
Christoph M. Augustin 
 
 

 
Classical and All-floating FETI Methods with  
Applications to Biomechanical Models



Monographic Series TU Graz  
 
Computation in Engineering and Science 

 

 
Series Editors 
 
G. Brenn  Institute of Fluid Mechanics and Heat Transfer 
G. A. Holzapfel Institute of Biomechanics 
W. von der Linden Institute of Theoretical and Computational Physics 
M. Schanz  Institute of Applied Mechanics 
O. Steinbach  Institute of Computational Mathematics 



Monographic Series TU Graz 
 
Computation in Engineering and Science Volume 27 

 
 
 
 
 
 
 
Christoph M. Augustin 
 
 

_____________________________________________________ 
 
Classical and All-floating FETI Methods with  
Applications to Biomechanical Models 
 

______________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work is based on the dissertation “Classical and All-floating FETI Methods with 
Applications to Biomechanical Models”, presented by Christoph M. Augustin at Graz 
University of Technology, Institute of Computational Mathematics (Math D) in 2012. 
Supervisor: Steinbach, Olaf, (Graz University of Technology) 
Reviewer: Holzapfel, Gerhard (Graz University of Technology) 
Meyer, Arnd (TU Chemnitz, Germany) 



 
 
 
 
 
 

 

© 2015 Verlag der Technischen Universität Graz 

 

Cover photo  Vier-Spezies-Rechenmaschine 

by courtesy of the Gottfried Wilhelm Leibniz Bibliothek – 

Niedersächsische Landesbibliothek Hannover 

 

Layout   Wolfgang Karl, TU Graz / Universitätsbibliothek 

   Christina Fraueneder, TU Graz / Büro des Rektorates 

Printed   by TU Graz / Büroservice  

 

 

 

Verlag der Technischen Universität Graz 

www.ub.tugraz.at/Verlag 

 
Print: 
 
ISBN: 978-3-85125-418-1 
 
E-Book: 
 
ISBN: 978-3-85125-419-8 
 
DOI: 10.3217/978-3-85125-418-1 

 
http://creativecommons.org/licenses/by-nc-nd/3.0/at/ 
 

 

http://creativecommons.org/licenses/by-nc-nd/3.0/at/


Abstract

This work deals with domain decomposition solvers, more precisely the finite element
tearing and interconnecting (FETI) approach, to simulate the elastic behavior of car-
diovascular tissues, such as the myocardium or the artery. These biological materials
are characterized by anisotropic and nonlinear material properties due to preferential
orientations of collagen and muscle fibers in the tissue. The high complexity of the
underlying nonlinear equations as well as fine geometrical structures of the cardiovas-
cular components demand fast solving algorithms, where FETI is an efficient choice.
This approach shows high performance and enables a natural parallelization to solve
the nonlinear elasticity problem.

The strategy of the FETI method is to decompose the computational domain into
a finite number of non-overlapping subdomains. Therein the corresponding local
problems can be handled efficiently by direct solvers. The reduced global system,
that is related to discrete Lagrange multipliers on the interface of the subdomains,
is then solved with a parallel Krylov space method to compute the desired solution.
This is, in the case of elasticity, the stress and subsequently, in a postprocessing
step, we deduce the displacement locally. For the global iterative method suitable
preconditioning is a substantial factor. Besides a simple lumped preconditioner and
an optimal Dirichlet preconditioner a novel BEM based preconditioner, formed by
local hypersingular boundary integral operators, is considered. The idea behind this
preconditioner is the approximation of Steklov–Poincaré operators, the basis for the
optimal Dirichlet preconditioning, by computationally less expensive hypersingular
operators.

Another innovative aspect is the usage of all-floating FETI, a variant of classical
FETI, for nonlinear soft tissue mechanics. This approach, where the Dirichlet bound-
ary acts as a part of the interface, shows significant advantages in the implementation
and in the convergence of the global iterative method which is evidenced by numerical
examples. As realistic and clinically relevant applications we present passive inflation
experiments, comparable to stenting or angioplasty procedures, using anatomically
detailed geometries of arteries and the myocardium.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Gebietszerlegungsmethoden, genauer ge-
sagt mit der „Finite Element Tearing and Interconnecting“– Methode (FETI), zur
Simulation des elastischen Verhaltens von kardiovaskulärem Gewebe. Beispiele hier-
für sind der Herzmuskel oder die Arterie. Diese biologischen Materialien zeichnen sich
durch anisotrope und nichtlineare Materialeigenschaften aus, die durch eine bevor-
zugte Orientierung von Kollagen- und Muskelfasern im Gewebe verursacht werden.
Die dadurch entstehende hohe Komplexität der zugrunde liegenden nichtlinearen
Gleichungen, sowie die feinen Strukturen der Herz–Kreislauf–Komponenten erfor-
dern schnelle und effiziente Lösungsalgorithmen. Eine Möglichkeit hierfür ist die
oben genannte FETI–Methode. Dieser Ansatz ermöglicht eine natürliche Paralleli-
sierung des nichtlinearen Elastizitätsproblems, wobei der Kommunikationsaufwand
zwischen den einzelnen Prozessen relativ gering gehalten wird.

Die Grundidee der FETI–Methode ist es, das Rechengebiet in eine endliche Anzahl
von nicht-überlappenden Teilgebieten zu zerlegen. In diesen Teilgebieten können
die kleineren lokalen Probleme effizient durch direkte Löser behandelt werden. Die
globale Lösung, im Falle der Elastizität die globale Verschiebung, wird durch ein
reduziertes globales System, das mit einem parallelen Krylovraum–Verfahren gelöst
wird, rekonstruiert. Für das globale Krylovraum–Verfahren werden geeignete Vor-
konditionierungsstrategien benötigt. In dieser Arbeit betrachten wir in diesem Zu-
sammenhang den einfachen „lumped“–Vorkonditionierer, den optimalen Dirichlet–
Vorkonditionierer und einen, in dieser Anwendung neuen, auf Randelementverfahren
basierenden BEM–Vorkonditionierer. Dieser wird mit dem aus Randelementverfah-
ren bekannten hypersingulären Integraloperator gebildet. Diese Art der Vorkondi-
tionierung funktioniert aufgrund der Spektraläquivalenz der lokalen hypersingulären
Operatoren mit den lokalen Steklov–Poincaré–Operatoren. Diese bilden die Grund-
lage für den optimalen Dirichlet–Vorkonditionierer.

Eine Variante des klassischen FETI-Ansatzes ist „Allfloating“–FETI, wo im Gegen-
satz zur klassischen Formulierung der Dirichlet–Rand als Teil des Koppelrandes be-
trachtet wird. Das in der Simulation von nichtlinearen orthotropen biologischen
Materialien erstmals angewendete „Allfloating“–FETI Verfahren vereinfacht die Im-
plementierung und verbessert in vielen Fällen die Konvergenz der globalen iterativen
Methode. Dies wird durch eine große Anzahl an numerischen Beispiele belegt, wo
wir die klassische Formulierung mit dem „Allfloating“–Ansatz und die verschiedenen
Vorkonditionierungstechniken vergleichen. Als klinisch relevante Anwendung präsen-
tieren wir Druckexperimente, wie sie vergleichbar bei der Angioplastie oder bei der
Stenting Methode auftreten, unter Verwendung von anatomisch realistischen hoch-
detailierten Geometrien von Arterien und eines Herzmuskels.
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1 INTRODUCTION

Motivation

According to a recent report, published by the World Health Organization (WHO)
in 2011, cardiovascular diseases, such as atherosclerosis or heart diseases, “are the
leading causes of death and disability in the world” [123]. Hence, the understanding
of the underlying pathological processes is a very important topic in many different
fields of science.

In the areas of applied mathematics the interest lies, e.g., in the simulation of electro-
chemical processes in the heart, in the modeling of the blood flow through the human
body, resulting in fluid structure interaction problems, and many others. In this work
the mechanical behavior of the organs involved in the cardiovascular system, such
as arteries or the myocardium of the heart is investigated. In silico simulations of
arterial tissues which are exposed to boundary forces, may help to improve surgical
methods such as angioplasty or artery stenting. The elastomechanical modeling of
the myocardium and especially the modeling of the coupling of the mechanics with
electrochemical processes in the heart is still in its infancy. Nonetheless, work in
this field will give the possibility to study cardiac diseases without open surgery and
maybe comprehend activities in the cardiovascular system that are not yet under-
stood.

Partial Differential Equations and Finite Element Methods

The basis for the numerical simulation of biological tissues are partial differential
equations (PDEs) that appear throughout in the modeling of the physics of natural
processes. As cardiovascular tissues are regarded as elastic materials the main PDE
to consider in this work are the stationary equilibrium equations

divσ(u,x) + f(x) = 0 for x ∈ Ω,

with the stress tensor σ that depends on the unknown displacement field u, the
source term f and the computational domain Ω⊂R3. In order to formulate boundary
conditions, the boundary Γ = ∂Ω is decomposed into disjoint parts so that Γ = ΓD∪
ΓN. To embed forces that act on the boundary of the domain, like tension, traction
or pressure, Neumann boundary conditions σ(u,x)n(x) = gN(x) are set on ΓN, with

1



2 1 Introduction

n(x) the exterior normal vector. Dirichlet boundary conditions u(x) = gD(x) on
ΓD correspond to a prescribed displacement field, that is enforced component-by-
component.

The modeling of different elastic materials is realized by using a so-called strain-
energy function Ψ to formulate a constitutive equation for the stress tensor

σ = 2det(F)−1F∂Ψ(C)
∂C F>,

where F is the deformation gradient and C = F>F is the right Cauchy–Green ten-
sor. For a comprehensive overview and mathematical theory on elastic deformations,
compare Ciarlet [38], Holzapfel [80], and Ogden [139]. A well established model
for arterial tissues is discussed by Holzapfel et al. [82]. An adequate model for the
myocardium can be found in a recent publication of Holzapfel and Ogden [85].

In almost every practical application, an analytical solution of the PDE is not possi-
ble. The finite element method (FEM) provides a powerful numerical tool to find an
approximate solution of the equilibrium equations. The analytical framework for the
finite element method is discussed in an overwhelming amount of books including
the classic works by Ciarlet [39] and Zienkiewicz [192] and more recent by Brenner
and Scott [29] and Braess [25]. In addition, for explanations on the solvability of the
governing equations, especially for (non)linear elasticity problems, see [38, 43].

Due to preferential orientations of fibers such as collagen, the modeling of biological
tissues leads to an anisotropic and highly nonlinear material model. In order to apply
the FEM to this problem, Galerkin methods are used to discretize the variational form
of the equilibrium equation and a Newton–Raphson’s scheme is applied to linearize
the problem [81]. This leads to a series of linearized systems of equations that need
to be solved by elaborate direct or iterative solution techniques.

Domain Decomposition Methods

Anatomically highly detailed models of cardiovascular organs, where high spatial
resolution is necessary to resolve geometric details, result in systems of equations with
a vast amount of of degrees of freedom (DOF). Together with the high complexity of
the underlying partial differential equations this demands fast solving algorithms and,
conforming to up-to-date computer hardware architectures, parallel methods. One
possibility to achieve these specifications are domain decomposition (DD) methods.
The first reference to these numerical techniques was the alternating Schwarz method,
already mentioned in the early work of Schwarz [166]. In the last three decades
several overlapping as well as non-overlapping DD methods were developed. They
all work according to the same principle: the domain Ω is subdivided into a set
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of (overlapping or non-overlapping) subdomains Ωi. The idea of DD algorithms is
to decompose the large global system into a set of smaller local subproblems on
the subdomains. This yields a natural parallelization of the underlying problem. In
addition to well established standard DD methods, other examples for more advanced
domain decomposition methods are hybrid methods [177], mortar methods [21, 118,
186] and tearing and interconnecting methods. The latter include the FETI method
introduced by Farhat and Roux [55] for the finite element approach and the BETI
method, see Langer and Steinbach [114], for boundary elements. Commendable
compendia on domain decomposition methods are the works of Quarteroni and Valli
[145] and Toselli and Widlund [178].

In the following, the emphasis is on the FETI approach and its application to the
nonlinear equilibrium equations for elasticity. A modification of the classical finite ele-
ment tearing and interconnecting method, the dual-primal FETI (FETI–DP) method
[53, 110], was already applied to model arterial tissues, see, for example, Klawonn
and Rheinbach [106, 147], Brands et al. [27, 28], Balzani et al. [16, 17] and Brinkhues
et al. [31]. In contrast to that, this work focuses on the alternative all-floating tear-
ing and interconnecting method (AF–FETI), which was introduced independently for
the boundary element method by Of and Steinbach [136–138] and as the Total–FETI
(TFETI) method for finite elements by Dostál et al. [51]. In Augustin et al. [7, 8], we
show the great performance of AF–FETI for nonlinear elasticity problems including
passive inflation experiment with cardiovascular tissues as a clinical relevant appli-
cation. A mathematical analysis of FETI methods with convergence proofs for the
classical one-level FETI method is given in [107, 110, 119]. The underlying principle
of all FETI methods is a non-overlapping domain decomposition

Ω =
p⋃
i=1

Ωi with Ωi∩Ωj = ∅ for i 6= j, Γi = ∂Ωi

and Γij := Γi∩Γj defines the local interfaces. The global coupling boundary ΓC is the
union of all these local interfaces. Instead of the global problem, local subproblems
are considered to find the restrictions ui = u|Ωi satisfying the stationary equilibrium
equations

div(σ(ui,x)) + f(x) = 0 for x ∈ Ωi

locally. Additionally, Dirichlet and Neumann boundary conditions

ui = uD on ΓD∩Γi, σ(ui)ni = gN on ΓN∩Γi,

and the transmission conditions

ui = uj , ti+ tj = 0 on Γij ,

are imposed, where ti = σ(ui)ni is the local boundary stress and ni is the exterior
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normal vector of the local subdomain boundary Γi = ∂Ωi. After discretization the
FETI approach leads to a reduced global system of equations that is related to dis-
crete Lagrange multipliers on the coupling boundary ΓC. This global system is then
solved with a parallel Krylov space method with suitable preconditioning. A compu-
tationally efficient form of preconditioning, the lumped preconditioner, was already
discussed by Farhat and Roux [55] and a few years later an optimal, so-called Dirich-
let preconditioner was introduced [54]. In addition to that, we motivate a novel BEM
based preconditioner, formed by local hypersingular boundary integral operators. The
idea of this preconditioner is the approximation of Steklov–Poincaré operators, the
basis for the optimal Dirichlet preconditioning, by computationally less expensive
hypersingular operators. Especially for large subdomains the BEM based precon-
ditioner is an excellent alternative since the Steklov–Poincaré operator requires the
formation of an additional inverse matrix. On the other hand, given the approxima-
tion properties of the hypersingular operator, the BEM preconditioner yields better
condition numbers than the computationally more efficient lumped preconditioner.
For a comprehensive introduction to boundary integral equation methods see [89,
122, 176].

Solving the local systems of equations is a great challenge, since in so-called floating
subdomains, which have no contribution to the Dirichlet boundary, this corresponds
to a local Neumann problem. The kernel of the local operator is non-trivial and in the
case of 3D elasticity the solution is only unique up to the six rigid body modes. In the
case of a known kernel the sought-after generalized inverse matrix may be realized
using direct solvers with a sparsity preserving stabilization [32] or stabilized iterative
methods. Nevertheless, the identification of the kernel is a delicate matter for classical
FETI where “semi-floating” subdomains, with only a single edge or a single point on
the Dirichlet boundary, may occur. One possibility to overcome this problem is the
before mentioned FETI–DP method where some specific primal degrees of freedom
are fixed. This yields solvable systems for all subdomains, but choosing the primal
DOF remains a sophisticated task. For linear elasticity this issue is discussed in
Klawonn and Widlund [109, 111]. For our method of choice all-floating FETI the
Dirichlet boundary acts as a part of the coupling boundary and all subdomains are
considered as “floating”. The displacement conditions are incorporated in the system
using discrete Lagrange multipliers and the identification of the kernels of the local
operators is trivial and equal to the six rigid body modes for all subdomains. This
eases the implementation a lot and, due to mapping properties of the local operators,
also improves the convergence of the global iterative method. These advantages of
AF–FETI compared to classical FETI are shown in the numerical examples section
and were also documented in our publications [7, 8]. As an additional advantage the
local systems resulting from AF–FETI are typically better conditioned than those
arising in the FETI–DP approach [32].
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Outline of Contents

Subsequent to this introduction, a short overview on the histology of biological ma-
terials is given in the second chapter. The mechanical properties of arteries as well
as the myocardium are discussed. Worth mentioning in this context is the layered
structure of the tissue and its composition of elastin and reinforced collagen and
muscle fibers. This complex structure leads to a highly nonlinear, anisotropic and
nearly incompressible material behavior.

The third chapter starts with a general overview to continuum mechanics. Here, we
explain two central concepts, the reference and the current configuration, and trans-
formations from one to the other. The main tensors needed to formulate material
models such as the deformation gradient or the right and the left Cauchy–Green de-
formation tensor, are introduced. Subsequently, we set up the main equations using
the fundamental Cauchy stress theorem which results in PDEs for quasi-stationary
elasticity problems. Specific models ranging from simple linear elastic to general non-
linear elastic materials are discussed and we formulate constitutive equations using
so-called strain-energy functions. To conclude this chapter we outline the construc-
tion of nonlinear material models for the artery and the myocardium. We show the
specific representation of the strain-energy function and, using this functional, cal-
culate the tensors and derivatives needed for the implementation of the numerical
methods.

In the forth chapter the variational formulation for linear and nonlinear elasticity
problems is presented. This formulation is the basis for the finite element approach
which is discussed in the following chapter. Nonlinear problems demand the use of
linearization techniques, such as the well-known Newton method in Banach spaces.
We discuss basic ideas of this scheme for the particular case of nonlinear elasticity and
outline the main steps that lead to a linearized version of the variational formulation.
Numerical challenges which must be taken into account for (nearly) incompressible
elastic materials are so-called locking effects. A possibility to overcome this worry is
the formulation as a saddle point problem or the mean dilatation technique, which
are both based on a decoupled formulation of the weak form. Furthermore, we show
unique solvability of linear elasticity problems (Korn’s inequalities) and we discuss
the existence theorems for nonlinear elastic materials. In this context, we introduce
a variety of convexity concepts for general nonlinear elasticity, which includes the
artery and the myocardium model.

Subsequently, we focus on discretized variational formulations in the fifth chapter.
To find an approximate solution of the classical boundary value problem the finite
element method is used and basic ideas of this concept are outlined. In the case of dis-
cretized nonlinear problems inexact Newton methods are applied and we give a short
overview and a convergence analysis of this linearization procedure. In great detail
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the assembling of the involved stiffness matrices and vectors is described. Moreover,
we discuss different types of solvers for the system of linear(ized) equations, that
arises from the finite element method. Some direct solver packages are presented
and we outline the main iterative methods, including the conjugate gradient (CG)
and the generalized minimal residual (GMRES) method. At last, we give a short
overview to time and load stepping schemes.

The sixth chapter comprises a general introduction to domain decomposition meth-
ods. We start with a short historical review and present the basic concepts that are
suitable for all DD methods. Subsequently, we concentrate on the finite element tear-
ing and interconnecting approach. The main steps from the general finite element
to the FETI formulation are given. This results in a split-up of the global problem
in particular local subproblems, which may be solved in parallel, and a global iter-
ative solver. Diverse preconditioning techniques for this global iterative method are
presented, including the well known Dirichlet and lumped preconditioners as well as
a novel BEM-based preconditioner using hypersingular boundary integral operators.
We also present a modification of classical FETI, the all-floating FETI approach
which shows advantages in implementation and convergence of the global solver.
This chapter is concluded with an overview on the implementation, including the
construction of the main operators and the generalized inverse matrices.

In the seventh chapter we present numerical examples where all-floating FETI and
classical FETI are compared and all discussed preconditioners are tested. First the
correctness of the FETI implementation is shown for linear elasticity problems where
exact solutions are prescribed. Consequently, the FETI methods are applied to the
realistic application of a passive inflation experiment using nonlinear elastic materials,
in particular the anisotropic artery and the orthotropic myocardium model. Anatom-
ically detailed models of an aorta, a two-layered carotid artery and the myocardium
of a rabbit heart are used. We compare different preconditioning techniques and
show differences between the AF–FETI and the classical FETI approach concerning
convergence of the global iterative method and computational time.

We conclude with a short overview and an outlook to upcoming perspectives and
open questions in the last chapter.



2 HISTOLOGY OF BIOLOGICAL MATERIALS

In this chapter, we give a general introduction to the histology and the mechanical
properties of biological tissues, where we concentrate on arteries and the cardiac
muscle, i.e. the myocardium, in particular. These elastic materials will later be
described by material models (Chapter 3) and simulated by in silico experiments
(Chapter 7). For more information on the histology of cardiovascular tissues see,
e.g., Humphrey [91, 93] for arteries and LeGrice et al. [116, 117], Young et al. [191]
and Sands et al. [158] for the heart.

2.1 Histology of Arteries

Arteries are vessels that transport blood from the heart to the organs. In vivo the
artery is a prestretched elastic material under an internal pressure load. In this
work, we concentrate on the in vitro passive behavior of healthy arteries. Hence, in
vivo effects such as the vasa vasorum1 and others are neglected. In general, arteries
are subdivided into two types: elastic and muscular arteries. The elastic type is
characterized by a large diameter and its proximity to the heart. One example
for such a proximal artery with elastic behavior is the aorta. On the other hand,
muscular vessels are located within the periphery of the body and are also called
distral arteries. These vessels, which include for example the small cerebral arteries
in the brain, show a pronounced viscoelastic behavior with hysteresis. However, some
arteries exhibit morphological structures of both types. Healthy arterial walls consist
of three primary layers: the intima, the media and the adventitia. For a diagrammatic
model of the major components of a healthy elastic artery see Figure 2.1.

The intima is the innermost layer of an artery. It consists solely of a single layer of
endothelial cells which serve as an interface between elastic material and blood.

The middle layer of an artery is called media. In contrast to the intima it is a
complex 3D network of muscle cells, elastin and collagen fibers. The media shows
a high ability to resist loads in both the longitudinal and circumferential direction.
In healthy arteries it is the most significant layer from the mechanical perspective
[82].

1Network of small blood vessels that supply the outer tissues of larger ones (e.g. the aorta).

7
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1

Intima

Media

Adventitia

Endothelial cell
Internal elastic lamina

Smooth muscle cell
Collagen fibrils
Elastic fibrils
Elastic lamina

External elastic lamina
Bundles of collagen fibrils

Helically arranged fiber-
reinforced medial layers

Composite reinforced by
collagen fibers arranged
in helical structures

Figure 2.1: Diagrammatic model of the major components of a healthy elastic artery, from
Holzapfel et al. [82].

At last the outermost layer of an artery is the so-called adventitia. It consists of
histological ground substance and thick bundles of collagen fibers. At higher levels
of pressure the adventitia behaves like a stiff “jacket-like” tube [165].

2.2 Typical Mechanical Behavior of Arterial Walls

As mentioned before, proximal arteries can be modeled as an elastic material, while
distral arteries behave rather like a viscoelastic or pseudo-elastic material. Healthy
arteries are highly deformable composite structures and show a nonlinear stress-strain
response with a typical stiffening effect at higher pressures. Reasons for this are the
embedded collagen fibers which lead to an anisotropic, in particular an orthotropic,
mechanical behavior of arterial walls, see Figure 2.2. In this context anisotropy
is the general term for a directionally dependent material property. Orthotropic
materials, which are characterized by three orthogonal axes of rotational symmetry,
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and transversely isotropic materials, which are symmetric about one axis that is
normal to a plane of isotropy, are special cases of fully anisotropic solids.

An important observation is that arteries do not change their volume within the
physiological range of deformation [82]. Thus, they are most commonly treated as
nearly incompressible materials. Another property is the existence of certain in vivo
prestretches in longitudinal direction, the consequence being that a segment of a
vessel shortens on removal from the body. In circumferential direction a load-free
arterial ring contains residual stresses. So it will spring open when one cuts it in a
radial direction. More information on the histology of arterial walls can be found
in the works of Humphrey [91, 93], Holzapfel et al. [78, 82] or Rodin [156]. Nice
illustrations of the prestretches and residual stresses one can find in Holzapfel et al.
[87], the modeling of such a problem is discussed in Holzapfel and Ogden [86] and
Bustamante and Holzapfel [33].

(a) (b)

25 µm 25 µm

Figure 2.2: Histological images of collagen in the media of a human aorta:
(a) stretched and (b) unstretched sample, from Holzapfel [78].

2.3 Histology of the Human Heart

The heart consists of four chambers, the right and the left atrium and the right and
the left ventricle. Here, the ventricles serve to pump blood around the body while
the atria are the receiving chambers of the heart. The wall thickness varies a lot over
these different parts and as well over the different phases of a cardiac cycle.

Like the arterial wall the heart wall consists of different layers. The inner layer is
called the endocardium, which serves as an interface between elastic media and blood.
The epicardium, the outermost layer, serves as a protective membrane. Comparable
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to the endocardium it is just a thin layer with an approximate wall thickness of
100 µm [85].

The myocardium is the middle layer and the functional tissue of the heart wall with
a complex orthotropic structure [85]. In this work, we emphasize on passive myocar-
dial tissue of the left ventricle which consists of myocardiocyteal muscle cells and is
the most significant part for the modeling of the elastic behavior of the heart wall.
The cardiac myocytes2 are arranged in parallel in different sheets and are the pre-
dominant fiber type within the myocardium, while collagen is arranged in a spatial
network that connects the muscle fibers. Characteristic for the myocytes is a lay-
ered organization which can be described by a right-handed orthonormal set of basis
vectors (Figure 2.3). This set consists of a vector field f0 that coincides with the
main direction of the muscle fibers which is referred to as the fiber axis. The second
basis vector is the so-called sheet axis s0 which is defined to be perpendicular to f0
in the plane of the layer. This direction coincides with the collagen fiber orientation
(Figure 3.4). The orthonormal set is completed by the sheet-normal axis n0.

n0sheet-normal
axis

s0

f0

sheet axis

fiber axis

mean fiber
orientation

n0

s0

f0

Figure 2.3: Indication of the layered organization of the muscle fibers within the my-
ocardium with a right-handed orthonormal coordinate system where f0 is the
fiber axis, s0 is the sheet axis and n0 is the sheet-normal axis. This schematic
of the layered tissue serves as a basis for the constitutive model, from Holzapfel
and Ogden [85].

2.4 Mechanical Behavior of Heart Walls

As arterial walls and many other biological tissues the myocardium is generally
treated as a nearly incompressible material [184]. It shows a highly nonlinear and,

2in this context muscle fibers
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due to the myocytes and collagen, an orthotropic behavior. The muscle fibers are
arranged in a layered organization with an orthogonal basis, which was shown in
experiments by Dokos et al. [50]. In this publication the authors also perform shear
tests on a cube of myocardial specimen in the direction of the three different orthogo-
nal planes. From these experiments it was observed that the ventricular myocardium
is most resistant to shear deformations in the plane built by the vector fields f0 and
s0 (fs-plane). High resistance was also shown in the fn-plane. In all other directions
the resistance to simple shear deformations was considerably smaller. More details
concerning the mechanical properties of the myocardium can be found in Holzapfel
and Ogden [85] and references therein.





3 MODELING THE NONLINEAR BEHAVIOR OF
BIOLOGICAL TISSUES

The aim of this chapter is to describe the highly nonlinear material properties of
biological tissues by an anisotropic model that is capable of large elastic deformations.
The following is related to the descriptions in the monographs of Holzapfel [80],
Ogden [139] and Ciarlet [38]. The mathematical model for arterial walls is discussed
in detail in the papers of Holzapfel et al. [82, 84] and the myocardium in the studies
of Holzapfel and Ogden [85] and Eriksson et al. [52].

3.1 Preliminaries

A body B is a set with elements that correspond to points of a Lipschitz domain1
Ω in the three-dimensional Euclidean space. The elements of B are called particles
and Ω is the configuration of B. If the body moves then this configuration changes
with time t ∈ R+. For each t a unique configuration Ωt is associated. For t = 0
the body B occupies an arbitrary but fixed configuration Ω0 which is called the
reference or undeformed configuration. Here, each particle x of the body may be
specified by its position vector X in Ω0 relative to some origin. For an arbitrary
time t the body occupies the configuration Ωt which we identify as the current or
deformed configuration. Let x be the position vector of the particle x in the current
configuration. The vector X describes the material or referential coordinates of a
point, while x describes the spatial or current coordinates. Since both Ω0 and Ωt are
configurations of B there exists a bijective mapping χ : Ω0 7→ Ωt such that

x = χ(X, t) for all X ∈ Ω0, t ∈ R+.

The mapping χ is called the motion or deformation of the body B from Ω0 to Ωt.
We assume that χ(X, t) is twice continuously differentiable with respect to position
and time. Its inverse χ−1(x, t) is uniquely defined as

X = χ−1(x, t) for all x ∈ Ωt, t ∈ R+.

The terminologies Lagrangian and Eulerian description are also used with respect to
Ω0 and Ωt respectively.

1a domain whose boundary is “sufficiently regular”

13
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The vector fields u(x, t) = x−X(x, t) and U(X, t) = x(X, t)−X represent the dis-
placement field of a particle. One can easily show that

u(x, t) = u(χ(X, t)) = U(X, t). (3.1)

In the following we adopt Einstein’s summation convention which implies a summa-
tion over the range of every index that is repeated within the same term.
Definition 3.1 (Material and spatial gradient). The material gradient of a suffi-
ciently smooth material field Φ(X, t) is defined as

GradΦ(X, t) :=∇XΦ(X, t) = ∂

∂Xi
Φ(X, t)ei.

The spatial gradient of a sufficiently smooth spatial field φ(x, t) is defined as

gradφ(x, t) :=∇xφ(x, t) = ∂

∂xi
φ(x, t)ei.

In the case of vector-valued functions W and w we define the gradients as

GradW(X, t) :=∇X⊗W(X, t) = ∂

∂Xj
W(X, t)⊗ej = ∂

∂Xj
Wi(X, t)ei⊗ej ,

gradw(x, t) :=∇x⊗w(x, t) = ∂

∂xj
w(x, t)⊗ej = ∂

∂xj
wi(x, t)ei⊗ej .

Ω0

U(X, t) = u(x, t)

Ωt

xx

X xdV dv

N
n

dS
ds

y
x

z

dX

dx

Figure 3.1: Deformation of an elastic body B from the reference configuration Ω0 to the
current configuration Ωt.
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Definition 3.2 (Material and spatial divergence). The material divergence of a
sufficiently smooth vector-valued material field W(X, t) is defined as

DivW(X, t) :=∇X ·W(X, t) = ∂

∂Xi
Wi(X, t).

The spatial gradient of a sufficiently smooth spatial field w(x, t) is defined as

divw(x, t) :=∇x ·w(x, t) = ∂

∂xi
wi(x, t).

In the case of tensor-valued functions A and a we define the material and the spatial
divergence as

DivA(X, t) := ∂

∂Xi
Aij(X, t)ej ,

diva(x, t) := ∂

∂xi
aij(x, t)ej .

Definition 3.3 (Deformation gradient). We define the deformation gradient F by

F(X, t) := ∂χ(X, t)
∂X

= Gradχ(X, t) = Gradx(X, t).

With the definition of the displacement field U this can be written as

F(X, t) = I + Grad U(X, t), (3.2)

with I being the identity.

Remark 3.1.1. From the bijective mapping χ it follows that the deformation gradient
F is non-singular. This fits with the observation that FdX 6= 0 if dX 6= 0 which means
that a line element cannot be annihilated by the deformation process.

Definition 3.4 (Right and left Cauchy–Green deformation tensors). We define the
right and left Cauchy–Green deformation tensors as

C := F>F and B := FF>, (3.3)

which are both symmetric and positive definite.

Remark 3.1.2. Let dx and dX be the infinitesimal line elements in the current and
reference configuration, respectively. It holds

dx = F(X, t)dX and dX = F−1(x, t)dx. (3.4)

Let dv and dV be the infinitesimal volume elements in the current and reference
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configuration respectively. Then

dv = det(F(X, t))dV. (3.5)

Definition 3.5 (Jacobian determinant). We denote J(X, t) := det(F(X, t)) as the
Jacobian determinant which is also known as volume ratio. It describes the change
of volume under the deformation. Since F(X, t) is non-singular and by the convention
that volume elements have positive measure it can be stated that

J(X, t)≡ det(F(X, t))> 0.

If we have a deformation without any change of volume then this deformation is
called isochoric and

J(X, t)≡ det(F(X, t)) = 1. (3.6)
An incompressible material is a material for which (3.6) holds for all deformations.

In the following, we omit the arguments of the quantities to enhance readability.

Theorem 3.6 (Nanson’s formula). Let ds and dS be infinitesimal surface elements
on the current and reference configuration respectively. Then it holds that

nds= JF−>NdS, (3.7)

with F the deformation gradient, J = detF and n and N the normal vectors in the
current and reference configuration.

Remark 3.1.3. For a scalar functions φ, Φ, vector-valued functions w, W and
tensor-valued functions a, A we get by the chain rule the following relations

GradΦ = F> gradφ, GradW = (gradw)F, GradA = (grada)F, diva = GradA : F−>.

Remark 3.1.4 (Polar decomposition). Let F be a second-order tensor with
detF> 0. Then there exist unique, positive definite, symmetric tensors, U and V,
and a unique orthogonal tensor R such that

F = RU = VR.

U and V are called the right and left stretch tensor, R represents a rotation.

For the right and the left stretch tensor it holds that

U2 = F>F = C and V2 = FF> = B,

which is a result of linear algebra and the square-root theorem [68].
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3.2 Stretch and Strain

Strain is measured locally by changes in the lengths of line elements. In contrast a
material is said to be unstrained if no line element changes length, i.e.

|dx|2−|dX|2 = 0.

Let X̂ and x̂ be the unit vectors along dX and dx in the reference and current
configuration respectively. Then we can write dX = X̂ |dX| and dx = x̂ |dx|. With
(3.4) we get x̂ |dx|= FX̂ |dX| and

|dx|2 = (FX̂) · (FX̂) |dX|2 =
(
F>FX̂

)
· X̂ |dX|2 . (3.8)

Hence,
|dx|
|dX|

=
[
X̂ · (F>FX̂)

]1/2
=: λ(X̂). (3.9)

The value λ(X̂) has the physical interpretation of the stretch in direction of X̂ at X
and we can easily see that 0< λ(X̂)<∞ for all unit vectors X̂. The equation (3.9)
motivates the names stretch tensors for U and V, introduced in Remark 3.1.4, since
U2 = F>F and V2 = FF>.

