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Abstract

The aim of this work is to analyze the boundary element tearing and interconnecting
(BETI) approach for acoustic and electromagnetic scattering problems. Tearing and
interconnecting methods are well known domain decomposition methods used for
an approximate solution of various physical problems. The theory of this method
is mainly based on partial differential equations, which imply elliptic bilinear forms.
Since the acoustic and electromagnetic wave equations do not fulfill this requirement,
the theory has to be modified. In this work, we establish a rigorous theory for
the BETI method applied to the scattering problems. A main part is dedicated
to the treatment of the local subproblems, since they are not necessary well posed
if the standard approach is directly carried over to scattering problems. Therefore
Robin interface conditions are introduced and local Steklov–Poincaré operators are
exchanged by local boundary integral equation systems to guarantee well posedness
of the local boundary value problems. Further a new combined field integral equation
approach is established for exterior scattering problems. This approach differs from
others, and it can easily be incorporated in the presented domain decomposition
approach. Therefore bounded and unbounded domains can be treated in a unified
way. Further an alternative deduction of the tearing and interconnecting approach
is presented, which is solely based on algebraic arguments. Therefore it does not
depend on the properties of the underlying partial differential equation, what is not
the case in the classical deduction. Further we discuss a preconditioning approach
for the BETI method in the acoustic case. This approach is carried over from the
FETI–H method. Finally, numerical examples are given which confirm the theoretical
results.



Zusammenfassung

Ziel dieser Arbeit ist es, die
”
boundary element tearing and interconnecting“–Methode

(BETI) für akustische und elektromagnetische Streuprobleme zu analysieren. Die

”
tearing and interconnecting“–Methode ist eine etablierte Gebietszerlegungsmetho-
de, welche für vielfältige physikalische Probleme verwendet wird. Jedoch basiert die
Herleitung dieser Methode auf der Annahme, dass die zugrunde liegenden partiellen
Differentialgleichungen zu elliptischen Bilinearformen führen. Da die akustische und
die elektromagnetische Wellengleichung nicht in diese Kategorie fallen, kann die ur-
sprüngliche Theorie nicht direkt angewendet werden. Teil dieser Arbeit ist es, die
zugrunde liegende Theorie dementsprechend anzupassen. Ein wichtiger Teil dieser
Anpassung ist die Umformulierung der lokalen Lösungsstrategie, da diese im üblichen
Ansatz nicht zu notwendigerweise wohlgestellten Problemen führt. Auf Grund dessen
werden die Neumann–Transmissionsbedingungen des klassischen Ansatzes durch so-
genannte Robin–Transmissionsbedingungen ersetzt und lokale Steklov–Poincaré Ope-
ratoren werden zu lokalen Randintegralgleichungssystemen umformuliert, sodass die
eindeutige Lösbarkeit des resultierenden Systems garantiert werden kann. Weiters
wird eine neue kombinierte Feldintegralgleichung für Aussenraumprobleme vorge-
stellt, welche sich auf einfache Weise in die Gebietszerlegungsformulierung einbin-
den lässt, da Innen– und Aussenraumprobleme auf die gleiche Art und Weise be-
handelt werden können. Weiters wird eine alternative Herleitung der

”
tearing and

interconnecting“–Methode vorgestellt, welche rein auf algebraischen Argumenten ba-
siert. Der Vorteil dieser Herleitung im Unterschied zur klassischen Herleitung ist,
dass sie in keiner Weise auf Eigenschaften der zugrunde liegenden partiellen Differen-
tialgleichung angewiesen ist. Im Falle des akustischen Streuproblems wird zusätzlich
eine Vorkonditionierung des resultierenden BETI–Gleichungssystem diskutiert, wel-
che auf die FETI–H Methode zurückgeht. Abschließend werden einige numerische
Beispiele angeführt, um die theoretischen Ergebnisse zu untermauern.
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1 INTRODUCTION

Motivation

Numerical simulations are an important industrial tool to enhance existing products
or to decrease the developing costs of new products. The usage of numerical simula-
tions and the requirements on them increased heavily in the last decades. It is often
no longer sufficient to simulate only one physical model because, with increasing reg-
ularity, the different physical models are coupled together and simulated. Examples
include the cooling of electromagnetic devices [26] as well as the acoustic noises in-
duced by vibrating structures [69]. On the other hand, the structures simulated by a
single physical model are increasing in size and complexity. Hence, simulations have
to be parallelized on multiple computing cores. This can range from a few cores on
one CPU to several thousand cores in high performance clusters. For both cases do-
main decomposition approaches are used, since they deliver a natural framework to
couple different physical models and to split huge problems into smaller ones, which
can be distributed to different computing cores.

Acoustic and especially electromagnetic phenomena belong to the most simulated
physical problems. Acoustic problems range from the simulation of the acoustic noise
inside a car to the simulation of sonic detection and ranging (SODAR) instruments
which are used in meteorology. The field of electromagnetic problems is even larger.
The magnetic resonance imaging (MRI) in medicine, the radio detection and ranging
(RADAR) application or the global positioning system (GPS) are only a few exam-
ples of electromagnetic applications simulated by numerical methods. Difficulties in
the simulation of such applications/systems appear often, if the physical parame-
ters are not uniform in the whole simulated area. Possible unbounded simulation
areas are also a challenging part in the simulation of acoustic and electromagnetic
phenomena.

The aim of this thesis is to derive and to analyze a domain decomposition method
which is suitable for acoustic and electromagnetic scattering problems in bounded
and unbounded domains, and which can also deal with jumping parameters.

Partial differential equations and boundary element methods

Several physical phenomena are described by partial differential equations (PDEs),
e.g. heat transfer, structural mechanics, acoustics and electromagnetism are just
some of them. In this thesis we are concerned with two particular PDEs which

1



2 1 Introduction

describe the nature of acoustic and electromagnetic waves. These are elliptic PDEs
of second order. For this class of PDEs several numerical methods are established.
Among the most well known are the finite difference method (FDM) [130], the finite
volume method (FVM) [63], the finite element method (FEM) [23] and the boundary
element method (BEM) [125]. In this work we will solely consider the boundary
element method, although a coupling to or an exchange by finite element methods
would be partially possible.

One of the first articles about boundary integral equations for Lipschitz domains was
written by Costabel [50]. Comprehensive overviews on boundary integral equation
methods are given by McLean [102] as well as by Hsiao and Wendland [89] and
for acoustic and electromagnetic scattering problems by Colton and Kress [47] and
by Nédélec [109]. In the books of Sauter and Schwab [121] and Steinbach [125]
the boundary element method is also explained in detail. In short, the boundary
element method is based on representation formulae, which yield the solution of
partial differential equations only from the Cauchy data on the boundary. To deduce
such a representation formula for a PDE, it is necessary to know the fundamental
solution of the partial differential operators. These fundamental solutions exist for a
wide range of linear PDEs, e.g. all three dimensional elliptic and scalar PDEs with
constant coefficients of second order [121], the time harmonic Maxwell equations [109],
etc.. Since only one part of the Cauchy data is prescribed within the boundary value
problem, the remaining one has to be computed by applying a limiting process on
the representation formula towards the boundary of the computational domain. This
results in a boundary integral equation which can be solved for the missing Cauchy
datum. The main feature of the boundary element method is that only quantities
and operators have to be discretized, which are only defined on the boundary of
the domain. In many cases this is a big advantage compared to other methods,
for example if dealing with moving boundaries, unbounded domains, or even if just
a surface mesh is available. Of course there are also disadvantages, for example, in
general the boundary element method can not be used directly for non–linear PDEs or
for PDEs with variable coefficients. Another important issue for a numerical method
is the computational complexity, i.e. storage requirements and number of operations.
In the boundary element method only the boundary is discretized, therefore the
number of degrees of freedom for a three–dimensional problem behaves like O(N2),
where N is a measure for the number of elements in one spatial direction. In contrast,
the number of elements in the finite element method behaves like O(N3). A drawback
of the boundary element method is, that it usually leads to fully populated matrices
which implies a computational complexity of O(N4) operations. The matrices in the
finite element method are sparse, implying a complexity of O(N3) operations. To
remove this disadvantage, fast boundary element methods, which approximate the
fully populated matrices were introduced. This leads to a computational complexity
of O(N2 log(N2)α) operations for fast boundary element methods, which gives for 3D
problems an asymptotic complexity advantage in comparison to most other methods.
The most well known fast boundary element methods are the fast multipole method



3

[76], the Panel–Clustering method [79] and H–matrices in combination with the
adaptive cross approximation (ACA) [15]. The latter method will be used for some
of the numerical examples given in this thesis.

Acoustic and electromagnetic scattering

Under the assumption of a time–harmonic excitation acoustic and electromagnetic
quantities, such as the sound pressure or the electric field density often behave like
waves. Examples are the movement of sound in air or the signal of a satellite. In
these cases the acoustic waves can be described by the scalar wave equation

−∆U(x) − k2(x)U(x) = F (x)

with the wave number k(x). This equation is also called the Helmholtz equation
named after Hermann Ludwig Ferdinand von Helmholtz, a German physician. Elec-
tromagnetic waves are described by the electromagnetic wave equation

curl curlU(x)− k2(x)U(x) = F(x).

These equations can be used to describe a couple of different physical problems,
such as interior source problems, exterior scattering problems, transmission problems
and so on. Comprehensive overviews on different acoustic and electromagnetic wave
problems and solution strategies are given by Colton and Kress [47], Monk [106] and
Nédélec [109]. The boundary element method is one of the methods used to solve
this kind of problems numerically. It is especially suitable for exterior scattering
problems and transmission problems, due to an easy handling of unbounded com-
putational domains. Unfortunately, the standard boundary integral formulations of
the exterior scattering problem do not admit a unique solution for all wave numbers,
which does not reflect the physical behaviour. Brakhage and Werner [24] were the
first to present a regularized indirect formulation for the acoustic scattering problem,
which was well posed for all wave numbers. Panich followed with a similar approach
for the electromagnetic scattering problem [114]. A direct approach for the acous-
tic problem was given shortly afterwards by Burton and Miller [41]. All of these
approaches were developed for smooth domains and in a L2–analytical setting. To
extend these ideas to Lipschitz domains and the natural functional analytic setting,
so–called regularized combined field integral equations (CFIE) were developed among
others by Buffa and Hiptmair for the acoustic and the electromagnetic case [36, 37],
by Engleder and Steinbach for the acoustic case [60] and by Steinbach and Windisch
for the electromagnetic case [127]. The transmission problem is often tackled by a
coupled finite and boundary element method, using finite elements in the interior
and boundary elements in the exterior. The coupling of the two methods is often
realized by the symmetric coupling approach introduced by Costabel [49]. However,
this classical approach was once more haunted by spurious modes. Regularized for-
mulations were developed, for example, by Hiptmair and Meury for the acoustic and
electromagnetic case [86,87]. In this thesis we present a flexible framework which can
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be used for interior and exterior boundary value problems and by a suitable reformu-
lation even for transmission problems with multiple subdomains. The aim is to state
a well posed approach in the natural functional analytic setting. Other boundary
element approaches for the transmission problem with multiple subdomains are, for
example, given by Hanckes and Hiptmair [85] and von Petersdorff [138] who use a
multiple trace formulation based on the Calderon projector. For exterior scattering
problems, mixed formulations with multiple subdomains are, for example, given by
Bendali, Boubendir and Fares in [21, 22].

Domain decomposition methods

Most likely the first work on domain decomposition methods is the alternating
Schwarz method [122], which was originally used as a theoretical tool to rigorously
prove Dirichlet’s minimization principle [71]. Since then several domain decomposi-
tion methods have been developed, which can be divided into overlapping and non–
overlapping methods. The non–overlapping methods can again be divided into primal
and dual methods. Primal methods use the physical quantities on the boundaries
as degrees of freedom [25, 55], dual methods in contrast use Lagrangian multipliers
which enforce continuity on interfaces as degrees of freedom. Such methods include
Mortar methods [17], hybrid methods [124] or tearing and interconnecting methods
like the finite element tearing and interconnecting (FETI) method [67, 68]. For an
comprehensive overview on domain decomposition methods we refer to the mono-
graphs [101, 117, 136].

