 A Mathemetical Preliminaries

A.3 Matrix of Cofactors

The matrix of cofactors of an n×n square matrix A is defined as

Aco =

 aco
11 . . . aco

1n
... . . . ...

aco
n1 . . . aco

nn


T

(A.5)

where aco
i j is the cofactor of element ai j of the matrix A. The cofactor is the determinant of

the matrix with row i and column j deleted, prefixed with a sign depending on the element
position, i.e.,

aco
i j = (−1)i+ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1 j−1 a1 j+1 . . . a1n
... . . . ...

... . . . ...
ai−1 1 . . . ai−1 j−1 ai−1 j+1 . . . ai−1 n

ai+1 1 . . . ai+1 j−1 ai+1 j+1 . . . ai+1 n
... . . . ...

... . . . ...
an 1 . . . an j−1 an j+1 . . . an n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.6)

One of the most important properties of the cofactor matrix is its relation to the inverse
matrix

A−1 =
1

det(A)
Aco . (A.7)



B FORCES AND BENDING MOMENTS OF FUNDAMENTAL
SOLUTIONS

The fundamental solution N̂∗(x,ξ ) is [21]

N̂∗(x,ξ ) =−
r,x

2
cos
(

ω

c`

)
. (B.1)

The shear forces and bending moments are for ω2 > κGA/ρI, i.e., λ1 < λ2 < 0

Q̂∗q(x,ξ ) =
r,x

2(λ2−λ1)

[(
λ1−

−ρIω2

EI

)
cos(

√
−λ1r)−(

λ2−
−ρIω2

EI

)
cos(

√
−λ2r)

]
(B.2a)

M̂∗q(x,ξ ) =
−1

2(λ2−λ1)

[√
−λ1 sin(

√
−λ1r)−

√
−λ2 sin(

√
−λ2r)

]
(B.2b)

Q̂∗m(x,ξ ) =
−S1

2EI(λ2−λ1)

[
sin(
√
−λ1r)√
−λ1

− sin(
√
−λ2r)√
−λ2

]
(B.2c)

M̂∗m(x,ξ ) =
r,x

2(λ2−λ1)

[(
λ1−

ρAω2

κGA

)
cos(

√
−λ1r)−(

λ2−
ρAω2

κGA

)
cos(

√
−λ2r)

]
, (B.2d)

and for ω2 < κGA/ρI, i.e., λ1 < 0 < λ2

Q̂∗q(x,ξ ) =
r,x

2(λ2−λ1)

[(
λ1−

−ρIω2

EI

)
cos(

√
−λ1r)−(

λ2−
−ρIω2

EI

)
cosh(

√
λ2r)

]
(B.3a)

M̂∗q(x,ξ ) =
−1

2(λ2−λ1)

[√
−λ1 sin(

√
−λ1r)+

√
λ2 sinh(

√
λ2r)

]
(B.3b)

Q̂∗m(x,ξ ) =
−S1

2D2(λ2−λ1)

[
sin(
√
−λ1r)√
−λ1

− sinh(
√

λ2r)√
λ2

]
(B.3c)

M̂∗m(x,ξ ) =
r,x

2(λ2−λ1)

[(
λ1−

ρAω2

κGA

)
cos(

√
−λ1r)−(

λ2−
ρAω2

κGA

)
cosh(

√
λ2r)

]
, (B.3d)
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see also [21].

The element equation (3.31) in detailed form is

1− N̂∗(0,0) 0 0 û∗(0,0) 0 0
0 1− Q̂∗q(0,0) M̂∗q(0,0) 0 ŵ∗q(0,0) ϕ̂∗q (0,0)
0 Q̂∗m(0,0) 1− M̂∗m(0,0) 0 ŵ∗m(0,0) ϕ̂∗m(0,0)

N̂∗(0, `) 0 0 û∗(0, `) 0 0
0 Q̂∗q(0, `) M̂∗q(0, `) 0 ŵ∗q(0, `) ϕ̂∗q (0, `)
0 Q̂∗m(0, `) M̂∗m(0, `) 0 ŵ∗m(0, `) ϕ̂∗m(0, `)

. . .

. . .

N̂∗(`,0) 0 0 −û∗(`,0) 0 0
0 Q̂∗q(`,0) M̂∗q(`,0) 0 −ŵ∗q(`,0) −ϕ̂∗q (`,0)
0 Q̂∗m(`,0) M̂∗m(`,0) 0 −ŵ∗m(`,0) −ϕ̂∗m(`,0)

1+ N̂∗(`,`) 0 0 −û∗(`,`) 0 0
0 1+ Q̂∗q(`,`) M̂∗q(`,`) 0 −ŵ∗q(`,`) −ϕ̂∗q (`,`)
0 Q̂∗m(`,`) 1+ M̂∗m(`,`) 0 −ŵ∗m(`,`) −ϕ̂∗m(`,`)





û(0)
ŵ(0)
ϕ̂(0)
N̂(0)
Q̂(0)
M̂(0)
û(`)
ŵ(`)
ϕ̂(`)
N̂(`)
Q̂(`)
M̂(`)



=
`∫

0


û∗(x,0) 0 0

0 ŵ∗q(x,0) ϕ̂∗q (x,0)
0 ŵ∗m(x,0) ϕ̂∗m(x,0)

û∗(x, `) 0 0
0 ŵ∗q(x, `) ϕ̂∗q (x, `)
0 ŵ∗m(x, `) ϕ̂∗m(x, `)


n̂(x)
q̂(x)
m̂(x)

dx . (B.4)



C CUBIC LAGRANGE ELEMENT MATRIX

In [30], the following stiffness matrix for a Timoshenko beam element is derived

Kelement =


12Ψ −12Ψ −6`Ψ −6`Ψ

−12Ψ 12Ψ 6`Ψ 6`Ψ

−6`Ψ 6`Ψ `2(1+3Ψ) `2(−1+3Ψ)
−6`Ψ 6`Ψ `2(−1+3Ψ) `2(1+3Ψ)

 , (C.1)

with the element length ` and the shear factor

Ψ =
1

1+12 EI
`2κGA

. (C.2)

The Timoshenko element turns into an Euler-Bernoulli element if the shear factor is set to
Ψ = 1.
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D MATERIAL DATA FOR PMMA

The following material data were measured at the PTB (Physikalisch-Technische Bunde-
sanstalt) in Braunschweig.

k Ek[N/m2] Gk[N/m2] bk[s−1]

0 3.393 ·109 1.316 ·109 0.000 ·100

1 8.147 ·108 1.913 ·108 8.813 ·100

2 5.143 ·108 1.214 ·108 9.535 ·101

3 2.535 ·108 6.245 ·107 4.036 ·102

4 2.172 ·108 3.804 ·107 1.843 ·103

5 4.819 ·107 1.946 ·107 9.014 ·103

6 1.562 ·108 2.180 ·108 9.859 ·103

7 1.473 ·107 2.548 ·107 7.642 ·104

8 1.508 ·108 2.229 ·108 9.484 ·104
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