From (3.8) the change in length of a line element from the reference to the current
configuration can be described by

|dx|2−|dX|2 = dX ·
(
F>F− I

)
dX, (3.10)

which is, as mentioned earlier, a measure of strain. Consequently, we define the
so-called Green strain tensor as

E := 1
2
(
F>F− I

)
= 1

2 (C− I)

One can see from (3.10) that E = 0 coincides with no change of the line length and
thus with no strain.

From the definition of the deformation gradient we can express the Green strain
tensor in terms of the gradient as

E(U) = 1
2
(
GradU+ Grad>U+ Grad>U GradU

)
.

The strain tensors C and E are typically for descriptions in the reference configura-
tion while the left Cauchy–Green tensor B is commonly used in the current configu-
ration.
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3.3 The Concept of Stress

To introduce the theory of stress we consider a continuous and deformable body B
which occupies the region Ω at time t. The boundary of this body is denoted as ∂Ω.
The forces which act on the boundary surface are called external or contact forces,
where examples are pressure or friction. Those forces which act on the particles of
the body are often referred to as internal or body forces. The latter may arise due
to gravity or thermal fields, for example. The body force is denoted by b. For a
mathematical description of the contact forces we rely on Cauchy’s stress principle.
This axiom states that the action over a closed surface ∂Ω is represented by a vector
field t(t,x,n), defined on ∂Ω. This vector is called stress vector and its physical
interpretation is the force measured per unit area. With these definitions we may
formulate the following fundamental theorem, see, e.g., Ogden [139].

Theorem 3.7 (Cauchy’s stress theorem). Let b and t(t,x,n) be the body and contact
forces for a body B during a motion. Then there exists a unique and symmetric
second-order tensor field σ, such that for each unit vector n

t(t,x,n) = σ>(x)n, (3.11)

where σ is independent of n and satisfies

σ> = σ.

Furthermore, σ satisfies Cauchy’s equation of motion

ρ
D2

Dt2
u−divσ = ρb, (3.12)

where ρ is the mass density of the material composing B and

D(•)
Dt

= ∂(•)
∂t

+ ∂(•)
∂xi

∂xi
t

the time derivative of a spatial field. σ is called Cauchy’s stress tensor.

From (3.11) we get with Nanson’s formula (3.7)

tds= σnds= JσF−>NdS,

where we define the so-called first Piola–Kirchhoff stress tensor by

P := JσF−>. (3.13)
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P is the applied force divided by the reference area while σ measures the force
per unit deformed area. Note that in general P is not symmetric. To provide a
symmetric stress tensor in the reference configuration as well, we define the second
Piola–Kirchhoff stress tensor by

S := F−1P = JF−1σF−>. (3.14)

Remark 3.3.1 (Piola transformation). S is the so-called Piola transformation of
σ. With this transformation a correspondence between quantities defined over the
current and reference configuration is established.

Corollary 3.1. An equivalent version of Cauchy’s equation of motion in the reference
configuration can be re-casted in terms of S by

ρ0
∂2

∂t2
U−Div(FS) = ρ0b0 (3.15)

with ρ0 the mass density and b0 the body force, each in the reference configuration.
It holds ρ= J−1ρ0.

For more details and the derivation of Corollary 3.1 compare to Ogden [139, Sec-
tion 3.4].

3.4 General Problem Formulation

We want to find the displacement field u(x, t) that satisfies Cauchy’s equation of
motion (3.11), i.e.

ρ(x, t) D
2

Dt2
u(x, t)−divσ(x, t) = ρ(x, t)b(x, t) for all x ∈ Ω, t≥ 0.

b, the body force per unit volume, acts on a particle of the region Ω and it is
considered to be a prescribed (given) force. The inertia force per unit volume is
characterized by ρD2u/Dt2, with ρ the spatial mass density of the material.

In order to formulate boundary conditions, ∂Ω is decomposed into disjoint parts so
that

∂Ω = ΓD∪ΓN with ΓD∩ΓN = ∅.
Dirichlet boundary conditions on ΓD correspond to a given displacement field u =
uD, which is enforced component-wise. Neumann boundary conditions on ΓN are
identified physically with a given surface traction σ(x, t)n(x) = tN(x, t).
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Finally, we require initial conditions. The displacement field and the velocity field at
initial time t= 0 are specified as

u(x, t)|t=0 = u0(X), u̇(x, t)|t=0 := D

Dt
u(x, t)|t=0 = u1(X).

If we consider a stress-free reference configuration Ω0 at time t= 0 the initial values
are assumed to be zero.

Combining the above-mentioned relations, this leads to the following classical formu-
lation of the boundary value problem of interest:
let Ω be a bounded domain with a sufficiently smooth boundary Γ = ∂Ω. We have
a disjunct decomposition of the boundary of the form Γ = ΓD ∪ΓN. Given a con-
tinuous body force b, boundary and initial conditions, the density ρ > 0, find the
displacement field u such that

ρ(x, t) D
2

Dt2
u(x, t)−divσ(u,x, t) = ρ(x, t)b(x, t) in Ω, t > 0,

u(x, t) = uD(x, t) on ΓD, t > 0,
σ(u,x, t)n(x) = tN(x, t) on ΓN, t > 0,

u(x, t) = u0(X) in Ω, t= 0,
u̇(x, t) = u1(X) in Ω, t= 0.

For the modeling of biological tissues the second time derivative on the left hand side
is of practically negligible order [185]. Additionally we set the body force to zero.
Thus, we concentrate on the simplified problem: find u such that

−divσ(u,x, t) = 0 in Ω, t > 0,
u(x, t) = uD(x, t) on ΓD, t > 0,

σ(u,x, t)n(x) = tN(x, t) on ΓN, t > 0, (3.16)

with initial conditions. For a time-stepping scheme this leads to a quasi-stationary
approach, as proposed in Holzapfel [81] for biological tissues.

To specify a similar form of this boundary value problem in terms of the reference
configuration we use (3.15). With this we get for the stationary boundary value
problem in the reference configuration

−Div[FS(U,X)] = 0 in Ω0,

U(X) = UD(X) on ΓD,

FS(U,X)N(X) = tN(X) on ΓN. (3.17)

In this case it is important to take a closer look at the embedding of the traction
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forces, i.e. the Neumann boundary conditions. If the applied surface force tN(X)
in the reference configuration is independent of the deformation gradient F then we
consider a dead load. This case is a simplification and is seldom usable to model
actual applied forces. For the modeling of biological tissue we need to apply pressure
loads on the boundary of the domain; for example the pressure loads applied to the
myocardium in the ventricles of the heart. In the current configuration an applied
surface force is a pressure load if it is of the form

tN(x) =−Pn(x), (3.18)

with P the pressure.

In the reference configuration the surface load then depends on the deformation and
is of the form

tN(X) = t̂N(U,X) =−PJF−>N(X). (3.19)

For a more detailed discussion on displacement dependent pressure loads cf. Ciarlet
[38, Sections 2.6 and 5.1] or Schweizerhof and Ramm [167].

3.5 Linear Elasticity

For small deformations it is justified not to distinguish between the Eulerian and
Lagrangian description and to replace the strain tensor E by the linearized strain
tensor ε(u), defined by

εij(u) = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
, ε(u) = 1

2
(
gradu+ grad>u

)
:= sym(gradu). (3.20)

A material is called linear elastic if it can be modeled using Hooke’s Law which
describes a linear relationship between stress and strain. It states

σ = C : ε, σij = Cijklεkl, (3.21)

using (A.5)1 and Einstein’s summation convention. The elasticity tensor C is formed
by so-called elastic coefficients and it satisfies the symmetry conditions

Cijkl = Cklij and Cijkl = Cjikl = Cjilk.

An important special case are homogeneous, isotropic linear elastic materials which
are called linear St. Venant–Kirchhoff materials. In this case

σ = Eν

(1 +ν)(1−2ν) tr(ε)I + E

(1 +ν)ε
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with Young’s modulus E > 0, measured normally in Gigapascal (GPa), and Poisson’s
ratio ν ∈ (0,0.5). E quantifies the stiffness of an elastic material. The range of
Young’s modulus is from E = 0.01GPa, e.g. for some types of rubber, to values
around 1000GPa, e.g. for diamond we have E = 1220GPa. ν is a dimensionless
parameter and a measure of compressibility. For the incompressible limit we have
ν = 0.5, e.g., rubber; for very compressible materials like cork ν is very near to
zero. Since biological tissues are considered as rubber-like materials we have Young’s
modulus around 1GPa and a Poisson’s ratio close to 0.5. This is consistent with the
assumption of nearly incompressibility.

We define the so-called Lamé coefficients λ and µ as

λ := Eν

(1 +ν)(1−2ν) , µ := E

2(1 +ν) . (3.22)

Lamé’s second parameter µ> 0 is also known as the shear modulus. It spans between
0GPa for rubber and 478GPa for diamond. Lamé’s first parameter λ has no physical
interpretation and is also measured in Gigapascal. With these two constants we can
write the elasticity tensor for a linear St. Venant–Kirchhoff material as

Cijkl = λδijδkl+µ(δikδjl+ δilδjk).

For the incompressible limit we have

ν→ 0.5 or λ→∞.

In the classical literature there exist many treatments of the theory of linear elastic
materials. Amongst others see the works of Gurtin [69] or Nečas and Hlaváček [133].
Matters of solvability of the boundary value problem and uniqueness of an eventual
solution are discussed in Section 4.3.

3.6 Constitutive Equations for Nonlinear Elasticity

Considering the study of the hyper-elastic properties of biological tissues we have to
deal with a nonlinear relationship between stress and strain and with large deforma-
tions. Since a linear elasticity model is not adequate to treat such a complex behavior
we have to take a look at the more general concept of nonlinear elasticity. Here we
model the nonlinear stress-strain response via a constitutive equation that links the
stress to a derivative of a so-called strain-energy function. This scalar-valued func-
tion W (F) represents the elastic stored energy per unit reference volume. It takes
one tensor variable F as argument and we assume it to be continuous. Note that
strain-energy functions can also be formulated for linear elasticity.
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The total strain energy (or the internal potential energy) can be described as the
integral of W (F) over the domain Ω0.

In this work we will concentrate on perfectly elastic materials. These are by definition
materials which produce locally no entropy and thus the internal dissipation2 equals
zero. In other words we exclude plastic deformations as well as damaging or viscous
mechanisms.

Theorem 3.8 (Constitutive equation). Given a strain-energy function W , the first
Piola–Kirchhoff stress tensor P and the deformation gradient F are linked by the
constitutive equation

P = ∂W (F)
∂F . (3.23)

Proof. Ciarlet [38] or Ogden [139, Ogden (1997)].

Remark 3.6.1. W (F) is also referred to as the Helmholtz free-energy function.

Remark 3.6.2. It is important to note that we use the convention(
∂W (F)
∂F

)
ij

:= ∂W (F)
∂Fij

,

as in the books of Holzapfel [80] and Ciarlet [38]. In the literature the definition(
∂W (F)
∂F

)
ij

:= ∂W (F)
∂Fji

.

is also common, e.g. in Ogden [139]. In this case the constitutive equation above
holds for P>.

In the following, we denote the strain-energy function as W (F) if it depends on the
deformation gradient F. In case it depends on the right Cauchy–Green tensor C we
denote it as Ψ(C).

Since both functions describe the same behavior of a considered material we can
write

W (F) = Ψ(C) = Ψ(E). (3.24)

Remark 3.6.3 (Frame indifference). The strain-energy is invariant under rigid body
motion. Hence, W (QF) =W (F) must hold for all proper orthogonal rotations Q.

2Dissipative system: a dynamical system loses energy over time due to a conversion into thermal
energy; processes in such a system are irreversible and the entropy in it rises.
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Remark 3.6.4 (Normalization conditions). For convenience we require that W and
Ψ vanish in the reference configuration Ω0. So we get the following so-called normal-
ization conditions

W (I) = 0, Ψ(I) = 0. (3.25)
Moreover, from a physical observation we require that the strain-energy function in-
creases with a deformation, that it is finite for a finite deformation and that it tends
to infinity if the displacement u tends to infinity, i.e.

W (F)≥ 0, W (F)<∞ if |u|<∞ and lim
|u|→∞

W (F(u)) =∞.

These requirements hold for Ψ(C) as well.

Lemma 3.9. For the different representations of the strain-energy functions W (F)
and Ψ(C) it holds: (

∂W (F)
∂F

)>
= 2∂Ψ(C)

∂C F>,

with the deformation gradient F and the right Cauchy–Green tensor C.

Proof. The proof follows from (3.24) and the chain rule.

Corollary 3.2 (Constitutive equations). The first Piola–Kirchhoff stress tensor may
be expressed in terms of the deformation gradient and a strain-energy function as

P = ∂W (F)
∂F = 2F∂Ψ(C)

∂C .

For the second Piola–Kirchhoff stress tensor we get

S = F−1∂W (F)
∂F = 2∂Ψ(C)

∂C ,

and for the Cauchy stress tensor the constitutive equations

σ = J−1F
(
∂W (F)
∂F

)>
= 2J−1F∂Ψ(C)

∂C F>

hold.

Proof. The different constitutive equations follow immediately from the constitu-
tive equation for P in Theorem 3.8, the Piola transformations (3.13) and (3.14),
Lemma 3.9 and the symmetry of σ and S.
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3.7 Modeling of Nearly Incompressible Elastic Materials

As mentioned in Chapter 2 we treat biological tissues as nearly incompressible elastic
materials [184]. To get a realistic model for such materials, where J = det(F) gets
very close to 1, we have to adapt the constitutive equations slightly.

In this section we will need the derivatives

∂J

∂C = J

2 C−1 ,
∂J−2/3

∂C =−1
3J
−2/3C−1, (3.26)

see [80]. Additionally, to simplify matters, we introduce the deviatoric operators:

Definition 3.10. We define the deviatoric operator in the current configuration as

dev(•) = (•)− 1
3 tr(•)I.

The deviatoric operator in the Lagrangian description reads

Dev(•) = (•)− 1
3 [(•) : C]C−1, (3.27)

with the right Cauchy–Green tensor C = F>F.

3.7.1 Decoupling of the Deformation and Saddle Point Formulation

An approach to handle nearly incompressible materials, with J = detF close to 1, is
the decoupling of the deformation into a volumetric (i.e. volume changing) and an
isochoric (i.e. volume preserving) part. This method was already considered in Flory
[57] and it is proposed for the artery model in the papers by Holzapfel et al. [81, 82].
Eriksson et al. [52] suggest this approach for the myocardium model as well.

A multiplicative factorization of the deformation gradient F is performed by

F = (J1/3I)F with detF = 1, (3.28)

where I denotes the second-order unit tensor. This is motivated by the property of
the determinant such that

det(J1/3F) = J det(F) = J = det(F).
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Hence, with (3.3) we obtain an analogous multiplicative factorization for the left and
the right Cauchy–Green strain tensor:

C = J2/3C and B = J2/3B.

Using this we can postulate a unique decoupled form of the strain-energy function
Ψ(C) with the specific representation

Ψ(C) = U(J) + Ψ(C), (3.29)

where U(J), the so-called volumetric elastic response, is a strictly convex function
with the unique minimum at J = 1. Ψ(C) is called the isochoric elastic response.

We require

U(J) = 0, if and only if J = 1,
Ψ(C) = 0, if and only if C = I

to fulfill the normalization conditions (3.25).

Definition 3.11 (Volumetric response). In this work, the volumetric response will
be of the form

U(J) := κφvol(J), (3.30)
with κ > 0 being the bulk modulus and φvol one of the following three choices

φvol,1(J) = 1
2(J−1)2,

φvol,2(J) = 1
2 ln(J)2,

φvol,3(J) = J ln(J)−J + 1.

With the bulk modulus κ we are now able to penalize a volume change, i.e. J 6= 1, and
hence we can control the compressibility of the material. Note that for an increasing
κ we go towards incompressibility.

Remark 3.7.1. For a linear elastic material the bulk modulus κ may be expressed
in terms of Lamé’s coefficients λ and µ ( (3.22)) and the elasticity module E and
Poisson’s ratio ν respectively, as

κ= λ+ 2µ
3 = E

3(1−2ν) .
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Definition 3.12 (Hydrostatic pressure). We define the hydrostatic pressure as

p := dU(J)
dJ . (3.31)

Theorem 3.13 (Decoupling of the Cauchy stress tensor). A decomposition of the
energy function Ψ(C) into a volumetric and an isochoric part

Ψ(C) = U(J) + Ψ(C) (3.32)

yields
σ = σvol +σisc (3.33)

with
σvol = pI, and σisc = 2J−1 dev

(
F∂Ψ(C)

∂C
F>
)
. (3.34)

Proof. The main ingredients of the proof are (3.26), Theorem 3.8 and the chain rule
[80].

In an analogous way a decomposition for the stress tensor in the Lagrangian descrip-
tion S may be derived.
Corollary 3.3 (Decoupling of the second Piola–Kirchhoff stress tensor). A decom-
position of the energy function Ψ(C) as in (3.32) yields

S = Svol + Sisc (3.35)

with
Svol = JpC−1, and Sisc = 2J−2/3 Dev

(
∂Ψ(C)
∂C

)
. (3.36)

A decoupling of the stress tensors together with the definition of the hydrostatic
pressure p (3.31) and a volumetric strain-energy function of the form (3.30) leads to
the following stationary saddle point problem: find (u,p) such that

−div[σisc(u,x) +σvol(p,x)] = 0 in Ω,
κφvol(u,x) −p(x) = 0 in Ω,

with additional Neumann and Dirichlet Boundary conditions. The corresponding
version in the reference configuration is: find (U,P ) such that

−Div[FSisc(U,X) + FSvol(U,P,X)] = 0 in Ω0,

κφvol(U,X) −P (X) = 0 in Ω0. (3.37)

Note that the pairs (u,p) and (U,P ) are identical due to (3.1).
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3.8 Elasticity Tensor

We postulate the existence of an energy function Ψ(C).

Definition 3.14 (Elasticity tensor). The elasticity tensor C in the reference con-
figuration is defined as the gradient of the nonlinear tensor-valued stress tensor S
as

C := 2∂S(C)
∂C = 4∂

2Ψ(C)
∂C2 .

It measures the change in stress which is evoked through a change of strain. The
elasticity tensor in the spatial description, denoted by C is defined as the push-forward
operation of C times a factor of J−1

cijkl = J−1FiaFjbFkcFldCabcd.

Remark 3.8.1 (Symmetry properties). The elasticity tensor C possesses minor sym-
metries in the following way

Cabcd = Cbacd = Cabdc.

Following from its definition we can show the major symmetries

Cabcd = Ccdab.

This property holds for the elasticity tensor C in Eulerian description as well [80,
Section 6.6].

Remark 3.8.2 (Voigt notation). A forth-order tensor C, with the entries Cabcd for
a,b,c,d = 1,2,3, satisfying minor symmetries may be represented as a 6× 6 matrix
C with 36 distinctive components. If additionally C is satisfying major symmetries
then C is symmetric and has 21 distinctive components. It is written as

C =



C1111 C1122 C1133 C1112 C1123 C1113
. C2222 C2233 C2212 C2223 C2213
. . C3333 C3312 C3323 C3313
. . . C1212 C1223 C1213
. sym. . . C2323 C2313
. . . . . C1313


. (3.38)

Remark 3.8.3 (Positive definiteness). For strict local convex strain-energy functions
Ψ, see Section 4.4.8, the elasticity tensor C and its representation in Voigt notation
C (3.38) are positive definite [139, Section 6.2.3]. This is a fundamental physical
requirement that prevents material instabilities.
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In decoupled form the elasticity tensor is written as

C = Cvol +Cisc (3.39)

with the volumetric and the isochoric part

Cvol = 2∂Svol(C)
∂C and Cisc = 2∂Sisc(C)

∂C ,

compare to (3.35). A more specific introduction to elasticity tensors one may find in
Marsden and Hughes [121, Chapter 3] or [127, 128].

3.9 The Strain-Energy Function in Terms of Invariants

In the following, we discuss the structure of the strain-energy function. We introduce
the concept of invariants and then express the strain-energy function in terms of the
principal invariants of its tensor-valued argument. For a compendium on the theory
of invariants see Spencer [174].

Definition 3.15 (Principle scalar invariants of a tensor). Let A be a given 3× 3
second-order tensor. Then the characteristic polynomial of A is given by

p(λ) = det(A−λI) = (λ1−λ)(λ2−λ)(λ3−λ) =−λ3 + I1λ
2− I2λ+ I3.

Here λi are the eigenvalues and Ii, i= 1,2,3 are the so-called principal scalar invari-
ants of A.

From this definition we can easily derive the following corollary:

Corollary 3.4. The invariants of a 3×3 second-order tensor A are

I1(A) = tr(A) = λ1 +λ2 +λ3,

I2(A) = 1
2
(
tr(A)2− tr(A2)

)
= λ1λ2 +λ1λ3 +λ2λ3,

I3(A) = det(A) = λ1λ2λ3.

In the theory of mechanics the eigenvalues of the left and right stretch tensors U
and V, introduced in Remark 3.1.4, may be regarded as stretches in the principal
directions. This is due to the coherence described in (3.9). They have the following
property:

Corollary 3.5. U and V have the same eigenvalues λi> 0. λi are called the principal
stretches.
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As we consider the definition of the invariants in Corollary 3.4 we can state that
I1(U) and I2(U) can be interpreted as a measure of stretch while I3(U) is a measure
of volume change.

Consequently, if we consider an incompressible material the deformation gradient
must satisfy the internal constraint

J ≡ det(F) = det(U) = I3(U) = 1. (3.40)

If we have no stretch, i.e. λi = 1 for i= 1,2,3, then

I1(U) = I2(U) = 3. (3.41)

For the two Cauchy–Green deformation tensors C = U2 and B = V 2 the eigenvalues
of both are the squares of the principal stretches. Thus we have for the invariants

I1(C) = I1(B) = λ2
1 +λ2

2 +λ2
3,

I2(C) = I2(B) = λ2
1λ

2
2 +λ2

1λ
2
3 +λ2

2λ
2
3,

I3(C) = I3(B) = λ2
1λ

2
2λ

2
3.

Hence, the same constraints (3.40) and (3.41) are valid for these tensors. Thus we
can state that if we have no deformation, i.e. C = I then there is consequently no
strain, stretch, stress or volume change of the body involved. This fits perfectly well
with the physical understanding of elastic materials.

Theorem 3.16 (Representation theorem for invariants). Let f(A) be a scalar-valued
tensor function. If f is invariant under rotations, it may be expressed in terms of
the principal invariants of its argument A:

f(A) = f [I1(A), I2(A), I3(A)].

Proof. Cf. [68, p. 231] and [180, Chapter 10].

In the literature this theorem is also referred to as the Rivlin–Ericksen representation
theorem. For an extension to anisotropic materials see Raoult [146].
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3.10 Strain-Energy Functions for Elastic Materials

3.10.1 Isotropic Materials

In the following, we restrict the structure of the strain-energy function of interest
by the property that the material is isotropic, i.e. homogeneous in all directions. If
that is the case then the strain-energy function is invariant with respect to rotations.
Thus

Ψ(C) = Ψ(RCR>)
holds for all symmetric tensors C and orthogonal rotation tensors R. For a more
detailed discussion see, for example, [80, Section 6.2] or [38, Section 3.6]. Since Ψ(C)
fulfills the requirements of Theorem 3.16 we may write

Ψ(C) = Ψ[I1(C), I2(C), I3(C)], (3.42)

where the principal invariants of the right Cauchy–Green tensor C are (cf. Corol-
lary 3.4)

I1(C) = trC,

I2(C) = 1
2[(trC)2− tr(C2)],

I3(C) = detC.

For the stress-free reference configuration C = I, the strain-energy function (3.42)
must satisfy the normalization condition Ψ(I) = 0, i.e. Ψ = 0 for I1 = I2 = 3 and
I3 = 1.

Subject to the regularity assumption that Ψ is infinitely many times continuously
differentiable with respect to I1, I2, I3, Ogden [139, Chapter 4] proposed the following
series representation for a strain-energy function

Ψ(I1, I2, I3) =
∞∑

p,q,r=0
cpqr(I1−3)p(I2−3)q(I3−1)r, (3.43)

with c000 = 0 and c100 + 2c010 + c001 = 0 to satisfy the normalization condition.

If we set I3 = 1, which would be valid for an incompressible material, then we obtain

Ψ(I1, I2) =
∞∑

p,q=0
cpq(I1−3)p(I2−3)q

with c00 = 0.
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To simplify this expression we make note of the special case

Ψ(I1, I2) = c10(I1−3) + c01(I2−3), (3.44)

which is referred to as the Mooney–Rivlin strain-energy function. This important
model to cover the behavior of an isotropic elastic material was proposed indepen-
dently by Melvin Mooney [129] and Ronald Rivlin [150–152].

Finally, with c01 = 0 and c10 = µ/2 this reduces to the neo–Hookean model

Ψ(I1) = µ

2 (I1−3), (3.45)

where µ> 0 is a stress-like material parameter which may be interpreted as the shear
modulus.

Another way to motivate the strain-energy function (3.45) is through statistical the-
ory; see [80, Section 7.2] for a brief discussion.

(3.45) just relies on one parameter and offers a simple way to describe the nonlinear
deformation behavior of isotropic rubber-like materials. This model may be seen
as the nonlinear counterpart of Hooke’s law (cf. Sect 3.5) and goes back to Rivlin
[149].

Another candidate for a response function, and indeed a very famous one, was pro-
posed independently by Adhémar Jean Claude Barré de Saint Venant in 1844 and
Gustav Robert Kirchhoff in 1852 and is thus named after these two physicists:

Definition 3.17 (St. Venant–Kirchhoff material). The strain-energy function asso-
ciated with the St. Venant–Kirchhoff model is defined by

Ψ(E) = λ

2 (tr E)2 +µtr(E2), (3.46)

where the constants λ > 0,µ > 0 are the Lamé parameters.

Although this kind of a function is not polyconvex, cf. Section 4.4.6, existence results
were shown in Dacorogna [43]. However, this kind of models brings some other
drawbacks. These are, for example, so-called eversion problems, which means that
large strains are possible although the stress is small [4, 181]. Another disadvantage is
that J = det(F) could possibly approach zero or even become negative. More details
to these drawbacks and other shortcomings of the St. Venant–Kirchhoff model are
described in [38, Section 3.9].
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3.10.2 Almost Incompressible Isotropic Materials

In Section 3.10.1 we already mentioned some possibilities to model isotropic mate-
rials. In this section we consider nearly incompressible materials, like most of the
biological tissues. Hence, a unique decoupled representation of the energy function
is proposed as in Section 3.7.1.

We formulate the decoupled version of the strain-energy function for isotropic mate-
rials as

Ψ(C) = U(J) + Ψ(C),
where the function U(J) is motivated mathematically and serves as a penalty function
within the numerical analysis. It denotes Lagrange multiplier terms which vanish for
the incompressible limit.

The function Ψ(C) can also be written in terms of the invariants of C

Ψ(C) = Ψ[I1(C), I2(C), I3(C)]

as already discussed in (3.42). Since I3(C) = det(C) = 1 we can neglect this invariant
and write

Ψ(C) = Ψ[I1(C), I2(C)].

We formulate the decoupled version of (3.45) in the following definition:

Definition 3.18 (Almost incompressible neo–Hooke material). The strain-energy
function to model nearly incompressible neo–Hookean materials is defined by

Ψ(J,I1) = U(J) + µ

2 (I1−3), (3.47)

with the material parameter µ > 0.

Analogous we obtain for the decoupled version of (3.44):

Definition 3.19 (Mooney–Rivlin material). An elastic material is a Mooney–Rivlin
material if its strain-energy function is of the form

Ψ(J,I1, I2) = U(J) + c1(I1−3) + c2(I2−3),

with material constants c1, c2 > 0.

In the following, we will concentrate on the neo–Hookean and the Mooney–Rivlin
model. Nonetheless, one can formulate similar decoupled strain-energy functions for
all Ogden-type materials as given in (3.43).
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3.10.3 First Steps to an Anisotropic Material Model

As mentioned in Chapter 2, many biological tissues consist of an isotropic ground sub-
stance, in the case of arteries elastin, and collagen fibers which lead to an anisotropic
behavior of these materials. The modeling of such a complex structure goes back
to Fung [59] where the author proposed a very influential constitutive model. From
experiments he observed a linear relation between stiffness, i.e. the ratio of stress and
strain, and stress, as seen in Figure 3.2. Denoting by P11 the uniaxial component of
the first Piola-Kirchhoff stress tensor P (3.13) and by λ1 the associated axial stretch
ratio, this linear relation can be written as

dP11
dλ1

= k1 +k2P11. (3.48)

Here, k1 > 0 is a stress-like and k2 > 0 is a dimensionless parameter. λ1 is the stretch
ratio in the direction of the applied load, i.e. the deformed length over the reference
length or simply the strain. By solving the differential equation (3.48) we obtain

P11 = cexp(k2λ1)− k1
k2
.

If λ1 = 1, i.e. there is no strain, one has consequently that the stress is zero: P11 = 0.
From this normalization condition the stress-like constant c may be determined and
we conclude the following exponential constitutive relation

P11 = k1
k2
{exp[k2(λ1−1)]−1} , (3.49)

known as the ’Fung-Elastic’ material model. This exponential function is widely
used in the field of biomechanics to model soft tissues. Holzapfel et al. [82] combined
the neo–Hookean response function for the isotropic ground substance with Fung’s
proposal for the collagen fibers and suggest a strain-energy function to model a fiber-
reinforced material according to

Ψ = µ

2 (I1−3) + k1
k2

{
exp[k2(I4−1)2]−1

}
. (3.50)

Here the parameters µ, k1 and k2 come from the neo–Hookean model (3.47) and
the Fung model (3.49), respectively. To guarantee a stiffening in fiber direction, as
observed in the histology of the arterial wall, we set k1 > 0 and k2 > 0. The shear
modulus µ is positive by definition, cf. (3.47). I4 > 1 is an invariant and can be seen
as the stretch in fiber direction. This proposal gives rise to the well known artery
model of Holzapfel et al. [82] which will be treated in the next section.
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Figure 3.2: Linear relationship between stiffness dP11/dλ1 and stress P11;
in a modication from [60, 92].

3.11 A Multi-Layer Model for Arterial Walls

In this section a potential is discussed that models each layer of the artery as a fiber-
reinforced composite. The anisotropic model was first proposed by Holzapfel et al.
[82]. For a more detailed discussion of arterial models the reader is also referred to
[83, 84]. Recent issues like modeling with respect to residual stresses is neglected in
this work but is discussed in Holzapfel and Ogden [86].

Since the artery is a nearly incompressible tissue the strain-energy function is decou-
pled into a purely volumetric and a purely isochoric contribution

Ψ(C,A1, . . . ,An) = U(J)︸ ︷︷ ︸
volumetric

+ Ψ(C,A1, . . . ,An)︸ ︷︷ ︸
isochoric

,

with C = J−2/3C, det(C) = 1 and the Jacobian J = det(F), see Section 3.1.
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The set {Aα | α = 1, . . . ,n} of second order tensors is employed to describe the hyper-
elastic stress response of anisotropic biological tissues. In case of arterial walls, where
we have an anisotropy due to collagen bundles with two main directions a01,a02, two
such structure tensors are incorporated. These are defined as the cross product of
the two reference direction vectors

Ai := a0i⊗a0i, with |a0i|= 1 for i= 1,2.

From this definition it is clear that A1 and A2 are both symmetric.

A second split of the isochoric strain-energy function Ψ into an isotropic part Ψiso
and an anisotropic part Ψaniso leads to the following response function

Ψ(C,A1,A2) = Ψiso(C) + Ψaniso(C,A1,A2). (3.51)

A two-term potential of that type was already proposed in the paper of Holzapfel
and Weizsäcker [88]. In formula (3.51) the isotropic part is associated with the
non-collagenous ground substance elastin and Ψaniso is associated with anisotropic
deformations arising from the collagen fibers.

To formulate the strain-energy function in terms of invariants we need the integrity
basis of C,A1,A2 which consists of the following nine invariants [82, 173]

I1(C) = trC, I2(C) = 1
2
(
(trC)2− trC2)

, I3(C) = detC = 1,

I4(C,A1) = C : A1, I5(C,A1) = C2 : A1, I6(C,A2) = C : A2,

I7(C,A2) = C2 : A2, I8(C,A1,A2) = a>01a02 a>01Ca02, I9(C,A1,A2) = (a01 ·a02)2.

The invariants I3 and I9 are omitted since they are constants. The invariants I4 and
I6 have a clear physical interpretation: they are the squares of the stretches in the
directions of a01 and a02 respectively, so that they are stretch measures for the two
families of fibers.

To ease the fitting to experimental data, the number of material parameters should
be reduced. When using the classical neo–Hookean model for the isotropic response
we can leave the second invariant I2 out:

Ψiso(I1) = c

2(I1−3), (3.52)

where c > 0 is a stress-like material parameter, see Section 3.10.1. I5 and I7 are a
linear combination of I1, I2, I4 and I6 (Cayley–Hamilton theorem) and describe a
similar physical properties as I4 and I6. Hence, these two invariants are omitted.
Moreover, interactions (I8) between the two fiber families are neglected which gives
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the reduced model
Ψ(C) = Ψiso(I1) + Ψaniso(I4, I6).

Holzapfel et al. [82] propose for the anisotropic part of this strain-energy function

Ψaniso(I4, I6) = k1
2k2

∑
i=4,6

{
exp[k2(Ii−1)2]−1

}
. (3.53)

In summary, we have the following strain-energy function to model the anisotropic
behavior of arterial walls

Ψ(C) = Ψ(J,I1, I4, I6) = U(J) + c

2(I1−3) + k1
2k2

∑
i=4,6

{
exp[k2(Ii−1)2]−1

}
, (3.54)

where
I1(C) = trC, I4(C,a01) = C : A1, I6(C,a02) = C : A2,

and all material parameters c,k1 and k2 are positive, see (3.50). To obtain these
parameters they are fitted to the experimentally observed response of the arterial
layers, i.e. they are to be determined from mechanical tests of the tissue.

An important condition in dealing with this model is that the anisotropic response
Ψaniso only contributes if

Ii > 1 for i= 4,6, (3.55)
i.e. if there is a stretch in a fiber direction. This condition is explained with the
wavy structure of the collagen fibers, see Figure 2.2, which are hence regarded as not
being able to support compressive stresses. Thus the fibers are assumed to be active
in extension (Ii > 1) and inactive in compression (Ii < 1). This assumption is not
only based on physical reasons but it is also essential for reasons of stability [83].