In this work we use a boundary element tearing and interconnecting (BETI) method,
which is the counterpart of the FETI method and uses boundary elements instead of
finite elements to solve the local problems. This method was introduced by Langer
and Steinbach [95], who also introduced the coupled FETI/BETI method [96]. Sev-
eral modifications of these methods exist, such as the dual–primal FETI (FETI–DP)
method which uses a mixture of primal and dual unknowns [64] and the all–floating
tearing and interconnecting method [112] which allows a unified treatment of floating
subdomains.

Tearing and interconnecting methods are mainly used for problems which lead to
elliptic bilinear forms or operators, because the standard deduction of the method is
using a reformulation as a minimizing problem. De La Bourdonnaye, Farhat, Macedo
and Tezaur extended the applicability of the FETI method to the Helmholtz equation
by using a reformulation as a saddle point problem [53,66], referred to as the FETI–H
method. Of course also other domain decomposition methods are used for acoustic
scattering problems. FETI like domain decomposition methods were given by Ben-
dali, Boubendir and Fares [16] and by Bourdonnaye, Farhat, Macedo, Magoulès and
Roux in [54]. A slightly more different approach is the ultra–weak variational for-
mulation method (UWVF), which was applied to the acoustic scattering problem by
Buffa and Monk in [39]. For the electromagnetic scattering problem in conjunction
with domain decomposition methods, less literature is available. In [97], Li and Jin
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applied the FETI–DP approach to an electromagnetic scattering problem and called
the method FETI–DPEM. In this thesis we modify the classical BETI method, such
that it is applicable for the acoustic and electromagnetic scattering problem. Al-
though several ideas of the FETI-H method can be used, the well posedness of the
local and global problems must be proven in an alternative way. We further use an
alternative algebraic deduction of the basic tearing and interconnecting approach,
which does not rely on the underlying partial differential equation.

Outline of Contents

In the second chapter, a short introduction to the physical modeling of acoustic
and electromagnetic scattering is given. Under the assumption of a time harmonic
excitation, mathematical models are deduced that describe the behaviour of acoustic
and electromagnetic waves. Further assumptions on the material parameters and on
the wave inducing excitation lead to different well posed mathematical problems.

In the third chapter, some basics from functional analysis for the mathematical de-
scription of acoustic and electromagnetic problems are provided. To analyze the
acoustic scattering problem, only rather standard theorems such as Cea’s lemma or
G̊arding inequalities are needed. For the electromagnetic scattering a more compli-
cated framework has to be established. Only the necessary parts of these theories
are given, a more comprehensive discussion can be found in [29, 38, 44, 84, 142].

In chapter 4, geometrical assumptions on the physical scatterers are made in order to
give an analytical framework of Sobolev spaces suitable for acoustic and electromag-
netic scattering. For the acoustic scattering standard Sobolev spaces can be used,
hence the introduction of these spaces is rather short. In the case of electromagnetic
scattering appropriate Sobolev spaces must be used, cf. [31, 32]. An introduction
and short motivation of these spaces in the domain and on the boundary are given.
Due to the unavoidable use of generalized G̊arding inequalities, related Hodge– and
Helmholtz–type splittings are given and discussed, cf. [29].

Chapter 5 is about local acoustic scattering problems. First interior/exterior Dirichlet
and Neumann boundary value problems are studied on their well/ill posedness. More-
over, Robin boundary value problems are considered due to their non–constrained
well posedness. Thereafter, a representation formula for the Helmholtz equation is
given and corresponding potential operators are supplied. Based on the representa-
tion formula, boundary integral equations and operators are deduced and analyzed.
With the domain decomposition in mind, the Dirichlet–to–Neumann map including
the Steklov–Poincaré operator and other solution strategies for interior boundary
value problems are introduced and discussed. Exterior boundary value problems are
discussed thereafter in a separate section, because of a different nature of the prob-
lem. A Galerkin boundary element method is discussed for an approximate solution
of the prior introduced problems. In addition, error estimates for these approximate
solutions are stated and verified by a numerical example. To conclude this chapter
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we describe a preconditioning strategy for the local problems and give a numerical
example to show the efficiency of the proposed preconditioner.

Dirichlet and Neumann boundary value problems for the electromagnetic wave equa-
tion are analyzed in chapter 6. Because of their special properties, Robin boundary
value problems are once again introduced and discussed. Afterwards the Stratton–
Chu representation formula is given and related potential operators are defined.
Boundary integral equations and operators are afterwards introduced in a way such
that in addition to electromagnetic scattering problems also eddy current problems
can be treated. A stable formulation for interior Robin boundary value problems,
which is also suitable for the domain decomposition approach, is given. Furthermore,
a regularized formulation of the exterior scattering problem leading to another direct
combined field integral equation is introduced. To solve these problems approxi-
mately, a Galerkin boundary element scheme based on Raviart–Thomas elements is
presented. A numerical example confirms the approximation estimates of the bound-
ary element approach, and a possible preconditioning strategy is discussed.

Geometrical assumptions on the domain decomposition are the starting point of chap-
ter 7. Thereafter a classical Dirichlet domain decomposition approach is deduced.
This domain decomposition approach leads to artificial local Neumann boundary
value problems, which can be haunted by spurious modes. Therefore, Neumann in-
terface conditions are partially exchanged by Robin interface conditions to achieve
unique solvability of the artificially constructed local boundary value problems. We
explain how and when this exchange works and give an algorithm which can be used
for the implementation of the exchange procedure. Afterwards a boundary element
approximation of spaces defined on the skeleton of the domain decomposition is in-
troduced and a discrete variational formulation of the decomposed problem is given.
The idea of the tearing and interconnecting approach is explained thereafter and an
algebraic deduction of this approach is provided. This approach is then applied to the
boundary element discretization of the variational formulation and a preconditioning
strategy for the resulting system is discussed. Finally, we provide several examples
to confirm convergence estimates, and to test the proposed preconditioner.

The eighth chapter starts by discussing properties of appropriate Sobolev spaces for
the electromagnetic wave equation on the skeleton. Thereafter the same classical
Dirichlet domain decomposition approach as for the Helmholtz equation is deduced.
In the spirit of the acoustic scattering problem, interface conditions are adjusted in
order to get well posed local boundary value problems. Afterwards a boundary ele-
ment discretization of the variational formulation of the decomposed problem is given.
Since the tearing and interconnecting approach does not depend on the underlying
partial differential equation, the results of the Helmholtz case can be applied directly
to the discretized variational formulation. Finally, we give a numerical example to
demonstrate the feasibility of the boundary element tearing and interconnecting ap-
proach for electromagnetic scattering problems.

In the last chapter we give a short conclusion and discuss some open questions.



2 PHYSICAL BACKGROUND

2.1 Linear Acoustics

The propagation of acoustic waves is described by a hyperbolic partial differential
equation of second order, the so called wave equation. In this section we first sum-
marize the deduction of the wave equation based on linear acoustics [47, 58]. The
modeling of nonlinear acoustics leads to more complicated partial differential equa-
tions of higher order, which will not be discussed in this work, see, for example, [80].

Let v(x, t) be the velocity vector of a fluid particle in an inviscid and inhomogeneous
fluid with the spatial coordinates x ∈ R3 at time t, p(x, t) is the pressure, ρ(x, t) is the
density and S(x, t) is the specific entropy. Without external forces the conservation
of momentum leads to the Euler equation

∂

∂t
v + (v · grad)v +

1

ρ
grad p = 0. (2.1)

The equation of continuity

∂

∂t
ρ+ div (ρv) = 0 (2.2)

describes the conversation of mass. The equation of state

p = f(ρ, S) (2.3)

describes the relation between pressure and density, where f is a function depending
on the properties of the fluid. Finally we have the adiabatic hypothesis

∂

∂t
S + v · gradS = 0. (2.4)

For waves with small amplitudes we can assume that v, p, ρ and S are small pertur-
bations of the static state v0 = 0, p = p0 = constant, ρ = ρ0(x) and S = S0(x) with
p0 = f(ρ0, S0). The perturbed quantities can be written by

v(x, t) = εv1(x, t) + . . . ,

p(x, t) = p0 + εp1(x, t) + . . . ,

ρ(x, t) = ρ0(x) + ερ1(x, t) + . . . ,

S(x, t) = S0(x) + εS1(x, t) + . . .

(2.5)

7



8 2 Physical background

with 0 < ε≪ 1, cf. [47]. Inserting (2.5) into the physical equations and neglecting all
terms of quadratic or higher order in ε, cf. [47], this leads to the linearized equations

∂

∂t
v1(x, t) +

1

ρ0(x)
grad p1(x, t) = 0,

∂

∂t
ρ1(x, t) + ρ0(x) div (v1(x, t)) = 0,

∂

∂t
p1(x, t) = c2(x)

(
∂

∂t
ρ1(x, t) + v1(x, t) · grad ρ0(x)

)
,

where the speed of sound c(x) is defined by

c2(x) :=
∂

∂ρ
f(ρ0(x), S0(x)).

From this we deduce that p1 satisfies

∂2

∂t2
p1(x, t) = c2(x)ρ0(x) div

(
1

ρ0(x)
grad p1(x, t)

)
.

Under the additional assumptions that all terms involving grad ρ0 are negligible we
finally obtain the wave equation

∂2

∂t2
p1(x, t) = c2(x)∆p1(x, t).

By assuming a time harmonic behaviour, i.e.

p1(x, t) = Re
(
U(x)e−iωt

)
,

we conclude that U(x) satisfies the Helmholtz equation

∆U(x) +
ω2

c2(x)
U(x) = 0.

Until now we have only deduced an equation, which describes how time harmonic
acoustic waves of small amplitude behave in a slowly varying inhomogeneous medium.
We still have to describe how the wave is initiated. For this we assume that the wave
motion is caused by an incident field U i(x). We further assume that the inhomoge-
neous region has compact support, i.e., c(x) = c0 for x ∈ R

3 \ Ω with Ω compact.
This leads to the system

∆U(x) + k̃2n(x)U(x) = 0 for x ∈ R
3, (2.6)

U i(x) + Us(x) = U(x), (2.7)

lim
r→∞

r

(
∂Us(x)

∂r
− ikUs(x)

)
= 0, (2.8)
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where k̃ = ω/c0 ≥ 0 is the wave number and

n(x) :=
c20

c2(x)

is the refractive index. U i(x) is hereby a solution of the Helmholtz equation, i.e.

∆U i(x) + k̃2n(x)U i(x) = 0,

and Us(x) is the scattered field, which is assumed to fulfill the Sommerfeld radiation
condition (2.8), see [123]. In R3 \ Ω we assume that n(x) = 1, otherwise we will
usually anticipate n(x) > 0. This corresponds to a scattering problem, which is the
major topic of this thesis. The mathematical theory also allows us to include the
case

n(x) = n1(x) + in2(x)

with n1(x) > 0 and n2(x) ≥ 0. This reflects the physical behaviour of an acoustic
wave in an absorbing medium. From now on we shorten the notation by k(x) =

k̃
√
n(x). Based on the equations (2.6)–(2.8) different acoustic problems can be mod-

elled.