Another consequence of the wavy structure of the collagen fibers is that they are
not active at low pressures and if the material behaves isotropic. At high pressures
the collagen fibers straighten and then they govern the resistance to stretch of the
material. This behavior of collagen was already discussed by Roach and Burton
[154] and is fully covered by the artery model (3.54). The described strong stiffening
effect at higher pressures also motivates the use of the exponential function in the
anisotropic response of the strain-energy function Ψ.
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3.11.1 The Artery Modeled as a Two-Layer Thick-Walled Tube

As already mentioned in Section 2.1, arteries are composed of three layers, the intima,
the media and the adventitia. For the case of an healthy young artery the innermost
layer, the intima, is not of mechanical interest. We model each of the remaining
layers with a separate strain-energy function. We assume that the media as well as
the adventitia respond with similar mechanical characteristics and therefore we use
the same form of strain-energy functions. To capture the specifics of each layer we
use different sets of material parameters.

Hence, we write the energy functions for the two-layer problem using the Holzapfel
artery model (3.54) as

Ψmed(I1, I4M, I6M) = cM
2 (I1−3) + k1M

2k2M

∑
i=4,6

{
exp[k2M(IiM−1)2]−1

}
,

Ψadv(I1, I4A, I6A) = cA
2 (I1−3) + k1A

2k2A

∑
i=4,6

{
exp[k2A(IiA−1)2]−1

}

for the media and adventitia, respectively.

The invariants used in this formulation are defined by

I4j = A1j : C, I6j = A2j : C, j = M,A,

with
A1j = a01j⊗a01j , A2j = a02j⊗a02j .

If we regard the simplified configuration of an artery as a tube we can describe the
components of the direction vectors in cylindrical polar coordinates. Hence, the
vectors a01j and a02j have, in matrix notation, the forms

[a01j ] =

 0
cos βj
sin βj

 , [a02j ] =

 0
cos βj
−sin βj

 , j = M,A,

where βj are the angles between the collagen fibers and the circumferential direction
for j = M,A. This angle is indicated in Figure 3.3. There one can find exemplary
values for the material and geometrical data for a carotid artery from a rabbit as
well.

More experimental data and material and geometrical parameters fitted to the human
aorta one may find in Holzapfel [79].
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Figure 3.3: Material parameters for a segment of a carotid artery from a rabbit [37, 82].

3.11.2 Modeling with Respect to Fiber Dispersion

In Section 3.11.1 the existing dispersion of the collagen fibers is ignored. Nonetheless,
this model works well for the media, where the collagen fibers are arranged in two
helically distributed families with a small pitch and very little dispersion in their
orientation. By contrast, in the adventitial and intimal layers the orientation of the
collagen fibers is dispersed. Thus an additional measure of the dispersion of collagen
fibers is proposed in [62, 78]. Both approaches are concerned with an extension of
the model (3.53) to incorporate an isotropic behavior as a special case. In [78] the
authors suggest a multiplication of the anisotropic function exp[c2(Ii−1)2] with the
isotropic function exp[c1(I1−3)2], where c1, c2 are two constants. This leads to

Ψaniso(I1, I4, I6) = k1
2k2

∑
i=4,6

(
exp{k2[(1−ρ)(I1−3)2 +ρ(Ii−1)2]}−1

)
(3.56)

with the dimensionless and stress-like parameters k2,k1 > 0 and a weighting factor
ρ ∈ [0,1]. For the limit ρ = 1 we get the anisotropic model (3.53), and for ρ = 0 an
isotropic response is obtained, very similar to Demiray [47].

Another approach was proposed by Gasser et al. [62] where an additional structure
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parameter ρ∗ is introduced that characterizes the dispersed collagen orientation. As
the first dispersion model (3.56) this is an extension to the anisotropic model (3.53):

Ψaniso(I1, I4, I6) = k1
2k2

∑
i=4,6

{
exp[k2(I∗i −1)2]−1

}
,

with I∗i = ρ∗I1 +(1−3ρ∗)Ii . This modification of the forth and the sixth invariants
enables the representation of the dispersion of the collagen fibers through the dis-
persion parameter ρ∗ ∈ [0,1/3]. For ρ∗ = 0 the anisotropic model without dispersion
(3.53) is obtained, the choice ρ∗ = 1/3 leads to an isotropic distribution very similar
to that proposed by Demiray [47].

A more detailed overview concerning models with respect to fiber dispersion can be
found in [78].

3.12 Modeling of Passive Myocardium

The model of the myocardium that is discussed in this section was introduced by
Holzapfel and Ogden [85]. In the derivation of a form for the strain-energy function Ψ
for the cardiac tissue we mainly stick to the descriptions of this paper. Nonetheless,
there exist a vast amount of other constitutive models for the myocardium. The
interested reader is referred to the early works of Humphrey and Yin [95, 189]. Other
widely used strain-energy functions were proposed by Guccione et al. [67], Costa et
al. [40] and Schmid et al. [162, 163].

As discussed in Section 2.4 we have a layered organization of the muscle fibers within
the myocardium which can be described by a right-handed orthonormal set of basis
vectors f0, s0 and n0. Hence, we can write the strain-energy function as

Ψ = Ψ(C,Af ,As,An).

We will use a similar decomposition in a volumetric and an isochoric part, see Sec-
tion 3.11 and [52], such that

Ψ = U(J) + Ψ(C,Af ,As,An).

As for arterial tissue (Section 3.11) we need the integrity basis of the involved four
tensors to formulate the strain-energy function in terms of invariants. In the following
only the most important invariants are mentioned, see Spencer [173] for more details.
For the isotropic part of the strain-energy function we have the invariants as described
in Corollary 3.4. The invariants associated with the fiber, sheet and sheet-normal
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direction are defined as

I4f := f0 · (Cf0), I4s := s0 · (Cs0) and I4n := n0 · (Cn0).

Due to the fact that the three direction vectors are orthonormal, we can state∑
i=f,s,n

I4i = C : (f0⊗ f0 + s0⊗ s0 +n0⊗n0) = C : I = I1,

hence only three of these four invariants are independent.

Next, we mention coupling invariants associated with the pairs of directions

I8fs = I8sf := f0 · (Cs0), I8fn = I8nf := f0 · (Cn0), I8sn = I8ns := s0 · (Cn0).

The invariants

I5f := f0 · (C
2f0), I5s := s0 · (C

2s0) and I5n := n0 · (C
2n0)

can be represented in terms of the other invariants and the orthogonality reduces the
number by an additional one [85].

In total we end up with seven independent invariants and we can write the most
general form of the isochoric part of the free energy function as

Ψ = Ψ(I1, I3, I4f , I4s, I8fn, I8fs, I8sn)

for a compressible material. For an incompressible material we can state that I3 = 1
and hence we have only six independent invariants.

To reduce the number of invariants and hence the number of material parameters
we discuss the interpretations of the invariants. To model the isotropic response of
the underlying matrix-material we could use the neo–Hookean model (3.52) as in the
case of arteries. Holzapfel and Ogden [85] proposed in the case of the myocardium
the exponential model introduced by Demiray [47]

Ψiso(I1) = a

2b
{

exp
[
b(I1−3)

]
−1

}
, (3.57)

where a > 0 is a stress-like and b a dimensionless material parameter. To guarantee
that the stress response increases exponentially in the corresponding stretch we have
to set b > 0. The requirement of a positive parameter a follows from the analysis of
the strain-energy function, see Lemma 4.26 for more details.

To model the transversely isotropic behavior and the stiffening effect in the muscle
fiber direction f0 and in the collagen fiber direction s0 the same proposal with an
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matrix

unloaded(a)

(b) tension (c) compression

f0

s0

collagen fiber

muscle fiber

Figure 3.4: Muscle and collagen fibers under tension and compression; f0 is the muscle
fiber axis, s0 the sheet axis which corresponds to the direction of the collagen
fibers. (a) unloaded configuration; (b) structure under tension in direction of
f0 which results in a stretch of the muscle fibers; (c) compression is applied to
the fiber network; this leads to a lateral extension of the collagen fibers while
the myocytes are buckled. Figure courtesy of Holzapfel and Ogden [85].

exponential function as for the case of arterial walls is used; cf. (3.53). Thus we
obtain for this part of the constitutive equation

Ψtrans(I4f) = af
2bf

{
exp[bf(I4f −1)2]−1

}
, (3.58)

Ψtrans(I4s) = as
2bs

{
exp[bs(I4s−1)2]−1

}
, (3.59)

where again this part only contributes if I4f > 1 or I4s > 1, i.e. we have a stretch in
one of the fiber directions, cf. Figure 3.4. All material parameters, the stress like
ai as well as the dimensionless bi for i = f,s are supposed to be positive. Using this
setting of the parameters we guarantee a stiffening in fiber and sheet direction as
observed in the histology of the myocardium.

Finally, the shear behavior as described by Dokos et al. [50] and Section 2.4 is taken
into consideration. Since the highest resistance was observed in the fs-plane and
since it showed an exponential trend, Holzapfel and Ogden [85] proposed to model
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this orthotropic part of the characterization in terms of the invariant I8fs by

Ψortho(I8fs) = afs
2bfs

{
exp[bfsI

2
8fs]−1

}
, (3.60)

with afs > 0 a stress-like and bfs > 0 a dimensionless material constant.

Summing up, we get the following orthotropic strain-energy function to model the
passive myocardium

Ψ(C) = U(J) + a

2b
{

exp
[
b(I1−3)

]
−1

}
+
∑
i=f,s

ai
2bi

{
exp[bi(I4i−1)2]−1

}
+ afs

2bfs

{
exp[bfsI

2
8fs]−1

}
. (3.61)

As discussed before, all of the eight material parameters are supposed to be positive
and the transversely isotropic parts only contribute if I4f > 1 or I4s > 1, respec-
tively.
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3.13 Computation of Stress and Elasticity Tensors

In this section, we provide an explicit symbolic expression of the stress and elasticity
tensors for the materials discussed in the previous sections. This will be used to
calculate a linearized form of the constitutive equation needed for the application
of Newton’s method, see Section 4.4.1 ff., and the implementation of the material
models in the computer code.

Recall Corollary 3.2 and Definition 3.14 for the constitutive equations

S = 2∂Ψ(C)
∂C , C = 2∂S(C)

∂C = 4∂
2Ψ(C)
∂C2

in the reference configuration and the push-forward operations in the current config-
uration

σij = J−1FiaFjbSab, cijkl = J−1FiaFjbFkcFldCabcd, (3.62)
for i, j,k, l,a,b,c,d = 1, . . . ,3. As an example, the the stress tensor and the elasticity
tensor for the St. Venant–Kirchhoff material (3.46) may easily be computed

SVK = 2∂ΨVK(C)
∂C = ∂ΨVK(E)

∂E = λtr(E)I + 2µE,

CVK = 2∂SVK(C)
∂C = ∂SVK(E)

∂E = λI⊗ I + 2µS,

using Corollaries A.1, A.3 and A.5.

For more complex nearly incompressible materials our starting point is the decoupled
version of the strain-energy function

Ψ(C) = U(J) + Ψ(C),

see (3.29) and a chain rule of the form

∂Ψ(C)
∂C = ∂U(J)

∂C + ∂Ψ(I1, I2, . . .)
∂C = ∂U(J)

∂J

∂J

∂C +ψ1
∂I1
∂C +ψ2

∂I2
∂C + . . . , (3.63)

where
ψi = ∂Ψ

∂Ii
, i= 1,2, . . . .

Note that the decoupled formulation leads to an additive split of the stress and
elasticity tensors in volumetric and isochoric parts, see (3.33), (3.35) and (3.39),

σ = σvol +σisc, S = Svol + Sisc, C = Cvol +Cisc, C = Cvol +Cisc.
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3.13.1 Volumetric Part

We start with the volumetric part of the strain-energy function U(J) and compute
the volumetric contribution of the stress tensors and the elasticity tensors in each the
Lagrangian and the Eulerian configuration. With the definition of the hydrostatic
pressure (3.31) and (3.26) we get

Svol = 2∂U(J)
∂C = 2∂U(J)

∂J

∂J

∂C = JpC−1 (3.64)

for the volumetric part of the second Piola–Kirchhoff stress tensor.

The elasticity tensor in the Lagrangian configuration is calculated due to

Cvol = 2∂Svol
∂C = 2∂JpC

−1

∂C = 2C−1⊗ ∂JpC + 2Jp∂C−1

∂C .

This is using Corollary A.4

Cvol = J

(
p+J

∂p

∂J

)
C−1⊗C−1−2Jp C−1�C−1.

With push-forward operations as described in (3.62) we get

σvol = pI, Cvol =
(
p+J

∂p

∂J

)
I⊗ I−2p S. (3.65)

for the elasticity tensor in the Eulerian configuration.

3.13.2 Isochoric Part

Definition 3.20. We define the fictitious stress tensors S in the Lagrangian config-
uration and σ in the Eulerian configuration as

S := 2∂Ψ(C)
∂C

, Jσ := 2F∂Ψ(C)
∂C

F>.

The chain rule (3.63) yields

S = 2∂Ψ
∂Ii

∂Ii

∂C
, Jσ = 2∂Ψ

∂Ii
F∂Ii
∂C

F>, i= 1,2, . . .
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Definition 3.21. We define the fictitious elasticity tensors C and C as

C := 4∂
2Ψ(C)
∂C∂C

in the Lagrangian configuration and the corresponding tensor C, obtained by a push-
forward operation of the form (3.62)2, in the Eulerian configuration.

The chain rule (3.63) yields with a summation over i= 1,2, . . ., and [B]ijkl = [F]ik[F]jl

C = 4
∂Ii
∂C
⊗ ∂

2Ψ
∂I

2
i

∂Ii

∂C
+ ∂Ψ
∂Ii

∂2Ii

∂C2


JC = 4

∂2Ψ
∂I

2
i

(F∂Ii
∂C

F>)⊗ (F∂Ii
∂C

F>) +B
∂Ψ
∂Ii

∂2Ii

∂C2 B
>
 .

Recall from (3.34) and (3.36) and Corollary A.7 the isochoric stress tensors

Sisc = Dev(S) = P : S, σisc = dev(σ) = P : σ. (3.66)

The elasticity tensor is calculated using (3.27) and (A.25)

Cisc = 2∂Sisc
∂C = 4∂Dev(S)

∂C = 4 ∂

∂C

[
J−2/3 Dev

(
∂Ψ(C)
∂C

)]

= 4Dev
(
∂Ψiso(C)
∂C

)
⊗ ∂J

−2/3

∂C + 4J−2/3 ∂

∂C Dev
(
∂Ψ(C)
∂C

)
.

With (3.26)2, (3.66)1 and (A.25) we get

Cisc =−4
3 Dev

(
∂Ψ(C)
∂C

)
⊗J−2/3C−1 + 4J−2/3 ∂

∂C

[
∂Ψ(C)
∂C

]

− 4
3J
−2/3 ∂

∂C

[
tr
(

C ∂Ψ(C)
∂C

)
C−1

]

=−2
3Siso⊗C−1 + 4J−4/3 ∂

2Ψ(C)
∂C∂C

P>− 4
3J
−2/3 C−1⊗ ∂

∂C tr
(

C ∂Ψ(C)
∂C

)

− 4
3J
−2/3 tr

(
C ∂Ψ(C)

∂C

)
∂C−1

∂C

Now, Definition 3.21, the chain rule (A.26) and Corollary A.4 yield

Cisc =−2
3Siso⊗C−1 +J−4/3CP>− 4

3J
−2/3 C−1⊗

[
C : ∂

∂C

(
∂Ψ(C)
∂C

)
+ ∂Ψ(C)

∂C
: ∂C
∂C

]
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+J−2/3 2
3 tr

(
CS

)
(C−1�C−1)

=−2
3Siso⊗C−1 +J−4/3CP>− 4

3J
−2/3 C−1⊗ ∂Ψ(C)

∂C

− 4
3J
−4/3 (C−1⊗C) ∂

2Ψ(C)
∂C∂C

P>+J−2/3 2
3 tr

(
CS

)
(C−1�C−1).

We obtain

Cisc =−2
3Siso⊗C−1 +J−4/3PCP>− 4

3J
−2/3 C−1⊗ ∂Ψ(C)

∂C
+J−2/3 2

3 tr
(
CS

)
(C−1�C−1),

using Definition 3.21 and the definition of the projection tensor, see Corollary A.7.
With

C−1⊗ ∂Ψ(C)
∂C

= C−1⊗Dev
(
∂Ψ(C)
∂C

)
−C−1⊗

[
1
3 tr

(
∂Ψ(C)
∂C

)
C−1

]

we finally get

Cisc = J−4/3PCP>+J−2/3 2
3 tr

(
CS

)
(C−1�C−1− 1

3C−1⊗C−1)

− 2
3(Siso⊗C−1 + C−1⊗Siso). (3.67)

Push-forward operations, see Definition 3.14, lead to the elasticity tensor in the
Eulerian configuration

Cisc = PCP+ 2
3 tr(σ)P− 2

3(σiso⊗ I + I⊗σiso). (3.68)
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3.13.3 Specific Stress and Elasticity Tensors

For the different material models we have to compute the fictitious stress and elas-
ticity tensors given in Definition 3.20 and Definition 3.21.

Neo–Hookean model, (3.52): the considered isochoric strain-energy function is

Ψ(C) = c

2(I1−3), I1 = tr(C).

With B = FF> the left Cauchy–Green tensor, the stress tensors are computed as

S = cI, Jσ = cB,

and the elasticity tensors are computed as

C = O, JC = O.

Here, O denotes the forth-order null matrix.

Demiray model, (3.57): the considered isochoric strain-energy function is

Ψ(C) = a

2b
{

exp
[
b(I1−3)

]
−1

}
, I1 = tr(C).

With B = FF> the left Cauchy–Green tensor, the stress tensors are computed as

S = aexp
[
b(I1−3)

]
I, Jσ = aexp

[
b(I1−3)

]
B,

and the elasticity tensors as

C = 2ab exp
[
b(I1−3)

]
I⊗ I, JC = 2ab exp

[
b(I1−3)

]
B⊗B.

Mooney–Rivlin model, (3.44): the considered isochoric strain-energy function
is

Ψ(C) = c1(I1−3) + c2(I2−3), with I1 = tr(C), I2 = 1
2[(trC)2− tr(C2)].

With B = FF> the left Cauchy–Green tensor, the stress tensors are computed as

S = 2c1I + 2c2(tr(C)I−C), Jσ = 2c1B + 2c2(tr(B)B−B2).
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The elasticity tensors are computed as

C = 4c2(I⊗ I−S), JC = 4c2(B⊗B−B�B).

Fiber, transversely isotropic model , see (3.53), (3.58) and (3.59), with a fiber
direction f0. The considered isochoric strain-energy function is

Ψ(C) = af
2bf

{
exp

[
bf(I f −1)2

]
−1

}
, with I f = f0 ·Cf0 = Ff0 ·Ff0.

The stress tensors are computed as

S = 2af(I f −1)exp
[
bf(I f −1)2

]
A0, Jσ = 2af(I f −1)exp

[
bf(I f −1)2

]
A,

with A0 = f0⊗ f0 and A = Ff0⊗Ff0 and the elasticity tensors are computed as

C = 4af exp
[
bf(I f −1)2

]
(2bf(I f −1)2 + 1)A0⊗A0,

JC = 4af exp
[
bf(I f −1)2

]
(2bf(I f −1)2 + 1)A⊗A.

Interaction, orthotropic model, (3.60) with a fiber direction f0 and a sheet
direction s0. The considered isochoric strain-energy function is

Ψ(C) = afs
2bfs

{
exp

[
bfsI

2
fs
]
−1

}
,

with I fs = f0 ·Cs0. Using M0 = 1
2(f0⊗s0 +s0⊗ f0) and M = 1

2(Ff0⊗Fs0 +Fs0⊗Ff0)
we have the representations

S = 2afs I fs exp
[
bfsI

2
fs
]

M0, Jσ = 2afs I fs exp
[
bfsI

2
fs
]

M,

for the stress tensors and

C = 4afs exp
[
bfsI

2
fs
]
(2bfsI

2
fs + 1)M0⊗M0,

JC = 4afs exp
[
bfsI

2
fs
]
(2bfsI

2
fs + 1)M⊗M,

for the elasticity tensors.





4 VARIATIONAL FORMULATION

The variational formulation of the mixed boundary value problem as described in
Section 3.4 is the basis for discretization techniques (Chapter 5) and in particular
the finite element method (FEM), see Section 5.1. General principles of variational
approaches as well as the specific weak formulation for elasticity problems are dis-
cussed in this chapter. In addition, solvability conditions for linear and nonlinear
elasticity models as introduced in Chapter 3 are in the focus. For linear elasticity
problems not only the existence but also the uniqueness of a solution can be proven.
In contrast to this, it is not possible to give a similar statement for general nonlinear
elasticity problems. Although there are conditions that give evidence about solvabil-
ity, no cogent arguments are known that show uniqueness. For more information on
this topic see the books by Braess [25], Ciarlet [38] and Dacorogna [43].

For nonlinear problems, as for instance the tissue models discussed in Section 3.11
and Section 3.12 Newton’s method is applied. This requires a linearization of the
underlying variational formulation, cf. Section 4.4.2. A comprehensive monograph
on Newton methods is Deuflhard [49].

4.1 Preliminaries

In this section, we present basic definitions and theorems that allow us to set up the
theory of variational formulations. Definitions and tools to discuss the solvability of
an abstract operator equation Au = f are given. Finally, we introduce concepts for
derivatives in Banach spaces, which will be used for the linearization of the nonlinear
weak formulations.

Let X be a Hilbert space with the scalar product 〈·, ·〉X and the corresponding
induced norm ‖·‖X =

√
〈·, ·〉X . We denote by X ′ the dual space of X with the

duality product 〈·, ·〉 and with the norm

‖f‖X ′ = sup
06=v∈X

|〈f,v〉|
‖v‖X

for all f ∈X ′.

In the linear case we want to find the solution u∈X of the linear operator equation

Au= f (4.1)

51
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with A :X 7→X ′ and f ∈X ′.

Equivalent to this operator equation is the variational formulation to find u ∈ X,
such that

〈Au,v〉= 〈f,v〉 for all v ∈X. (4.2)
One can easily show that a solution of the variational formulation (4.2) is as well a
solution of the operator equation (4.1), and vice versa.

The bilinear form
a(·, ·) :X×X 7→ R

is induced by the operator A :X 7→X ′ through

a(u,v) := 〈Au,v〉 for all u,v ∈X.

Definition 4.1 (Boundedness). The operator A :X 7→X ′ is called bounded if

‖Av‖X ′ ≤ cA2 ‖v‖X for all v ∈X

with a constant cA2 > 0.

Definition 4.2 (X–ellipticity). The operator A is called X–elliptic if

〈Av,v〉 ≥ cA1 ‖v‖2X for all v ∈X

with a constant cA1 > 0.

Definition 4.3 (Self-adjointness). The operator A is called self-adjoint if

〈Au,v〉= 〈Av,u〉 for all u,v ∈X.

Theorem 4.4 (Lax–Milgram theorem). Let the operator A :X 7→X ′ be bounded and
X–elliptic. Then the operator equation Au= f is uniquely solvable for every f ∈X ′.
For the solution u ∈X it holds

‖u‖X ≤
1
cA1
‖f‖X ′ .

Proof. See, for example, Steinbach [176] or Yosida [190].

Proposition 4.5 (Poincaré–Friedrich’s inequality). Let Ω be a subset of a cube in
R3 with edge length cF . Then

‖v‖L2(Ω) ≤ cF |v|H1(Ω) for all v ∈H1
0 (Ω) :=

{
v ∈H1(Ω) : v = 0 on ∂Ω

}
.

Proof. Cf. Braess [25].
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From Proposition 4.5 it follows immediately that

‖v‖2[H1(Ω)]3 ≤ (1 + c2F )|v|2[H1(Ω)]3 , for all v ∈ [H1
0 (Ω)]3. (4.3)

In the nonlinear case, we write in analogy to (4.1) the nonlinear operator equation

A(u) = f

with the equivalent variational formulation

〈A(u),v〉= 〈f,v〉 for all v ∈X.

For the linearization of the nonlinear variational formulation and the discussion of
existence theorems, we need the following two definitions of derivatives in Banach
spaces:

Definition 4.6 (Fréchet derivative). Let X and Y be Banach spaces and G be an
open subset of X. A function f :G⊂X 7→ Y is called differentiable at ξ ∈G, if there
is a bounded linear operator Λ :X 7→ Y , such that for all h ∈X

f(ξ+h)−f(ξ) = Λh+ r(h) with lim
h→0

r(h)
‖h‖X

= 0.

If the limit exists, then the uniquely defined operator Λ is called the Fréchet derivative
of f at ξ and we denote it as f ′(ξ); e.g., cf. Heuser [75].

Definition 4.7 (Gâteaux derivative). Let X and Y be Banach spaces and G be an
open subset of X. A function f : X 7→ Y is called differentiable at ξ ∈ G in the
direction h ∈X, if there is a bounded and linear operator Λ :X 7→ Y , such that

Λ = lim
t→0

f(ξ+ th)−f(ξ)
t

If the limit exists for every h∈X, then the operator Λ is called the Gâteaux derivative
of f at ξ, and we denote it as Λ =Df(ξ).h= f ′G(ξ); e.g., cf. Tröltzsch [179].

Remark 4.1.1. Every Fréchet differentiable function is Gâteaux differentiable and
it holds

f ′(ξ) = f ′G(ξ).
With this we can calculate the particular Fréchet derivative using the definition of the
Gâteaux derivative; e.g., cf. Tröltzsch [179].

Remark 4.1.2 (Chain rule). Let X,Y and Z be Banach spaces and f :X 7→ Y and
g : V 7→ Z be Fréchet differentiable at ξ and f(ξ), respectively, then

e(ξ) = g(f(ξ))
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is also Fréchet differentiable at ξ and

e′(ξ) = g′(f(ξ))◦f ′(ξ);

e.g. cf. Ioffe and Tihomirov [96].

Lemma 4.8 (Frobenius matrix norm). Let A,B ∈ R3×3. Then

〈A,B〉F := tr(AB>)

defines a scalar product on R3×3 with the induced Frobenius matrix norm

‖A‖F = 〈A,A〉F.

In the following sections, we consider the domain in the current configuration Ωt⊂R3

and the domain in the reference configuration Ω0 ⊂ R3 to be open and bounded
domains with Lipschitz-continuous boundaries ∂Ωt = Γt and ∂Ω0 = Γ0, respectively.

4.2 Variational Formulation for Elasticity Problems

First, we consider the classical formulation of the boundary value problem (3.16):
given sufficiently smooth and continuous input data, find the displacement u such
that

−divσ(u,x) = 0 in Ωt,

with the Dirichlet boundary conditions

u(x) = uD(x) on Γt,D,

and with the Neumann boundary conditions

σ(u,x)n(x) = tN(x) on Γt,N.

Let u be from some suitable space X with u = uD on Γt,D. Integration over Ωt and
multiplying component-wise with a test-function v ∈X with v = 0 on the Dirichlet
boundary Γt,D leads to ∫

Ωt

−divσ(u,x) ·v(x) dx = 0. (4.4)

By using the identity, implied by the product rule,

divσ ·v = div(σv)−σ : gradv,
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and the following formulation of the Gauss’ divergence theorem∫
Ωt

div(σv)dx =
∫
Γt

v ·σn dsx,

equation (4.4) may be written as∫
Ωt

σ(u,x) : gradv(x)dx−
∫
Γt

v(x) ·σn(x) dsx = 0.

The symmetry of σ implies that

σ : gradv = σ : 1
2
(
gradv+ (gradv)>

)
= σ : ε(v).

With this and the fact that v vanishes on the part Γt,D of the boundary we may
formulate the weak form of the boundary-value problem as∫

Ωt

σ(u,x) : ε(v,x)dx−
∫

Γt,N

tN(x) ·v(x) dsx = 0.

Hence, the boundary value problem (3.16) is formally equivalent to the variational
equations

〈At(u),v〉Ωt :=
∫
Ωt

σ(u,x) : ε(v,x)dx =
∫

Γt,N

tN(x) ·v(x) dsx =: 〈F ,v〉Ωt , (4.5)

valid for a smooth enough tensor field σ(u) : Ωt 7→R3×3 and all smooth enough vector
fields v : Ωt 7→ R3, which vanish on Γt,D, see, e.g., [38, Theorem 2.4-1] and [15].

In terms of the reference configuration, the boundary value problem (3.17) is formally
equivalent to the variational equations

〈A0(U),V〉Ω0 :=
∫

Ω0

(FS)(U,X) : GradV(X)dX =
∫

Γ0,N

tN(X) ·V(X) dSX =: 〈F0,V〉Ω0 ,

(4.6)
valid for a smooth enough tensor field S(U) : Ω0 7→ R3×3 and all smooth enough
vector fields V : Ω0 7→ R3 with V = 0 on Γ0,D, see, e.g., [38, Theorem 2.6-1]. Note
that the tensor FS is not necessarily symmetric.

The variational formulation (4.6) can be rewritten using the directional derivative of
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the Green-Lagrange strain tensor E

Σ(U,V) := 1
2
(
Grad>VF(U) + F>(U)GradV

)
= sym

(
F>(U)GradV

)
(4.7)

as
〈A0(U),V〉Ω0 =

∫
Ω0

S(U,X) : Σ(U,V)dX = 〈F0,V〉Ω0 . (4.8)

Remark 4.2.1. The weak forms of the right hand sides for pressure loads, see (3.18)
and (3.19), are computed by

〈F(u),v〉Ωt =−
∫

Γt,N
Pn(x) ·v(x) dsx,

〈F0(U),V〉Ω0 =−
∫

Γ0,N

PJF−>(U)N(X) ·V(X) dSX.

Remark 4.2.2. For a Neumann boundary value problem, i.e. Γ = ΓN, we assume
the following condition of solvability∫

Ω

rk(x)>f(x)dx +
∫
Γ

rk(x)>tN(x)dsx = 0 for all rk ∈R, (4.9)

where rk ∈R are the rigid body modes. In 3D we have

R = span


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
−x2
x1
0

 ,
 0
−x3
x2

 ,
 x3

0
−x1


 ,

which describe rotations and translations of a rigid body.
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4.3 Linear Elasticity

As mentioned before in Section 3.5, in the case of linear elasticity it is justified not
to distinguish between the current and the reference configuration, since we are only
considering small deformations. With Hooke’s Law (3.21)

σ = C : ε, σij =
∑
kl

Cijklεkl, Cijkl = λδijδkl+µ(δikδjl+ δilδjk),

we get the specific variational formulation for linear elasticity, see, e.g. [38, Chap-
ter 6]: find u ∈ [H1(Ω)]3, u = uD on ΓD such that∫

Ω

ε(u,x) : C : ε(v,x)dx−
∫

ΓN

tN(x) ·v(x) dsx = 0 (4.10)

holds for all v ∈ [H1
0 (Ω,ΓD)]3. We write for the bilinear form

a(u,v) =
∫
Ω

3∑
i,j,k,l=1

Cijkl εkl(u,x)εij(v,x)dx =
∫
Ω

C ε(u,x) : ε(v,x)dx, (4.11)

with C the constant elasticity tensor in Voigt notation.

To satisfy the conditions in the Lax–Milgram theorem 4.4 we need the famous Korn
inequalities which were first formulated and named after Arthur Korn [112].

Lemma 4.9 (First Korn inequality). For v ∈ [H1
0 (Ω,ΓD)]3

∫
Ω

3∑
i,j=1

[εij(v,x)]2 dx≥ 1
2 |v|

2
[H1(Ω)]3 .

Lemma 4.10 (Second Korn Inequality). There exists a constant c = c(Ω) > 0 such
that ∫

Ω

3∑
i,j=1

[εij(v,x)]2 dx +‖v‖2[L2(Ω)]3 ≥ c‖v‖
2
[H1(Ω)]3 , for all v ∈ [H1(Ω)]3.

Proof. For proofs of these inequalities compare Hlaváček and Nečas [76, 77], Nitsche
[135], and Steinbach [176].

To fulfill the conditions of Theorem 4.4 (Lax–Milgram) the boundedness of the bi-
linear form (4.11) has to be shown. This is done via the following lemma:
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Lemma 4.11 (Boundedness of the bilinear form). For all u,v ∈ [H1(Ω)]3 it holds

|a(u,v)| ≤ λmax(C) |u|[H1(Ω)]3|v|[H1(Ω)]3 .

Proof. See, for example, Steinbach [176].

To show [H1
0 (Ω,ΓD)]3–ellipticity of the bilinear form (4.11) in the case that Γ = ΓD

the first Korn inequality (Lemma 4.9) is used. For all v ∈ [H1
0 (Ω,ΓD)]3 it holds

a(v,v) =
∫
Ω

C ε(v.x) : ε(v,x)dx≥ λmin(C)
∫
Ω

3∑
i,j=1

[εij(v,x)]2 dx

≥ λmin(C)1
2 |v|

2
[H1(Ω)]3 ≥ λmin(C) 1

2(1 + c2F )‖v‖
2
[H1(Ω)]3 ,

where cF denotes the constant from the Poincaré–Friedrich’s inequality (4.3).

[H1
0 (Ω,ΓD)]3–ellipticity for the mixed boundary value problem is proven using the

second Korn inequality (Lemma 4.10), cf. Steinbach [176].

We have shown boundedness and [H1
0 (Ω)]3–ellipticity for the Dirichlet and the mixed

boundary value problem. With Theorem 4.4 the unique solvability of the linear
elasticity problem follows.

For the Neumann boundary value problem with Γ = ΓN we assume the solvability
conditions (4.9) and note that the solution is only unique up to the rigid body modes.
These can be fixed using suitable scaling conditions. With the space

[H1
∗ (Ω)]3 :=

v ∈ [H1(Ω)]3 :
∫
Ω

rk(x)>v(x)dx= 0 for all rk ∈R


we can show [H1

∗ (Ω)]3–ellipticity and hence unique solvability in [H1
∗ (Ω)]3, see, e.g.,

Steinbach [176].

4.3.1 Almost Incompressible Linear Materials

For almost incompressible materials it can happen that so-called locking effects oc-
cur. This means that the problem becomes very ill-conditioned and the calculated
displacement field u is smaller than expected. For a more detailed exposition of
locking effects the reader is referred to the works of Arnold [5], Babuška and Suri
[11] and Braess [25, Chapter VI, § 4]. How to overcome these numerical difficulties
is discussed in this section.
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Without any loss of generality we can focus on homogeneous boundary conditions
uD = 0. Furthermore, we introduce the spaces

X := [H1
0 (Ω,ΓD)]3, M := L2(Ω). (4.12)

A possibility to prevent locking phenomena and to receive a better conditioned prob-
lem for almost incompressible linear elastic materials is a saddle point formulation
of the boundary value problem. This yields a variational formulation that is similar
to a Stokes problem. The main idea is to bring in a pressure term p which serves as
a Lagrangian multiplier. A drawback of this method will be an increased number of
degrees of freedom in the numerical simulation.

We start from the variational formulation for linear elasticity problems (4.10), which
can be written, using the Lamé coefficients (3.22), as

2µ
∫
Ω

ε(u) : ε(v)dx +λ
∫
Ω

div(u)div(v)dx−
∫

ΓN

tN(x) ·v(x) dsx = 0. (4.13)

We introduce the penalty variable p as

p= λdivu. (4.14)

Note that for the (academic) case of an incompressible material λ goes to infinity.

From (4.13) and the weak form of (4.14), we get the following saddle point problem:
find (u,p) ∈ X ×M, such that

a0(u,v) + b(v,p) = 〈F ,v〉,
b(u, q) − λ−1 c(p,q) = 0, (4.15)

for all test functions v ∈ X and q ∈M and

a0(u,v) =
∫
Ω

2µε(u,x) : ε(v,x)dx,

b(v, q) =
∫
Ω

qdivvdx =−
∫
Ω

v ·gradqdx,

c(p,q) =
∫
Ω

pqdx

The right-hand-side for elastostatics reads, disregarding body forces,

〈F ,v〉=
∫

ΓN

tN(x) ·v(x) dsx.
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For the limiting case λ→∞, i.e. for the rather academic incompressible linear elastic
material, we obtain: find (u,p) ∈ X ×M such that

a0(u,v) + b(v,p) = 〈F ,v〉,
b(u, q) = 0, (4.16)

for all test functions (v, q) ∈ X ×M and with the definitions from above.

Remark 4.3.1. The saddle point problems (4.15) and (4.16) are uniquely solvable,
e.g., cf. [25, Chapter 6, §4].

Remark 4.3.2. For the case of a pure Dirichlet problem, i.e. Γ = ΓD, we replace
the ansatz space for the pressure p, M = L2(Ω) in (4.12), by L2(Ω)/R. This issue is
also known for the Stokes problem, e.g., cf. [25, Chapter 3].
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4.4 Nonlinear Elasticity

In this section, we derive a variational formulation for nonlinear elasticity models.
We present a Newton method suitable for the linearization of the considered problem
and show the linearization procedure for an arbitrary elastic material that is modeled
using a stress in the form (3.23). Here, we follow the descriptions of Holzapfel in [80,
Section 8.4] and [81]. As proposed in these works we will perform the linearization
in the reference configuration, since there we can interchange differentiation and
integration. To get a linearized version of the constitutive equation in the current
configuration we use tools that can be found in Section 3.1. We will also present
the mean dilatation method that is used to treat nearly incompressible nonlinear
materials. In the last part of this section we discuss existence theorems for nonlinear
elasticity problems, following the results of Ball in the late 1970s [13, 14].

4.4.1 Newton’s Method

To obtain solutions of a nonlinear boundary value problem, iterative solution tech-
niques of Newton type are often applied. This leads to a sequence of linearized
problems. A great compendium on Newton’s method is the book of Deuflhard [49].
We start with the nonlinear operator equation

F (x) = 0,

where F :D⊂X 7→ Y for the Banach spaces X and Y . Given a starting guess x0 for
the unknown solution x∗, we obtain, using the technique of successive linearization,
the general Newton method

F ′(xk)∆xk =−F (xk), xk+1 = xk + ∆xk, k = 0,1, . . . (4.17)

Here, F ′ is a derivative defined in Banach spaces, i.e. the Fréchet (Definition 4.6)
or the Gâteaux derivative (Definition 4.7). For the convergence analysis we give the
fundamental Newton–Kantorovich theorem.

Theorem 4.12. Let X and Y be Banach spaces and D ⊂X open and convex. Let
F : D 7→ Y be a continuously Fréchet differentiable operator and let x0 ∈ D be a
starting point such that F ′(x0) is invertible. Given that

‖F ′(x0)−1F (x0)‖ ≤ α and ‖F ′(x0)−1(F ′(y)−F ′(x))‖ ≤ ω0‖y−x‖,

the sequence {xk}, obtained from Newton’s method (4.17) is well-defined and con-
verges to a x∗ with F (x∗) = 0. The convergence is quadratic for h0 := αω0 <

1
2 and

the sequence {xk} stays in the sphere S(x0,(1−
√

1−2h0)/ω0)⊂D.
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Proof. Cf. Deuflhard [49] and the classical work of Kantorovich [101].

For more information on convergence of the Newton method in Banach spaces, see [49,
Section 2.1]. Later we will discuss inexact Newton methods for discretized problems,
see Section 5.2.

4.4.2 Linearization of the Standard Variational Formulation

In this section, we linearize the variational formulation (4.6). As mentioned before,
this is done in the reference configuration since there the integration domain Ω0 is
not dependent on the deformation U and hence we can interchange differentiation
and integration. At first, the loads are considered as independent of the deformation
of the continuum body. Thus, the linearization only affects the term

〈A0(U),V〉Ω0 :=
∫

Ω0

(FS)(U) : Grad(V)dX.

Hence, to apply Newton’s method (4.17), we use the scheme

〈∆U,A′0(Uk)V〉Ω0 = 〈F0,V〉Ω0−〈A0(Uk),V〉Ω0 , Uk+1 = Uk + ∆U, k = 0,1, . . . .

with the Fréchet derivative A′0(Uk). To simplify matters, we make use of Re-
mark 4.1.1 and compute A′0(Uk) as the Gâteaux derivative in direction of the in-
crement ∆U. For better readability we omit the dependencies on the deformation
Uk and denote by (•)′ := D(•).∆U the Gâteaux derivatives. By interchanging dif-
ferentiation and integration we obtain

〈∆U,A′0(Uk)V〉Ω0 =
∫

Ω0

(FS)′ : GradVdX

=
∫

Ω0

(F)′S : GradVdX+
∫

Ω0

F(S)′ : GradVdX.

Using the chain rule we may write for the Gâteaux derivative of the stress tensor S

(S)′ = ∂S
∂C : (C)′ = 2∂S

∂C : 1
2(C)′ = C : 1

2(C)′,

with C the elasticity tensor in the reference configuration and the tensor product
(A.5). For the Gâteaux derivative of the deformation gradient F we obtain with
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definitions (4.7) and (3.2)

DF(U).∆U = lim
τ→∞

I + Grad(U+ τ∆U)− I−Grad(U)
τ

.

Due to the linearity of the gradient we get

DF(U).∆U = lim
τ→∞

τGrad(∆U)
τ

= Grad(∆U). (4.18)

For the Gâteaux derivative of the left Cauchy–Green tensor it holds

C′ = (F>F)′ = (F>)′F + F>F′ = (Grad∆U)>F + F>Grad∆U = 2Σ(U,∆U), (4.19)

where Σ was defined in (4.7).

Hence, the tangent is calculated by

〈∆U,A′0(Uk)V〉Ω0 =
∫

Ω0

S(Uk) : Σ(∆U,V)dX

+
∫

Ω0

Σ(Uk,∆U) : C(Uk) : Σ(Uk,V)dX.

=
∫

Ω0

Grad(∆U)S(Uk) : GradVdX

+
∫

Ω0

F>(Uk)Grad(∆U) : C(Uk) : F>(Uk)GradVdX, (4.20)

using (A.13) and symmetry properties of C, see Remark 3.8.1.

We define the bilinear and the linear form

a′0(∆U,V) := 〈∆U,A′0(Uk)V〉Ω0 , 〈R0,V〉 := 〈F0,V〉Ω0−〈A0(Uk),V〉Ω0 . (4.21)

In each Newton step we have to solve the linearized system:
find ∆U ∈ [H1

0 (Ω0,Γ0,D)]3 such that

a′0(∆U,V) = 〈R0,V〉 (4.22)

holds for all V ∈ [H1
0 (Ω0,Γ0,D)]3.

To gain the formulation of the tangent in spatial quantities we use the properties

dx = J dX, Grad(•) = grad(•)F (4.23)
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and the identity of all appearing vector valued variables in current and reference
configuration, as mentioned in Section 3.1. So we get for the first part of (4.20)∫

Ω0

Grad(∆U)S(Uk) : GradVdX =
∫
Ωt

grad(∆u)FS(uk) : grad(v)FJ−1 dx

=
∫
Ωt

grad(∆u)(J−1FSF>)(uk) : gradvdx

=
∫
Ωt

grad(∆u)σ(uk) : gradvdx.

The second part yields∫
Ω0

F>Grad(∆U) : C(Uk) : F>GradVdX =
∫
Ωt

grad(∆u) : C(uk) : gradvdx.

Here, we use the definition of the forth-order spatial elasticity tensor C, see Defini-
tion 3.14, and its major and minor symmetry properties, see Remark 3.8.1.

In total, the tangent in current configuration is

〈∆u,A′(uk)v〉Ωt =
∫
Ωt

grad(∆u)σ(uk) : gradvdx +
∫
Ωt

grad(∆u) : C(uk) : gradvdx.

Due to the symmetry properties of C this is equivalent to

〈∆u,A′(uk)v〉Ωt =
∫
Ωt

grad(∆u)σ(uk) : gradvdx+
∫
Ωt

ε(∆u) : C(uk) : ε(v)dx. (4.24)

We define the bilinear and the linear form in the current configuration as

a′(∆u,v) := 〈∆u,A′(uk)v〉Ωt , 〈R,v〉 := 〈F ,v〉Ωt−〈A(uk),v〉Ωt . (4.25)

In each Newton step we have to solve the linearized system: find ∆u∈ [H1
0 (Ωt,Γt,D)]3

such that
a′(∆u,v) = 〈R,v〉 (4.26)

holds for all v ∈ [H1
0 (Ωt,Γt,D)]3.
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4.4.3 Linearization of Pressure Loads

Since pressure loads, see (3.18), (3.19) and Remark 4.2.1, are dependent on the
deformation, they have to be considered in the linearization of the variational formu-
lation. One possibility is the direct linearization of the formulation in the reference
configuration (3.19):

〈∆U,F ′0(U)V〉Ω0 :=D〈F0(U),V〉Ω0 .∆U =−
∫

Γ0,N

P [D(JF−>).∆U]N ·V dSX

=−
∫

Γ0,N

P [D(J).∆U]F−>N ·V dSX−
∫

Γ0,N

PJ [D(F−>).∆U]N ·V dSX

Using Corollary A.2, (A.23) and (4.18) we get

D(J).∆U = ∂J

∂F :DF.∆U = JF−> : Grad∆U

and with (A.24) it holds

D(F−>).∆U = ∂F−>

∂F>
:DF>.∆U = ∂F−>

∂F>
: Grad>∆U.

Corollary A.4 and (A.5)1 yield[
∂F−>

∂F>
: Grad>∆U

]
ijkl

=−F−>ik F−>lj
[
Grad>∆U

]
kl

=−
[
F−>Grad>∆U F−>

]
ijkl

and consequently

〈∆U,F ′0(U)V〉Ω0 =
∫

Γ0,N

PJ
[
F−>Grad>∆U− (F−> : Grad∆U) I

]
F−>N ·V dSX.

To avoid assembling this rather complicated integral an alternative approach is a
a parametrization of the boundary surface in the current configuration Γt,N by the
plane Γξ, x = γ(ξ1, ξ2), see Figure 4.1, [24, Section 6.5.2] and [187, Section 3.5]. Then,
the outward unit normal in the current configuration and the infinitesimal surface
element can be expressed as the cross product of two tangential vectors, i.e.,

n =
∂γ
∂ξ1
× ∂γ

∂ξ2∣∣∣ ∂γ∂ξ1
× ∂γ

∂ξ2

∣∣∣ , dsx =
∣∣∣∣∣ ∂γ∂ξ1

× ∂γ

∂ξ2

∣∣∣∣∣ dξ1 dξ2.

Hence, we get for the equations in Remark 4.2.1
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∂γ
∂ξ1

∂γ
∂ξ2

ξ2

ξ1

n

Γt,N

ξ1

ξ2
γ

Γξ

Figure 4.1: Parametrization of the boundary surface in the current configuration Γt,N for
deformation dependent loads.

〈F(u),v〉Ωt =−
∫
Γξ

P

(
∂γ

∂ξ1
× ∂γ

∂ξ2

)
·vdξ1 dξ2. (4.27)

Γξ is independent of the deformation and we compute the the Gâteaux derivative
with respect to the update ∆u

〈∆u,F ′(u)v〉Ωt : =D〈F(u),v〉Ωt .∆u

=−
∫
Γξ

P

(
∂∆u
∂ξ1
× ∂γ

∂ξ2
+ ∂γ

∂ξ1
× ∂∆u

∂ξ2

)
·vdξ1 dξ2, (4.28)

using γ = x = X+u and thus Dγ.∆u = ∆u.

Due to (3.1) we get the same result

〈∆U,F ′0(U)V〉Ω0 : =D〈F0(U),V〉Ω0 .∆U

=−
∫
Γξ

P

(
∂∆U
∂ξ1

× ∂γ

∂ξ2
+ ∂γ

∂ξ1
× ∂∆U

∂ξ2

)
·Vdξ1 dξ2. (4.29)

in the reference configuration. It is obvious that neither (4.28) nor (4.29) give rise
to self-adjoint operators in the sense of Definition 4.3. Hence, the discretization of
these terms would lead to a non-symmetric matrix. For the special case of closed
boundary conditions a self-adjoint expression for pressure loads can be constructed,
see Bonet and Wood [24].



4.4 Nonlinear Elasticity 67

4.4.4 Linearization of the Saddlepoint Formulation

For nearly incompressible materials we compute the linearization of the variational
formulation of the saddle point problem (3.37). Let X and M be the spaces defined
in (4.12). Then, we want to find (U,P ) ∈ X ×M, such that

〈A0,isc(U),V〉Ω0 + 〈A0,vol(U,P ),V〉Ω0 = 〈F0,V〉Ω0 ,
(4.30)

〈B0(U),Q〉Ω0 − κ−1 〈C0(P ),Q〉Ω0 = 0, (4.31)

holds for all test functions (V,Q) ∈ X ×M. The specific expressions in (4.30–4.31)
are

〈A0,isc(U),V〉Ω0 =
∫

Ω0

FSisc(U) : Grad(V)dX, (4.32)

〈A0,vol(U,P ),V〉Ω0 =
∫

Ω0

FSvol(U,P )(U) : Grad(V)dX, (4.33)

〈B0(U),Q〉Ω0 =
∫

Ω0

∂φvol(J(U))
∂J

QdX, (4.34)

〈C0(P ),Q〉Ω0 = 〈P,Q〉Ω0 =
∫

Ω0

PQdX, (4.35)

〈F0,V〉Ω0 =
∫

Γ0,N

tN(X) ·V(X) dSX. (4.36)

and κ is the bulk modulus, see Definition 3.11.

For the linearization we have to perform the Gâteaux derivative of these terms with
respect to ∆U and ∆P to get the Newton scheme

〈∆U,A′0(Uk,P k)V〉Ω0 + 〈∆P,B′0(Uk)V〉Ω0= 〈F0,V〉Ω0−〈A0(Uk,P k),V〉Ω0 ,

〈∆U,B′0(Uk)Q〉Ω0 − κ−1 〈∆P,Q〉Ω0 = 〈P k,Q〉Ω0−〈B0(Uk),Q〉Ω0 ,

with the updates Uk+1 = Uk +∆U and P k+1 = P k +∆P . The first tangential term
is the Gâteaux derivative of (4.32) and (4.33) with respect to ∆U. This is done
analogous to Section 4.4.2 and we get the result

〈∆U,A′0(Uk,P k)V〉Ω0 =
∫

Ω0

Grad(∆U)
(
Sisc(Uk) + Svol(Uk,P k)

)
: GradVdX

+
∫

Ω0

F>(Uk)Grad(∆U) :
(
Cisc(Uk) +Cvol(Uk,P k)

)
: F>(Uk)GradVdX.
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Next, we compute the Gâteaux derivative of (4.32) and (4.33) with respect to ∆P .
This is, using the formulation (4.8) and Svol(U,P ) = P (JC−1)(U), see (3.64),

〈∆P,B′0(Uk)V〉Ω0 =D〈A0,vol(U,P ),V〉Ω0 .∆P =
∫

Ω0

∆P (JC−1)(Uk) : Σ(Uk,V)dX.

The Gâteaux derivative of (4.34) with respect to ∆U is

〈∆U,B′0(Uk)Q〉Ω0 =
∫

Ω0

QD
∂φvol(J(Uk))

∂J
.∆UdX =

∫
Ω0

QDφ′vol(Uk).∆UdX

=
∫

Ω0

Q
∂φ′vol(Uk)

∂C :DC.∆UdX

=
∫

Ω0

Q
∂φ′vol(Uk)

∂C : 2Σ(Uk,∆U)dX

=
∫

Ω0

Q
∂φ′vol(Uk)

∂J

∂J

∂C : 2Σ(Uk,∆U)dX

=
∫

Ω0

Q
∂φ′vol(Uk)

∂J
(JC−1)(Uk) : Σ(Uk,∆Uk)dX

=
∫

Ω0

Q
∂2φvol(J(Uk))

∂J2 (JC−1)(Uk) : Σ(Uk,∆Uk)dX,

using (4.19), (3.26)1, the chain rule and the definition φ′vol := ∂φvol/∂J .

For the choice φvol(J) = 1
2(J−1)2 we have

〈∆U,B′0(Uk)Q〉Ω0 =
∫

Ω0

Q(JC−1)(Uk) : Σ(Uk,∆U)dX,

see Definition 3.11.

Finally, we compute the contribution of (4.35)

〈∆P,Q〉Ω0 =
∫

Ω0

∆P QdX.

Using the push-forward properties (3.14, 4.23) and the defintion of the elasticity
tensor (Definition 3.14) , we obtain the corresponding scheme in the current config-
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uration:

〈∆u,A′(uk,pk)v〉Ωt + 〈∆p,B′(uk)v〉Ωt = 〈F ,v〉Ωt−〈A(uk,pk),v〉Ωt
〈∆u,B′(uk)q〉Ωt − κ−1 〈∆p,q〉Ωt = 〈pk, q〉Ωt−〈B(uk), q〉Ωt , (4.37)

with the updates uk+1 = uk + ∆u and pk+1 = pk + ∆p.

The specific terms in (4.37) are

〈∆u,A′(uk,pk)v〉Ωt =
∫
Ωt

grad(∆u)
(
σisc(uk) +σvol(pk)

)
: gradvdx

+
∫
Ωt

grad(∆u) :
(
Cisc(uk) +Cvol(pk)

)
: gradvdx,

〈∆p,B′(uk)v〉Ωt =
∫
Ωt

∆p I : ε(v)dx,

〈∆u,B′(uk)q〉Ωt =
∫
Ωt

qI : ε(∆u)dx,

〈∆p,q〉Ωt =
∫
Ωt

∆pqdx.

For pressure loads we have additional terms according to Section 4.4.3.

Remark 4.4.1. It is obvious that we can find a starting point u0 that satisfies the
requirements of Theorem 4.12 for the derivative of the variational formulations in
Sections 4.4.2 and 4.4.4. This is due to the properties of the strain-energy function
described in Remark 3.6.4 (Normalization Conditions). A possible choice would be
the solution of the linear elasticity problem.

4.4.5 On the Solvability of the Linearized Equations

In this section we analyze the solvability of the linearized variational formulations as
described in Section 4.4.2 and Section 4.4.4.

Remark 4.4.2 (Self-adjointness). The operators A′0(Uk) and A′(uk) in Eqs. (4.20)
and (4.24) are self-adjoint. This is due to the symmetry properties of the elasticity
tensor, compare to Remark 3.8.1, and the symmetry of the stress tensors S and σ.

In the following, we show boundedness and ellipticity of the bilinear form a′(∆u,v),
defined in (4.25). Since the formulations in the reference and the current configura-
tion are equivalent, similar estimates also hold for a′0(∆U,V), defined in (4.21).
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Lemma 4.13 (Boundedness of the bilinear form). For a sufficiently regular domain
Ω and for sufficiently smooth ∆u,v ∈ [H1(Ω)]3 it holds

|a′(∆u,v)| ≤ (cg2 + cm2 ) |∆u|[H1(Ω)]3 |v|[H1(Ω)]3 ,

with positive constants cg2 and cm2 .

Proof. We show the boundedness of (4.24)

a′(∆u,v) =
∫
Ω

grad(∆u)σ(uk) : gradvdx +
∫
Ω

ε(∆u) : C(uk) : ε(v)dx.

For a sufficiently regular domain Ω and sufficiently smooth uk the values σ(uk) and
C(uk) may be treated as finite-valued constants within a Newton step. Hence, with
the boundedness of the bilinear form of linear elasticity, cf. Lemma 4.11, and the
boundedness of the vectorial potential equation [176], it follows

|a′(∆u,v)| ≤
∣∣∣∣∣∣
∫
Ω

grad(∆u)σ(uk) : gradvdx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
Ω

ε(∆u) : C(uk) : ε(v)dx

∣∣∣∣∣∣
≤ 3‖σ‖L∞ |∆u|[H1(Ω)]3 |v|[H1(Ω)]3 + |λmax(C)||∆u|[H1(Ω)]3|v|[H1(Ω)]3 ,

where ‖σ‖L∞ := maxi,j=1,2,3|σij(uk)| and λmax(C) is the largest eigenvalue of C(uk)
which is the elasticity tensor C(uk) in Voigt notation.

Due to the equivalence of the standard and the decoupled formulation, we get the
same result for the decoupled formulation with σ = pI +σisc and C=Cvol+Cisc.

Note that the regularity conditions of the previous Lemma could be very restrictive,
see also [38, 182].

We know that the stress tensor σ and the elasticity tensor C in Voigt notation, cf.
Remark 3.8.2, are both symmetric.

Remark 4.4.3. The eigenvalues of σ are called principal stresses and may be cal-
culated by

σi = J−1λi
∂Ψ
∂λi

, for i= 1,2,3,

with Ψ(C) = Ψ(λ1,λ2,λ3) the strain energy function and λi> 0 the principal stretches,
cf. Cor. 3.5.



4.4 Nonlinear Elasticity 71

Then we get, using results of Section 4.3, for all v ∈ [H1
0 (Ω)]3

a′(v,v)≥ λmin(σ(uk))
3∑

i,j=1

∫
Ω

[
∂

∂xj
vi(x)

]2
dx +λmin(C) 1

2(1 + c2F )‖v‖
2
[H1(Ω)]3

= λmin(σ(uk))|v|2[H1(Ω)]3 +λmin(C) 1
2(1 + c2F )‖v‖

2
[H1(Ω)]3

≥ 1
2(1 + c2F )(2λmin(σ(uk)) +λmin(C))‖v‖2[H1(Ω)]3

= 1
2(1 + c2F )(2 min

i=1,2,3
(σi)) +λmin(C))‖v‖2[H1(Ω)]3

where cF denotes the constant from the Poincaré–Friedrich’s inequality (4.3) and σi
are the principal stresses of σ(uk). With the normalization conditions for the strain-
energy function, cf. Remark 3.6.4, and the positive definiteness of the elasticity
tensor, cf. Remark 3.8.3, we can state that λmin(C)> 0 and

a′(v,v)≥ 1
2(1 + c2F )(2 min

i=1,2,3
(σi))‖v‖2[H1(Ω)]3 = c‖v‖2[H1(Ω)]3 .

Given that c > 0, i.e. σmin := mini=1,2,3(σi) > 0, we obtain [H1
0 (Ω,ΓD)]3–ellipticity

of the bilinear form for the Dirichlet and the mixed boundary value problem, given
the strain-energy function fulfills the normalization conditions and is convex, cf.
Section 4.4.8.

Note that σmin > 0 is only fulfilled for specific classes of (convex) strain-energy func-
tions and deformations, see 4.4.6 and Remark 4.4.3. See also the books [38, 182].

Similar to Section 4.3, we can show [H1
∗ (Ω)]3–ellipticity for the Neumann case.

With these ellipticity results and Lemma 4.13 the unique solvability of the linearized
elasticity equations in the appropriate spaces follows.

4.4.6 Convexity concepts

In the following, we will introduce convexity concepts for vector valued functions.

Definition 4.14. Let f : Rm×n 7→ R a function.

1. The function f is said to be convex if

f(λA + (1−λ)B)≤ λf(A) + (1−λ)f(B)

for all A,B ∈ Rm×n, λ ∈ [0,1].
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2. The function f is said to be polyconvex if there exists F : Rτ(n,m) 7→ R convex,
such that

f(A) = F (T (A)).

Here, T : Rm×n 7→ Rτ(n,m) is defined such that

T (A) = (A,adj2 A, . . . ,adjmin{m,n}A)

where adjsA, 2≤ s≤min{n,m}, is the matrix of all s×s minors of the matrix
A. Furthermore

τ(n,m) =
min{n,m}∑

s=1

(
m

s

)(
n

s

)
.

3. The function f is said to be quasiconvex if it is Borel measurable and locally
bounded and satisfies

f(A)≤ 1
measD

∫
D

f(A +∇ϕ(x))dx

for all open and bounded sets D ⊂ Rn, for all A ∈ Rm×n and for all ϕ ∈
W 1,∞

0 (D;Rm).

4. The function f is said to be rank-one convex if

f(λA + (1−λ)B)≤ λf(A) + (1−λ)f(B)

for every λ ∈ [0,1], A,B ∈ Rm×n with rank(A−B)≤ 1.

Theorem 4.15 (Connection of the convexity concepts). Let f : Rm×n 7→ R be a
function.

1. The convexity concepts are linked by the implications

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ frank-one convex

The converse implications are in general not true.

2. If min{m,n}= 1, then all of the convexity concepts are equivalent.

3. If f ∈ C2(Rm×n), then rank one convexity is equivalent to the following state-
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ment, often called ellipticity or Legendre–Hadamard condition
m∑

i,j=1

n∑
α,β

∂2f(A)
∂Ai,α∂Aj,β

λiλjµαµβ ≥ 0

for all λ ∈ Rm, µ ∈ Rn and A ∈ Rm×n.

Proof. Cf. [43, Theorem 5.3].

Example 4.1. Examples to illustrate the convexity prinicples:

1. Let A ∈ R2×2. Then the function det(A) is polyconvex, but not convex.

2. Let M ∈Rm×m be symmetric, A ∈Rm×n and 〈., .〉F denote the Frobenius inner
product. Then, the function

f(A) = 〈MA,A〉F.

is convex if and only if f(A)≥ 0 for every A∈Rm×n, and f is rank one convex
if and only if f(a⊗b)≥ 0 for every a ∈ Rm,b ∈ Rn.

Subsequently, we denote by DAf(·).H the Gâteaux derivative with respect to A in
the direction of H.

Lemma 4.16. Let K be a convex set and let f :K 7→ R be two times differentiable.
Then the following statements are equivalent.

(i) f is convex
(ii) D2

Af(A).(H,H)≥ 0 for all A ∈K and for all H ∈ span(K),

where span(K) is the linear span (also called the linear hull) of K.

Proof. See [155, p. 27].

It is easy to see, using the definition of the derivative of a second-order tensor val-
ued function (A.20), that the condition in Lemma 4.16 implies Legendre Hadamard
ellipticity (see Theorem 4.153), cf. [18, p. 6067].

In the following, we denote by PSym(3) the set of all real, positive definite and
symmetric 3× 3 matrices. Likewise is PSym0(3) the set of all real, positive semi-
definite and symmetric 3×3 matrices.
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Remark 4.4.4. Let K be a convex set. To show that Ψ(C) : K 7→ R is convex it is
not sufficient to assume

D2
CΨ(C).(H,H)≥ 0 for all C ∈K and for all H ∈K.

A counterexample is Ψ : PSym(3) 7→ R,Ψ(C) = det(C) with the convex cone K =
PSym(3) where

D2
CΨ(C).(H,H) = 2〈C,det(H)H−1〉 ≥ 0 for all C,H ∈ PSym,

albeit that Ψ(C) is not convex as a function of C.

Proof. Follows from the series expansion

det(C + H) = det(C) + det(C)tr(HC−1) + det(H)tr(H−1C) + det(H)

and basic properties of positive definite matrices, see, e.g., [134, Chapter 11]. For
the non-convexity of det(C) see Example 4.1.

Lemma 4.17 (Convexity in R3×3 and PSym(3)). Let C ∈ R3×3 be positive definite
and symmetric, i.e. C ∈ PSym(3) and Ψ : PSym(3) 7→ R. Let

D2
CΨ(C).(H,H)≥ 0 and (4.38)

be for all H ∈ Sym(3). Then the function

W : R3×3 7→ R, W (F) := Ψ(F>F) = Ψ(C)

is locally convex. If additionally

DCΨ(C) = ∂Ψ(C)
∂C ∈ PSym0(3), (4.39)

then the function W is convex.

Proof. Note that the right Cauchy–Green tensor C is positive definite, see (3.3). The
proof follows from span(PSym) = Sym and basic properties of the scalar product,
e.g., see Schröder and Neff [164].

Lemma 4.18. Let W be strongly elliptic, i.e. strongly rank-one convex. Then the
Baker–Ericksen inequalities are satisfied. These conditions guarantee a plausible
physical behavior of the material. For more information see Baker and Ericksen
[12] and Marsden and Hughes [121].



4.4 Nonlinear Elasticity 75

4.4.7 Existence Theorems in Nonlinear Elasticity

In this section we will give existence theorems for nonlinear elasticity problems using
convexity concepts. Here, we follow the fundamental results of Ball [13, 14] and the
monographs of Ciarlet [38] and Dacorogna [42, 43].

To prove the existence of a solution for nonlinear elasticity problems we first have to
introduce some tools from variational calculus.

Definition 4.19 (Lower semicontinuity). A functional I : X 7→ R∪{∞} is said to
be lower semicontinuous in a Banach space X, if for every sequence un→ u∗ in X
it holds that

liminf
n→∞ I(un)≥ I(u∗).

Definition 4.20 (Weak lower semicontinuity). A functional I : X 7→ R∪ {∞} is
said to be weakly lower semicontinuous in a Banach space X, if for every sequence
un⇀u∗ in X it holds that

liminf
n→∞ I(un)≥ I(u∗).

Definition 4.21 (Coercivity). A functional I : X 7→ R∪{∞} is called coercive in
a Banach space X, if for every sequence un ⊂ X with ‖un‖X →∞ it holds that
I(un)→∞.

With these definitions we can state the fundamental theorem:

Theorem 4.22. Let X be a reflexive Banach space and let the functional I : X 7→
R∪{∞} be weakly lower semicontinuous and coercive over X. Assume that there
exists ũ ∈X with I(ũ)<∞, then the minimization problem

I(u) = inf{I(v) : v ∈X}

has at least one solution u∗ ∈X.

Proof. This theorem is due to Meyers [126] and Morrey [130, 131]. For the proof and
more information, e.g., see [43, Chapter 8].

This theorem allows us to show the existence of a solution for minimization problems
if we have weakly lower semicontinuous functionals I. Since this rather abstract
concept is hard to show for concrete examples, we will give a proposition which links
the convexity principle, see Section 4.4.6, with weak lower semicontinuity:
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Proposition 4.23. Let Ω ⊂ R3 be a bounded open set and let f : R3×3 7→ [0,∞] be
quasiconvex and satisfying the following growth condition

−α(1 + |ξ|)≤ f(ξ)≤ α(1 + |ξ|2) for every ξ ∈ R3×3

with α≥ 0. Then

I(u) :=
∫
Ω

f(∇u)dx

is weakly lower semicontinuous in [H1(Ω)]3.

Proof. See, e.g., [43, Theorems 8.4 and 8.11].

To apply the above mentioned theorems to the case of nonlinear elasticity we have
to reformulate the equilibrium equations as a minimization problem.

Let Ω0 ⊂R3 be a domain with a Lipschitz boundary ∂Ω0 = Γ0,D∪Γ0,N as considered
in Section 3.4. In the following, we restrict ourselves to the case of vanishing body
forces b = 0. Note that the existence results also hold for sufficiently regular b 6= 0.

We define the functional

I(U,X) :=
∫

Ω0

W (F,X)dX−
∫

Γ0,N

tN(U,X)dSX, (4.40)

where W (F,X) is a strain-energy function and tN(X) is a surface traction on Γ0,N.
Now we consider the minimization problem

inf{I(U) : U ∈H(Ω0)}, (4.41)

with the space

H(Ω0) = [H1
UD(Ω0)]3 :=

{
U ∈H1(Ω0,R3) : U(X) = UD(X) on Γ0,D

}
.

Note that we have detF> 0 for the considered elasticity problems, see Chapter 3.
Proposition 4.24. Let U∗ be sufficiently regular and a solution of (4.41). Let the
strain-energy function W be twice continuously differentiable, then U∗ satisfies the
weak system of the equilibrium equations (4.6)∫

Ω0

FS(U∗,X) : GradV(X)dX−
∫

Γ0,N

tN(U∗,X) ·V(X)dSX = 0,

for all V(X) ∈ [H1
0 (Ω0)]3.
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Proof. We show the equivalence of the minimization problem and the weak system
of the equilibrium equations by using the first variation of I(U), i.e.

φ(s) := I(U∗+ sV)

for an arbitrary V ∈ [H1
0 (Ω0)]3. I(U∗) = 0 is fulfilled if φ(s) has a local extremal

value at s= 0. Hence, we calculate the stationary point of the first variation, which
yields

∇sI(U∗+ sV)|s=0
!= 0. (4.42)

The chain rule yields

∇sI(U∗+ sV) =
∫

Ω0

∂W (F)
∂F (U∗+ sV) : ∂F(U∗+ sV)

∂s
dX

−
∫

Γ0,N

tN(U∗+ sV) ·VdSX.

Due to the linearity of the gradient we get

∇sI(U∗+ sV)|s=0 =
∫

Ω0

∂W (F)
∂F (U∗) : GradVdX−

∫
Γ0,N

tN(U∗) ·VdSX,

With (4.42), Theorem 3.8 and (3.14) we get the desired result.

Remark 4.4.5. Since the formulation of the weak form of the equilibrium equa-
tions in the reference and the current configuration are equivalent, a similar result to
Proposition 4.24 is also valid for∫

Ωt

σ(u∗,x) : ε(v,x)dx−
∫

Γt,N

tN(x) ·v(x)dsx = 0,

with u∗ ∈H(Ωt) and v ∈ [H1
0 (Ωt)]3.

Remark 4.4.6. A similar result to Proposition 4.24 holds also for incompressible and
nearly incompressible elasticity models as described in Section 3.7 and Section 5.1.4,
cf. [42, Section A.1.2].

Hence, we have to show the polyconvexity of the strain-energy function W (F), which
is used to model the elastic material. Polyconvex W (F) yield a weakly lower semi-
continuous functional I(U), see Proposition 4.23 and Eq. (4.40). The minimization
problem to find the infimum of I(U) with U ∈ H is equivalent to the weak form
of the equilibrium equations, cf. Proposition 4.24. With Theorem 4.22 we get the



78 4 Variational Formulation

existence of a solution. To summarize we fomulate the following theorem, known as
John Ball’s existence result.

Theorem 4.25 (John Ball’s Existence Result). Let Ω ⊂ R3 be a bounded Lipschitz
domain. Let the strain energy function W :R3×3 7→ [0,∞] be polyconvex, coercive and

lim
detF→0

W (F,x) = +∞.