The exterior scattering problem

For the direct acoustic scattering by an impenetrable object the model is reduced to
a boundary value problem of the scattered field Us(x). If the scatterer is assumed
to be a sound–soft obstacle, then the exterior Dirichlet trace of the total field U(x)
vanishes on the boundary Γ = ∂Ω, i.e. γc0U(x) = 0. This leads to the Dirichlet
boundary value problem

∆Us(x) + k2Us(x) = 0 for x ∈ R
3 \ Ω,

γc0U
s(x) = gd(x) for x ∈ Γ,

lim
r→∞

r

(
∂Us(x)

∂r
− ikUs(x)

)
= 0,

where the Dirichlet datum is given by gd(x) := −γc0U i(x) and k is constant. In the
case of a sound–hard obstacle, the exterior Neumann trace of the total field U(x)
vanishes on the boundary Γ, i.e. γc1U(x) = 0. This leads to the Neumann boundary
problem

∆Us(x) + k2Us(x) = 0 for x ∈ R
3 \ Ω,

γc1U
s(x) = gn(x) for x ∈ Γ,

lim
r→∞

r

(
∂Us(x)

∂r
− ikUs(x)

)
= 0,

with gn(x) := −γc1U i(x). Again k is assumed to be constant. A practical problem
which can be modeled by the exterior scattering problem is, for example, the sound
radiation of an airplane.
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The interior scattering problem

An acoustic field inside a closed domain Ω ⊂ R3 can be computed if the acoustic
pressure U(x) is known on the boundary, i.e. γ0U(x) = gd(x). This can be stated by
the interior Dirichlet problem

∆U(x) + k2(x)U(x) = F (x) for x ∈ Ω,

γ0U(x) = gd(x) for x ∈ Γ,

where F (x) represents interior acoustic sources. If the velocity field is known, i.e.
γ1U(x) = gn(x), then the acoustic field can be recovered by solving the interior
Neumann problem

∆U(x) + k2(x)U(x) = F (x) for x ∈ Ω,

γ1U(x) = gn(x) for x ∈ Γ.

In most cases we will assume that no interior sources are present, i.e. F (x) ≡ 0.
If F (x) 6≡ 0 we call the problem interior source problem, otherwise we call it inte-
rior scattering problem. A practical example for the interior scattering problem is
the simulation of the acoustic noise in a car cabin excited by the vibrations of the
engine.

The transmission problem

The transmission problem describes the scattering of an incident wave by a penetrable
obstacle Ω. It can be viewed as an exterior scattering problem combined with an
interior source problem. The problems are coupled by transmission conditions on the
boundary Γ. The mathematical formulation of this problem is given by:

∆U(x) + k2(x)U(x) = F (x) for x ∈ Ω,

∆Us(x) + k20U
s(x) = 0 for x ∈ Ωc,

γc0U
s(x)− γ0U(x) = gd(x) for x ∈ Γ,

γc1U
s(x)− γ1U(x) = gn(x) for x ∈ Γ,

lim
r→∞

r

(
∂Us(x)

∂r
− ikUs(x)

)
= 0.

As for the interior scattering problem we assume that no internal acoustic sources
are present, i.e. F (x) ≡ 0. We further assume that k0 is constant. This model, for
example, can be used to simulate the scattering of an acoustic wave by a submarine.

The well/ill posedness of the presented acoustic scattering problems will be discussed
in Chapter 5.
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2.2 Electromagnetism

The Maxwell equations, which are valid in the whole space, are the starting point
of nearly any model deduction for electromagnetic phenomena. We will use their
differential form to deduce the electromagnetic wave equation. These differential
equations contain several physical quantities, including the electric field intensity Ẽ,
the electric displacement field (electric flux) D̃, the magnetic field intensity H̃, the

magnetic induction field (magnetic flux) B̃, the current density function j̃ and the
charge density ρ. The first equation

curl Ẽ(x, t) = − ∂

∂t
B̃(x, t) (2.9)

is called Faraday’s induction law and describes that a change (in time) of the magnetic
flux induces an electric field. Ampère’s law

curl H̃(x, t) =
∂

∂t
D̃(x, t) + j̃(x, t) (2.10)

states that electric currents induce magnetic curls. In this case changes of the electric
displacement field are also treated as electric currents. The last two equations

div D̃(x, t) = ρ̃(x, t), (2.11)

div B̃(x, t) = 0 (2.12)

are known as the electric and magnetic Gauß law. They describe that sources of
electric fields are electric charges and that magnetic fields do not contain sources.
Another important relation is the conservation of charges, which is stated by the
continuity equation

div j̃(x, t) = − ∂

∂t
ρ̃(x, t), (2.13)

which follows from a combination of the divergence of equation (2.10) and the time
derivative of equation (2.11). Taking the divergence of the equations (2.9) and (2.10)
leads to

∂

∂t
div B̃(x, t) =

∂

∂t
(div D̃(x, t)− ρ̃(x, y)) = 0.

Hence, the equations (2.11) and (2.12) always hold, if they hold in one moment in
time.

In what follows we assume that all fields are time harmonic, i.e. for a generic field F
this implies

F(x, t) = F(x)eiωt
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with some frequency ω. This simplification inserted in Maxwell’s equations leads
to

curl Ẽ(x) = −iωB̃(x), (2.14)

curl H̃(x) = iωD̃(x) + j̃(x), (2.15)

div D̃(x) = ρ̃(t), (2.16)

div B̃(x) = 0. (2.17)

The fields are now complex quantities. By using the continuity equation (2.13) we

can eliminate the charge density ρ̃ via −iωρ̃ = div j̃.

Remark 2.1. For a general periodic excitation, a Fourier series expansion approach
can be used to analyze the electromagnetic scattering problem, cf. [9].

For a further simplification of system (2.14)–(2.17) we have to investigate the material

properties that establish a connection between the electric quantities D̃ and Ẽ, and
the magnetic quantities B̃ and H̃. In this thesis we distinguish between two cases:

• In vacuum, the fundamental relations

D̃ = ε0Ẽ,

B̃ = µ0H̃

are valid. Hereby is

ε0 :=
107

4πc2
Am

V s
≈ 8.855 · 10−12Am

V s

the dielectric permittivity of free space and

µ0 := 4π10−7 V s

Am
≈ 1.2566 · 10−6 V s

Am

is the magnetic constant in free space. Further holds 1√
ε0µ0

= c, where c is the

speed of light.

• For inhomogeneous, isotropic materials we have the relations

D̃ = εẼ, B̃ = µH̃, (2.18)

with ε and µ as scalar, positive and bounded functions in space. We assume
that these functions are piecewise constant.

In conductive materials the electric field induces currents. For a moderate electric
field density we can describe this by Ohm’s law

j̃ = σẼ+ j̃a, (2.19)
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with σ as the electric conductivity. In general this is a positive semi definite matrix
function in space. But in the case of isotropic materials we can assume that σ is a
positive scalar function, and in vacuum holds σ ≡ 0. The quantity j̃a describes the
applied current density.

By using the assumptions (2.18) and (2.19) we obtain the time harmonic Maxwell
system

curl Ẽ(x) = −iωµH̃(x),

curl H̃(x) = iωεẼ(x) + σẼ(x) + j̃a(x),

div (εẼ(x)) = − 1

iω
div (σẼ+ j̃a(x)),

div (µH̃(x)) = 0.

By normalizing the fields

E = ε
1/2
0 Ẽ, H = µ

1/2
0 H̃

and by setting

εr =
1

ε0

(
ε− iσ

ω

)
, µr =

µ

µ0
,

we finally get

curlE(x) = −ik̃µrH(x), (2.20)

curlH(x) = ik̃εrE(x) +
1

ik̃
F̃(x), (2.21)

div (εrE(x)) =
1

k̃2
div F̃(x), (2.22)

div (µrH(x)) = 0, (2.23)

where the excitation is given by F̃ = ik̃µ0̃ja and k̃ = ω
√
ε0µ0 ≥ 0 is the wave number.

For k̃ > 0 the equations (2.22) and (2.23) can be deduced by taking the divergence of
(2.20) and (2.21). By eliminating H in (2.20) and (2.21) we get the partial differential
equation

curl(
1

µr

curlE)− k̃2εrE = −F̃. (2.24)

Of course an elimination of the electric field density would also have been possible,
but since this approach is more common in the literature we will use the electric field
as the main quantity. Formula (2.24) holds for arbitrary inhomogeneous, isotropic

materials. By setting k =
√
εrµrk̃ and F = µrF̃ we can further simplify this to

curl curlE− k2E = −F. (2.25)
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Note that σ = 0 implies k ∈ R. The case σ = 0 corresponds to a scattering problem,
which is the main focus of this thesis. For σ > 0 we would get an eddy current
problem, this case will also be partially covered in this thesis.

For piecewise constant coefficients εr or µr describing different materials we do not
have continuity of the normal component of the electric field density, rather only
tangential continuity is preserved, see [106]. This means that for two domains Ωi and
Ωj there holds

n× (Ei(x)−Ej(x))× n = 0 for x ∈ Γij (2.26)

where Γij is the interface between the two domains. In general, we have for the
magnetic field

(Hi(x)−Hj(x))× n = js(x) for x ∈ Γij,

where the tangential vector field js is called surface current density. If Γij is not a
thin conductive layer, or if F(x) has no singularities which induce surface currents
on Γij, then js(x) = 0 holds, cf. [106]. Hence, in most cases

(Hi(x)−Hj(x))× n = 0 for x ∈ Γij

holds. In unbounded domains the electric field E(x) has in addition to fulfill the
Silver–Müller radiation condition

lim
r→∞

r (curlEs(x)× n− ikEs(x)) = 0, (2.27)

see [106, 107].

As for the acoustic scattering problem, we have to claim further conditions to get
mathematically well posed problems.

The exterior scattering problem

For a perfect conductor, i.e. σ → ∞, we can deduce from Ohm’s law E(x) = 0 inside
the conductor. Together with equation (2.26) this gives us the perfect conducting
boundary condition n × E(x) × n = 0 for x ∈ Γ. If we assume an excitation by
an incoming field Ei, then we have to solve for the scattered field Es the Dirichlet
boundary value problem

curl curlEs(x)− k2Es(x) = 0 for x ∈ R
3 \ Ω, (2.28)

n×Es(x)× n = gd(x) for x ∈ Γ, (2.29)

lim
r→∞

r (curlEs(x)× n− ikEs(x)) = 0 (2.30)

with Es = E − Ei and gd(x) = −n × Ei(x) × n. A related practical problem is the
RADAR detection of an airplane. In this case an incoming wave is induced by a
RADAR station which is refracted by the airplane.
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The interior scattering problem

If the magnetic field density H(x) is known on the boundary Γ, the electric field E(x)
can be computed by solving the Neumann boundary value problem

curl curlE(x)− k2(x)U(x) = F(x) for x ∈ Ω,

curlE(x)× n = gn(x) for x ∈ Γ,

where F describes an interior source. As for the acoustic scattering we assume in
this thesis that F(x) = 0.

The well/ill posedness of the presented acoustic scattering problems will be discussed
in Chapter 6.
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3 FUNCTIONAL ANALYTIC BASICS

In this chapter we introduce abstract definitions and theorems as used in the next
chapters. Most of them are rather standard and can be found in the most pertinent
textbooks such as [125,142]. The more advanced theorems, including nonconforming
subspaces, can be found, e.g., in [29, 38, 44, 84].

Definition 3.1. Let W be a complex vector space and a(·, ·) be a mapping from
W ×W to C. a(·, ·) is called a sesquilinear form if it fulfills

a(x1 + x2, y) = a(x1, y) + a(x2, y),

a(x, y1 + y2) = a(x, y1) + a(x, y2),

a(λx, y) = λa(x, y),

a(x, λy) = λa(x, y)

for all x, x1, x2, y, y1, y2 ∈ W and λ ∈ C.

Definition 3.2. Let W be a complex vector space with topology. A mapping f :W →
C which fulfills

f(x1 + x2) = f(x1) + f(x2),

f(λx) = λf(x)

for all x, x1, x2 ∈ W and λ ∈ C is called an antilinear functional on W . The space of
all continuous antilinear functionals on W is called the dual space of W . We denote
this space by W ′. If W is a normed space, we shall write

〈g, x〉 = g(x)

for the value of the functional g ∈ W ′ at the vector x ∈ W .