Let the traction force tN(x) be such that the linear form 〈f ,v〉 is well defined and
continuous. Let the Dirichlet boundary conditions uD(x) : Γ0 7→ R3 be a measurable
function on ΓD 6= ∅ such that

H =
{
u ∈H1(Ω,R3) : u(x) = uD(x) on ΓD and detF> 0

}
6= ∅.

Let there exist ũ ∈H such that I(ũ)<∞, with

I(u) =
∫
Ω

W (F,x)dx−
∫

ΓN

tN(u,x)dsx.

Then there exists at least one u∗ ∈H which satisfies

I(u∗)≤ I(u) for all u ∈H

and hence solves the equilibrium equations.

Proof. Following [13, Theorems 7.3 and 7.6]. For the full proof see , e.g., [38, Sec-
tion 7.7] and [42, Section A.1].

Remark 4.4.7. The coercivity and the assumption W (F,x)→ +∞ for detF→ 0
reflect the property that large deformations must accompany large strains.

Remark 4.4.8. The linear form 〈f ,v〉 is well defined and continuous for a traction
force tN ∈H−1/2(ΓN) and v ∈ [H1

0 (Ω)]3.

Remark 4.4.9. It is worth to mention that the solution is not necessarily unique.
Physical examples of non-uniqueness one may find, e.g., in [38, Section 5.8].
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4.4.8 Convexity of the Specific Nonlinear Elasticity Models

A large class of materials are the so-called Ogden materials, see Section 3.10.1. A
subclass of Ogden materials are Mooney–Rivlin (3.44) and neo–Hookean materials
(3.45).

Remark 4.4.10. Ogden material models give rise to a polyconvex stored energy
function W and in the case of neo–Hookean materials this function is even convex
[43].

Lemma 4.26. The strain-energy function for the artery model

Ψ(C) = c

2(I1−3) + k1
2k2

∑
i=4,6

{
exp[k2(Ii−1)2]−1

}
,

see Section 3.11 is convex if all involved constants are positive and I4, I6 > 1. The
strain-energy function for the myocardium model

Ψ(C) = a

2b exp[b(I1−3)] +
∑
i=f,s

ai
2bi

{
exp[bi(I4i−1)2]−1

}
+ afs

2bfs

[
exp(bfsI2

8fs)−1
]
,

see Section 3.12, is locally convex if all involved constants are positive and I4f , I4s > 1.

Proof. The convexity of the strain-energy function follows if we can show the re-
quirements of Lemma 4.17. Since the sum of convex functions remains convex, we
show the two constraints (4.38) and (4.39) for each summand in the strain-energy
function Ψ(C). As one can easily see later, a strict inequality cannot be achived as
H is arbitrary. For the convexity of the isotropic part of the artery model, which
is nothing else than the neo–Hooke model, cf. 4.4.10. For the isotropic part of the
myocardium model we have, using the chain rule, the first Fréchet derivative

DC

(
a

2b exp[b(I1(C)−3)]
)

= a

2 exp[b(I1(C)−3)]DC I1(C), (4.43)

with
DC I1(C) =DC tr(C) = I.

Hence, the requirement (4.39) in Lemma 4.17 holds for a≥ 0. The second Gâteaux
derivative is, using (4.43)

D2
C

(
a

2b exp[b(I1(C)−3)]
)
.(H,H) = ab

2 exp[b(I1(C)−3)](DCI1(C).H)2.
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With I1(C) = tr(C) and the definition of the Gâteaux derivative 4.7 we get

D2
C

(
a

2b exp[b(I1(C)−3)]
)
.(H,H) = ab

2 exp[b(I1(C)−3)](trH)2

which has to hold for all H. Hence, we require that a≥ 0 and b≥ 0. Note that this
holds by definition, see (3.57).

The terms corresponding to stretches in fiber directions have the structure

ψ(C) := c1
2c2

{
exp[c2(I(C,a)−1)2]−1

}
,

where c1, c2 are constants and a ∈ R3 is a constant vector, i.e a fiber direction. The
first Fréchet derivative of this exponential function yields

DCψ(C) = c1 exp[c2(I(C,a)−1)2] (I(C,a)−1)DCI(C,a). (4.44)

With Lemma A.2 we can write the invariants I4, I6, I4s and I4f in the form I(C,a) =
tr(C(a⊗a)) and we obtain, using (A.15), (A.26) and Corollary A.1,

DCI(C,a) = a⊗a

which is a symmetric and positive semi-definite 3×3 matrix. Hence, we require that
c1 > 0 and I(C,a) ≥ 1 to fulfill (4.39). The latter holds since the anisotropic parts
only contribute given a stretch in fiber direction, i.e. the corresponding invariants
are larger than one; cf. Eqs. (3.55), (3.58) and (3.59). Using (4.44) we get for the
second Gâteaux derivative

D2
Cψ(C).(H,H) = c1 exp[c2(I(C,a)−1)2]

{
2c2(I(C,a)−1)2 (DCI(C,a).H)2

+(DCI(C,a).H)2
}
.

Thus, (4.38) holds for c1 ≥ 0 and c2 ≥ 0. The requirement that all constants, i.e. k1,
k2, af , bf , as and bs, are positive, fits with the histology of the biological materials, cf.
Eqs. (3.50), (3.58) and (3.59). Hence, we have shown convexity of the strain-energy
function for the artery model.

To show local convexity of the myocardium model we first compute the Fréchet
derivative of the orthotropic part is using I8fs = I8fs(C, f0,s0)

DC
afs
2bfs

{
exp(bfsI2

8fs)−1
}

= afs exp(bfsI2
8fs)I8fsDCI8fs (4.45)

= afs exp(bfsI2
8fs)I8fs

1
2(f0⊗ s0 + f0⊗ s0). (4.46)
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Note that this term is not necessarily positive definite and thus does not fulfill the
constraint (4.39). This means that we cannot show convexity of the orthotropic part.
Using (4.45) we get for the second Gâteaux derivative

D2
C

(
afs
2bfs

{
exp(bfsI2

8fs)−1
})

.(H,H) = afs exp(bfsI2
8fs)

(
2bfsI2

8fs(DCI8fs.H)2

+(DCI8fs.H)2
)
,

which is positive for afs ≥ 0 and bfs ≥ 0. So we can at least show (4.39) which gives
us the local convexity of the strain-energy of the myocardium model.

Lemma 4.27. For nearly incompressible materials a decomposition in a volume de-
serving and a volume dilating part, see Section 3.7.1, is used. Given that the strain-
energy function W (F) is polyconvex we can state that the decomposed strain-energy
function

W (F) =W

(
F

det(F)1/3

)
+U(det(F))

is polyconvex for all models considered in this work.

Proof. See Charrier et al. [36] or Hartmann and Neff [73].

It is easy to see that for U = 0 it holds that C = I and hence Ψ(I) <∞. Using
Definition 4.40 we get I(0)<∞ for a bounded Lipschitz domain Ω. Thus, we fulfill
the requirements of Theorem 4.25 and obtain the existence of a solution for the
system of equations arising from the considered isotropic models and the artery.
With Remark 4.4.6 and 4.27 we have the same for the incompressible and nearly
incompressible case.

For the myocardium model we have a loss of convexity and ellipticity in the sense
of Lemma 4.18. This loss can cause instabilities and failure modes, e.g., fiber de-
bonding, weak surface discontinuities and fiber kinking or splitting, see Merodio and
Ogden [124, 125]. Note that these failures might be physically correct (for extreme
displacements) and within a physiological range of deformation the ellipticity condi-
tion may even hold. Nonetheless, ellipticity for a reasonable range of deformation is
not enough to establish an existence theorem for the myocardium model.





5 DISCRETIZATION

In almost every practical application an exact solution of the variational formulations
discussed in Chapter 4 is not possible. Hence, we use discretization techniques, in
particular the finite element method (FEM), see Section 5.1, as powerful numerical
tools to find an approximate solution of the equilibrium equations.

To apply an inexact Newton method, see Section 5.2, we take a closer look at the dis-
cretization of the linearized variational formulations arising from nonlinear elasticity
and the assembling of the corresponding stiffness matrices, see Section 5.3.

The resulting series of linear systems of equations may contain, especially for practical
applications, a very high number of degrees of freedom. Hence, we need elaborate
algorithms to solve such a system. In Section 5.6 we outline the most common direct
and iterative solution methods.

5.1 Galerkin Discretizations and Finite Element Method

We consider the bounded and nonlinear operator A(u), satisfying the variational
formulation (4.5):

u ∈X : 〈A(u),v〉= 〈f ,v〉 for all v ∈X.

For M ∈ N let
XM := span{ϕk}Mk=1 ⊂X

be a conforming ansatz space. With

uM :=
M∑
k=1

ukϕk ∈XM

we formulate an approximate solution of the Galerkin–Bubnov variational formula-
tion to find

uM ∈XM : 〈A(uM ),vM 〉= 〈f ,vM 〉 for all vM ∈XM .

83
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For stability and error estimates of this approximation we refer to the following Céa’s
Lemma and the Lemmas of Strang. For more information see the book of Steinbach
[176].

Theorem 5.1 (Céa’s Lemma). Let a : X ×X ′ → R be a bounded and X–elliptic
bilinear form. Moreover let f be a bounded linear form in X and Xh ⊂X be a finite
dimensional ansatz space. Then the discrete version of the variational formulation

a(uh,vh) = 〈f ,vh〉 for all vh ∈Xh

is uniquely solvable. For the discrete solution uh ∈Xh the following stability estimate

‖uh‖X ≤
1
cA1
‖f‖X ′

and the error estimate

‖u−uh‖X ≤
cA2
cA1

inf
vh∈Xh

‖u−vh‖X

hold.

Proof. See for example [176, Section 8.1].

For the nonlinear case we may apply Céa’s Lemma to the discrete version of the
linearized bilinear form a′(δuh,v) with δuh ∈X the approximation of ∆u, see Sec-
tions 4.4.5 and 5.2.

To find an approximate solution of the variational problem (4.5), we will use the fi-
nite element method (FEM). This numerical technique goes about one hundred years
back to Galerkin [61], Ritz [148], and Schellbach [159]. For this we will construct
finite-dimensional ansatz spaces Vh, typically containing piecewise polynomial func-
tions of degree k, and then find an approximate solution uh ∈ Vh. In the following,
the parameter h indicates that we have a finite-dimensional approximation. Under
appropriate assumptions, i.e. the regularity of the solution, we can estimate the
approximation error by

inf
vh∈Vh

‖u∗−vh‖[H1(Ω)]3 ≤ chk|u∗|[Hk+1(Ω)]3 ,

with u∗ the unique exact solution of the variational formulation. Using the Aubin–
Nitsche Trick [176, Section 11.1], this approximation error can be formulated in the
L2 space:

inf
vh∈Vh

‖u∗−vh‖[L2(Ω)]3 ≤ chk+1|u∗|[Hk+1(Ω)]3 .



5.1 Galerkin Discretizations and Finite Element Method 85

For further information on the finite element method the interested reader is referred
to the classical works of Ciarlet [39] and Zienkiewicz [192]. From the almost over-
whelming amount of more recent publications we want to mention the monographs
by Braess [25], Brenner and Scott [29], Jung and Langer [100], and Steinbach [176].

For the pure displacement problem in elastostatics we have as starting point for the
finite element formulation the primal variational problem (4.5). In using Galerkin’s
principle of discretization we choose an appropriate finite-dimensional subspace Vh ⊂
[H1

D(Ω,ΓD)]3. Hence, we want to compute the approximate solution uh ∈ Vh of the
finite-dimensional variational problem

a(uh,vh) = 〈F ,vh〉, (5.1)

for the finite-dimensional test functions vh ∈ V 0
h ⊂ [H1

0 (Ω,ΓD)]3. In the nonlinear
case, see (4.22) and (4.26), we want to solve

a′(δuh,vh) = 〈R,vh〉

in each Newton step for δuh ∈ Vh and vh ∈ V 0
h .

Inhomogeneous and homogeneous Dirichlet boundary conditions are included us-
ing standard homogenization techniques. For more information, e.g., cf. [100, Sec-
tion 4.5].

5.1.1 Discretization in Finite Elements

Let Ω⊂R3 be a bounded domain which is subdivided into N finite elements τl such
that

Ωh =
N⋃
l=1

τ l , with Ωh→ Ω , for h→ 0. (5.2)

Our choice for the finite elements in R3 are polyhedral tetrahedrons and hexahedrons.
To approximate the fine structures on the surface of arterial and cardiac tissues a
discretization in tetrahedrons shows the best results.

For each finite element τl we define the volume ∆l and the local mesh size hl as

∆l :=
∫
τl

dx and hl := ∆1/3
l .

With this we can define the global mesh size as

h := max
l=1,··· ,N

hl.
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All elements of our discretized mesh can be derived from one specific element the
so-called reference element τ . In the case of tetrahedrons the reference element is
given through

τ =
{
ξ ∈ R3 : 0≤ ξ1 ≤ 1,0≤ ξ2 ≤ 1− ξ1,0≤ ξ3 ≤ 1− ξ1− ξ2

}
.

For an arbitrary x ∈ τl we then have the following representation

x = xl1 +
3∑
i=1
ξ(xli+1−xl1) = xl1 +Jlξ for ξ ∈ τ

with the Jacobian matrix

Jl =

xl2,1−xl1,1 xl3,1−xl1,1 xl4,1−xl1,1
xl2,2−xl1,2 xl3,2−xl1,2 xl4,2−xl1,2
xl2,3−xl1,3 xl3,3−xl1,3 xl4,3−xl1,3

=


∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

 . (5.3)

With a simple calculation we get for the volume

∆l = 1
6 |detJl| .

For an arbitrary function v(x) we then have the representation

v(x) = v(xl1 +Jlξ) = ṽl(ξ) for ξ ∈ τ .

and for the gradient

∇xv(x) = J−>l ∇ξṽl(ξ) , ∇ξṽl(ξ) = J>l ∇xv(x).

5.1.2 Shape Functions

We now define ansatz spaces for the discretization Ωh, (5.2). These spaces are con-
structed by piecewise polynomial functions, called shape functions. They are locally
defined on the specific finite elements τl.

A simple possibility to discretize the variational formulations described in Section 4.2
are to use piecewise linear shape functions for each component of the displacement
field u. Unless otherwise indicated, we will use this kind of shape functions for
our numerical simulations. The other type that is used are piecewise quadratic
shape functions, which show advantages for the simulation of nearly incompressible
materials.
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Example 5.1. For tetrahedrons the linear shape functions for the displacement field
are given with

ϕ1
1(ξ) := 1− ξ1− ξ2− ξ3, ϕ

1
2(ξ) := ξ1, ϕ

1
3(ξ) := ξ2, ϕ

1
4(ξ) := ξ3, for ξ ∈ τ.

Let τl be an arbitrary tetrahedral finite element with the nodes xl1 ,xl2 ,xl3 ,xl4. Then
we have for a linear function, given in τl, the following representation:

vh(x) = vh(xl1 +Jlξ) =
4∑

k=1
vlkϕ

1
k(ξ) for x ∈ τl,ξ ∈ τ ,

with coefficients vlk .

See Jung and Langer [100] or Braess [25] for higher-order shape functions and shape
functions on many different elements.

From the discrete variational formulation (5.1) we get with the basis representation
for the wanted solution vector uh =∑

iuiϕi the linear system of equations

Khu= b, (5.4)

where u ∈Rm is the vector consisting of the coefficients ui, Kh ∈Rm×m the stiffness
matrix, b ∈ Rm the right hand side vector and m the number of degrees of freedom.
The entries of the stiffness matrix are determined by Kh = [a(ϕj ,ϕi)]i,j∈ωh with ωh
the node-indices of nodes on Ω∪ΓN. The right hand side vector by b= [〈f ,ϕi〉]i∈ωh .
For the nonlinear case see (5.9).

5.1.3 Discretization of the Saddle Point Formulation

In this section we will sketch two possible choices of finite elements that can be used
to treat saddle point problems (cf. 4.3.1). For additional information and other finite
elements that may be of interest we refer to Braess [25] and Crouzeix and Raviart
[41].

Let Xh and Mh the discrete version of the spaces defined in (4.12).

Qk−P0 element For this hexahedral element we use ansatz functions of polyno-
mial degree k ≥ 1 for the displacement u and piecewise constant functions for the
pressure p, i.e.

Xh := {v ∈ C0(Ω)3 : v|τ ∈Qk for τ ∈ Ωh,k ≥ 1},
Mh := {q ∈ L2(Ω) : q|τ ∈ P0 for τ ∈ Ωh}.
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Concerning the saddle point system arising from nearly incompressible linear elas-
ticity this element with k = 1 does not fulfill the inf-sup-condition, also called the
LBB-condition, from Ladyzhenskaya [113], Babuška [10] and Brezzi [30]. Nonethe-
less, it can be stabilized, see [103, 104].

Pk−P0 element: the tetrahedral counterpart of the Qk−P0 element.

For the stability of the Q2−P0 element and the P2−P0 element for the Stokes
problem and the nearly incompressible linear elasticity problem in 2D compare to
Boffi et al. [22, 23]. To the best of our knowledge no stability proofs for nonlinear
elasticity are yet known. It is known that linear finite elements are very prone to
volumetric locking. Hence, for nearly incompressible materials piecewise quadratic
elements (k = 2) are a better choice, see Simo [169].

Taylor–Hood element In contrast to the above mentioned Q1−P0 element, the
Taylor–Hood element fulfills the inf-sup-condition for the case of almost incompress-
ible linear elasticity and is therefore considered as stable. Furthermore, it shows
better approximation properties than the P2−P0 element. We use quadratic ansatz
functions for the displacement u and linear ansatz functions for the pressure p, i.e.

Xh := {vh ∈ C(Ω)3∩H1
0 (Ω)3 : vh|τ ∈ P2 for τ ∈ Ωh},

Mh := {qh ∈ C(Ω)∩L2(Ω) : qh|τ ∈ P1 for τ ∈ Ωh}.

For the proof of the inf-sup-condition compare to Girault and Raviart [64] and Ver-
fürth [183].

In the case of domain decomposition approaches, the usage of Taylor–Hood elements
is not straightforward and the continuity of the pressure across the interface imposes
difficulties especially concerning preconditioning and the scalability of the parallel
algorithms [20, 34, 171]. Thus, the emphasis is on standard finite elements (Pk)
and Pk−P0 elements in the following. We show no results for hexahedral elements
as they are comparable to tetrahedral elements [35] and, in addition, meshes for
practical applications were provided with tetrahedral elements.

The difference in the order of the displacement and the pressure in all introduced
elements is motivated by the differential operators that appear. For the displacement
we have derivatives up to second order, while for the pressure we have to compute
the gradient of p, hence first order.
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5.1.4 Static Condensation and Mean Dilatation Technique

While the deformation u is continuous over the whole domain Ω, the volumetric
variables can be modeled to be discontinuous across element boundaries, e.g. as
piecewise constants, in the finite element formulation. Hence, the hydrostatic pres-
sure p(u), see (3.31), can be eliminated at the element level, a procedure which is
known as static condensation. This results in a nonlinear problem in the unknown
displacement field u, that is solved using a Newton scheme.

The related mean dilatation technique goes back to Nagtegaal et al. [132] and it
has shown that it prevents locking effects when we deal with almost incompressible
materials like biological tissue. For more information on this approach see the works
of Holzapfel [81], Hughes [90], Simo [169], and Simo et al. [170].

Here, we have an additional variational formulation for the volumetric variables J
and p. Since we have defined the hydrostatic pressure p in Eq. (3.31) such that
p = dU(J)/dJ it is sufficient to concentrate on the Jacobian J . Let J be a scalar
variable that satisfies J = J in a weak sense, i.e.∫

Ω0

(
J−J(U,X)

)
q(X)dX = 0, for all q ∈ L2(Ω0). (5.5)

The idea of the mean dilatation method is to eliminate this volumetric variable
element-wise (static condensation) using using discontinuous ansatz functions, where
we will concentrate on piecewise constants. Let τ0⊂Ω0 be an arbitrary finite element.
We choose qh, such that it is constant over the element domain τ0 and zero elsewhere.
Hence, the discretized version of (5.5) in the element domain τ0 reads∫

τ0

(
Jh−J(U,X)

)
dX = 0.

Since the element-wise constant Jh does not depend on X in τ0, we obtain

Jh

∫
τ0

dX−
∫
τ0
J(U,X)dX = 0.

Let vol(τ0) and vol(τ) be the volumes of the domain τ0 in the reference configuration
and in the current configuration, respectively. Using (3.5) we get

Jh = vol(τ)
vol(τ0) .

With this we may calculate the discretized version ph of the hydrostatic pressure
p using (3.31). In the arbitrary domain τ0, where both volumetric functions are
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constant, we can state

ph = dU(Jh)
dJh

∣∣∣∣∣
Jh= vol(τ)

vol(τ0)

,

with the scalar variable p, such that p= p is satisfied in a weak sense.

Example 5.2. With a function U(J) as defined in (3.30) we get for the hydrostatic
pressure in an arbitrary element τ0

ph = κ

(
vol(τ)
vol(τ0) −1

)
.

These piecewise constant volumetric variables are incorporated in the discrete version
of the decoupled variational formulation, see Section 5.3. This leads, as in the pure
static condensation case, to aQk−P0 element for hexahedrons and a Pk−P0 element
for tetrahedrons, where k is the order of the base functions for the displacement field.
Due to considerations in Section 5.1.3 we choose piecewise quadratic elements (k= 2)
for nearly incompressible The resulting P2−P0 element was also the choice to model
nearly incompressible arterial materials in the papers of Augustin et al. [7, 8], Balzani
et al. [16, 17], Brands et al. [27, 28], and Klawonn and Rheinbach [106].

5.2 Inexact Newton Methods

In the case of the numerical solution of nonlinear elasticity problems we have to
take function and derivative approximations into account. Hence, we have to study
inexact Newton methods of the kind

F ′(xk)δxk =−F (xk) + rk, xk+1 = xk + δxk,

with the inexact Newton corrections δxk. Equivalently, using (4.17), this can be
written as

F ′(xk)(δxk−∆xk) = rk, xk+1 = xk + δxk,

where ∆xk are the exact Newton corrections. In this work we use Galerkin methods
as a dicretization technique. Thus, we focus on Newton-Galerkin methods [49] as
described in the following. For xk ∈H1(Ω) we have the scheme

xk+1 = xk + δxk,
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where the inexact Newton corrections δxk have to satisfy

〈xk,F ′(xk)(δxk−∆xk)〉= 〈δxk, rk〉 . (5.6)

As a theoretical framework to the convergence properties of the above Newton–
Galerkin method we formulate the following Newton–Mysovskikh type theorem.

Theorem 5.2 (Newton–Mysovskikh). Let D⊂H1(Ω) be an open and convex subset
equipped with the norm ‖•‖D. Let f : D→ R be a twice continuously differentiable
functional which is minimized over D. Let F ′(x) = f ′′(x) such that it is strictly
positive and fulfills the affine conjugate Lipschitz condition

‖F ′(z)−1/2(F ′(y)−F ′(x))v‖D ≤ ω‖F ′(x)−1/2(y−x)‖D‖̇F ′(x)1/2v‖D,

with 0 ≤ ω <∞ and collinear x,y,z ∈ D. We consider a Newton–Galerkin method
satisfying (5.6) with

δk := ‖F
′(xk)1/2(δxk−∆xk)‖D
‖F ′(xk)1/2δxk‖D

the approximation errors. Define the so-called Kantorovich quantities

ηk := ω‖F ′(xk)1/2∆xk‖D, ηδk := ω‖F ′(xk)1/2δxk‖D = ηk√
1 + δ2

k

for any well-defined iterate xk. Assume that for an initial guess x0 ∈D the level set

L :=
{
x ∈D : f(x)≤ f(x0)

}
6= ∅

is bounded and closed. Then it holds:

1. (Linear convergence) Let the initial guess x0 satisfy for a constant Θ< 1

η0 ≤ 2Θ< 2 (5.7)

and assume that δk+1 ≥ δk for all k. Let the Galerkin approximation be such
that

ηδk + δk

(
ηδk +

√
4 + (ηδk)2

)
2
√

1 + δ2
k

≤Θ.

Then we have a minimizing point x∗ ∈L0 such that the iterates xk ∈L0 converge
to x∗ at least linearly, i.e.

ηk+1 ≤Θηk and ηδk+1 ≤Θηδk.
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2. (Quadratic convergence) Let the initial guess x0 satisfy for a constant θ > 0

η0 <
2

1 + θ
(5.8)

and let the Galerkin approximation be such that

δk ≤
θηδk

ηδk +
√

4 + (ηδk)2
.

Then xk ∈ L0 converge quadratically to the minimizing point x∗ ∈ L0, i.e.

ηk+1 ≤
(1 + θ)

2 (ηk)2 and ηδk+1 ≤
(1 + θ)

2 (ηδk)2.

Proof. For more information and the proof see [49, Sections 2.3 and 8.3].

In our case the assumptions of Theorem 5.2 are satisfied due to the properties of
the strain-energy function, see Remark 3.6.4 (Normalization Conditions), and the
equivalence to the minimization problem (4.41). Using Eq. (4.17) we can write η0 in
Eqs. (5.7) and (5.8) as

η0 = ω‖F ′(x0)1/2∆x0‖H1(Ω) = ω‖F ′(x0)−1/2F (x0)‖H1(Ω).

In the case of nonlinear elasticity we have with the definitions and assumptions in
Section 4.4

η0 = ‖〈∆u,A′(u0)v〉−1/2
Ω (〈F ,v〉Ω−〈A(u0),v〉Ω)‖[H1(Ω)]3 .

Hence, the convergence rate is dependent on the initial solution u0, on the parameters
used in the model and on the inhomogeneous Dirichlet and Neumann boundary
conditions which influence 〈F ,v〉Ω. An appropriate choice for the initial solution u0

could be the solution of a simplified problem, like the linear elasticity or the Neo-
Hooke model, or the solution of a modified nonlinear elasticity problem. The latter
comprises the solution of the same nonlinear model with modified parameters, e.g. a
reduced bulk modulus κ, or modified boundary conditions, e.g., a reduced pressure
on the surface.

We write for the Newton method that we use in our numerical simulations

〈δuh,A′(ukh)vh〉= 〈F ,vh〉−〈A(ukh),vh〉, uk+1
h = ukh+ δuh.
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Using the equivalent linear system of equations we have to solve

K′(uk)δu= f −K(uk), uk+1 = uk + δu (5.9)

with the tangent stiffness matrix

K′(uk)[i, j] := (ϕj ,A′(ukh)ϕi)

and the right hand sides

f [i] := 〈f ,ϕi〉 and K(uk)[i] := (A(ukh),ϕi).

5.3 Assembling of the Stiffness Matrices

In this section we will give a short overview to the assembling of the element stiffness
matrices using the discretized and linearized variational equations for the elasticity
models. Using standard methods [100, Section 4.5.3], these element stiffness matrix
are assembled to global stiffness matrix.

For linear elasticity we have the discretized bilinear form

a(uh,vh) =
∫

Ω
Cε(uh,x) : ε(vh,x)dx,

For this we obtain the 3×3 entries in the element stiffness matrix for each degree of
freedom by

K(τ)[i, j] = a′(ϕj ,ϕi) =
∫
τ
B>i CBj dx for i, j = 1, . . . , N̂ ,

with C ∈ R6×6 the elasticity tensor in Voigt notation. The representation of the
matrix

B>i =


∂ϕi
∂x1

0 0 ∂ϕi
∂x2

0 ∂ϕi
∂x3

0 ∂ϕi
∂x2

0 ∂ϕi
∂x1

∂ϕi
∂x3

0
0 0 ∂ϕi

∂x3
0 ∂ϕi

∂x2
∂ϕi
∂x1

 . (5.10)

follows from the convention

ε= [ε11, ε22, ε33,2ε12,2ε23,2ε13]> .

In the case of nonlinear elasticity we show the assembling of the stiffness matrices
in the current configuration. A similar procedure in the reference configuration is
obtained using the corresponding pull-back operations. For the first summand in
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Eq. (4.24) we have the discretized form

a′geo(δuh,vh) :=
∫
Ω

grad(δuh)σ(ukh) : gradvhdx.

Applying the ansatz functions component-wise yields the so-called geometrical part
of the tangent element stiffness matrix K

′(τ)
geo (uk)

K
′(τ)
geo [i, j] = a′geo(ϕj ,ϕi) = I

∫
τ

(gradϕj)>σ(ukh)gradϕidx for i, j = 1, . . . , N̂ .

Using static condensation we have for the decoupled representation (3.33) the stress
tensor

σ(ukh) = phI +σiso(ukh),
where ph is an element-wise constant volumetric variable , see Example 5.2. Similar
to linear elasticity we get for the second summand in Eq. (4.24), the so-called material
part of the element tangent stiffness matrix K

′(τ)
mat(uk)

K
′(τ)
mat[i, j] = a′mat(ϕj ,ϕi) =

∫
τ
B>j C(ukh)Bidx for i, j = 1, . . . , N̂ ,

with C(ukh) the elasticity tensor in Voigt notation, see (3.38), and B from Eq. (5.10).
In the case of static condensation and the decoupled formulation we write

C = Cvol(ph) + Ciso(ukh),

with the volumetric and the isochoric parts of the elasticity tensor as disussed in
Section 3.13.3 and the element-wise constant hydrostatic pressure ph.

The construction of the global tangent stiffness matrix follows the standard assembly
procedure of element stiffness matrices

K′(uk) =
∑
τ∈Ωh

A>τ
(

K
′(τ)
geo (uk) + K

′(τ)
mat(uk)

)
Aτ

with Aτ connectivity matrices. Due to the self-adjointness (cf. Remark 4.4.2) and the
H1(Ω)–ellipticity (cf. Section 4.4.5) of the operator A′, the stiffness matrix K′(uk)
is symmetric and positive definite in the case of the Eulerian formulation. The same
holds true for the stiffness matrix derived from the Lagrangian formulation.
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5.4 Assembling of Pressure Loads

The following holds true for elements τ = τt in the current configuration and τ = τ0
in the reference configuration. From (4.27) we get the discretized linear form

〈F ,vh〉 := 〈F(ukh),vh〉=−
∫

Γξ
P

(
∂x
∂ξ1
× ∂x
∂ξ2

)
·vhdξ.

Applying the ansatz functions component-wise with x = (x1,x2,x3)> we obtain

f [i] = 〈F ,ϕi〉=−
∫
τ

P

(
∂x
∂ξ1
× ∂x
∂ξ2

)
ϕidξ =

∫
τ

P


∂x2
∂ξ1

∂x3
∂ξ2
− ∂x3

∂ξ1
∂x2
∂ξ2

∂x3
∂ξ1

∂x1
∂ξ2
− ∂x1

∂ξ1
∂x3
∂ξ2

∂x1
∂ξ1

∂x2
∂ξ2
− ∂x2

∂ξ1
∂x1
∂ξ2

ϕidξ
Consequentely, we get for the tangent term

f ′(δuh,vh) := 〈∆uh,F ′(ukh)vh〉=−
∫
Γξ

P

(
∂δuh
∂ξ1

× ∂x
∂ξ2

+ ∂x
∂ξ1
× ∂δuh

∂ξ2

)
·vhdξ.

Applying the ansatz functions component-wise yields

M′(uk)[i, j] = f ′(ϕj ,ϕi) =−
∫
τ

P

(
∂ϕj
∂ξ1

N 2−
∂ϕj
∂ξ2

N 1

)
ϕidξ, (5.11)

where the columns of the matrix Nα are computed as ei× ∂x
∂ξα

, i = 1,2,3, α = 1,2.
Hence, with x = (x1,x2,x3)> we have

Nα =


0 ∂x3

∂ξα
−∂x2
∂ξα

−∂x3
∂ξα

0 ∂x1
∂ξα

∂x2
∂ξα

−∂x1
∂ξα

0

 , α = 1,2.

Note that the matrix M′ from (5.11) is not symmetric and thus the total system(
K′(uk) + M′(uk)

)
δu= f(uk)−K(uk), uk+1 = uk + δu

is no longer symmetric for simulations with pressure loads. For an equivalent sym-
metric version of this system we use

M′(uk)[i, j] =
∫
τ

P
2

[(
∂ϕi
∂ξ1

ϕj−
∂ϕj
∂ξ1

ϕi

)
N 2 +

(
∂ϕj
∂ξ2

ϕi−
∂ϕi
∂ξ2

ϕj

)
N 1

]
dξ, (5.12)

see [24, Section 7.4.4].
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5.5 Time and Load Stepping Schemes

As shown in Section 5.2 the convergence rate of the Newton method is dependent
on the initial guess, on the parameters used in the model and on the inhomogeneous
Dirichlet and Neumann boundary conditions which influence the right hand side.
For example in the case of the simulation of biological tissues very high pressure
loads may lead to a system where the Newton method is not converging at all. This
problem can be overcome by a time or load stepping scheme.

In such a scheme we use zero for the initial guess, and the result of the k–th time
step as initial solution for the next step. The initial guess may also be the solution
of a modified nonlinear elasticity problem such as the solution of the same nonlinear
model but with modified parameters, e.g., a reduced penalty parameter κ, or modified
boundary conditions, e.g., a reduced pressure on the surface. The latter is equivalent
to an incremental load stepping scheme with a parameter τ ∈ (0,1], τ → 1, so that

K′(uk)δu= τf −K(uk), uk+1 = uk + δu. (5.13)

Augustin et al. [7] and Klawonn and Rheinbach [106] used a load stepping scheme
of this kind, for more information on load stepping and global Newton methods, see
Wriggers [187] and Deuflhard [49].

Total and updated Lagrangian formulation As we have seen in Section 4.2
we can express the variational formulation in terms of variables in the original and
undeformed reference configuration. A term often used in this context are mate-
rial variables. Another way is to express the variables in the current or deformed
configuration; such variables are referred to as spatial variables.

The total Lagrangian scheme is characterized by using the formulation with material
variables and the differentiations and integrations are carried out with respect to the
domain Ω0 and the Lagrangian coordinates X.

On the other hand for the updated Lagrangian scheme we use spatial variables and
the differentiation and integration procedures are carried out within Eulerian coor-
dinates x. With a coordinate transformation one can show that both formulations
are equivalent.

Nonetheless the total Lagrangian scheme has the advantage that it is always based
on the reference configuration Ω0. Hence, we do not have to update the coordinates
of our underlying mesh. In contrast to that the updated Lagrangian scheme uses
an updated reference geometry. In our case, this is the last equilibrium state of the
problem, which is the situation at the end of the previous time step. Thus, we have
to update our coordinates after each time step and take the resulting configuration
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as new reference configuration. For nonlinear problems it is important to mention
that the coordinates are not changed within the Newton steps.

The total Lagrangian and the updated Lagrangian time stepping methods are most
common within the field of solid mechanics. Another way would be the Eulerian
scheme which is mainly used in fluid mechanics. The basis of a finite element ap-
proach in this scheme is that the finite elements are fixed in space and do not deform
as in the case of the two Lagrangian schemes as mentioned above. For more infor-
mation on this topic see Shabana [168].

5.6 Solving a Linear System of Equations

The finite element method, discussed in Section 5.1, leads to linear systems of equa-
tions with – in many cases – a very large number of degrees of freedom. One possibil-
ity to solve such systems are direct methods, cf. Section 5.6.1, such as the very well
known Gaussian elimination. For many practical applications, for instance modeling
biological tissues, direct solvers reach their limits concerning runtime and memory
use. Hence for larger systems iterative solvers become important, see Section 5.6.2.

5.6.1 Direct Solvers

The very simplest method to solve a linear system of equations in the form Ax = f
with A ∈ Rm×m is the Gaussian elimination, which needs O(m3) operations. To
improve this cubic order there are many different approaches and strategies, e.g. a
smart re-ordering of the matrix A.

Stiffness matrices arising from the finite element method are generally sparse, since
the support of the basis functions of the FE spaces is local. In this case, given optimal
orderings, the computational costs may be reduced to O(m3/2) in 2D and O(m2) in
3D. The sparsity of the FE stiffness matrices also allows us to reduce memory costs,
since only nonzero entries have to be stored.

There are many software packages available to solve linear systems of equations di-
rectly. Two of them are MUMPS [1, 2] and UMFPACK [45, 46], which are both
available in source code. Another direct solver, which showed some advantages in
computational speed but needs a licence and is not available in source code, is PAR-
DISO [160, 161].
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5.6.2 Iterative Solvers

We will concentrate on the special case of Krylov subspace methods to solve the
linear system Ax = f . For a general theory and introduction to iterative solvers see
amongst many others the books of Axelsson [9], Greenbaum [66], Hackbusch [71],
and Steinbach [176].

Software packages that deal with highly scalable iterative solving on massively par-
allel computers are for example

• Hypre (http://acts.nersc.gov/hypre/),

• PETSc (http://www-unix.mcs.anl.gov/petsc/petsc-as/) and

• DUNE (http://www.dune-project.org/).

In the case of finite element methods, an elliptic variational problem results in a sym-
metric and positive definite stiffness matrix. Here we can apply the preconditioned
conjugate gradient method.

Preconditioned Conjugate Gradient Method (PCGM). Let CA ∈Rm×m be
a symmetric and positive definite matrix. Then Algorithm 1 describes the PCG-
method to solve the linear system Ax= f .

Algorithm 1 Preconditioned conjugate gradient method (PCGM)

Initialize:
r0 := Ax0−f, v0 := C−1

A r0, p0 = v0, ρ0 := 〈v0, r0〉
Iterate:
for k = 0, . . . ,m−1 do
sk := Apk, σk := 〈sk,pk〉, αk := ρk/σk
xk+1 := xk−αkpk, rk+1 := rk−αksk

vk+1 := C−1
A rk+1, ρk+1 := 〈vk+1, rk+1〉

if ρk+1 < ερ0 then {breaking condition for given ε > 0}
break

else {find new conjugate direction}
βk := ρk+1/ρk, p

k+1 := vk+1 +βkp
k

end if
end for

http://acts.nersc.gov/hypre/
http://www-unix.mcs.anl.gov/petsc/petsc-as/
http://www.dune-project.org/
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Proposition 5.3 (Error estimate for the PCGM). Let A ∈ Rm×m be a symmetric
and positive definite matrix and x∗ ∈Rm be the exact solution of the system of linear
equations Ax = f . Then the PCGM (Algorithm 1) converges for every initial value
u0 ∈ Rm to the exact solution x∗ and the following error estimate holds

‖xk−x∗‖A ≤
2q

1 + q2k ‖x
0−x∗‖A , with q =

√
κ(C−1

A A) + 1√
κ(C−1

A A)−1
,

with κ= λmax(C−1
A A)/λmin(C−1

A A) the condition number.

Proof. Cf. Hackbusch [71].

Preconditioned Conjugate Residual Method (PCG). A generalization of the
CG method for symmetric and indefinite problems is the preconditioned conjugate
residual method [6, 71]. This method is very closely related to the CG method and
has similar convergence properties.

Generalized Minimal Residual Method (GMRES). In the field of elasticity
displacement dependent pressure loads (3.17) may lead to a non-symmetric load
stiffness matrix, see Section 5.5 and [167], and consequently the CG method is no
longer applicable.

One possibility to handle this problem is the Generalized Minimal Residual (GMRES)
method [157], where the main idea is the minimization of the residual over some
certain Krylov subspace. For error estimates of GMRES we refer to [66, 175].

Remark 5.6.1 (Jacobi preconditioner). Assuming Aii 6= 0 for all i, then one possible
choice for the preconditioner CA is the so-called Jacobi preconditioner

CA = diag(A).

The Jacobi preconditioner is a very simple form of preconditioning, but shows good
results for diagonal dominant matrices A for non-uniform meshes. More efficient
possibilities for preconditioning are multilevel preconditioners such as the BPX-
preconditioner [26] or multigrid methods [72]. An algebraic multigrid software pack-
age, suitable for efficient preconditioning, is BoomerAMG [188] included in the Hypre
project.





6 DOMAIN DECOMPOSITION METHODS

Fine structured biological tissues and their anisotropic material behavior evoke signif-
icant challenges in regard to numerical simulations. The discretization (Section 5.1)
of anatomically detailed high-resolution geometries results in very fine meshes and
hence in a very large number of degrees of freedom. Moreover, due to the multi-
layered character of the considered materials, jumping coefficients, which are chang-
ing material parameters over layer interfaces, may be encountered.

For such complex problems the application of direct solvers results in non-optimal
efficiency and high memory usage. Typically, these problems cannot be solved suffi-
ciently fast and accurate in serial, i.e. on a single core of a computer. A promising
resolution for this problem are iterative solvers in combination with domain decom-
position (DD) methods, which are proven to be a very useful and efficient parallel
solution strategy. These techniques offer the possibility to distribute the calculations
to many compute cores with relatively low communication between the processors.
Furthermore, domain decomposition methods provide a natural way to treat jumping
coefficients.

The basic principle of DD methods is the decomposition of the original domain
into several overlapping or non-overlapping subdomains which dates back to the
19th century when Schwarz [166] introduced the Alternating Schwarz Method, see
Figure 6.1. For a detailed discussion of domain decomposition methods, including

Ω1 Ω
∗ Ω2

Γ1 Γ4

Γ2

Γ3

Figure 6.1: Picture, modified from [166], to illustrate the Alternating Schwarz Method. Ω1
and Ω2 are the subdomains, Ω∗ is the overlap, Γi, i= 1,2,3,4 are the different
parts of the boundary.
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overlapping as well as non-overlapping approaches, the interested reader is referred
to the monograph by Toselli and Widlund [178], see also [70, 145, 172].

In the following, we concentrate on non-overlapping domain decompositions and the
finite element tearing and interconnecting (FETI) method.

6.1 Basic Principles of Domain Decomposition Methods

Let Ω⊂R3 be a bounded Lipschitz domain. The underlying principle of DD methods
is the partition of Ω into p non-overlapping subdomains

Ω =
p⋃
i=1

Ωi , with Ωi∩Ωj = ∅ for i 6= j, (6.1)

where Ωi are as well Lipschitz domains, see Figure 6.2. With Γi := ∂Ωi we denote
the boundary of one specific subdomain. The local interface is Γij := Γi∩Γj for all
i < j, while the global interface ΓC and the skeleton ΓS of the decomposition are

ΓC :=
⋃
i<j

Γij , ΓS :=
p⋃
i=1

Γi = Γ∪ΓC.

The typical diameter of the subdomains is defined by

H := max
i∈I
{diamΩi}, with the index set I := {1, . . . ,p}; (6.2)

bear in mind that the typical diameter of a finite element is h.

Ω

Γ
n

Ω1 Ω2

Ω4

Ω3

Γ12

Γ24

Γ34

Γ13

n2

n1

n4

n3

Γ

Figure 6.2: Decomposition of a domain Ω into four subdomains Ωi.
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The decomposition of academic test example meshes like cubes or spheres can easily
be created by simple algorithms. For general meshes, e.g., high-resolution geometries
of cardiovascular tissue, the usage of mesh partitioners, for example, METIS [102] is
favorable, see Figure 6.3. Attention should be paid to possibly not admissible decom-
positions as illustrated in Figure 6.3 (b). For dendritic geometries it can happen that
the METIS algorithm produces subdomains that have more than one component. To
avoid problems in this regard, we eliminate such situations with a simple check for
connectivity. Hence, in the following, we treat each Ωi as a connected subdomain
with Lipschitz boundary.

Ω1

Ω2

Ω3

Ω4

Ω5

Figure 6.3: Decomposition of the mesh of a rabbit heart in several subdomains via METIS:
On the left-hand side there is a decomposition of the myocardium into 16 con-
nected subdomains, where the colors show displacements arising from a passive
inflation experiment. To the right we show a decomposition of the cross section
of the heart in five subdomains; note that the algorithm generated four con-
nected subdomains and one that has two components (Ω5); meshes courtesy of
Gernot Plank and Anton Prassl, Institute of Biophysics, Medical University of
Graz [143].

For matters of simplicity, the domain decomposition formulation of a boundary value
problem is first derived for the simple example of the scalar potential equation

−div[α(x)∇u(x)] = f(x) for x ∈ Ω,
γint0 u(x) = gD(x) for x ∈ ΓD,

γint1 u(x) = gN(x) for x ∈ ΓN,

(6.3)

where γint0 is the Dirichlet trace operator and γint1 the Neumann trace operator.
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The coefficient α(x) is piecewise constant, i.e.

α(x) = αi for x ∈ Ωi, i= 1, . . . ,p. (6.4)

The conforming variational formulation is to find u∈H1(Ω), u= gD on ΓD so that∫
Ω
α∇u ·∇vdx =

∫
Ω
fvdx +

∫
ΓN
gNvdsx, for all v ∈H1

0 (Ω,ΓD).

In accordance with (6.1) and (6.4) we can rewrite this variational formulation for the
simple case of two subdomains: find u ∈H1(Ω) with u= gD on ΓD such that

α1

∫
Ω1
∇u ·∇vdx +α2

∫
Ω2
∇u ·∇vdx =

∫
Ω
fvdx +

∫
ΓN
gNvdsx,

for all test functions v ∈H1
0 (Ω,ΓD). Green’s formula leads to

∑
i=1,2

[
−αi

∫
Ωi

∆uvdx−αi
∫

Γi
(ni ·∇u)vdsx

]
=
∫

Ω
fvdx +

∫
ΓN
gNvdsx,

for all v ∈H1
0 (Ω,ΓD), where ni is the exterior normal vector of Ωi. Hence,∑

i=1,2
αi

∫
Ωi
−∆u vdx−

∫
Γi

∑
i=1,2

(αini ·∇u)vdsx =
∫

Ω
fvdx +

∫
ΓN
gNvdsx.

With the conormal derivatives

ti := αini ·∇ui, i= 1,2

and density and extension arguments [145], we may formulate the following boundary
value problem which is equivalent to (6.3): find ui = u|Ωi , i= 1,2 so that

−αi∆ui(x) = f(x) for x ∈ Ωi,

ui(x) = gD for x ∈ ΓD∩Γi,
αini ·∇ui(x) = gN for x ∈ ΓN∩Γi,

and the so-called transmission conditions

t1(x) + t2(x) = 0 for x ∈ Γ12,

u1(x)−u2(x) = 0 for x ∈ Γ12

are fulfilled.

The above ideas are valid for any elliptic partial differential equation and thus also
hold for the linear elasticity problem (3.16). Generalizing for an arbitrary amount
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of p subdomains we can formulate the coupled boundary value problem for linear
elasticity: find u ∈ [H1(Ω)]3 with u = uD on ΓD such that

−divσ(ui,x) = f(x) for x ∈ Ωi,

ui(x) = uD(x) for x ∈ ΓD∩Γi,
σ(ui,x)ni(x) = tN(x) for x ∈ ΓN∩Γi,

ui(x) = uj(x) for x ∈ Γij ,
ti(x) + tj(x) = 0 for x ∈ Γij ,

(6.5)

with ui = u|Ωi ∈ [H1(Ωi)]3. The boundary stresses are defined as

ti(x) := σ(ui,x)ni(x).

In the absence of volume forces, i.e. f(x) = 0 and using the Steklov–Poincaré operators
Sint
i : [H1/2(Γi)]3→ [H−1/2(Γi)]3 we can describe the Dirichlet to Neumann map

ti(x) = γint1 ui(x) = (Sint
i γint0 )ui(x) for x ∈ Γi, (6.6)

e.g., cf. [176, Section 6.6]. In the case of linear elasticity jumping coefficients may
arise from σ(ui) = Ciε(ui) with the constant forth-order tensor

Ci = C|Ωi , for all i ∈ I.

For sufficiently smooth ui and tensor fields σ(ui) the formulation 6.5 also holds for
nonlinear elasticity with the constitutive equation

σ(ui) = 2J−1(ui)F(ui)
∂Ψi(C)
∂C F>(ui)

where Ψi is the strain-energy function in Ωi. Hence, the stress tensor σ(ui) is defined
locally using Ψi, as introduced in Section 3.10, and localized parameter sets and fiber
directions.

6.2 Standard One-level FETI Methods

First ideas of this specific domain decomposition method go back to the early work
of Glowinski and Wheeler [65], but as the classical one-level FETI method it was
introduced by Farhat and Roux [55, 56]. Since then these techniques got very popular
and are widely used in the scientific computing community. Our presentation is
based on the explanations of Toselli and Widlund [178, Section 6.3] and Langer
and Steinbach [114]. Other contributions include the works of Mandel and Tezaur
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[119], publishing a first convergence proof of these methods in the non-redundant
case, Klawonn and Widlund [107, 108], doing the same for a redundant formulation,
and Langer and Steinbach [114, 115] where the authors enhanced the method to
boundary element methods and present a coupling of finite and boundary element
domain decomposition methods.

We assume that the finite element mesh TN matches the domain decomposition (6.1),
i.e., we can reorder the degrees of freedom to rewrite the linear system (5.4) as

K11 K1CA1
. . . ...

Kpp KpCAp

A>1 KC1 · · · A>p KCp
p∑
i=1

A>i KCC,iAi




u1,I
...

up,I
uC

=


b1
...
bp

p∑
i=1

A>i bC,i

 ,

and the linearized system of equations (5.9) can be written as
K′11(uk1) K′1C(uk1)A1

. . . ...
K′pp(ukp) K′pC(ukp)Ap

A>1 K′C1(uk1) · · · A>p K′Cp(ukp)
p∑
i=1

A>i K′CC,i(uki )Ai




δu1,I
...

δup,I
δuC

=


b1(uk1)

...
bp(ukp)

p∑
i=1

A>i bC,i(uki )

 ,

where ui,I and the increments δui,I correspond to the local degrees of freedom within
the subdomain Ωi, and uC and δukC are related to all global degrees of freedom on
the coupling boundary ΓC and bi(uki ) = f

i
−Ki(uki ). Ai denote simple reordering

matrices taking boolean values. Note that the same system of equations can be
deduced by applying the finite element method to the DD problem (6.5) [178].

We introduce the tearing for linear elasticity

ui =
(

ui,I
AiuC

)
, Ki =

(
Kii KiC
KCi KCC,i

)
, f

i
=
(

bi
bC,i

)
,

and for nonlinear elasticity

δui =
(

δuki,I
Aiδu

k
C

)
, K′i(uki ) =

(
K′ii(uki ) K′iC(uki )
K′Ci(uki ) K′CC,i(uki )

)
, f(uki ) =

(
bi(uki )
bC,i(uki )

)
.

As the unknowns ui and uk+1
i = uki + δui are typically not continuous over the inter-

faces we have to ensure the continuity of the solution by the constraints

ui = uj and δui = δuj on Γij , i, j ∈ I. (6.7)
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There are two different schemes how to implement constraints for coupling nodes
which appear on three or more subdomains: a non-redundant, see Figure 6.4 (a)
and [178, Section 6.3.2] and a fully-redundant case, see Figure 6.4 (b) and [178,
Section 6.3.3]. In case of elasticity, the constraints have to be fulfilled for each
component, i.e. in 3D for all three components. The redundant formulation shows

Ω1 Ω2

Ω3 Ω4

Ω5

Ω1 Ω2

Ω3 Ω4

Ω5

Figure 6.4: For the non-redundant case (left) the number of necessary constraints is mini-
mized, fully-redundant constraints (right) are typically easier to implement.

slight advantages in treating the constraints in a fully symmetric way and is easier
to implement. This lets us get over the drawback of a larger amount of Lagrange
multipliers compared to the non-redundant formulation.

In compact form, we can write the constraints for linear elasticity as
p∑
i=1

Biui = 0 or Bu= 0. (6.8)

The so-called jump operators Bi are signed boolean matrices and have a sparse struc-
ture since entries are only generated for coupling nodes, i.e. for neighboring subdo-
mains. We denote by m the total number of constraints and by mi the number of
degrees of freedom of a specific domain Ωi. Then we can state that

Bi ∈ Rm×mi and Bi : Rmi → Rm

holds for each i ∈ I. To fulfill the constraints (6.7)1, the jump operators are defined
as

(Biui)jk (x) =


ui(x) if i= j

−ui(x) if i= k

0 else
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for x ∈ Γjk and per definition j > k. By construction it holds that

〈Bu,µ〉=
p∑
i=1
〈Biui,µ〉 for all µ ∈ Rm. (6.9)

In a similar way, we define the jump operators for nonlinear elasticity by (6.7)2.
To enforce continuity of the solution (6.8) we use (6.9) and introduce the vector of
Lagrange multipliers λ to get the saddle point system: find (ui,λ) ∈ Rmi×Rm such
that 

K1 B>1
. . . ...

Kp B>p
B1 . . . Bp



u1
...
up
λ

=


f1...
f
p

0

 . (6.10)

Correspondingly, for the nonlinear elasticity case, cf. (5.9), we get the linearized
system of equations

K′1(uki ) B>1
. . . ...

K′p(uki ) B>p
B1 . . . Bp



δu1
...
δup
λ

=


f̃1(uki )

...
f̃
p
(uki )
0

 . (6.11)

An identical representation can be retrieved using the transmission conditions with
the Dirichlet to Neumann mapping (6.6). From this derivation of the FETI method
we notice that the Lagrange multipliers λ may be interpreted as boundary stresses
[141, 153, 178].

Note that the problems (6.10) and (6.11) are uniquely solvable given that

kerKi∩kerBi = ∅, kerK′i(uki )∩kerBi = ∅ for all i ∈ I, (6.12)

see Fortin and Brezzi [58]. Condition (6.12) is fulfilled for subdomains Ωi with a
Dirichlet boundary, i.e. Γi∩ΓD 6= ∅ and there it holds that kerKi = ∅ and kerK′i(uki ) =
∅, respectively. For Neumann subdomains, typically referred to as floating subdo-
mains, the additional solvability conditions

(f
i
−B>i λ,rk,i) = 0 and (f̃

i
(uki )−B>i λ,rk,i) = 0 for k = 1, . . . ,6; i ∈ Ifloating

are required, where rk,i ∈ kerK′i correspond to the rigid body modes of elasticity
(Remark 4.2.2) and Ifloating is the index set of all floating subdomains. In the follow-
ing, the focus is on the more general nonlinear elasticity problem and we denote by
K′i := K′i(uki ) the local tangent stiffness matrices and by f̃

i
:= f̃

i
(uki ) the local right

hand sides.
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Starting from (6.11), we follow the standard approach of tearing and interconnecting
methods in eliminating the local degrees of freedom δui. In the case of a floating sub-
domain Ωi, i.e. Γi∩ΓD = ∅, the local matrices K′i are singular. Hence, a generalized
inverse matrix K†i is introduced to represent the local solutions as

δui = K†i (f̃ i−B>i λ) +
6∑

k=1
γk,irk,i, (6.13)

where γk,i are unknown constants. In the case of a non-floating subdomain, i.e.
ker Ki = ∅, the local stiffness matrices are invertible and K†i = K−1

i . In some circum-
stances the kernel of K′i is non-trivial and its dimension is lower than 6. This is the
case if the set Γ0,i∩Γ0,D is either a single vertex or a single edge. For classical FETI
this requires the implementation of an effective strategy to identify these kernels re-
liably. Beyond question, this is a key advantage of the all-floating FETI approach,
see Section 6.2.1, where all subdomains are treated the same and the kernel of each
local operator is known to be ker K′i = 6. In consequence, the solution of the local
problems to find the generalized inverse K†i can be reduced to sparse systems. As an
additional advantage of all-floating FETI, these local problems are typically better
conditioned compared to the systems arising from the FETI–DP method, see, e.g.,
Brzobohatý et al. [32].

In general, we consider the Schur complement of (6.11) to obtain

p∑
i=1

BiK†iB
>
i λ−

p∑
i=1

6∑
k=1

γk,iBivk,i =
p∑
i=1

BiK†i f̃ i, (f̃
i
−B>i λ,rk,i) = 0,

which can be written as ( F −G
G>

)(
λ

γ

)
=
(
d

e

)
, (6.14)

with the denotations

F :=
p∑
i=1

BiK†iB
>
i , G :=

p∑
i=1

6∑
k=1

Birk,i, d=:
p∑
i=1

BiK†i f̃ i, ek,i := (f̃
i
, rk,i). (6.15)

Denote by X the space

X := ker(G>) = {λ ∈ Rm : 〈Bir,λ〉= 0 for all rk,i ∈ ker K′i, k = 1, . . . ,6; i ∈ I}.

For the solution of the linear system (6.14) we introduce the projection P : Rm→X
as

P> := I−G
(
G>G

)−1
G> (6.16)
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and it remains to consider the projected system

P>Fλ= P>d, λ ∈ λ0 +X, (6.17)

which can be solved by using a parallel iterative Krylov subspace method with suit-
able preconditioning, cf. Section 6.2.2. The initial approximate solution λ0 has to
satisfy the compatibility condition G>λ0 = e where a possible choice is

λ0 = G
(
G>G

)−1
e.

In a postprocessing step, we finally recover the vector of constants

γ =
(
G>G

)−1
G> (Fλ−d)

and subsequently the desired solution by (6.13).

Remark 6.2.1. Due to the construction of F, see (6.15), and the projection P, see
(6.16), the system (6.17) is symmetric given that the local stiffness matrices K′i are
symmetric.

Remark 6.2.2. With the positive definiteness of the local tangent stiffness matrices
K′i and the definitions of F and P it holds for all λ in the quotient space λ∈X/kerB>
and λ 6= 0

〈P>Fλ,λ〉= 〈Fλ,Pλ〉= 〈Fλ,λ〉= 〈
p∑
i=1

BiK†iB
>
i λ,λ〉=

p∑
i=1
〈K†iB

>
i λ,B>i λ〉> 0,

with Pλ= λ, since λ ∈X/kerB> =
{
λ̃+ kerB> : λ̃ ∈ ker(G>)

}
. For a detailed proof

see [141, Section 2.2.1]. This shows the positive definiteness of the system (6.17) on
X/kerB> for the considered linear and nonlinear elasticity problems.

6.2.1 All-floating FETI Methods

The idea of all-floating FETI (AF–FETI) is to treat all subdomains as floating sub-
domains, Figure 6.5. In addition to the standard procedure of gluing the subregions
along the auxiliary interfaces, the Lagrange multipliers are likewise used to incor-
porate Dirichlet boundary conditions. All subdomain stiffness matrices have the
same and known kernel, which eases the implementation of the FETI procedure in
a software framework significantly. Further to that, some tests (Chapter 7) showed
more efficiency than the classical FETI method as the asymptotic behavior improves,
which is explained by mapping properties of the Steklov–Poincaré operator, see [138,
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Ω1 Ω2

Ω3 Ω4

Ω5

Ω1 Ω2

Ω3 Ω4

Ω5

Figure 6.5: To the left a sketch of the classical FETI method and to the right a sketch of the
all-floating FETI method. The gray bar depicts Dirichlet boundary conditions.

Remark 1]. The drawback is an increasing number of degrees of freedom and La-
grange multipliers. More information on all-floating FETI one may find in [136, 138]
and on the related Total–FETI (TFETI) method in [51].

To incorporate Dirichlet boundary conditions the system of constraints (6.8) is mod-
ified in the following way

p∑
i=1

B̃iui = b, (6.18)

where the matrices B̃i and the vector b are given such that

(
B̃iui

)
jk

(x) =



ui(x) if i= j, x ∈ Γjk, j > k,

−ui(x) if i= k, x ∈ Γjk, j > k,

ui(x) if x ∈ Γj ∩ΓD,

0 else

(6.19)

and
bjk(x) =

{
0 if x ∈ Γjk,

uD(x) if x ∈ Γj ∩ΓD.

6.2.2 Preconditioning

In order to present suitable preconditioners for the described FETI methods we first
introduce a weighting function, known from balancing Neumann-Neumann methods
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[178, Section 6.2] and [136, Section 5.5.2],

δ†i (x) := αγi∑n
k α

γ
k

, x ∈ Γi, i ∈ I

with γ ∈ [0.5,∞], n the number of subdomains which share the coupling node x
and αi a coefficient depending on the material parameters. In the case of linear
elasticity we choose αi =Ei/(1+νi) with Young’s modulus Ei and Poisson’s ratio νi
in Ωi [111]. For the neo–Hooke and the artery model we choose αi = ci/2 and for
the myocardium model αi = ai/2, i ∈ I. Using this scaling factor we can define the
scaled jump operators BD as

BD,i := DiBi,

where Di = diag(δ†i (x)), x ∈ Γi. With this denotation all preconditioners for the
FETI method can be written as

M−1 :=
p∑
i=1

BD,iYiB>D,i, (6.20)

with a matrix Yi ∈ Rmi×mi .

Definition 6.1 (Lumped preconditioner). Following Farhat and Roux [55] we define
the lumped preconditioner as

M−1
l :=

p∑
i=1

BD,iAiB>D,i,

with Ai the local stiffness matrix Ki for linear elasticity or the local tangent stiffness
matrix K′i(uki,h) for nonlinear elasticity, respectively.

Definition 6.2 (Dirichlet preconditioner). An optimal domain decomposition pre-
conditioner is the Dirichlet preconditioner, see Farhat et al. [54],

M−1
D :=

p∑
i=1

Bi

(
0 0
0 Si

)
B>i ,

where
Si = K′CC(uki )−K′Ci(uki )K′−1

ii (uki )K′iC(uki )
is the Schur complement of the local tangent finite element matrices K′i(uki,h) in the
case of nonlinear elasticity. For FETI this Schur complement is the discrete version
of the Steklov–Poincaré operator Sint

i : [H1/2(Γi)]3→ [H−1/2(Γi)]3 described in (6.6).

The optimality of the Dirichlet preconditioner is highlighted by numerical examples in
Chapter 7, where it showed the lowest condition numbers of the FETI system (6.17)



6.2 Standard One-level FETI Methods 113

and hence also the lowest number of global Krylov iterations compared to other forms
of preconditioning. Nonetheless, the formation of the Dirichlet preconditioner needs
the computation of an additional inverse matrix to construct the Schur complement.
To avoid local iterative solving in each global Krylov solver step, which would clearly
decrease the computational performance for most problems, we use a direct solver
package, cf. Section 5.6.1, to compute the needed factorization. On the other hand,
this strategy is possibly very time and memory consuming for large subdomains.
Hence, the choice of the number of subdomains and thereby the local problem size
is a very delicate matter. By experience, this is in fact a question of available (fast)
memory where direct solvers are known to be rather costly. Since this factorization
is a local operation the burden of more computational complexity and the increased
number of FLOPS is not as serious. As evidence, some numerical examples, see
Chapter 7, were not solvable due to depleting memory.

In contrast, the lumped preconditioner is more economical and needs no additional
storage or computation. Thus, this type of preconditioning outperforms the more
sophisticated Dirichlet preconditioner for certain numerical setups. Nevertheless, we
encountered experiments where the global Krylov method was not converging within
a commensurate number of iterations, see Chapter 7.

Definition 6.3 (Identity preconditioner). For comparison we define the trivial iden-
tity preconditioner, where Yi in (6.20) is replaced by the identity matrix.

Alternatively, we use a novel scaled hypersingular boundary integral operator precon-
ditioner as proposed in in the publication of Langer and Steinbach [114]. Following
[176], we introduce the hypersingular boundary integral operators Di : [H1/2(Γi)]3→
[H−1/2(Γi)]3 as

(Diui)(x) =−γi,int1,x

∫
Γi

(
γi,int1,y U∗(x,y)

)>
ui(y)dsy, (6.21)

with the fundamental solution of linear elasticity, Kelvin’s tensor U∗(x,y),

U∗kl(x,y) = 1
8π

1
E

1 +ν

1−ν

[
(3−4ν) δkl

|x−y|
+ (xk−yk)(xl−yl)

|x−y|3

]
, k, l = 1,2,3,

and γi,int1,(•) the Neumann trace operator for x,y ∈ Γi.

Definition 6.4 (BETI preconditioner). On the basis of [114], we define the BETI
preconditioner for linear and nonlinear elasticity problems as

M−1
BETI :=

p∑
i=1

Bi

(
0 0
0 Di,h

)
B>i ,
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with Di,h the discretized version of the hypersingular boundary integral operator in-
troduced in (6.21).

Lemma 6.5. For linear elasticity problems the condition number of the FETI prob-
lems with Dirichlet preconditioning is estimated by

κ(PM−1
D P>F) = c

(
1 + log

(
H

h

))2
,

with the positive constant c which is independent of h, H, p and the values of the
coefficients Ei and νi.

Proof. For the proof cf. Klawonn and Widlund [110] building on results of Mandel
and Tezaur [119] and also [140, Pechstein and Scheichl (2008)].

Lemma 6.6. The condition number of the preconditioned linear elasticity FETI prob-
lem with the BETI preconditioner M−1

BETI satisfies

κ(PM−1
BETIP

>F) = c
(

1 + log
(
H

h

))2
,

with the positive constant c which is independent of h, H, p and the values of the
coefficients Ei and νi.

Proof. This was proved by Langer and Steinbach [114] by showing the spectral equiv-
alence of M−1

BETI and M−1
D and using Lemma 6.5.

6.2.3 Computing the Generalized Inverse Matrix

In order to set up the projected FETI system (6.17) we need to compute the local
pseudo inverse matrices K†i . In this work we will concentrate on local direct solvers,
see Section 5.6.1. The alternative, local iterative solving, shows advantages in storage
consumption but may have certain drawbacks in the computational performance.
This is due to the fact that within every single global Krylov solver iteration we have
several local iterations, while in using direct solvers we just have to factorize the
local stiffness matrix once and subsequently compute a matrix vector multiplication
in each global step. Nevertheless, for large subdomains and problems with storage
restrictions an iterative strategy for the local inversion may be advantageous. See
also the reflections after Definition 6.2.

As mentioned before, for non-floating subdomains the pseudo-inverse matrix K†i is
simply the inverse matrix K−1

i . For floating subdomains we need to compute a
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generalized inverse matrix such that

KiK†iKi = Ki, for i ∈ Ifloating.

Given the local stiffness matrix Ki and u,v ∈ Rmi this can be achieved as follows.
With ki = dim(ker(Ki)) we write

(K̃iu,v) := (Kiu,v) +
ki∑
j=1

βk (u,r(i)
j )Ri

(v,r(i)
j )Ri

,

where (·, ·)Ri
is a bilinear form that is coercive and bounded on kerKi and {r(i)

j }j ,
j = 1, . . . ,ki is a set of vectors spanning kerKi. In the case of elasticity these are the
rigid body motions. We set

K†i := (K̃i)−1.

For f ∈ range(Ki) we then have (K†if, r
(i)
j )Ri

= 0 for all j = 1, . . . ,ki. This implies

K†if ⊥Ri
kerKi.

Thus K†i is a generalized inverse matrix with respect to a special inner product. In
order to preserve the sparsity of the stiffness matrix, a requirement to use a direct
solver, we choose the scalar product

(u,v)Ri
:=
∫
ωi
u ·w dXi,

where ωi is a subset of Ωi, or a submanifold in Ωi. This can be a set of points, edges
or faces.

For elasticity we choose the scalar product as follows: Let Ωi be some subdomain
with a point set P containing at least three points p(1), p(2) and p(3) that are not
collinear, see Figure 6.6. We then use

(v,w)Ri
:=

np∑
m=1

v(p(m)) ·w(p(m))

where v(p(•)) and w(p(•)) are the point evaluations of the vectors v and w at the
point p(•) and np is the number of regularization points. The kernel kerKi for linear
elasticity and the kernel kerK′i for nonlinear elasticity are spanned by r(i)

j , the rigid
body modes. Let k∗m denote the node index of vertex p(m). All basis functions vanish
at the point p(m) except for those associated to it. In addition, just one component
of the point realizes as 1 as we apply the basis function. Hence, the regularization
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p(2)

p(1)

p(3)

x1

x2

x3

Figure 6.6: One possibility to fix the six rigid body motions of a Neumann subdomain with
three non-collinear points; point p(1) is fixed in all three directions, p(2) is fixed
in x2 direction and p(3) is fixed in direction of x2 and x3.

with np points in 3D results in

K̃i[j,k] = Ki[j,k] +
ki∑
l=1

np∑
m=1

3∑
d=1

βl δj(3k∗m+d)rl(p(m)) · δk(3k∗m+d)rl(p(m))

For the choice of the constants βl we take a look at the condition number of the
regularized elasticity matrix.

Condition Number of the Regularized Elasticity Matrix Let H be the typ-
ical subdomain diameter, see (6.2), and let us assume a quasi-uniform triangulation
of Ω with mesh size h. In the following we concentrate on the linear elasticity case
but the estimates also hold true for nonlinear elasticity. For v, w ∈ Rmi we set

(K̃v, w) = (Kv,w) +
6∑
l=1

np∑
m=1

βlv(p(m))w(p(m))

for a vertex p and K the stiffness matrix arising from the linear elasticity problem.
From the inverse inequality and the usual reference element transformation, we get
that

(Kv,v)≤ 2E
1−2ν |vh|

2
[H1(Ωi)]3 = 2E

1−2ν ‖∇vh‖2[L2(Ωi)]3 ≤ C̃
2E

1−2ν h
−2‖vh‖2[L2(Ωi)]3

≤ C̃ 2E
1−2ν h

−2h3‖v‖22 = Ch‖v‖22.

Hence, with βmax = maxβl, l = 1, . . . ,6,

(K̃v,v)≤ (Ch+ 6βmax) ‖v‖22.
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For the lower bound we get with βmin = minβl, l = 1, . . . ,6,

(K̃v,v)≥ |vh|2[H1(Ω)]3 +βmin

np∑
m=1
|v(p(m))|2.