Definition 3.3. A sesquilinear form a(·, ·) on a Hilbert space X is called bounded if

|a(x, y)| ≤ c2 ‖x‖X ‖y‖X
is satisfied for all x, y ∈ X. It is called X–elliptic if

|a(x, x)| ≥ c1 ‖x‖2X
is satisfied for all x ∈ X.

In the upcoming chapters we will often switch between an operator formulation and
an equivalent variational formulation. The following lemma enables us to do so.

17
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Lemma 3.4. [125] For any linear and bounded operator A : X → X ′ the duality
product 〈·, ·〉 induces a sesquilinear form a(·, ·), i.e.,

a(x, y) := 〈Ax, y〉 for all x, y ∈ X. (3.1)

On the other hand, for each sesquilinear form a(·, ·) there exists a linear and bounded
operator A : X → X ′, such that (3.1) holds.

The solvability of variational formulations for elliptic operators is shown by the lemma
of Lax–Milgram. Since we are mainly dealing with complex valued operators, we state
the complex version of this lemma. The proof of this version can be found in [26].

Lemma 3.5 (Lax–Milgram lemma). Let X be a complex Hilbert space and f ∈ X ′.
Further let a : X × X → C be a bounded X–elliptic sesquilinear form. Then the
variational problem

Find x ∈ X such that

a(x, y) = f(y) (3.2)

holds for all y ∈ X.

has a unique solution x ∈ X satisfying

‖x‖X ≤ 1

c1
‖f‖X′ ,

where c1 is the ellipticity constant as used in Definition 3.3.

In practice we have to restrict ourselves to finite dimensional problems, which give
approximate solutions of the original problem. Cea’s lemma provides error estimates
for such an approximate solution.

Lemma 3.6 (Cea’s lemma). [125] Let X be a complex Hilbert space, f ∈ X ′ and let
a : X ×X → C be a bounded and X–elliptic sesquilinear form. Further let Xh ⊂ X
be a finite dimensional subspace. The discrete variational problem

Find xh ∈ Xh such that

a(xh, yh) = f(yh) (3.3)

for all yh ∈ Xh.

has a unique solution xh, satisfying the stability estimate

‖xh‖X ≤ 1

c1
‖f‖X′

and the quasi–optimal error estimate

‖x− xh‖X ≤ c2
c1

inf
yh∈Xh

‖x− yh‖X ,

where x is the unique solution of (3.2), and where c1 and c2 are the constants as used
in Definition 3.3.
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However, in the case of the Helmholtz and the Maxwell equations it is necessary to
use weaker assumptions than ellipticity.

Definition 3.7. Let X be a Hilbert space. The operator A : X → X ′ is called
coercive, if a compact operator C : X → X ′ exists, such that the G̊arding inequality

|〈(A+ C)x, x〉| ≥ c1 ‖x‖2X for all x ∈ X

is fulfilled for a fixed c1 > 0.

Remark 3.8. In the literature, see, e.g. [89, 102], a G̊arding inequality is often
formulated only for the real part of the duality product, i.e.,

Re(〈(A+ C)x, x〉) ≥ c1 ‖x‖2X for all x ∈ X.

In several cases this more specific formulation will be sufficient for our needs, in these
cases we will use the latter definition.

For coercive operators a similar solvability result as for elliptic operators can be
obtained. The main difference is that injectivity has to be assumed in addition.

Theorem 3.9. [125] Let A : X → X ′ be a bounded, injective and coercive operator
and f ∈ X ′. Then the equation Ax = f has a unique solution u ∈ X satisfying

‖x‖X ≤ c ‖f‖X′

for some positive constant c > 0.

To obtain stability results and error estimates for discrete variational formulations
related to coercive operators, we need the following version of Cea’s lemma.

Lemma 3.10 (Cea’s lemma). [125] Let Xh ⊂ X be a finite dimensional subspace.
If the sesquilinear form a(·, ·) fulfills the discrete inf–sup condition

sup
06=yh∈Xh

|a(xh, yh)|
‖yh‖X

≥ γ ‖xh‖X , γ > 0 (3.4)

for all xh ∈ Xh, then the discrete problem (3.3) has a unique solution which fulfills
the quasi–optimal error estimate

‖x− xh‖X ≤
(
1 +

c2
γ

)
inf

yh∈Xh

‖x− yh‖X .

Definition 3.11. A sequence of conforming subspaces {Xhi
}i∈N ⊂ X with Xhi

⊂ Xhj

for i > j is called approximating, if

lim
i→∞

inf
xh∈Xhi

‖x− xh‖X = 0

holds for every x ∈ X.
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Lemma 3.12. [125] Let A : X → X ′ be a bounded linear operator which is coercive
and injective. Let {Xhi

}i∈N ⊂ X be an approximating sequence of conforming trial
spaces. Then there exists a j ∈ N such that the discrete stability condition (3.4) is
satisfied for all i > j.

To analyze the vectorial wave equation it is necessary to use generalized G̊arding
inequalities. These are based on decompositions of Hilbert spaces.

Definition 3.13. A decomposition X = U ⊕ V is called X–stable if for all x ∈ X
there exists a unique representation x = u+ v with u ∈ U and v ∈ V such that

c−1 ‖x‖X ≤ ‖u‖X + ‖v‖X ≤ c ‖x‖X

is satisfied for a fixed c > 0 independent of x.

In this section all splittings X = U ⊕ V are assumed to be X–stable.

Definition 3.14. [29] Let {Xhi
}i∈N ⊂ X be an approximating sequence of con-

forming trial spaces. The family of finite dimensional subspaces {Xhi
}i∈N ⊂ X ful-

fills the gap property with respect to the splitting X = U ⊕ V if discrete splittings
Xhi

= Uhi
⊕ Vhi

exist such that

lim
i→∞

sup
uh∈Uhi

inf
u∈U

‖uh − u‖X
‖uh‖X

= 0,

lim
i→∞

sup
vh∈Vhi

inf
v∈V

‖vh − v‖X
‖vh‖X

= 0

holds.

Note that we did not enforce Vhi
⊂ V or Uhi

⊂ U . In such a case the gap property is
trivially satisfied. For a given decomposition X = U ⊕ V we introduce the twisting
operator X : X → X by

X (u, v) := (−u, v) (3.5)

where u+ v = x ∈ X , u ∈ U and v ∈ V .

Definition 3.15. Let a : X ×X → C be a bounded sesquilinear form. If a compact
sesquilinear form C exists, such that

Re (a(u,Xu) + C(u,Xu)) ≥ c ‖u‖2X

is satisfied for all x ∈ X, then a(·, ·) fulfills a generalized G̊arding inequality.
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Theorem 3.16. [29, Theorem 2.1] Let A : X → X ′ be a bounded and injective
operator which satisfies a generalized G̊arding inequality. Then, for f ∈ X ′ the
equation Ax = f has a unique solution u ∈ X which fulfills

‖x‖X ≤ c ‖f‖X′ .

Remark 3.17. Instead of a twisting operator X it would be possible to use more
general operators, see also the discussion in [29]. However, since this will be sufficient
for our purposes, we will stay with twisting operators as introduced in (3.5).

Theorem 3.18. [29, Theorem 3.7] Let the sesquilinear form a : X ×X → C be in-
jective satisfying a generalized G̊arding inequality. If the family of finite dimensional
subspaces {Xhi

}i∈N ⊂ X is approximating and satisfies the gap property, then there
exists a j <∞, such that for all i > j the discrete inf–sup condition

sup
yh∈Xhi

|a(xh, yh)|
‖yh‖

≥ γ ‖xh‖X

holds for all xh ∈ Xhi
with some positive constant γ > 0. Cea’s lemma implies that

the discrete problem (3.3) has a unique solution xh, which satisfies the quasi–optimal
error estimate

‖x− xh‖ ≤ c · inf
yh∈Xh

‖x− yh‖X .

Remark 3.19. In all theorems involving G̊arding or generalized G̊arding inequali-
ties, injectivity was assumed to ensure unique solvability. Instead, injectivity can be
replaced by assuming surjectivity, since all proofs are based on Fredholm’s alternative,
see, e.g., [102].
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4 SOBOLEV SPACES

After formulating a few geometrical assumptions, we will first introduce standard
Sobolev spaces as used for the mathematical analysis of boundary integral equations
related to the Helmholtz equation, see, for example, [1, 102, 121]. Afterwards we
define suitable Sobolev spaces to be used for the analysis of the electromagnetic wave
equation, which are not as common as those for the Helmholtz equation. Therefore
the discussion in this section, which is primarily based on the papers [31,32], will be
more detailed.

4.1 Geometrical assumptions

The partial differential equation (2.25), which describes the electromagnetic scat-
tering, is not of strongly elliptic type, cf. [89]. Therefore, it is not advisable to use
standard Sobolev spaces for its mathematical analysis. While for the acoustic scatter-
ing problem we may assume Ω ⊂ R3 to be a Lipschitz domain, for the electromagnetic
scattering problem we assume that Ω is a Lipschitz polyhedron. Note that ordinary
Lipschitz domains are rather common, we refer to [1, 102]. However, because they
are not as common, Lipschitz polyhedrons will be defined in a more detailed way.

Definition 4.1 (Lipschitz polyhedron). A domain Ω ⊂ R3 is called a Lipschitz
polyhedron, if it fulfills the following requirements:

• Ω is bounded by a finite number NΓ of polygons,

• Ω is a Lipschitz domain,

• Ω is simply connected.

Although it is possible to generalize the upcoming theory of Sobolev spaces to piece-
wise smooth Lipschitz domains and to multi–connected domains, see, for exam-
ple, [31, 32] and [28], we will restrict ourselves to Lipschitz polyhedrons, because
it would be more technical work with little gain. Nevertheless, we give the definition
of piecewise smooth Lipschitz domains as it is done in [51] where they are called
curved linear polyhedrons.

Notation 4.2. In this work we use the symbol Γ for the boundary of Ω, so Γ = ∂Ω.
For the outgoing normal vector we use the symbol n. This normal vector is defined
almost everywhere on the boundary Γ. We further use Ω for bounded and Ωc for
unbounded domains.
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Definition 4.3 (Piecewise smooth Lipschitz domain). A domain Ω is called a piece-
wise smooth Lipschitz domain if it has a piecewise smooth boundary, so that for
every boundary point in ∂Ω the domain Ω can be locally transformed by a C∞–
diffeomorphism into a neighbourhood of a boundary point of a Lipschitz polyhedron.

Notation 4.4. If Ω is a Lipschitz polyhedron we denote by Γi the polygonal sub-
boundaries of Ω. An edge between two neighbouring subboundaries is defined by
eij := Γi ∩ Γj.

Numerical estimates for an approximate solution are often based on regularity as-
sumptions on the sought function. This on the other hand requires regularity assump-
tions on the domain Ω. An often used class of regular domains are Ck,κ domains. This
class represents domains with boundaries which posses a local parametrization which
in turn have a k–th Hölder continuous derivative, see [89].

4.2 Sobolev spaces for the Helmholtz equation

In this section we introduce the standard Sobolev spaces as far as it is necessary for
our purposes, further details can be found in [1,102]. Within this section we assume
that Ω is an arbitrary Lipschitz domain.

Definition 4.5. Ck(Ω) is the space of bounded k–times continuously differentiable
functions on Ω ⊂ R3. Accordingly C∞(Ω) :=

⋂
k≥0 Ck(Ω) defines the space of bounded

infinitely times differentiable functions. D(Ω) := C∞
0 (Ω) ⊂ C∞(Ω) is the space of

infinitely times differentiable functions with compact support. In addition we define
the space of all functions from C∞(Ω) with compact support by

C∞
comp := C∞

0 (Rn)|Ω := {U |Ω : U ∈ C∞
0 (Rn)}.