We now use the discrete Poincaré–Friedrich inequality, [178, Section 4.6],

‖vh−v(ε))‖2[L2(Ωi)]3 ≤ CH
2 (H/h)|vh|2[H1(Ωi)]3 ∀vh ∈ Vh(Ωi) ,

for ε an edge, a face or a wire basket.

From this inequality and the Cauchy–Schwarz inequality we can conclude that

‖vh‖2[L2(Ωi)]3 ≤ 2CH2 (H/h) |vh|2[H1(Ωi)]3 + 2 |Ωi| |v(ε)|2

≤ CH2 max
(
H/h,

|Ωi|
βminH2

)
(K̃v, v)

Finally, we have
‖vh‖2[L2(Ωi)]3 ≥ Ch3 ‖v‖22.

Summarizing, using

κ(K̃) ≤ CH2 max(h, 6βmax) max
(
H/h,

|Ωi|
βminH2

)

we can estimate the condition number of the regularized stiffness matrix.

This suggests to choose

βl ∈
[
|Ωi|

H2 (H/h) ,
1

6h

]
, for l = 1, . . . ,6,

which is satisfied, e.g., for β = 1. Then,

κ(K̃) = O((H/h)2(H/h)).

The extra factor of (H/h) is unavoidable and there is no better choice of β to get a
better result than κ(K̃) = O((H/h)3) in comparison to κ(K) = O((H/h)2). The only
way to improve the condition number is to choose a different inner product Ri which
then affects the sparsity of the regularized stiffness matrix K̃. Since we are using
direct solvers the higher condition number will be negligible: all that is affected by
the condition number itself is the rounding error, which means, that we only loose a
bit of accuracy.





7 NUMERICAL EXAMPLES

In this chapter we give numerical examples for the finite element tearing and inter-
connecting approach as described in Chapter 6. In Section 7.1 we test the FETI
implementation for the linear elasticity case. Here we are able to compare the com-
puted results to a given exact solution. This enables us to show the correctness of
our implementation and to show the convergence rates as predicted from the the-
ory. We compare the different preconditioning techniques and present differences
between the classical FETI and the all-floating FETI approach. Following to this in
Section 7.2 we apply the FETI approach to nonlinear elasticity problems. We focus
on the artery and the myocardium model as described in Chapter 3. As in the linear
case we compare the different preconditioning techniques as well as all-floating FETI
and the classical FETI method for simple geometries. At the end we present exam-
ples using more realistic triangulations. We apply the anisotropic artery model to a
geometry of an aorta and a carotid artery consisting of two materials, i.e. the media
and the adventitia, and the orthotropic myocardium model to the myocardium of
the ventricles of a rabbit heart.

The calculations were done using the GHOST -cluster located at the Graz University
of Technology and the VSC2 -cluster (http://vsc.ac.at/) in Vienna.

GHOST is a Linux-cluster consisting of two nodes, each with eight Quad-Core AMD
Opteron 8356 Barcelona processors and a memory of 252.48GB RAM. The AMD
processors run with a clockrate of 2.3GHz. The The Linux-cluster VSC2 features
1314 compute nodes, each with two AMD Opteron Magny Cours 6132HE (8 Cores,
2.2GHz) processors and 8 x 4 RAM. This yields the total number of 21024 available
processor cores.

The mechanics and the FETI framework was implemented in coorporation with
Clemens Pechstein from the Johannes Kepler University in Linz, using the C++
template software package ParMax1.

As local direct solver we use PARDISO [160, 161], included in Intel’s Math Kernel
Library (MKL).

1 http://www.numa.uni-linz.ac.at/P19255/software.shtml, Clemens Pechstein and others.
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7.1 Linear Elasticity

In this first section of numerical examples we consider linear elasticity problems with
the academical example of a unit cube which is decomposed into a certain number of
subcubes. Dirichlet boundary conditions are imposed all over the surface ΓD = ∂Ω,
see Figure 7.1. The calculated solution is compared to the fundamental solution of
linear elastostatics [176]

U∗1k(x,x∗) = 1
8π

1
E

1 +ν

1−ν

[
(3−4ν) δ1k

|x−x∗|
+ (x1−x∗1)(xk−x∗k)

|x−x∗|3

]
, k = 1,2,3, (7.1)

where x ∈ Ω, x∗ ∈ R3 is an arbitrary point outside of the domain Ω and δij is the
Kronecker delta. We compare the different strategies of preconditioning and all-
floating and classical FETI. As the global iterative method we use the conjugate
gradient method with a relative error reduction of 1×10−8.

Figure 7.1: Unit cube decomposed in 64 subdomains, level `= 2 (left) and decomposed in
512 subdomains, level `= 1 (right). Black and white shadings show fundamental
solution (7.1).
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7.1.1 Linear Elements

We consider a linear elasticity problem using linear tetrahedral elements (P1 element)
given a cube with 512 subdomains and a cube with 64 subdomains. The parameters
are E = 210GPa and ν = 0.3. Note at first that for all examined settings, see Table 7.1
and Table 7.3 the L2 error, i.e.

‖u−uh‖L2(Ω), (7.2)

where uh is the approximate and u the exact solution, and the estimated order of
convergence (eoc)

eoc` =
ln‖u−uh,`‖L2(Ω)− ln‖u−uh,`‖L2(Ω)

ln2 (7.3)

behave as expected from the theory. For both mesh settings, the cube subdivided
into 512 subdomains and the cube subdivided into 64 subdomains, we get similar
results if we compare the iteration numbers of the global CG method subject to
the preconditioning techniques. We get the least iteration numbers for the optimal
Dirichlet preconditioner. Given a large enough size of the subcubes, the application
of the BETI preconditioner results in better iteration numbers than the lumped
preconditioner and the very simple preconditioning technique, using the identity
matrix for Yi in (6.20), leads to the most iteration numbers. In fact for all-floating
FETI this preconditioning techinique shows almost no reduction of the condition
numbers. Since we need no additional time to compute the lumped preconditioner,
in contrast to the Dirichlet and the BETI preconditioner, this type of preconditioning
yields the best computational time for the problem with the largest amount of DOF
(level `= 5).

All-floating Classical
` DOF Lagr. mult. L2 error eoc DOF Lagr. mult. L2 error eoc

1 9981 38052 9.60e-05 – 6621 38388 1.01e-04 –
2 62397 84276 2.52e-05 1.98 56349 77700 2.54e-05 1.98
3 480573 238932 6.41e-06 1.98 469149 204708 6.42e-06 1.98
4 3860541 797076 1.62e-06 1.99 3838365 652260 1.62e-06 1.99
5 31116861 2908692 4.08e-07 1.99 31073181 2321508 4.08e-07 1.99

Table 7.1: Number of DOF and Lagrange multipliers for a cube subdivided into 512 subdo-
mains using P1 elements. ` is the level of uniform refinement. For the L2 error,
the definition is given in (7.2), whereas for the estimated order of convergence
(eoc), the definition is given in (7.3).
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All-floating
` Identity prec. Lumped prec. Dirichlet prec. BETI prec.
1 35 it 16.2 23.3 s 16 it 3.9 19.3 s 13 it 3.1 19.7 s 33 it 15.8 20.6 s
2 47 it 28.5 22.1 s 23 it 7.3 19.8 s 18 it 4.7 19.5 s 30 it 11.8 19.9 s
3 61 it 50.2 22.6 s 28 it 10.3 21.1 s 21 it 6.0 21.2 s 32 it 14.3 23.1 s
4 83 it 100.2 33.6 s 43 it 25.3 28.9 s 26 it 8.7 28.1 s 37 it 19.4 46.1 s
5 113 it 199.2 187.8 s 63 it 59.6 143.3 s 31 it 12.0 174.8 s 44 it 26.3 321.7 s

Classical
` Identity prec. Lumped prec. Dirichlet prec. BETI prec.
1 50 it 33.2 6.3 s 23 it 6.3 6.6 s 19 it 4.7 5.9 s 49 it 44.3 6.5 s
2 77 it 78.7 6.8 s 39 it 18.6 7.1 s 28 it 10.0 6.2 s 49 it 44.2 6.7 s
3 104 it 154.8 8.9 s 61 it 49.6 7.4 s 37 it 17.0 8.2 s 57 it 45.8 10.3 s
4 141 it 297.8 18.7 s 90 it 115.4 15.7 s 45 it 25.0 13.9 s 66 it 60.6 37.8 s
5 187 it 576.5 207.7 s 123 it 248.9 158.0 s 52 it 33.5 173.5 s 77 it 79.9 341.8 s

Table 7.2: Iteration numbers (it), condition numbers and computational time (s) for each
preconditioning technique using P1 elements and a linear elastic material. ` is
the level of uniform refinement and the mesh is a cube with 512 subdomains.

For the numbers in Table 7.1 and Table 7.2 the underlying mesh is a cube with
512 subdomains and we used 512 processing units on the VSC2 cluster to do our
computations. We observe that all-floating FETI yields better condition numbers for
all preconditioners and hence as well better convergence rates of the global conjugate
gradient method. Although the global iterative method converges in less iterations
for the all-floating approach, we achieve lower computational times for the classical
FETI method for the first four levels, cf. Table 7.2. This is mainly due to the larger
expenditure of time to set up the all-floating FETI system, i.e. set up the jump
operators (6.19), the larger coarse system GG>, compare (6.16), and because of the
higher amount of Lagrange multipliers. In level 5 the global system gets large enough
that all-floating FETI outperforms the classical approach in computational time.
That means that the lower amount of iteration numbers overbalances the higher setup
times for this case. From level 4, with a maximum of 8907 local degrees of freedom,
to level 5, with a maximum of 66195 local degrees of freedom, we observe an increase
in local assembling and factorization time from approximately 2 seconds up to about
66 seconds for the Dirichlet preconditioner. This is mainly due to the higher memory
requirements of the direct solver. To some extend this also explains the higher
numbers of the BETI preconditioner, but for sure we need to invest additional time in
improving the implementation of the hypersingular operators to be competitive with
the sophisticated direct solver packages. For the examples summarized in Table 7.3
and Table 7.4 a cube with 64 subdomains was considered. For the computation we
used 32 processing units on GHOST. Note that the higher levels of this calculation
are inexecutable on the larger VSC2 cluster, since there each processor has only a



7.1 Linear Elasticity 123

all-floating classical
` DOF Lagr. mult. L2 error eoc DOF Lagr. mult. L2 error eoc

1 1733 3876 1.40e-04 – 1049 3780 1.54e-04 –
2 9212 9708 3.95e-05 1.96 7984 7884 3.98e-05 1.96
3 64874 30012 9.95e-06 2.00 62557 21276 9.96e-06 2.00
4 500293 105180 2.51e-06 1.99 495801 68796 2.51e-06 1.99
5 3957756 393756 6.34e-07 1.99 3948912 246780 6.34e-07 1.99
6 31541098 1523868 1.59e-07 1.99 31523549 934524 1.59e-07 1.99

Table 7.3: Number of DOF and Lagrange multipliers for a cube subdivided into 64 subdo-
mains using P1 elements. ` is the level of uniform refinement. For the L2 error,
the definition is given in (7.2), whereas for the estimated order of convergence
(eoc), the definition is given in (7.3).

limited amount of private memory and there is no global shared memory. That means
that the memory consuming factorization of the local stiffness matrices by the direct
solver is unfeasible, if the number of local degrees of freedom gets too large. On the
other hand on the GHOST cluster we have additional global shared memory. Here
we have the drawback that the communication between this shared memory and the
processing units is comparatively slow. This explains the high computational times
for level 6 in Table 7.4. Moreover, the larger memory requirements of the Dirichlet
and the BETI preconditioning technique lead to an “out of memory” error for the
highest level (i.e. 31 million DOF). We see very clearly, that in this case the FETI
method with direct local solving is not really practicable. A possibility to overcome
this performance problem would be the usage of fast local iterative solvers, e.g. the
CG method with a multigrid or a BPX preconditioner.

As in the previous case with 512 subdomains we observe better iteration numbers for
the all-floating FETI method. Again, given large enough local subdomains, the all-
floating approach outperforms classical FETI, cf. Table 7.4. Summing up it seems,
at least for this example of a unit cube, that all-floating FETI is more feasible for
larger subdomains, while classical FETI shows advantages for many smaller subdo-
mains. Moreover the simple lumped preconditioner appears to be favorable for this
academical example with very structured subdomains.
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All-floating Preconditioning
` Identity prec. Lumped prec. Dirichlet prec. BETI prec.
1 35 it 16.7 0.9 s 15 it 3.8 1.0 s 12 it 2.8 0.9 s 33 it 15.9 3.4 s
2 46 it 28.8 1.2 s 21 it 7.4 0.9 s 17 it 4.5 1.0 s 30 it 12.0 4.4 s
3 59 it 50.8 2.3 s 28 it 10.5 2.3 s 20 it 5.6 2.7 s 31 it 13.7 9.1 s
4 80 it 101.8 35.6 s 42 it 25.5 26.6 s 25 it 8.3 35.6 s 36 it 18.8 80.7 s
5 109 it 202.3 712.2 s 62 it 60.3 516.9 s 30 it 11.5 691.8 s 42 it 25.8 1113 s
6 148 it 399.3 16123 s 89 it 130.7 11850 s out of memory

Classical Preconditioning
` Identity prec. Lumped prec. Dirichlet prec. BETI prec.
1 44 it 30.4 0.3 s 19 it 6.0 0.2 s 17 it 4.7 0.2 s 44 it 31.6 2.8 s
2 63 it 72.6 0.5 s 33 it 17.0 0.3 s 24 it 9.6 0.5 s 43 it 30.5 3.8 s
3 83 it 143.2 1.6 s 47 it 44.1 1.5 s 31 it 16.2 2.2 s 52 it 43.6 10.3 s
4 113 it 273.3 38.5 s 68 it 101.7 29.7 s 37 it 23.5 38.6 s 59 it 58.7 83.3 s
5 151 it 527.4 799.9 s 95 it 218.4 582.3 s 43 it 31.7 726.7 s 68 it 78.4 1277 s
6 202 it 1032 19341 s 131 it 452.6 14496 s out of memory

Table 7.4: Iteration numbers (it), condition numbers and computational time (s) for each
preconditioning technique using P1 elements and a linear elastic material. ` is
the level of uniform refinement and the mesh is a cube with 64 subdomains.

7.1.2 Quadratic Elements

In this section we consider a linear elasticity problem using tetrahedral elements and
quadratic ansatz functions, i.e. P2 elements. The parameters are E = 210GPa and
ν = 0.49. Note that for all preconditioning types as well as for all-floating and classical
FETI the L2 error compared to the fundamental solution behaves as expected from
the theory and hence we get a cubic convergence rate (eoc), see Table 7.6 for the cube
decomposed into 512 subdomains. The cubic convergence rates were also achieved
for the cube decomposed into 64 subdomains.

First, we look at a cube with 64 subdomains. For reasons of memory limits this
example was computed on the GHOST cluster. As for the case of linear ansatz
functions, see Section 7.1.1, we get the lowest condition numbers of the global system
and thus the least iteration numbers of the global CG method using the optimal
Dirichlet preconditioner. The highest iteration numbers we observe with the simple
identity preconditioning technique, using the identity matrix for Yi in (6.20). We
did not implement the BETI preconditioner for quadratic ansatz functions. For all-
floating FETI we have the very interesting case that the global CG iteration numbers
stay almost constant for the lumped preconditioner and even seem to decay for the
identity and the Dirichlet preconditioner, if we increase the local degrees of freedom,
i.e. increase the level l. For the classical FETI approach the iteration numbers stay
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almost constant for the Dirichlet preconditioner and increase slightly for the other
two preconditioning techniques, see Table 7.5.

All-floating
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 149 it 444.7 23.3 s 73 it 73.7 22.0 s 47 it 36.7 18.7 s
2 129 it 330.8 21.9 s 75 it 74.3 20.8 s 43 it 27.7 19.3 s
3 114 it 210.3 30.3 s 73 it 68.8 27.3 s 36 it 16.6 28.5 s
4 105 it 167.8 99.8 s 69 it 65.2 93.4 s 33 it 14.4 90.2 s

Classical
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 120 it 405.0 7.5 s 65 it 48.9 6.9 s 40 it 21.0 6.5 s
2 108 it 302.6 7.5 s 69 it 57.6 6.7 s 41 it 20.6 7.5 s
3 112 it 253.4 12.6 s 91 it 116.2 11.7 s 42 it 21.0 12.3 s
4 136 it 273.1 76.3 s 128 it 262.8 77.3 s 48 it 27.7 79.1 s

Table 7.5: Iteration numbers (it), condition numbers and computational times (s) for each
preconditioning technique using P2 elements and a linear elastic material. ` is
the level of uniform refinement and the mesh is a cube with 64 subdomains.

Given a high enough number of local degrees of freedom, in this example level l = 4,
the all-floating FETI method outperforms the classical approach regarding the com-
putational times for all preconditioners. This characteristic was also observed with
linear ansatz functions, see Section 7.1.1. In contrast to the formulation with P1 ele-
ments, the optimal Dirichlet preconditioner now shows a noticeable advantage to the
other two preconditioners. As in Section 7.1.1, the significantly higher computational
times in level 4 compared to level 3 are mainly due to high memory requirements of
the direct solver in this case.

In the following we deal with at a cube with 512 subdomains and again use quadratic

All-floating Classical
` DOF Lagr. mult. L2 error eoc DOF Lagr. mult. L2 error eoc

1 53181 84276 1.13e-05 – 47133 77700 1.17e-05 –
2 406845 238932 1.44e-06 2.97 395421 204708 1.46e-06 3.00
3 3270717 797076 1.81e-07 2.99 3248541 652260 1.82e-07 3.01
4 26398269 2908692 2.26e-08 3.00 26354589 2321508 2.26e-08 3.01

Table 7.6: Number of DOF and Lagrange multipliers for a cube subdivided into 512 sub-
domains and the level of uniform refinement `. For the L2 error, the definition
is given in (7.2), whereas for the estimated order of convergence (eoc), the defi-
nition is given in (7.3).
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ansatz functions on tetrahedral elements. Now the computations were done on the
VSC2 cluster. We investigate iteration numbers and computational times depending
on Poisson’s ratio ν, see Table 7.7. With ’– it’ and ’– s’ we indicate that the global
conjugate gradient method did not converge within 1000 iterations to reach the rel-
ative error reduction of 1e-08. In all the examples where the global CG method
converged, the estimated order of convergence behaves as expected, i.e. we get a
cubic convergence rate. Again we observe that for almost every case the iteration
numbers for all-floating FETI improve with a higher level. This can be seen especially
for the simple identity preconditioner and the Dirichlet preconditioner for materials
with almost incompressible behavior. Note that the lumped preconditioner does not
seem to work very well for quadratic elements and a nearly incompressible material,
i.e. ν = 0.4999. This behavior can be explained with the very ill-conditioned local
stiffness matrices that result from dealing with almost incompressible materials, see
Section 4.3.1. In fact all preconditioners show high iteration numbers for almost
incompressible materials and the FETI methods seems to be unstable. A possibility
to overcome these locking effects is the usage of P2−P0 elements, see Section 5.1.3.
This case is handled for the more general nonlinear materials in Section 7.2. For
numerical examples that examine the behavior of the FETI-DP method given nearly
incompressible linear materials see, for instance, Klawonn and Rheinbach [105].
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All-floating, iterations
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 102 it 199 it 878 it 44 it 148 it – it 32 it 90 it 796 it
2 89 it 181 it 754 it 47 it 153 it – it 31 it 80 it 703 it
3 82 it 169 it 662 it 45 it 147 it – it 27 it 64 it 535 it
4 77 it 160 it 584 it 45 it 138 it – it 24 it 50 it 404 it

Classical,iterations
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 92 it 178 it 672 it 40 it 133 it – it 27 it 79 it 696 it
2 85 it 181 it 662 it 44 it 140 it – it 29 it 76 it 663 it
3 88 it 195 it 656 it 64 it 182 it – it 36 it 73 it 603 it
4 108 it 216 it 716 it 89 it 205 it – it 42 it 75 it 575 it

All-floating, computational times
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 27.9 s 30.2 s 74.9 s 22.5 s 28.4 s – s 20.6 s 25.8 s 86.2 s
2 25.5 s 30.6 s 74.2 s 22.9 s 30.9 s – s 21.2 s 26.3 s 77.0 s
3 34.6 s 44.3 s 99.6 s 29.6 s 46.3 s – s 29.2 s 35.9 s 118.4 s
4 239.0 s 417.8 s 853.9 s 220.3 s 390.5 s – s 299.4 s 346.0 s 968.4 s

Classical, computational times
` Identity preconditioner Lumped preconditioner Dirichlet preconditioner
1 7.7 s 9.6 s 23.9 s 7.9 s 9.1 s – s 7.6 s 9.6 s 24.3 s
2 8.4 s 10.2 s 27.7 s 7.2 s 10.8 s – s 6.6 s 8.8 s 29.0 s
3 16.1 s 25.2 s 62.4 s 14.3 s 24.7 s – s 14.9 s 19.7 s 93.6 s
4 233.1 s 421.4 s 772.2 s 219.4 s 370.9 s – s 292.0 s 350.2 s 1269.7 s

Table 7.7: Iteration numbers and computational times for the different preconditioning
techniques depending on Poisson’s ratio ν using P2 elements and a linear elastic
material. Young’s modulus was set to E = 210GPa for all experiments. The
Poisson’s ratio ν was set to 0.3 for each left column, to 0.49 for each middle col-
umn and to 0.4999 for each right column. The mesh was a cube decomposed into
512 subdomains and the experiments were computed on VSC2 with 512 cores.
’– it’ and ’– s’ indicate that the global CG method did not converge within 1000
iterations.
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7.1.3 Scaling for Linear Elasticity

In this section we analyze our computational framework with respect to strong scaling
efficiency, i.e.

eff = tI
P tP

, (7.4)

where tI is the amount of time to complete a computation with the initial number
of processing units I (in our case I = 16) and tP is the amount of time to complete
the same computation with P processing units. In particular, we consider a unit
cube that is subdivided into 512 subcubes with inhomogeneous Dirichlet bound-
ary conditions all over the boundary. With linear ansatz functions this leads to a
linear elasticity problem with approximately 3.9 million total DOF. We apply the
all-floating FETI approach with the lumped preconditioner. The global FETI sys-
tem has 797096 Lagrange multipliers and was solved using the CG method with a
varying amount of processing units p on the VSC -cluster. In all cases the global
iterative method converged within 45 iterations and the estimated condition number
for the system is 26.86.

As expected the local time, i.e. the assembling of the stiffness matrices and the
factorization of the local problems with the direct solver scales almost perfectly. This
is not surprising, since we do not need any communication between the processing
units for these operations. The efficiency for the solving time of the global conjugate
gradient method and the efficiency of the total time is good up to 64 processing units
and then decays to 55% and 38%. This is due to the communication within the
iterative method and within the setup of the FETI method and the realization of
the coarse system (G>G)−1, see (6.16). Possiblities to overcome this lower scaling
with a large amount of processors are perhaps the usage of parallel solver packages as
hypre and a more efficient assembling of the coarse system. It also needs some tricks
with MPI and memory management. It is obvious that a longer lasting assembling
procedure effects the scaling in a positive way. Hence, with nonlinear elasticity we
expect a better parallel efficiency.

P Local time eff Global CG time eff Total time eff

16 46.00 s 1.000 50.12 s 1.000 179.76 s 1.000
32 23.18 s 0.992 26.42 s 0.949 99.11 s 0.907
64 11.61 s 0.991 14.56 s 0.861 59.40 s 0.757

128 5.84 s 0.985 8.47 s 0.739 37.47 s 0.600
256 2.95 s 0.975 5.65 s 0.554 29.24 s 0.384

Table 7.8: Computational times (s) and efficiency (eff) according to (7.4) for a linear elas-
ticity problem using a varying number of processing units P .
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7.2 Nonlinear Elasticity

In this section we will apply the FETI method to nonlinear elasticity problems, i.e.
the nonlinear artery model, see Section 3.11, and the nonlinear myocardium model,
see Section 3.12. The computations in this chapter are all done using the VSC2 -
cluster.

For most examples in this section, we will apply a rather low pressure to the nonlinear
materials to have a converging Newton scheme. Nonetheless, the material model as
used is orthotropic. To simulate a higher pressure, an appropriate time stepping
scheme has to be used, see Section 7.2.2. However, this does not affect the number
of local iterations significantly.

Media Adventitia Myocardium

cM = 3.0000 kPa, cA = 0.3000 kPa, a= 0.333 kPa,
k1M = 2.3632 kPa, k1A = 0.5620 kPa, af = 18.535 kPa,
k2M = 0.8393 [−], k2A = 0.7112 [−], as = 2.564 kPa,

afs = 0.417 kPa,
b= 9.242 [−],
bs = 10.446 [−],
bf = 15.972 [−],
bfs = 11.602 [−].

Table 7.9: Material parameters for an arterial material [82], see Figure 3.3. Material pa-
rameters for the myocardium from [52] where they use an adaptation from [85].

7.2.1 Academic Example

At first, we will do the computations on a simple unit cube that is subdivided in
512 subcubes with a tetrahedral triangulation. We will use the following boundary
conditions: one face (y = 0) is fixed with homogneous Dirichlet boundary conditions,
on one face (y = 1) we apply a tensile stress of 1mmHg, on the other four faces
we have homogeneous Neumann boundary conditions. With linear ansatz functions
and the FETI approach this yields a system with a total number of approximately
3.9 million DOF and 652260 Lagrange multipliers. This example was calculated on
64 processing units on VSC2. We use the myocardium model (3.61) and the pa-
rameters as indicated in Table 7.9. The results of these calculations can be found
in Table 7.10. The Jacobian J = det(F), the volume ratio change of the tetrahe-
dral elements, varied within the interval (1.,1.05) for κ= 0.8333kPa and within the
interval (0.999998,1.000001) for κ = 3333kPa. The Newton scheme needed 3 to 4
Newton steps to reach the stopping criterion. The stopping criterion is an absolute
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All-floating
κ Identity prec. Lumped prec. Dirichlet prec. BETI prec.
0.833 80 it 34 s 41 it 30 s 25 it 28 s 36 it 34 s
3.333 114 it 36 s 59 it 33 s 31 it 31 s 53 it 41 s
33.330 276 it 54 s 149 it 39 s 71 it 36 s 173 it 74 s

333.300 734 it 90 s 408 it 64 s 203 it 52 s – it – s
3333.000 – it – s – it – s 592 it 101 s – it – s

Classical
κ Identity prec. Lumped prec. Dirichlet prec. BETI prec.
0.833 143 it 34 s 91 it 33 s 44 it 27 s 63 it 37 s
3.333 194 it 38 s 127 it 31 s 52 it 28 s 88 it 42 s
33.330 442 it 58 s 301 it 48 s 105 it 36 s 214 it 74 s

333.300 – it – s 808 it 96 s 293 it 57 s 603 it 169 s
3333.000 – it – s – it – s 867 it 134 s – it – s

Table 7.10: Iteration numbers (it) and computational times (s) per Newton step for all-
floating and classical FETI with P1 elements. We compare the performance
of the different preconditioners with a varied setting of the bulk modulus κ.
’– it’ and ’– s’ indicate that the global CG method did not converge within
1000 iterations.

residual norm of 1e-06, as also used in Brands et al. [27]. We observe that for the
proposed setting of κ = 3333kPa only the Dirichlet preconditioner yields iteration
numbers of the global iterative method below 1000 iterations. This preconditioning
technique seems to be a good choice for all other settings as well. In this example
all-floating FETI yields better iteration numbers than the classical approach. With
the BETI preconditioner we achieve in most cases better iteration numbers than with
the lumped preconditioner, although it is built with the hypersingular operators for
linear elasticity and we had to fit the nonlinear parameters to it.

Using quadratic ansatz functions we get a system with a total number of 26488475
degrees of freedom and 2420142 Lagrange multipliers. For the parameter setting
as given in Table 7.9, the global iterative method only converged within 1000 iter-
ations using the Dirichlet preconditioner: 506 iterations for the all-floating and 701
iterations for the classical approach. The computational times per Newton step (as-
sembling and solving) was 1275 seconds for all-floating and 1623 seconds for classical
FETI.
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7.2.2 Arterial Model on a Realistic Mesh Geometry

An application of the FETI approach with a realistic mesh geometry is the inflation
of an artery segment. We consider the mesh of an aorta and the mesh of a common
carotid artery, see Figures 7.2 and 7.3. The geometries are from AneuriskWeb [3]
and Gmsh [63]. The generation of the volume mesh was performed using VMTK and
Gmsh, see Marchandise et al. [120].

The fiber directions, see Figure 7.4, were calculated using a method described by
Bayer et al. [19] for the myocardium. To adapt this method for the artery we first
solved the Laplace equation on the arterial domain Ω with homogeneous Dirichlet
boundary conditions on the inner surface and inhomogeneous Dirichlet boundary
conditions on the outer wall. The gradient of the solution is used to define the trans-
mural direction ê2 in each element. As a second step we repeat this procedure using
homogeneous Dirichlet boundary conditions on the inlet surface and inhomogeneous
boundary conditions on the outlet surfaces which yields the longitudinal direction
ê1. The cross product of these two vectors eventually provides the circumferential
direction ê0. With a rotation we get the two desired fiber directions a0,1 and a0,2 in
the media and the adventitia, respectively.

Figure 7.2: Mesh of an aorta consisting of 5418594 tetrahedrons and 1055901 vertices.
Point of view is from above showing the links to the brachiocephalic, the left
common carotid and the left subclavian artery. Black and white colors indicate
the displacement field (left) and the stress magnitude according to (7.5) (right)
generated by applying a pressure to the inner walls of the arteries. Darker gray
colors indicate high, lighter gray colors indicate low values. Additionally, the
splits show the decomposition of the mesh into 480 subdomains.
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Figure 7.3: Mesh of a segment of a common carotid artery from two different points of view.
The mesh consists of 9195336 tetrahedrons and 1621365 vertices. Black and
white colors indicate the stress magnitude field (7.5) generated by applying a
pressure to the inner walls of the artery. Darker shadings indicate high, light
gray colors indicates low values. Additionally, the splits show the decomposition
of the mesh into 512 subdomains.

Thus,
(
a0,1 −a0,2 ê2

)
=
(
ê0 ê1 ê2

)cosα −sinα 0
sinα cosα 0

0 0 1




ê>0
ê>1
ê>2

(ê0 ê1 ê2
)
.

The values for the angle α are αM = 29° for the media and αA = 62° for the adventitia,
taken from [82], see also Figure 3.3. To describe the anisotropic and nonlinear arterial
tissue, we use the material model outlined in Section 3.11.1, with the parameters
given in Table 7.9 and κ is varied. Dirichlet boundary conditions are imposed on
the respective intersection areas. We perform an inflation simulation on the artery
segment where the interior wall is exposed to a constant pressure p. This is performed
using Neumann boundary conditions. Here, we present the results of one load step
applying a rather low pressure of 1mmHg. This is necessary to have a converging
Newton method. Nonetheless, the material model as used is anisotropic. To simulate
a higher pressure, an appropriate load stepping scheme, see (5.13), has to be used.
However, this does not affect the number of local iterations significantly. We use the
CG method as global iterative solver. Experiments with a standard non-symmetric
nonlinear elasticity system, see (5.11), and the hence necessary GMRES method
as an iterative solver showed similar results as presented in the following with the
symmetric system. However, the memory requirements of the GMRES solver are
much higher. Hence, a symmetrization of the system, compare (5.12), is favourable.
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Figure 7.4: Stress magnitude (7.5) looking inside the aorta (left); values of high stress in
dark and of low stress in light gray. To the right the fiber directions (black
lines) and the two layers (adventitia in darker and media in lighter gray) of the
carotis are shown.

The local generalized pseudo–inverse matrices are realized with a sparsity preserving
regularization and the direct solver package Pardiso. The global nonlinear finite
element system is solved by a Newton scheme, where the FETI approach is used in
each Newton step. For the considered examples the Newton scheme needed four to
six iterations. Due to the non-uniformity of the subdomains the efficiency of a global
preconditioner becomes more important. It can happen that the decomposition of a
mesh results in subdomains that have only a few points on the Dirichlet boundary.
This negatively affects the convergence of the CG method using classical FETI, but
does not affect the global iterative method of the all-floating approach at all. This
is a major advantage of all-floating FETI since here all subdomains are treated the
same and hence all subdomains are stabilized. This behavior is observed for almost
all settings for preconditioners and the penalty parameter κ as well as for linear and
quadratic ansatz functions, see Tables 7.11–7.14. For instance, applying all-floating
FETI with the Dirichlet preconditioner to the aorta mesh using a penalty parameter

FETI type Identity prec. Lumped prec. Dirichlet prec.
All-floating – it – s 1084 it 100.6 s 497 it 85.5 s

Classical 5130 it 357.0 s 1794 it 200.2 s 588 it 97.7 s

Table 7.11: Iteration numbers (it) per Newton step and computational times (s) per Newton
step for the all-floating and the classical FETI approach with linear ansatz func-
tions comparing the three considered preconditioners. The penalty parameter
κ was set to 1000 kPa. The mesh is the carotis with two layers (adventitia and
media) subdivided in 512 subdomains, computed with 512 cores. ’– it’ and ’– s’
indicate that the global CG method did not converge within 10000 iterations.
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All-floating
κ Identity prec. Lumped prec. Dirichlet prec.
10 1052 it 57.6 s 160 it 31.0 s 56 it 22.8 s

100 1879 it 94.6 s 305 it 29.5 s 85 it 25.4 s
1000 4122 it 177.1 s 681 it 48.8 s 209 it 31.8 s

Classical
κ Identity prec. Lumped prec. Dirichlet prec.
10 2056 it 98.7 s 305 it 35.5 s 117 it 27.2 s

100 3711 it 149.8 s 540 it 35.5 s 144 it 28.4 s
1000 8245 it 327.8 s 1190 it 60.9 s 263 it 32.9 s

Table 7.12: Iteration numbers (it) and computational times (s) per Newton step for the all-
floating and the classical FETI approach with linear ansatz functions compar-
ing the three considered preconditioners. The penalty parameter κ was varied
from 10 to 1000 kPa. Mesh: mesh of the aorta subdivided in 480 subdomains,
computed with 480 cores.

κ = 1000kPa the global CG method converged in considerable less iterations (209)
than the CG method using classical FETI (263), see Table 7.12. The advantage of
the smaller number of iterations is not so significantly reflected in the computational
times since, as for the linear case, we have higher set up times and a larger coarse
system GG>. Nonetheless, it shows for the considered examples that all-floating
FETI yields lower iterations numbers of the global systems and is also competitive
or even advantageous to the classical approach concerning the computational times.