With C(Γ) we denote the continuous functions on the boundary Γ.

There are two common ways to define Sobolev spaces. The more descriptive one uses
weak partial derivatives.

Definition 4.6. For s ∈ N, a multi index α ∈ N
3
0 and an open non–empty subset

Ω ⊂ R3, we define the Sobolev space W s
2 (Ω) by

W s
2 (Ω) := {U ∈ L2(Ω) : ∂αU ∈ L2(Ω) for |α| ≤ s},

where ∂αU has to be interpreted as distribution on Ω, cf. [102, p. 73]. The corre-
sponding norm is defined by

‖U‖2W s
2 (Ω) :=



∑

|α|≤s

∫

Ω

|∂αU(x)|2dx


 .
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This definition can be extended to s ∈ R+ by using the Sobolev–Slobodeckii norm

‖U‖2W s
2 (Ω) := ‖U‖2W k

2 (Ω) +
∑

|α|=k

∫

Ω

∫

Ω

|∂αU(x)− ∂αU(y)|2
|x− y|3+2κ

dxdy

with s = k+κ, k ∈ N0 and κ ∈ (0, 1). The spacesW s
2 (Ω) are Hilbert spaces, see [102].

Another way to define Sobolev spaces is by using the Fourier transformation, see [102].
This is often a more practical definition for the analysis of Sobolev spaces. These
spaces are denoted by Hs(Ω). For s > 0 and appropriate assumptions on Ω both
definitions are equivalent, i.e.,

W s(R3) = Hs(R3), W s(Ω) = Hs(Ω), H0(Ω) = L2(Ω)

holds, see [102,140]. The dual space of Hs(Ω) is denoted by H̃−s(Ω) for all s ∈ R.

Remark 4.7. If we say that a function u is in the dual space of X, we mean that
〈u, ·〉 is in the dual space X ′.

For unbounded domains Ωc = R\Ω, it is not always suitable to use the space Hs(Ωc),
since also very regular functions can fail to be in this space, because they may have
an unbounded support. So we use the space of locally Hs(Ωc)–regular functions.

Definition 4.8. For s ∈ R, the space Hs
loc(Ω

c) contains all linear functionals U on
C∞(Ωc), such that φU ∈ Hs(Ωc) for all φ ∈ C∞

comp(Ω
c).

The dual space of H−s
loc (Ω

c) is for all s ∈ R given by

Hs
comp(Ω

c) :=
⋃

K

{U ∈ Hs
loc(Ω

c) : supp(U) ⊂ K},

for all compact K ⊂ Ωc.

Remark 4.9. The same definitions for bounded domains Ω would lead to three co-
inciding spaces Hs(Ω), Hs

loc(Ω) and H
s
comp(Ω).

For a more detailed explanation see [121, p. 48]. Since several boundary integral
operators related to the Helmholtz equation fail to be elliptic in some sense, we will
be forced to use so–called G̊arding inequalities intensively. These in turn are based
on the following theorem.

Theorem 4.10 (Lemma of Rellich). Let Ω be a bounded Lipschitz domain, then the
embeddings Hs(Ω) ⊂ H t(Ω) and Hs

loc(Ω
c) ⊂ H t

loc(Ω
c) are compact for s > t.

Proof. See [121, p. 47 ff].
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4.2.1 Sobolev spaces on the boundary

Since we primarily deal with boundary integral operators in the following chapters, it
is essential to introduce Sobolev spaces on the boundary Γ = ∂Ω. The spaces L2(Γ)
and Hs(Γ) are defined by

L2(Γ) := C(Γ)‖·‖L2(Γ),

Hs(Γ) := C(Γ)‖·‖Hs(Γ) for s ∈ (0, 1)

The norm ‖·‖Hs(Γ) is in the case of a Lipschitz boundary Γ and for s ∈ (0, 1) equivalent
to the Sobolev–Slobodeckii norm on the boundary, which is given by

‖u‖2W s
2 (Γ)

:= ‖u‖2L2(Γ)
+

∫

Γ

∫

Γ

|u(x)− u(y)|2
|x− y|2+2s

dsxdsy.

The intrinsic definition of ‖·‖Hs(Γ) can be found in [102]. The spaces L2(Γ) and H
s(Γ)

are Hilbert spaces.

For s ∈ (−1, 0) is the space Hs(Γ) defined by duality with respect to the L2(Γ)–inner
product

〈u, v〉L2(Γ) :=

∫

Γ

u(x) · v(x) dsx.

More precisely for s < 0 we define the norm

‖u‖Hs(Γ) := sup
06=v∈H−s(Γ)

〈u, v〉L2(Γ)

‖v‖H−s(Γ)

.

The closure of L2(Γ) with respect to ‖·‖Hs(Γ) is denoted by Hs(Γ).

The L2(Γ) inner product can be extended to a duality pairing on H1/2(Γ)×H−1/2(Γ),
which will be denoted by 〈·, ·〉Γ, for details see [89, 102].

For Lipschitz polyhedrons we will also need the space H1(Γ), for our needs we use
the definition

H1(Γ) :=
{
φ ∈ L2(Γ) : φ|Γj ∈ H1(Γj) and φi|eij = φj|eij in H1/2(eij)

}
.

H−1(Γ) is again defined via duality,

H−1(Γ) := [H1(Γ)]′.

In domain decomposition approaches, equations on interfaces appear naturally. Thus
we want to give a short definition of Sobolev spaces on open manifolds.
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Definition 4.11 (Sobolev spaces on open manifolds). For an open part Γ0 ⊂ Γ of
the boundary, Sobolev spaces of the order s ≥ 0 are defined by

Hs(Γ0) := {u = ũ|Γ0 : ũ ∈ Hs(Γ)},
H̃s(Γ0) := {u = ũ|Γ0 : ũ ∈ Hs(Γ) and supp ũ ⊂ Γ0}

with the norm

‖u‖Hs(Γ0)
:= inf{‖ũ‖Hs(Γ) : ũ ∈ Hs(Γ) and ũ|Γ0

= u}.

Sobolev spaces of negative order on open manifolds are once more defined via duality.
For s > 0, we define

H−s(Γ0) := [H̃s(Γ0)]
′,

H̃−s(Γ0) := [Hs(Γ0)]
′.

The Dirichlet trace operator γ0 is for smooth functions U ∈ D(Ω) defined by

γ0U := U |Γ.
Theorem 4.12. If Ω is a Ck−1,1 domain and 1/2 < s ≤ k, then γ0 has a unique
extension to a bounded linear operator

γ0 : H
s(Ω) → Hs−1/2(Γ).

This extension has a unique right inverse.

Proof. See [102].

The Neumann trace operator γ1 is for smooth functions U ∈ D(Ω) defined by

γ1U := n ·∇U |Γ.
This definition can be easily extended to functions in H2(Ω), but not for general
functions in H1(Ω). Fortunately, solutions of the potential equation ∆U = F with F

in the space H̃−1(Ω) have a well–defined Neumann trace, which depends on U and
F . If F is in L2(Ω) then γ1 is a continuous linear operator

γ1 : H(∆,Ω) := {U ∈ L2(Ω) : ∆U ∈ L2(Ω)} → H−1/2(Γ)

which only depends on U , see, for example, [74]. Nevertheless, if F is clear from the
context we will neglect the dependency from F in the notation and just write γ1U .
For a more detailed explanation see, for example, [102].

Notation 4.13. In the upcoming, bounded domains Ω will be denoted as interior
domains. The complement Ωc = R

3 \ Ω will be called exterior domain. For the
exterior domain the traces are defined as for the interior domain, we only exchange
the Sobolev spaces by there localized versions, cf. Definition 4.8. Trace operators for
the exterior domain will be marked by the superscript ·c. Since we use the outgoing
normal vector in both cases, we have γc1U = γ1U for every function U ∈ C1(R3).
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4.3 Sobolev spaces for the Maxwell equation

In this section we give a short introduction to Sobolev spaces for the electromagnetic
wave equation. We will use the pioneering works [31, 32] as guideline, while also
using some ideas from [26] and [105]. Important tools for our needs are the so called
Helmholtz– or Hodge–type decompositions which we will discuss in Subsection 4.3.2.
This will be mainly based on [84] and [105]. We assume now, that Ω ⊂ R3 is a
Lipschitz–polyhedron, keeping in mind that the theory can be extended to the more
general case of piecewise smooth Lipschitz domains.

Remark 4.14. Appropriate Sobolev spaces for the electromagnetic wave equation on
ordinary Lipschitz domains are discussed in [34].

In the case of the electromagnetic wave equation we are dealing with vector–valued
physical quantities. Hence we have to carry over the definition of Sobolev spaces for
scalar functions to vector–valued functions. This can be done in a canonical way by

H := [H ]3 := {U : Ui ∈ H, i = 1, 2, 3}, ‖U‖2H :=

3∑

l=1

‖Ul‖2H .

Remark 4.15. We mark vector–valued functions and other vector–valued quantities
by bold letters, the only exception are points in R3 and several operators, since they
have a distinguished notation. Functions in the domain are be denoted by upper case
letters, whereas functions on the boundary are denoted by lower case letters.

For further considerations we have to investigate certain properties of functions U
satisfying the partial differential equation

curl curlU+ k2U = 0,

with k ∈ C \ {0}.
Theorem 4.16 (Green’s first formula). For sufficiently smooth vector–valued func-
tions U and V there holds
∫

Ω

curl curlU(x) ·V(x)dx =

∫

Ω

curlU(x) · curlV(x)dx

−
∫

Γ

(curlU|Γ(x) × n(x)) · (n(x)× (V|Γ(x) × n(x)))dsx.

(4.1)

Proof. From the identity

div (W ×V) = V · curlW −W · curlV
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it follows that
∫

Ω

(V(x) · curlW(x)−W(x) · curlV(x))dx =

∫

Ω

div (W(x)×V(x))dx

=

∫

Γ

(W(x)×V(x)) · n(x) dsx

= −
∫

Γ

(W(x)× n(x)) ·V(x)dsx

= −
∫

Γ

(W(x)× n(x)) · (n(x)× (V(x)× n(x)))dsx.

Setting W = curlU and replacing V by V proves the theorem.

Motivated by Green’s first formula we define the energy space for the Maxwell equa-
tions.

Definition 4.17. The energy space related to the Maxwell equations is defined by

H(curl,Ω) := {V ∈ L2(Ω) : curlV ∈ L2(Ω)}

with the energy norm

‖V‖2H(curl,Ω) := ‖V‖2L2(Ω) + ‖curlV‖2L2(Ω) .

In the same manner, as in Definition 4.17 we define the auxiliary space

H(div ,Ω) := {V ∈ L2(Ω) : div V ∈ L2(Ω)},

endowed with its graph norm

‖V‖2
H(div ,Ω) := ‖V‖2

L2(Ω) + ‖div V‖2L2(Ω) .

Furthermore, the trace operators are also motivated by (4.1). The Dirichlet trace
operator is given by

γDU := n× (U|Γ × n) = n× γ×U

with

γ×U := U|Γ × n,

and the Neumann trace operator by

γNU := curlU|Γ × n.

To prove mapping properties of the trace operators we must first introduce tangential
Sobolev spaces.
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Definition 4.18. The space of tangential L2–integrable functions is defined by

L2,t(Γ) := {u ∈ L2(Γ) : u · n = 0}.
Remark 4.19. The space L2,t(Γ) can be identified by the space of two–dimensional
quadratic integrable vector fields.