In contrast to the academic example in Section 7.2.1 the more complex Dirichlet
preconditioner is the best choice for all considered settings. Especially for κ� 1kPa
the iteration numbers with the lumped and the identity preconditioner escalate.
Admittedly, the numbers in Table 7.12 also show that the convergence of the CG
method, within all FETI approaches and preconditioner settings, is dependent on
the penalty parameter κ.

FETI type Identity prec. Lumped prec. Dirichlet prec.
All-floating – it – s 2163 it 1133.9 s 674 it 994.6 s

Classical 6006 it 2672.6 s 4798 it 2306.8 s 764 it 771.2 s

Table 7.13: Iteration numbers (it) and computational times (s) per Newton step for the
all-floating and the classical FETI approach with quadratic ansatz functions
comparing the three considered preconditioners. The penalty parameter κ was
set to 1000 kPa. Mesh: mesh of the carotis with two layers (adventitia and me-
dia) subdivided in 1024 subdomains, calculated with 1024 cores. ’– it’ and ’– s’
indicate that the global CG method did not converge within 10000 iterations.
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Using quadratic ansatz functions we have a total number of 23031620 DOF for the
aorta mesh and 36527435 DOF for the carotis mesh. In order to not infringe the
memory limitations on the VSC2 cluster we have to use a decomposition into 1024
subdomains for the carotis. For the aorta it was possible to stay with 480 subdomains.
The number of Lagrange multipliers then are 1552665 (aorta) and 4585203 (carotis).
Comparing the numbers in Table 7.14 and Table 7.13 show similar results as in the
case with linear ansatz functions. The Dirichlet preconditioner is preferable for all
test cases and the all-floating approach is competitive to the classical FETI approach.
Albeit quadratic ansatz functions resolve the nearly incompressible elastic behavior
better than linear ansatz functions we also notice a certain dependence of the global
iteration numbers to the penalty parameter κ, see Table 7.14. Nonetheless, the
iteration numbers rise not as quickly as for the P1−P0 element case and the values
of J = det(F) in each element are much closer to 1 for P2−P0 elements.

All-floating
κ Identity prec. Lumped prec. Dirichlet prec.
10 940 it 491.1 s 283 it 209.5 s 71 it 157.3 s
100 1519 it 1186.4 s 523 it 332.0 s 105 it 178.1 s

1000 3371 it 2584.5 s 1372 it 746.0 s 206 it 282.7 s

Classical
κ Identity prec. Lumped prec. Dirichlet prec.
10 1319 it 654.2 s 333 it 225.2 s 113 it 188.4 s
100 2362 it 1140.6 s 664 it 402.6 s 110 it 177.5 s

1000 5563 it 4168.3 s 1742 it 943.1 s 204 it 280.1 s

Table 7.14: Iteration numbers (it) per Newton step and computational times (s) per Newton
step for the all-floating and the classical FETI approach with quadratic ansatz
functions comparing the three considered preconditioners. The penalty param-
eter κ was varied from 10 to 1000 kPa. Mesh: mesh of the aorta subdivided in
480 subdomains, calculated with 480 cores.
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Load stepping scheme for the Arterial Model

In this section we analyze the biomechanical behavior of the aorta up to an internal
pressure of 300mmHg. Higher pressures would induce damage and softening behavior
which cannot be captured with the arterial model discussed in Section 3.11. For that
purpose we consider a coarser version of the mesh of the aorta (see Figure 7.2), which
is subdivided into 32 subdomains since for this mesh the all-floating FETI method
looks significantly advantageous. The reasons for that are as follows: (i) we have
lower iteration numbers for the all-floating FETI approach, as already observed in
Section 7.2.2; (ii) the matrix GG> in (6.16) is small, and hence less time is needed to
compute the inverse of this coarse system, especially in comparison to the assembly
time and the global solving time of the CG method.

With this mesh we simulate an arterial model with the parameters from Table 7.9 and
with c= 6kPa and κ= 1000kPa using the Dirichlet preconditioner. The results of a
load stepping scheme, where we applied an internal pressure up to 300mmHg over
572 loading steps, are found in the Figs. 7.5 and 7.6. Note that the average iteration
number over one time step increased from 248 to 268 for all-floating FETI and from
340 to 358 for the classical FETI approach for higher pressures, and, consequently, a
more anisotropic material behavior. The simulation needed four to five Newton steps
and the solving times for all-floating FETI are significantly faster, see Figure 7.6.

In our plots we used a stress magnitude σmag according to

σmag =
√
σ2

11 +σ2
22 +σ2

33 + 2σ2
12 + 2σ2

13 + 2σ2
23, (7.5)
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Figure 7.5: Stress magnitude σmag versus relative displacement urel (left) and evolution of
the displacement norm unorm over the load steps up to an internal pressure p of
300mmHg (right). The plots were generated using data at the specific points
A–E, as shown in Figure 7.2 (right).
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Figure 7.6: Comparison of all-floating FETI (gray) and classical FETI (black) for a time
stepping scheme. Average iteration numbers of one time step (left) and solving
times in seconds for one time step (right) over 572 load steps.

used as a measure to visualize our data. For advantages and disadvantages of certain
stress values concerning the analysis of rupture and failure in aortic tissues, see, e.g.,
Humphrey and Holzapfel [94]. Other values used in Figure 7.5 are the displacement
norm unorm and the relative displacement urel, i.e.

unorm =
√
u2

1 +u2
2 +u2

3, urel = unorm
umax

, (7.6)

for a point with the displacement vector u = (u1,u2,u3) at the time step t, and umax
is the largest occurring displacement norm for that point over all time steps.

7.2.3 Myocardium Model on a Realistic Mesh Geometry

In this section, we present some examples to show the applicability of the FETI
approach for the simulation of the myocardium on a realistic geometry. The mesh
was generated using segmented medical image stacks of rabbit ventricles, see [143] and
orthotropic tissue properties, i.e. fiber directions, were assigned using a rule-based
approach [19]. The mesh is of the left and the right ventricle of a rabbit heart with
given myocyte fiber direction f0 and the sheet direction s0 (left), which is decomposed
into a certain number of subdomains, see Figure 7.7 and Figure 7.8. To describe the
anisotropic and nonlinear cardiac tissue, we use the material model (3.61) with the
parameters given in Table 7.9. Dirichlet boundary conditions are imposed on the top
of the myocardium mesh. The interior wall of the right ventricle is exposed to the
pressure of 1mmHg which is modeled with Neumann boundary conditions. The local
generalized inverse matrices are realized with a sparsity preserving regularization and
the direct solver package PARDISO. The global nonlinear finite element system with
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Figure 7.7: Left and right ventricle of the rabbit heart. Mesh consists of 3073529 tetra-
hedrons and 547680 vertices. Point of view is from above showing the interior
of the left and right ventricle. Black lines on the left picture indicate fiber
directions f0. Some decompositions, here into 256 subdomains, (right picture)
generate subdomains that have only a few or even only one point on the dirichlet
boundary (indicated by the black arrow). This leads to problems with classical
FETI.

Figure 7.8: The left picture shows the displacement field of the rabbit heart with pressure
applied in the right ventricle and the decomposition in 480 subdomains. Point
of view is from below showing the apex of the heart at the bottom. To the right
we have the stress magnitude (7.5) in the right ventricle. Point of view is from
above looking inside the right ventricle. Dark colors indicate high values and
lighter gray colors indicate low values.
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1643040 degrees of freedom is solved by a Newton scheme, where the FETI approach
is used in each Newton step. For this specific example the Newton scheme needed
four to six iterations. Due to the non-uniformity of the subdomains the efficiency
of a global preconditioner becomes more important. The vast differences between
the all-floating and the classical FETI method in Table 7.15 are explained with the
characteristic of the decomposition where some subdomains only have very few or
even only one point located at the Dirichlet boundary, see Figure 7.7. In this special
case there are three points on the Dirichlet boundary which leads to higher condition
numbers and hence more iterations of the global itertive method for the classical
FETI approach compared to the all-floating FETI approach.

All-floating
κ Identity prec. Lumped prec. Dirichlet prec. BETI prec.
0.833 261 it 100 s 113 it 59 s 63 it 61 s 106 it 63 s
3.333 368 it 136 s 162 it 74 s 80 it 70 s 150 it 85 s

33.330 944 it 296 s 387 it 140 s 162 it 110 s 432 it 225 s
333.300 – it – s 870 it 287 s 351 it 202 s – it – s

3333.000 – it – s – it – s 910 it 474 s – it – s

Classical
κ Identity prec. Lumped prec. Dirichlet prec. BETI prec.
0.833 868 it 256 s 470 it 154 s 239 it 139 s 393 it 206 s
3.333 – it – s 628 it 198 s 275 it 157 s 542 it 282 s
33.330 – it – s – it – s 486 it 231 s – it – s

333.300 – it – s – it – s 933 it 470 s – it – s
3333.000 – it – s – it – s – it – s – it – s

Table 7.15: Iteration numbers per Newton step (it) and computational times per Newton
step (s) for the for all-floating and classical FETI using linear ansatz functions
comparing the four considered preconditioners. The column κ gives the setting
of the bulk modulus. Mesh: rabbit heart subdivided in 256 subdomains, com-
puted with 256 cores. ’– it’ and ’– s’ indicate that the global CG method did
not converge within 1000 iterations.

As for the academic example in Section 7.2.1 the sophisticated Dirichlet precondi-
tioner and all-floating FETI seem to be the best choice to solve the system. For
the proposed parameter setting with κ = 3333kPa the CG method needed 910 iter-
ations and the solving time of one Newton step (assembling and solving) lasted 474
seconds, see Table 7.15. The Jacobian J = det(F), a measure of the compressibility,
varied within the interval (0.9972,1.0001) for κ= 0.8333kPa and within the interval
(0.999987,1.00001) for κ= 3333kPa.

Using quadratic ansatz functions we have a total number of 12188296 degrees of
freedom. In order to not infringe the memory limitations on the VSC2 cluster we
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have to use a decomposition into 480 subdomains, see Figure 7.8. Using all-floating
FETI and the Dirichlet preconditioner we needed 862 iterations for the global CG
method and a total solving time of 986 seconds per Newton step, see Table 7.16. The
Jacobian J = det(F) varied within the interval (0.99988,1.00045) for κ = 0.8333kPa
and was≈ 1 in each tetrahedral element for κ= 3333kPa. As supposed, we can clearly
see that quadratic ansatz functions resolve the incompressible elastic behavior much
better than linear ansatz functions, see also Section 5.1.4. Hence, a much lower
κ than the proposed value of 3333 kPa should be sufficient to simulate the nearly
incompressible behavior of the myocardium. Nonetheless, the numbers in this table
show as well, that the convergence of the CG method within the FETI approaches
chosen in this simulation, is still dependent on the bulk modulus κ.

All-floating
κ Identity prec. Lumped prec. Dirichlet prec.
0.833 229 it 253 s 112 it 185 s 65 it 232 s
3.333 266 it 275 s 155 it 209 s 68 it 237 s

33.330 535 it 452 s 401 it 375 s 108 it 282 s
333.300 – it – s – it – s 300 it 527 s

3333.000 – it – s – it – s 862 it 986 s

Classical
κ Identity prec. Lumped prec. Dirichlet prec.
0.833 407 it 360 s 265 it 275 s 134 it 309 s
3.333 483 it 420 s 366 it 345 s 149 it 325 s

33.330 941 it 705 s 916 it 709 s 215 it 406 s
333.300 – it – s – it – s 455 it 684 s

3333.000 – it – s – it – s – it – s

Table 7.16: Iteration numbers per Newton step (it) and computational times per Newton
step (s) for the all-floating and the classical FETI approach with quadratic
ansatz functions comparing the different preconditioners. The column κ gives
the setting of the bulk modulus. Mesh: rabbit heart, subdivided in 480 subdo-
mains, calculated with 480 cores. ’– it’ and ’– s’ indicate that the global CG
method did not converge within 1000 iterations.
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7.2.4 Scaling for Nonlinear Elasticity

In this section we analyze our computational framework with respect to strong scaling
efficiency (7.4). In particular, we consider the meshes of the carotid artery and
the aorta as in Section 7.2.2, both subdivided into 512 subdomains. We apply the
anisotropic arterial model with the parameters from Table 7.9 and use a κ= 100kPa
with the lumped preconditioner and linear ansatz functions. For the aorta we used all-
floating FETI and needed an average of 324 global CG iterations to reach an absolute
error of ε= 1e−08 and 5 Newton steps to reach an absolute error of 1e−06. In the
case of the carotid artery and classical FETI we needed 674 global CG iterations and
also 5 Newton steps to reach the same error limits as above.

In the following we present the following numbers: the local time is the sum of all
assembling and local factorization times during the solution steps. The factorization
of the local problems was performed with the direct solver package Pardiso. In most
cases we observed a super-linear speedup, and hence an efficiency greater than 1 for

P Local time eff Global CG time eff Total time eff

16 407.7 s 1.000 1311.7 s 1.000 2028.6 s 1.000
32 203.1 s 1.004 666.4 s 0.984 1054.2 s 0.962
64 101.7 s 1.002 345.4 s 0.949 562.0 s 0.902
128 50.5 s 1.009 184.7 s 0.888 316.7 s 0.801
256 25.3 s 1.007 103.8 s 0.790 192.8 s 0.658
512 12.7 s 1.000 67.6 s 0.606 161.0 s 0.394

Table 7.17: Computational time (s) and efficiency (eff) according to (7.4) for a nonlinear
elastic problem using a varying number of processing units P . The time is
measured for 1 time step with 5 Newton steps for all-floating FETI and the
lumped preconditioner.

P Local time eff Global CG time eff Total time eff

16 726.0 s 1.000 4725.8 s 1.000 6519.7 s 1.000
32 351.3 s 1.033 2368.2 s 0.998 3497.0 s 0.932
64 170.5 s 1.065 1262.9 s 0.936 1991.2 s 0.819
128 90.7 s 1.001 694.5 s 0.851 1194.1 s 0.682
256 47.3 s 0.960 443.6 s 0.666 914.4 s 0.446
512 23.9 s 0.949 297.2 s 0.497 667.4 s 0.305

Table 7.18: Computational time (s) and efficiency (eff) according to (7.4) for a nonlinear
elastic problem on the carotid artery mesh using a varying number of processing
units P . The time is measured for 1 time steps with 5 Newton steps for classical
FETI and the lumped preconditioner.
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Figure 7.9: Computational times (s) for an artery simulation with the aorta mesh (left) and
the carotis mesh (right) using a varying number of cores.

this value. This is due to memory issues, mainly so-called cache effects. For more
information on this well-known phenomenon, see, e.g., Hennessy and Patterson [74].
The global CG time is the duration of all CG solution steps together. We see that
this value scales very well up to 256 cores for the aorta and up to 128 cores for
the carotid artery. The total time is the total computational time including input
and output functions. It also scales admissibly well up to 256 processing units for
the aorta, and up to 128 cores for the carotid artery, see Tables 7.17 and 7.18, and
Figure 7.9. For a higher number of cores, at least for the specific examples, the
speedup is rather low. Possibilities to overcome this problem are, for example, the
usage of parallel solver packages such as Hypre and a more efficient assembling of the
coarse system of the FETI method. It also needs a more elaborate strategy with MPI
and the memory management. Note that at some point the subdomains get too small
and the increasingly dominant MPI communication impedes further strong scaling.
As expected, the nonlinear elasticity case scales better than the linear case, compare
Table 7.8. Note that using a larger amount of subdomains or a larger amount of local
degrees of freedom improves the scaling properties of the problem. This is again due
to memory issues and cache effects. Unfortunately, due to the memory restrictions
on VSC2, larger problems are not taken into account; they are no longer solvable
using p = 16 cores. In Figure 7.10 we compare the scaling properties for the aorta
mesh dependent on the preconditioner. As expected the time needed to set up the
local system is a little bit higher using the Dirichlet preconditioner. In comparison
to the lumped preconditioner we have to set up the local Schur complements as
described in Definition 6.2. On the other hand, due to the better convergence, the
global CG time is significantly lower for Dirichlet preconditioner. The time to set
up the coarse system, which are not mentioned in the figure are comparable for both
preconditioners.



7.2 Nonlinear Elasticity 143

At last, we analyze the scaling for the all-floating and the classical FETI methods in
7.11. Here we also measure the realization of the coarse system, i.e. the assembling
and the inversion of G>G, see (6.16). We see that this part of the computation
is scaling the least. This is, as already mentioned before, to the relatively large
communication involved there. In this experiment we have a better convergence
and hence less computational time for the global CG method for the all-floating
approach. On the other hand the realization of the coarse system is faster for classical
FETI. There the coarse system is smaller compared to all-floating FETI. In total the
computational times are almost the same.
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Figure 7.10: Computational times (s) for a simulation of the arterial model with the aorta
mesh comparing the lumped preconditioner (LP) and the Dirichlet precon-
ditioner (DP) for all-floating (left) and classical (right) FETI. Local is the
sum of all assembling and local factorization times, CG is the duration of the
global CG method and total is the total computational time. Note that the
coarse time is neglected since it is the same for the lumped and the Dirichlet
preconditioner.
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Figure 7.11: Computational times (s) for a simulation of the arterial model with the aorta
mesh comparing the different FETI methods, i.e. all-floating FETI (AF) and
classical FETI (CL) for the Dirichlet (left) and the lumped (right) precondi-
tioner. Coarse is the time needed for the realization of the coarse system, CG
is the duration of the global CG method and total is the total computational
time. Note that the local time is almost the same for both FETI approaches,
so it was neglected in this figure.



8 CONCLUSIONS AND OUTLOOK

We have shown the application of the finite element tearing and interconnecting
method to elasticity problems, in particular to the simulation of the nonlinear elastic
behavior of biological tissues, such as the myocardium and the artery. The models
to simulate these materials were described in detail. Furthermore, we presented the
requirements for the existence of a solution of the nonlinear equations and outlined
convergence properties of the necessary Newton method. The main ideas of domain
decomposition methods were summarized and the classical and the all-floating FETI
approach were discussed in detail.

Illustrated by numerical examples we have shown certain advantages of the all-
floating FETI method compared to the classical FETI approach. To the best of
our knowledge the application of the all-floating approach to nonlinear orthotropic
elasticity problems is not yet to be found in literature. For sure the mentioned advan-
tages are influenced by the mesh structure and the choice of the boundary conditions
and hence the method to choose depends on the specific problem.

We have presented and compared different techniques of preconditioning: the lumped
preconditioner, the optimal Dirichlet preconditioner and a, in such applications, new
BEM-preconditioner (to the best of our knowledge), which is based on the hyper-
singular integral operators. We have shown that the iteration numbers of the global
iterative method behave like expected from the theory: due to the spectral equiv-
alence of the local hypersingular operators to the local Steklov–Poincaré operators,
the BEM preconditioner yields iteration numbers that lie in between the numbers
obtained with the optimal Dirichlet preconditioner and the numbers obtained with
the simple lumped preconditioner. Nonetheless, the numerical examples show that
the implementation of the hypersingular operator still needs some work and improve-
ments to achieve competitive or even better computational times compared to the
sophisticated direct solver packages.

Furthermore, the numerical examples exposed some instabilities of the global iterative
method for incompressible material parameters, i.e. for a very large bulk modulus
κ. These problems were resolved in the past for linear elasticity problems but to the
best of our knowledge are still an open task in nonlinear elasticity. Here we were
able to present, like it was also shown in earlier contributions, that quadratic ansatz
functions resolve the incompressible elastic behavior much better than linear ansatz
functions.

145



146 8 Conclusions and Outlook

Future work may include the coupling of the nonlinear elasticity problem with fluid
dynamics to simulate the blood flow through cardiovascular vessels. Other interesting
topics are the coupling of the electric activity in the heart with the mechanical be-
havior of the myocardium or contact problems, which occur while simulating certain
surgery techniques such as artery stenting. FETI methods for such coupled problems
are very demanding and hence still in their infancy. But beyond doubt these topics
deserve closer attention.



A APPENDIX

A.1 Tensor Calculus

This section gives a general introduction to the calculus of vectors, matrices and
tensors. Basic relations are omitted, for more information to tensor calculus see the
books [44, 98]. A great overview including derivatives of tensors and many identities
is [142]. Many formulas needed for the modeling of nonlinear elasticity are given in
[80, Chapter 1] and in the publications of Itskov [97, 99].

To simplify matters Einstein’s summation convention is used, which implies the sum-
mation over all the values of an index that appears twice in a single term.

A tensor of order n is defined by

Ai1i2...inei1⊗ei2⊗·· ·⊗ein ,

with an orthonormal basis {eij}, .= 1, · · · ,n.

The double contraction of two second-order tensors A and B, characterized by two
dots, yields a scalar and is defined as

A : B = tr(A>B) = tr(B>A) = B : A = AijBij . (A.1)

The tensor product or dyadic product of two vectors u and v, each having the same
dimension, is denoted by A = u⊗v. It results in a tensor of order two and rank one.
The components Aij of the dyadic product may be defined as

Aij = (u⊗v)ij = uivj .

The dyadic product of two second-order tensors results in a tensor of forth-order

D = A⊗B, Dijkl = AijBkl. (A.2)

Additionally, we define the dot tensor product

D = A�B, Dijkl = 1
2(AikBjl+AilBjk) (A.3)

147



148 A Appendix

and the box tensor product

D = A�B, Dijkl = (AikAjl). (A.4)

The contraction of a forth-order and a second-order tensor is given by

B = D : A, Bij =DijklAkl, and B = A : D, Bij = AklDklij , (A.5)

respectively. Finally, the tensor product of two forth-order tensors is defined as

C = AB, Cijkl = AijmnBmnkl. (A.6)

We define the forth-order unit tensors by

[I]abcd = (δacδbd), [I]abcd = (δadδbc). (A.7)

and the symmetric unit tensor which fulfills major and minor symmetries 3.8.1 by

S = I� I = 1
2(I+ I). (A.8)

Every second-order tensor A can be decomposed into its so-called spherical and its
deviatoric part by

A = 1
3 tr(A)I + devA,

with the deviatoric operator

dev(•) = (•)− 1
3 tr(•)I.

The deviatoric operator in the Lagrangian description reads

Dev(•) = (•)− 1
3 [(•) : C]C−1,

with the right Cauchy-Green tensor C = F>F.

Two important properties of the deviatoric operator are

tr(devA) = 0,

devA = (S− 1
3 I⊗ I) : A,

with S from (A.8).
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The unique transpose of a forth-order tensor A is denoted by A> and defined as(
A>

)
ijkl

= Aklij . (A.9)

Lemma A.1. Given the second-order tensors A,B,C,D, we can state

(A⊗B) : C = A(B : C) = (B : C)A, (A.10)
(A⊗B)(C⊗D) = (B : C)(A⊗D) = (A⊗D)(B : C), (A.11)

(A⊗B)> = B⊗A, (A.12)
AB : C = B : A>C. (A.13)

For the forth-order tensor A and the forth-order unit tensor I it holds

A =
(
A>

)>
, (A.14)

A = I : A = A : I, (A.15)
A : B = B : A>, (A.16)

B : A> : C = C : A : B = (A : B) : C, (A.17)
AI = IA = A. (A.18)

Proof. We prove these identities using Einstein’s notation and the definitions from
above:

[(A⊗B) : C]ij = AijBklCkl = Aij(B : C) = (B : C)Aij ,
since B : C is scalar valued. For (A.11) additionally use (A.6).

[(A⊗B)>]ijkl = AklBij = [B⊗A]ijkl,

using the definition of the dyadic product (A.2) and the transposed of a forth-order
tensor (A.9). Following the same pattern (A.13)-(A.17) can easily be shown. For
(A.18) the definitions (A.6) and (A.7) are used.

Remark A.1.1. Note that for symmetric second-order tensors C it holds, addition-
ally to (A.15),

S : C = C : S = C.

Lemma A.2. Given the second-order tensors A,B and the vectors a,b it holds

(A>B) : (a⊗b) = a · (A>Bb) = (Aa) · (Bb),
A(a⊗b)B = (Aa)⊗ (B>b).



150 A Appendix

Proof. The first equation is proved by

A>B : (a⊗b) = AkiBkjaibj = aiAkiBkjbj = ai[A>Bb]i = a · (A>Bb)
A>B : (a⊗b) = AkiBkjaibj = AkiaiBkjbj = [Aa]k[Bb]k = (Aa) · (Bb)

and the second equation by

[A(a⊗b)B]ij = [A(a⊗b)]ikBkj = Ail(a⊗b)lkBkj = AilalbkBkj = [Aa]i[B>b]j
= [(Aa)⊗ (B>b)]ij .

A.1.1 Derivatives

The derivative of a function A : R→Rn×m with respect to a scalar x is defined as[
∂A
∂x

]
ij

= ∂Aij
∂x

. (A.19)

The derivative of the scalar function f :Rn×m→R with respect to a tensor B∈Rn×m
is defined by convention as [

∂f

∂B

]
ij

= ∂f

∂Bij
. (A.20)

The derivative of a second-order tensor valued function A :Rn×m→Rp×q with respect
to a second-order tensor B is a tensor of forth order is defined in accordance with
(A.19) and (A.20) by [

∂A
∂B

]
ijkl

= ∂Aij
∂Bkl

. (A.21)

Using (A.20) and (A.21) we get for the second order derivative[
∂2f

∂B2

]
ijkl

= ∂2f

∂Bij∂Bkl
. (A.22)

Corollary A.1. Let A be a second-order tensor and let C be a symmetric second-
order tensor. Then

∂A
∂A = I,

∂C
∂C = S,

for the unit tensors given in (A.7) and (A.8).
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Proof. Following (A.21) we obtain(
∂A
∂A

)
ijkl

= ∂Aij
∂Akl

= δikδjl.

The latter is the definition of I, cf. (A.7).(
∂C
∂C

)
ijkl

= ∂Cij
∂Ckl

= 1
2

(
∂Cij
∂Ckl

+ ∂Cji
∂Ckl

)
= 1

2(δikδjl+ δilδjk),

which is the definition of S, cf. (A.8).

Corollary A.2. Let A be an invertible second-order tensor. Then

∂ detA
∂A = A−>detA.

Proof. Using Laplace’s formula for the determinant of an n×n matrix and Jacobi’s
formula of matrix calculus we can write

ddet(A)
dx = det(A)tr

(
A−1 dA

dx

)
.

From this it follows with (A.19)-(A.22), Corollary A.1, the identities (A.15, A.16)
and properties of the trace that[

∂ det(A)
∂A

]
ij

= ∂ det(A)
∂Aij

= det(A)tr
(

A−1 ∂A
∂Aij

)
= det(A)[A−1]km

∂Amk
∂Aij

= det(A)[A−>]mk
[
∂A
∂A

]
mkij

= det(A)
[
A−> : ∂A

∂A

]
ij

= [A−>]ij detA.

Corollary A.3 (Chain rules in tensor calculus). For the second-order tensors A,B,C
and the scalar valued function f the following chain rules hold

∂f

∂A = ∂f

∂B : ∂B
∂A , (A.23)

∂A
∂B = ∂A

∂C : ∂C
∂B , (A.24)

∂φA
∂C = A⊗ ∂φ

∂C +φ
∂A
∂C , (A.25)

∂(A : B)
∂C = A : ∂B

∂C + B : ∂A
∂C . (A.26)
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∂(AB)
∂C : D =

(
∂A
∂C : D

)
B + A

(
∂B
∂C : D

)
(A.27)

Proof. (A.23) holds according to the definitions (A.20), (A.21) and (A.5)1. (A.24)
analogous using (A.6). For (A.25), (A.26) and (A.27) additionally use the definitions
for the dyadic product (A.2) and the double contraction (A.1) and (A.5), respectively.

Corollary A.4. Let A be an invertible second-order tensor. Then[
∂A−1

∂A

]
ijkl

=
∂A−1

ij

∂Akl
=−A−1

ik A
−1
lj .

For symmetric tensors A we get with definition (A.3)

∂A−1
ij

∂Akl
=−1

2(A−1
ik A

−1
jl +A−1

il A
−1
jk ), ∂A−1

∂A =−A−1�A−1.

Proof. Let B be an second-order tensor. Recall that

∂A−1A
∂A : B = 0.

With (A.27) this is

∂(A−1A)
∂A : B =

(
∂A−1

∂A : B
)

A + A−1
(
∂A
∂A : B

)
= 0,

and thus with (A.5)1(
∂A−1

∂A : B
)

= A−1BA−1 or
∂A−1

ij

∂Akl
Bkl = A−1

ik BklA
−1
lj

which concludes the proof. See also [80, Section 1.7].

Corollary A.5 (Derivative of traces). For the second-order tensors A,B,C we obtain

∂tr(A)
∂A = I, ∂tr(A2)

∂A = 2A>.

Proof. First part follows immediately form (A.26). For the second part use (A.19)-
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(A.22), Corollary A.1 and properties of the trace[
∂ tr(AA)
∂A

]
ij

= ∂AklAlk
∂Aij

= ∂Akl
∂Aij

Alk +Akl
∂Alk
∂Aij

=
[
∂A
∂A

]
klij

[A>]kl+ [A>]kl
[
∂A
∂A

]
lkij

= 2
[
A> : I

]
ij

A.1.2 Special Derivatives of Mechanical Quantities

In the following let F be the deformation gradient, J = det(F) the Jacobian, C = F>F
the right Cauchy–Green tensor.

Corollary A.6.

∂J

∂C = J

2 C−1 ,
∂J−2/3

∂C =−1
3J
−2/3C−1.

Proof. With det(C) = det(F>)det(F) = J2, Corollary A.2 and the symmetry of C we
obtain

∂J2

∂C = ∂ detC
∂C = det(C)C−> = J2C−1.

Using the chain rule we get

∂J2

∂C = 2J ∂J
∂C ⇒ 2J ∂J

∂C = J2C−1 ⇒ ∂J−2/3

∂C =−2
3J
−5/3 ∂J

∂C =−1
3J
−2/3C−1,

which concludes the proof.

Corollary A.7. We introduce the forth-order projection tensors P and P as

P := S− 1
3C−1⊗C, P := S− 1

3 I⊗ I,

with C the right Cauchy–Green tensor. It holds

P> =
(
S− 1

3C⊗C−1
)
, P> = P

and
A : P> = P : A = Dev(A), A : P = P : A = dev(A), ∂C

∂C = J−2/3P>

using C = J−2/3C in accordance with (3.28).
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Proof. With the equations (A.12) and (A.14) we obtain

P =
(
P>
)>

=
(
S− 1

3C⊗C−1
)>

= S>− 1
3(C⊗C−1)> = S− 1

3C−1⊗C.

The properties of Dev(•) and dev(•) hold due to (A.10), (A.15) and (A.16). Finally,
we get

∂C
∂C = ∂J−2/3C

∂C = J−2/3∂C
∂C + C⊗ ∂J

−2/3

∂C = J−2/3S−C⊗ 1
3J
−2/3C−1

with (A.25) and Corollary A.6.

Let χ∗(•) denote a push-forward operation. With (A.3) we denote

∂C−1

∂C =−C−1�C−1.

The push-forward of this tensor product is

χ∗
(
C−1�C−1

)
= J−1FaAFbBFcCFdD

[
C−1�C−1

]
ABCD

= J−1I� I = J−1S.

With (A.2) we express [
C−1⊗C−1

]
ABCD

= C−1
ABC

−1
CD.

The push-forward of this dyad tensor product is

χ∗
(
C−1⊗C−1

)
= J−1FaAFbBFcCFdD

[
C−1⊗C−1

]
ABCD

= J−1I⊗ I.

Other push-forwards are

χ∗(I) = J−1B�B, χ∗(I⊗ I) = J−1B⊗B, χ∗(S) = χ∗(I� I) = J−1B�B.

Corollary A.8 (Derivative of invariants). Let A be a second-order tensor. Then for
the invariants defined in 3.4 it holds

∂I1
∂A = I, ∂I2

∂A = I1I−A>, ∂I3
∂A = I3A−>.

Proof. The derivative of the first invariant gives with A.26

∂I1
∂A = ∂ trA

∂A = ∂(I : A)
∂A = I.
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By means of Corollary A.5 we get for the derivative of the second invariant

∂I2
∂A = 1

2
∂(tr(A)2− tr(A2)

∂A = 1
2

(
2trA∂ tr(A)

∂A − (2A>)
)

= I1I−A>.

The third part follows immediately from Corollary A.2.

A.2 Numerical Derivatives

The computation of the isochoric part of the elasticity tensor may be very compli-
cated, since it involves a lot of matrix manipulations, cf. Section 3.13.3. Numerical
derivatives is a possibility to simplify the computation of the elasticity tensor. In the
following, we will outline the basic concepts of this topic. For more information and
error estimates see [48, 144].

Starting point is the symmetrized form of the differential quotient

f ′(x)≈ f(x+h)−f(x−h)
2h .

Since this is no exact computation there are two main sources of errors that have to
be taken into consideration. First, we notice a truncation error et which results from
higher-order terms in the Taylor series expansion of the function f(x±h). We can
state that et ∼ h2f

′′′ . The other error is the so-called roundoff error er. It may be
estimated by er ∼ εf |f(x)/h|, where εf is the accuracy with which f is computed. As
an optimal choice for h, in order to minimize the total error er + et, we have

h∼
(
εff

f
′′′

)1/3
∼ ε

1/3
f xc.

Here, we denote by xc = (f/f ′′)1/2 a measure of the curvature of the function f .

Consequently, the mixed derivative formula for a function of two dimensions it

∂2f

∂x∂y
≈ [f(x+h,y+h)−f(x+h,y−h)]− [f(x−h,y+h)−f(x−h,y−h)]

4h2 .

(A.28)
The optimal scaling in this case is

h∼ εf
1/4xc.
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This leads us to the case of the scalar-valued strain-energy function Ψ and its deriva-
tive with respect to a tensor. Following (A.20) we can state[

∂Ψ(C)
∂C

]
ij

= ∂Ψ(C)
∂Cji

= ∂Ψ(C)
∂Cij

.

Hence, we get for the numerical derivative[
∂Ψ(C)
∂C

]
ij

≈
Ψ(Cij

+h)−Ψ(Cij
−h)

2h , (A.29)

where the second order tensor Cij
a is defined as

[
Cij
a

]
kl

=
{

Ckl for kl 6= ij

Ckl+a for kl = ij
.

With (A.29) and Corollary 3.2 we may calculate an approximate of the stress tensors
in the reference and the current configuration, respectively.

The second derivative of the strain-energy function with respect to the tensor C yields
a forth-order tensor. Using (A.22) we get for the entries of this value[

∂2Ψ(C)
∂C2

]
ijkl

= ∂2Ψ(C)
∂Cij∂Ckl

.

The numerical derivative is obtained in an analogous way as (A.28) and yields for
the entries of the forth-order tensor[

∂2Ψ(C)
∂C2

]
ijkl

=
(Ψ(kl+hCij

+h)−Ψ(kl+hCij
−h))− (Ψ(kl−hCij

+h)−Ψ(kl−hCij
−h))

4h2 .
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