For Sobolev spaces of higher order we use a piecewise definition, since for s ≥ 1/2 we
lose regularity at the edges, cf. [26],

Hs
pw,t(Γ) := {u ∈ L2,t(Γ) : u ∈ Hs(Γk) , k = 1, . . . , NΓ}

with the norm

‖u‖2Hs
pw,t(Γ)

:=

NΓ∑

k=1

‖u‖2Hs(Γk) .

For the trace operators γD and γ× we have the mapping properties

γD : D(Ω) → H
1/2
pw,t(Γ),

γ× : D(Ω) → H
1/2
pw,t(Γ),

see [26]. Since D(Ω) is dense in H1(Ω) we can extend these two operators to H1(Ω).

But they are not surjective from H1(Ω) to H
1/2
pw,t(Γ), and have different open images.

Hence, we have to introduce two additional spaces which are based on the functionals

N
‖
lk(u) :=

∫

Γl

∫

Γk

|u(x) · tlk(x)− u(y) · tlk(y)|2
|x− y|3 dsxdsy,

N
⊥
lk(u) :=

∫

Γl

∫

Γk

|u(x) · tl(x)− u(y) · tk(y)|2
|x− y|3 dsxdsy,

which are defined for two neighbouring polygons with indices l and k and the common
edge elk. Hereby is tlk the unit vector with the direction of elk and tl is for the plane
Γl defined by tl := tlk × n.

Definition 4.20. We define

H
1/2
‖ (Γ) :=

{
u ∈ H

1/2
pw,t(Γ) : N

‖
lk(u) <∞ for all edges elk

}
,

H
1/2
⊥ (Γ) :=

{
u ∈ H

1/2
pw,t(Γ) : N

⊥
lk(u) <∞ for all edges elk

}

with the corresponding norms

‖u‖2
H

1/2
‖

(Γ)
:=

NΓ∑

k=1

‖u‖2H1/2(Γk) +
∑

elk

N
‖
lk(u),

‖u‖2
H

1/2
⊥ (Γ)

:=

NΓ∑

k=1

‖u‖2H1/2(Γk) +
∑

elk

N
⊥
lk(u).

(4.2)
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Figure 4.1: H
1/2
‖ (Γ) Figure 4.2: H

1/2
⊥ (Γ)

Theorem 4.21. The spaces H
1/2
‖ (Γ) and H

1/2
⊥ (Γ) aren’t closed subspaces of H

1/2
pw,t(Γ)

with respect to the norm defined in (4.2), but they are Hilbert spaces.

Proof. See [31].

Theorem 4.22. The trace operators γD : H1(Ω) → H
1/2
‖ (Γ) and γ× : H1(Ω) →

H
1/2
⊥ (Γ) are continuous, linear, surjective and posses continuous right inverses RD

and R×, respectively.

Proof. See [31].

H
1/2
‖ (Γ) describes a space with tangential continuity over the edge, see Figure 4.1.

H
1/2
⊥ (Γ) in contrast provides perpendicular continuity, see Figure 4.2. The corre-

sponding dual spaces are

H
−1/2
‖ (Γ) := [H

1/2
‖ (Γ)]′, H

−1/2
⊥ (Γ) := [H

1/2
⊥ (Γ)]′.

Rellich’s embedding theorem can be extended to those trace spaces.

Lemma 4.23. The embeddingsH
1/2
⊥ (Γ) →֒ L2

t (Γ) andH
1/2
‖ (Γ) →֒ L2

t (Γ) are compact.

Proof. The right inverse RD of γD is continuous from H
1/2
‖ (Γ) to H1(Ω). The em-

bedding H1(Ω) →֒ H1/2(Ω) is compact. Finally the trace operator γD is continuous
from H1/2(Ω) to L2(Γ) due to its definition. The second proposition can be proved
analogous, see also [84].

4.3.1 Surface derivatives

Surface derivatives play a key role in the investigation of Sobolev spaces and of bound-
ary integral operators for the electromagnetic wave equation. As a starting point we
introduce the surface gradient ∇Γ and the surface curl curlΓ. These operators can
be defined in several ways, we have chosen the following one.
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Definition 4.24. Since we deal with polyhedrons, the surface gradient ∇Γ : H1(Γ) →
L2

t (Γ) can be defined face by face

(∇Γ φ)i = ∇2(φi) on Γi,

whereas ∇2 is the classical two dimensional differential operator with respect to the
plane spanned by Γi, cf. [32]. The surface curl curlΓ : H1(Γ) → L2

t (Γ) is given
by curlΓ · := ∇Γ · × n. Alternative definitions of these two operators can be found
in [31].

The operators ∇Γ and curlΓ are linear and continuous from H1(Γ) to L2
t (Γ). Based

on these operators we can define the scalar surface derivatives by duality.

Definition 4.25. The surface divergence divΓ : L2
t (Γ) → H−1(Γ) is defined via the

duality

〈divΓ u, φ〉Γ = −〈u,∇Γ φ〉Γ

for all φ ∈ H1(Γ),u ∈ L2
t (Γ). In the same way we define the scalar surface curl

curlΓ : L2
t (Γ) → H−1(Γ) by

〈curlΓ u, φ〉Γ = 〈u, curlΓ φ〉Γ

for all φ ∈ H1(Γ),u ∈ L2
t (Γ).

The upcoming natural trace spaces are based on extensions of the vector–valued
surface derivatives to more and less regular spaces such as H3/2(Γ) and H1/2(Γ).
More precisely they can be extended to linear and continuous operators

∇Γ : H3/2(Γ) → H
1/2
‖ (Γ), ∇Γ : H1/2(Γ) → H

−1/2
‖ (Γ),

curlΓ : H3/2(Γ) → H
1/2
⊥ (Γ), curlΓ : H1/2(Γ) → H

−1/2
⊥ (Γ),

with H3/2(Γ) :=
{
φ ∈ H1(Γ) : ∇Γ φ ∈ H

1/2
‖ (Γ)

}
, see [31].

For their scalar counterparts,

divΓ : H
−1/2
‖ (Γ) → H−3/2(Γ), divΓ : H

1/2
‖ (Γ) → H−1/2(Γ),

curlΓ : H
−1/2
⊥ (Γ) → H−3/2(Γ), curlΓ : H

1/2
⊥ (Γ) → H−1/2(Γ)

holds. These are the basic ingredients required to prove the mapping properties of the
trace operators. We do not provide a proof for the mapping properties of the surface
differential operators, but we think it is essential to state these mapping properties, in
order to get a rough idea how these spaces are constructed. For a detailed deduction



4.3 Sobolev spaces for the Maxwell equation 33

see [31, 32]. Based on these mapping properties we can define the final trace spaces.
Let’s start with a short motivation and consider∫

Ω

(V(x) · curlW(x)−W(x) · curlV(x))dx =

∫

Ω

div (W(x)×V(x))dx

= −
∫

Γ

γ×W(x) · γDV(x)dsx,

(4.3)

which was used when deducing Green’s first formula (4.1) for sufficiently smooth

functions. For W ∈ H1(Ω) we have γ×W ∈ H
1/2
⊥ (Γ) which encourages us to ex-

tend γD to a mapping from H(curl,Ω) to H
−1/2
⊥ (Γ), which is a continuous but not

surjective extension.

Taking (4.3), settingV = gradφ and using Stoke’s formulae for the surface (see [109])
we get
∫

Ω

curlW(x) · gradφ(x) dx =

∫

Ω

curlW(x) · gradφ(x)−W(x) · curl grad φ(x)dx

=

∫

Γ

γDW(x) · γ× gradφ(x) dsx

=

∫

Γ

γDW(x) · (∇Γ φ(x)× n(x))dsx

= −
∫

Γ

γDW(x) · curlΓ φ(x) dsx

= −
∫

Γ

curlΓ(γDW(x))γ0φ(x) dsx.

Hence we can derive the inequality
∣∣∣∣∣∣

∫

Γ

curlΓ(γDW(x))γ0φ(x) dsx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Ω

curlW(x) · gradφ(x) dx

∣∣∣∣∣∣

≤ ‖curlW‖L2(Ω) ‖grad φ‖L2(Ω)

≤ ‖W‖H(curl,Ω) ‖φ‖H1(Ω)

≤ c ‖W‖H(curl,Ω) ‖γ0φ‖H1/2(Γ) ,

which indicates that the surface curl of the Dirichlet trace should be in H−1/2(Γ).

Definition 4.26. The trace spaces are defined by

H
−1/2
‖ (divΓ,Γ) :=

{
u ∈ H

−1/2
‖ (Γ) : divΓ u ∈ H−1/2(Γ)

}
,

H
−1/2
⊥ (curlΓ,Γ) :=

{
u ∈ H

−1/2
⊥ (Γ) : curlΓ u ∈ H−1/2(Γ)

}
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with the corresponding norms

‖u‖2
H

−1/2
‖

(divΓ,Γ)
:= ‖u‖2

H
−1/2
‖

(Γ)
+ ‖divΓ u‖2H−1/2(Γ) ,

‖u‖2
H

−1/2
⊥ (curlΓ,Γ)

:= ‖u‖2
H

−1/2
⊥ (Γ)

+ ‖curlΓ u‖2H−1/2(Γ) .

Based on these definitions we can state one of the major theorems for Maxwell Sobolev
trace spaces.

Theorem 4.27 (Trace theorem). The Dirichlet traces

γD : H(curl,Ω) → H
−1/2
⊥ (curlΓ,Γ),

γ× : H(curl,Ω) → H
−1/2
‖ (divΓ,Γ)

are linear, continuous and surjective.

Proof. See [31, 32].

The twisting operator R = ·×n can be extended to a linear continuous and isometric
operator

R : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ,Γ),

see [26, p. 27].

To investigate the Neumann trace operator γN , we first have to introduce the space

H(curl2,Ω) := {V ∈ H(curl,Ω) : curl curlV ∈ L2(Ω)}

with the norm

‖U‖2H(curl2,Ω) := ‖U‖2H(curl,Ω) + ‖curl curlU‖2L2(Ω) .

Since the mapping curl : H(curl2,Ω) → H(curl,Ω) is linear, continuous and surjec-
tive, we deduce from Theorem 4.27

γN : H(curl2,Ω) → H
−1/2
‖ (divΓ,Γ).

Another significant result is the duality of the Dirichlet and Neumann trace spaces.
This provides a framework for the analysis of boundary integral operators, which is
quite similar to the framework in the Helmholtz case.

Theorem 4.28. The Dirichlet and the Neumann trace spaces are dual to each other,
i.e.

H
−1/2
⊥ (curlΓ,Γ) = [H

−1/2
‖ (divΓ,Γ)]

′.

Proof. See [32].
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To deduce the representation formula for solutions of the electromagnetic wave equa-
tion, it is, in contrast to its acoustic counterpart, necessary to define another trace
operator.

Definition 4.29. The trace operator γn : D(Ω)3 → L2(Γ) is defined by

γnU = U|Γ · n.

Theorem 4.30. The operator γn can be extended to a linear and continuous operator

γn : H(div ,Ω) → H−1/2(Γ).

Proof. See [26].

With the mapping properties established, we can state an auxiliary proposition which
is needed to state the upcoming representation formula, see (6.6), in a compact form.

Lemma 4.31. The identities

γn ◦ curlU = curlΓ ◦γDU = divΓ ◦γ×U

hold for U ∈ H(curl,Ω), in the sense of H−1/2(Γ).

Proof. See [82].

Finally, we formulate Green’s formulae with the natural spaces.

Theorem 4.32 (Green’s first formula). For U ∈ H(curl2,Ω) and V ∈ H(curl,Ω)
there holds
∫

Ω

curl curlU(x) ·V(x)dx =

∫

Ω

curlU(x) · curlV(x)dx−
∫

Γ

γNU(x) · γDV(x)dsx.

Proof. See [32].

Theorem 4.33 (Green’s second formula). For U∈ H(curl2,Ω) and V∈ H(curl2,Ω)
there holds

∫

Ω

curl curlU(x) ·V(x)dx−
∫

Ω

curl curlV(x) ·U(x)dx

= −
∫

Γ

γNU(x) · γDV(x)dsx +

∫

Γ

γNV(x) · γDU(x)dsx.

Proof. This can be deduced by applying Green’s first formula twice.
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4.3.2 Decompositions

In this section we introduce splittings for the space H(curl,Ω) and the trace spaces

H
−1/2
⊥ (curlΓ,Γ) and H

−1/2
‖ (divΓ,Γ), as proposed in [84, 105]. These splittings are

needed to establish generalized G̊arding inequalities for various variational formu-
lations of boundary integral integral equations which are related to the Maxwell
equations.

Lemma 4.34. There exists a continuous lifting operator

L : H(div 0,Ω) := {U ∈ L2(Ω), div U = 0} → H1(Ω)

that satisfies div LU = 0 and curlLU = U for all U ∈ H(div 0,Ω).

Proof. See [6, Lemma 3.5].

Based on this lifting operator we can define the projection operator

P : H(curl,Ω) → H1(Ω),

PU := L(curlU).

Lemma 4.35. The operator P is a projection and satisfies

• curlPU = curlU for all U ∈ H(curl,Ω),

• PU = 0 for all U ∈ H(curl 0,Ω),

• ‖PU‖H1(Ω) ≤ C ‖curlU‖L2(Ω) for all U ∈ H(curl,Ω).

Proof. All claims except of the projection property follow from Lemma 4.34. From
PU = U+ Z with curl Z = 0 it follows P 2U = PU+ PZ = PU.

Due to Ker(P ) = Ker(curl) ∩H(curl,Ω) we can define

X(curl,Ω) := P (H(curl,Ω)),

N(curl,Ω) := Ker(curl) ∩H(curl,Ω).

This provides a stable and direct Helmholtz–type splitting

H(curl,Ω) = X(curl,Ω)⊕N(curl,Ω).

Since P is continuous and X(curl,Ω) ⊂ H1(Ω) we get the following corollary.

Corollary 4.36. The embedding X(curl,Ω) →֒ L2(Ω) is compact.
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A similar splitting can be found for the Neumann trace space H
−1/2
‖ (divΓ,Γ). Let

λ ∈ H
−1/2
‖ (divΓ,Γ) and set ω := divΓλ ∈ H−1/2(Γ). We define Ψ ∈ H1(Ω)/R as the

solution of the Neumann problem

∆Ψ = 0 in Ω,

γ1Ψ = ω on Γ.

Note that ω = divΓ λ fulfills the required solvability condition of the above Neumann
problem since

∫

Γ

1 · divΓ λ(x)dsx =

∫

Γ

∇Γ 1 · λ(x)dsx = 0.

Hence we can define W := gradΨ ∈ H(div 0,Ω). Again by using the lifting operator
L we can define a continuous operator J : H−1/2(Γ) → H1(Ω) by Jω := LW.
Continuity follows from

‖Jω‖H1(Ω) ≤ C ‖W‖L2(Ω) ≤ C ‖ω‖H−1/2(Γ) .

Now it is possible to define a similar projection as before by

P Γ := γ× ◦ J ◦ divΓ : H
−1/2
‖ (divΓ,Γ) 7→ H

1/2
⊥ (Γ).

Corollary 4.37. The operator P Γ is a projection and satisfies

• divΓ P
Γλ = divΓ λ for all λ ∈ H

−1/2
‖ (divΓ,Γ).

• P Γλ = 0 for λ ∈ H
−1/2
‖ (divΓ,Γ) and divΓ λ = 0.

•

∥∥P Γλ
∥∥
H

1/2
⊥ (Γ)

≤ C ‖divΓ λ‖H−1/2(Γ) for all λ ∈ H
−1/2
‖ (divΓ,Γ).

Proof. The first claim follows from recent definitions and Lemma 4.31, more precisely

divΓ P
Γλ = divΓ γ×J divΓ λ = divΓ γ×Jω

= divΓ γ×LW = γn curlLW = γnW = γ1Ψ = divΓ λ.

The other properties follow immediately.

Now we define

X(divΓ,Γ) := P Γ(H
−1/2
‖ (divΓ,Γ)),

N(divΓ,Γ) := Ker(divΓ) ∩H
−1/2
‖ (divΓ,Γ),

and finally we end up with the direct splitting

H
−1/2
‖ (divΓ,Γ) = X(divΓ,Γ)⊕N(divΓ,Γ).

Again it is possible to establish some extra regularity for one of the subspaces.
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Corollary 4.38. The embedding X(divΓ,Γ) →֒ L2
t (Γ) is compact.

Proof. This follows immediately from the compact embedding H
1/2
⊥ (Γ) →֒ L2

t (Γ).

Another important result is the relation of the splitting of H(curl,Ω) and the split-
tings of the trace spaces.

Theorem 4.39. For any U ∈ H(curl,Ω) the Helmholtz–type splitting U = U⊥⊕U0

with U⊥ ∈ X(curl,Ω) and U0 ∈ N(curl,Ω) implies a valid Hodge–type decompo-

sition of the Dirichlet trace γ×U by (γ×U)⊥ := γ×U
⊥ ∈ H

1/2
⊥ (Γ) and (γ×U)0 :=

γ×U
0 ∈ N(divΓ,Γ).

Proof. We start with U ∈ H(curl,Ω) and the decomposition U = U0 + U⊥ with
U0 ∈ N(curl,Γ) and U⊥ ∈ X(curl,Γ). Since γn ◦ curl = divΓ ◦γ× we conclude
that γ×U

0 is in the kernel of divΓ. From X(curl,Ω) ⊂ H1(Ω) and Theorem 4.22 we

conclude that γ×U
⊥ ∈ H

1/2
⊥ (Γ).

A similar splitting can be derived for the space H
−1/2
⊥ (curlΓ,Γ), i.e.

H
−1/2
⊥ (curlΓ,Γ) = X(curlΓ,Γ)⊕N(curlΓ,Γ),

where N(curlΓ,Γ) is in the kernel of curlΓ and X(curlΓ,Γ) is compactly embedded in
L2

t (Γ). Additionally, Theorem 4.39 remains valid if exchanging the trace γ× by γD

and divΓ by curlΓ.

In the next chapters we will use so–called ’sign flip’ operators, which will play an
important role in establishing generalized G̊arding inequalities. These on the other
hand are needed to prove unique solvability of various boundary integral formulations.

Definition 4.40. The sign flip operator X is for H
−1/2
⊥ (curlΓ,Γ) defined by

(u,v) 7→ (−u,v),

X(curlΓ,Γ)×N(curlΓ,Γ) → X(curlΓ,Γ)×N(curlΓ,Γ),

for H
−1/2
‖ (divΓ,Γ) by

(u,v) 7→ (−u,v),

X(divΓ,Γ)×N(divΓ,Γ) → X(divΓ,Γ)×N(divΓ,Γ),

and for H(curl,Ω) by

(U,V) 7→ (−U,V),

X(curl,Ω)×N(curl,Ω) → X(curl,Ω)×N(curl,Ω).

The second sign flip operator we will use is defined by Y := −X .



5 BOUNDARY INTEGRAL EQUATIONS FOR

ACOUSTIC SCATTERING PROBLEMS

In this chapter we discuss boundary value problems of acoustic scattering. First we
analyze the solvability properties of interior and exterior problems. Afterwards we
state the representation formula, derive the corresponding potentials and boundary
integral operators and discuss their properties. Then we introduce the Steklov–
Poincaré operator to describe the Dirichlet–to–Neumann map and discuss its prop-
erties in detail, since this operator plays a key role in tearing and interconnecting
domain decomposition methods. Based on boundary integral operators we present
different possibilities to solve the Neumann or Robin boundary value problem and
we derive a suitable formulation for the domain decomposition approach. Due to a
different situation, the case of a boundary value problem in an unbounded domain is
treated in a separate section. There we introduce a new formulation, which can be
regarded as a new combined field integral equation. We modify this formulation such
that it is also suitable for the tearing and interconnecting approach. Thereafter we
discuss the discretization of all formulations and provide some numerical examples.
Finally, we present a possible preconditioning strategy together with some numerical
examples.

5.1 Boundary value problems

The interior Helmholtz boundary value problem for a bounded domain Ω ⊂ R3 is
stated by

−∆U − k2U = 0 in Ω,

γ0U = g on ΓD,

γ1U = p on ΓN ,

γ1U + iηRγ0U = l on ΓR,

(5.1)

where we assume that ΓD ∪ ΓN ∪ ΓR = Γ = ∂Ω and ΓD, ΓN and ΓR are mutually
disjoint. ΓD is called the Dirichlet boundary, ΓN the Neumann boundary and ΓR the
Robin boundary. Therefore we call the problem a Dirichlet boundary value problem if
ΓD = Γ, and Neumann or Robin boundary problem if ΓN = Γ or ΓR = Γ, respectively.
If non of these cases apply we call the problem a mixed boundary value problem.

Definition 5.1. An operator R : X → X ′ is strictly positive if 〈Ru, u〉Γ > 0 holds
for all 0 6= u ∈ X.

39
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Remark 5.2. At this point we will use an abstract operator R : H1/2(ΓR) →
[H1/2(ΓR)]

′ which fulfills several properties. Some possible choices for R will be stated
in Section 5.5. For now let us assume that R is self–adjoint, real valued, and strictly
positive on H1/2(ΓR). The Robin boundary condition can be denoted as generalized
Robin boundary condition due to the additional operator R. These assumptions imply
that the generalized Robin boundary condition is stated in the sense of H1/2(ΓR)

′. In
literature this equation is normally stated in L2(ΓR), since no additional operator R
is used.

Interior Dirichlet and Neumann boundary value problems may suffer from eigen wave
numbers. This means that the boundary value problem is not uniquely solvable for
some k2, furthermore the Dirichlet data or respectively the Neumann data have to
fulfill certain solvability conditions if k2 is an eigen wave number. Therefore, we will
also consider the Robin boundary value problem which always has a unique solution
and the given data can be given arbitrarily. In the following we discuss under which
circumstances the Helmholtz equation leads to a unique solvable boundary value
problem. The main references we use are [43, 102].

Theorem 5.3. The Laplace eigenvalue problem

−∆Uλi
= λiUλi

in Ω,

γ0Uλi
= 0 on ΓD,

γ1Uλi
= 0 on ΓN

(5.2)

with Uλ not identically zero has infinite, countable many real solutions λi ≥ 0. Fur-
ther holds λi → ∞ as i → ∞. The corresponding eigenspaces have finite dimension
for every λi.

Proof. See [5, page 306], [137, page 16] and [102, page 286].

Remark 5.4. If ΓD = Γ we denote the Laplace eigenvalues λi as introduced in
Theorem 5.3 as the Dirichlet eigen wave numbers of the domain Ω. If the domain is
clearly determined by the context, we just call them Dirichlet eigen wave numbers. If
ΓN = Γ the Laplace eigenvalues λi are denoted as Neumann eigen wave numbers. If
we consider Dirichlet or Neumann eigen wave numbers in the context of an unbounded
domain Ωc, we always mean the eigen wave numbers of the bounded domain Ω =
R \ Ωc, since unbounded domains do not possess (real–valued) eigen wave numbers.

As a consequence of Theorem 5.3, we can state the following theorem concerning the
unique solvability of a mixed boundary value problem.

Theorem 5.5. The interior boundary value problem

−∆U − k2U = 0 in Ω,

γ0U = g on ΓD, (5.3)

γ1U = p on ΓN
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with Γ = ΓD ∪ΓN has a unique weak solution U ∈ H1(Ω) for each g ∈ H1/2(ΓD) and
p ∈ H−1/2(ΓN) if k

2 is not an eigenvalue of the Laplace eigenvalue problem (5.2). If
k2 is an eigenvalue of the eigenvalue problem (5.2), then a solution of the boundary
value problem (5.3) exists only if the solvability condition

〈γ0Uλi
, p〉ΓN

= 〈γ1Uλi
, g〉ΓD

(5.4)

is satisfied for the corresponding eigenfunction Uλi
. The solution U is unique in the

space H1(Ω)/{Uλi
}.

Proof. See [43, 106].

Remark 5.6. For k2 ∈ C \ R+ the boundary value problem (5.3) always admits a
unique solution.

Lemma 5.7. For any η ∈ R\{0} and k ∈ R there exists a unique solution U ∈ H1(Ω)
of the Robin–type boundary value problem

−∆U − k2U = 0 in Ω,

γ1U = p on ΓN ,

γ1U + iηRγ0U = l on ΓR

(5.5)

with a non–trivial Robin boundary ΓR, i.e. meas(ΓR) > 0, and Γ = ΓN ∪ ΓR.

Proof. The weak formulation of the Robin boundary value problem (5.5) is to find
U ∈ H1(Ω) such that
∫

Ω

∇U(x) ·∇V (x)dx− k2
∫

Ω

U(x)V (x)dx+ iη

∫

ΓR

(Rγ0U)(x)γ0V (x)dsx

=

∫

ΓR

l(x)γ0V (x)dsx +

∫

ΓN

p(x)γ0V (x)dsx

is satisfied for all V ∈ H1(Ω). Since the associated sesquilinear form satisfies a
G̊arding inequality, i.e. for V ∈ H1(Ω) we have

Re



∫

Ω

[
∇V (x) ·∇V (x)− k2V (x)V (x)

]
dx+ iη

∫

ΓR

(Rγ0V )(x)γ0V (x)dsx




= ‖V ‖2H1(Ω) − (k2 + 1) ‖V ‖2L2(Ω) ,

it is sufficient to prove injectivity. Let U ∈ H1(Ω) be any solution of the homogeneous
boundary value problem (5.5), i.e. of the variational problem
∫

Ω

∇U(x) ·∇V (x)dx− k2
∫

Ω

U(x)V (x)dx+ iη

∫

ΓR

(Rγ0U)(x)γ0V (x)dsx = 0 (5.6)
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for all V ∈ H1(Ω). By choosing V = U this gives

∫

Ω

|∇U(x)|2dx− k2
∫

Ω

|U(x)|2dx+ iη

∫

ΓR

(Rγ0U)(x)γ0U(x)dsx = 0,

and therefore, when considering the imaginary part,

∫

ΓR

(Rγ0U)(x)γ0U(x)dsx = 0 .

Since R is self–adjoint and strictly positive, γ0U(x) = 0 for x ∈ ΓR follows. The
Robin boundary condition further implies γ1U(x) = 0 for x ∈ ΓR. For ΓR = Γ we
could use the representation formula, which is introduced later in this chapter to
conclude U(x) = 0 for x ∈ Ω. For ΓR 6= Γ other arguments have to be used. We use
an idea presented in [106, page 92], alternative approaches can be found in [104, page
117] and [138]. Let Ω∗ be a neighbouring domain of Ω, such that Ω∗ ∩ Ω = ΓR and

let Ũ be the trivial extension of U onto Ω∗, i.e.

Ũ|Ω = U, Ũ|Ω∗ = 0.

Due to γ0U(x) = γ1U(x) = 0 for x ∈ ΓR is Ũ a weak solution of the Helmholtz
equation in (Ω∪Ω∗)

◦. Further a solution of the Helmholtz solution, which is identical
zero within an open ball Bε, is identical zero everywhere, cf. [106, page 92]. Since Ω∗
is assumed to be non–trivial, this proves the theorem.

In contrast to the interior Dirichlet or Neumann boundary value problems, the exte-
rior boundary value problems always allow for a unique solution if we enforce Rellich’s
radiation condition.

Theorem 5.8. The exterior boundary value problems

−∆U − k2U = 0 in Ωc,

γ0U = g on ΓD,

lim
r→∞

∫

Br

|γ1U(x)− ikγ0U(x)|2 dsx = 0
(5.7)

and
−∆U − k2U = 0 in Ωc,

γ1U = p on ΓN ,

lim
r→∞

∫

Br

|γ1U(x)− ikγ0U(x)|2 dsx = 0

have a unique solution for all λ = k2 ∈ R+.



5.2 Representation formula and integral operators 43

Proof. See [47, 102].

Remark 5.9. In Theorem 5.8 we used the weaker radiation condition of Rellich
instead of the radiation condition of Sommerfeld, cf. [123], which is given by

lim
r→∞

r(γ1U(x)− ikγ0U(x)) = 0 with r = |x|. (5.8)

This condition is sufficient to eliminate incoming solutions and to ensure unique
solvability of exterior Helmholtz problems. The equivalence of these two conditions
when using a boundary integral approach is discussed, e.g., in [102, page 282].

5.2 Representation formula and integral operators

A basic ingredient for boundary integral equation methods is the fundamental so-
lution, which enables us to deduce a representation formula from Green’s second
formula. For the Helmholtz equation the fundamental solution is given by

gk(x, y) =
1

4π

eik|x−y|

|x− y| for x, y ∈ R
3,

see [102]. We have two choices for the parameter k, since only k2 is given in the
Helmholtz equation. We assume that k ≥ 0 for k2 ∈ R and Im(k) > 0 for k2 6∈ R.
This fits in the first case to the radiation condition [59], in the second case it will
ensure invertibility of several boundary integral operators.

The Newton potential is defined by

Nk(U)(x) :=

∫

R3

gk(x, y)U(y)dy for x ∈ R
3.

It is a continuous operator from Hs(R3) to Hs+2
loc (R3), see [121]. Based on the Newton

potential we introduce the single and the double layer potential by

ΨS
k := Nk ◦ γ′0,

ΨD
k := Nk ◦ γ′1,

where γ′0 and γ′1 are the adjoint operators of the Dirichlet and the Neumann trace
operators, respectively. For a detailed discussion of the definitions of the potentials
ΨS

k and ΨD
k , and the adjoint trace operators see [121, page 83]. The single layer

potential ΨS
k is continuous from H−1/2(Γ) to H1(R) and for w ∈ L1(Γ) we obtain the

representation [121]

(ΨS
kw)(x) =

1

4π

∫

Γ

eik|x−y|

|x− y|w(y)dsy for x ∈ R
3 \ Γ.



44 5 Boundary integral equations for acoustic scattering problems

The double layer potential ΨD
k is continuous fromH1/2(Γ) toH1(R3\Γ)∩H(∆,Ω∪Ωc)

and for v ∈ L1(Γ) we have the representation [121]

(ΨD
k w)(x) =

1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x− y|v(y)dsy for x ∈ R
3 \ Γ.

These two potentials fulfill the homogeneous Helmholtz equation and the radiation
condition (5.8).

For every solution U ∈ H1(Ω) of the homogeneous interior Helmholtz equation, the
representation formula

U(x) = ΨS
kγ1U(x)−ΨD

k γ0U(x) for x ∈ Ω (5.9)

holds, see [125]. For every distribution U ∈ H1
loc(Ω

c) which fulfills the Helmholtz
equation in the exterior domain Ωc and which in addition fulfills the radiation con-
dition (5.8), we have the representation formula

U(x) = −ΨS
kγ

c
1U(x) + ΨD

k γ
c
0U(x) for x ∈ Ωc. (5.10)

The average of traces across the boundary Γ is denoted by {γ} := 1
2
(γc + γ). The

boundary integral operators are defined by

Vk := {γ0} ◦ΨS
k : H−1/2(Γ) → H1/2(Γ),

K⊥
k := {γ1} ◦ΨS

k : H−1/2(Γ) → H−1/2(Γ),

Kk := {γ0} ◦ΨD
k : H1/2(Γ) → H1/2(Γ),

Dk := −{γ1} ◦ΨD
k : H1/2(Γ) → H−1/2(Γ),

(5.11)

see [35]. For functions v, w ∈ L∞(Γ) we have the following representations for the
boundary integral operators, see [102, Section 7]:

(Vkw)(x) =
1

4π

∫

Γ

eik|x−y|

|x− y|w(y)dsy for x ∈ Γ,

(Kkv)(x) =
1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x− y|v(y)dsy for x ∈ Γ,

(K⊥
k w)(x) =

1

4π

∫

Γ

∂

∂nx

eik|x−y|

|x− y|w(y)dsy for x ∈ Γ,

(Dkv)(x) = − 1

4π

∂

∂nx

∫

Γ

∂

∂ny

eik|x−y|

|x− y|v(y)dsy for x ∈ Γ.

The integral representation of the single layer potential Vk can be interpreted as a
weakly singular surface integral, the representations of the double layer potential
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Kk and the adjoint double layer potential K⊥
k as Cauchy singular integrals. The

operator Dk is hypersingular and the representation has to be interpreted as a finite
part integral, see for example [89]. For globally continuous functions u and v which
are differentiable on Γk we get, by using integration by parts, for the sesquilinear
form induced by Dk the alternative representation, see [109],

〈Dku, v〉Γ = 〈Vk curlΓ u, curlΓ v〉Γ − k2〈Vknu,nv〉Γ. (5.12)

The jump of a trace is defined by [γU ] := γcU−γU . The boundary integral operators
satisfy the jump conditions

[γ0Ψ
S
kw] = 0, [γ0Ψ

D
k v] = −v,

[γ1Ψ
S
kw] = w, [γ1Ψ

D
k v] = 0,

for v ∈ H1/2(Γ) and w ∈ H−1/2(Γ), cf. [121].

By applying the Dirichlet and the Neumann trace on the representation formulae
(5.9) and (5.10) we get two integral equations, respectively. For a solution U of the
interior Helmholtz equation we obtain the integral equations

γ0U(x) = (
1

2
I −Kk)γ0U(x) + Vkγ1U(x), (5.13)

γ1U(x) = Dkγ0U(x) + (
1

2
I +K⊥

k )γ1U(x) (5.14)

for almost all x ∈ Γ, while for a solution U of the exterior Helmholtz equation we get
the integral equations

γc0U(x) = (
1

2
I +Kk)γ

c
0U(x)− Vkγ

c
1U(x), (5.15)

γc1U(x) = −Dkγ
c
0U(x) + (

1

2
I −K⊥

k )γ
c
1U(x) (5.16)

for almost all x ∈ Γ. The two operators

Cint =
(

1
2
I −Kk Vk
Dk

1
2
I +K⊥

k

)
, Cext =

(
1
2
I +Kk −Vk
−Dk

1
2
I −K⊥

k

)

are called Calderon projectors, and they fulfill the projection property C2
int = Cint and

C2
ext = Cext, respectively, see for example [125]. This gives us the following lemma.

Lemma 5.10. The boundary integral operators fulfill the relations

VkDk = (
1

2
I +Kk)(

1

2
I −Kk), (5.17)

DkVk = (
1

2
I +K⊥

k )(
1

2
I −K⊥

k ), (5.18)

KkVk = VkK
⊥
k , (5.19)

DkKk = K⊥
k Dk. (5.20)

Proof. See [125].
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5.3 Properties of boundary integral operators

Since all of our forthcoming attempts to solve local or global boundary value problems
are based on boundary integral operators, it is necessary to discuss their properties
in more detail. To use G̊arding inequalities to prove unique solvability of systems
of boundary integral equations, we have first to investigate, which boundary integral
operators fulfill a G̊arding inequality by their own. The upcoming G̊arding inequal-
ities rely heavily on the fact that the difference of two potentials of the same kind,
but with different wave numbers, is a compact operator, e.g. Vk − V0. Most of the
compactness results rely in turn on the following theorem.

Theorem 5.11. The difference N k −N 0 is a continuous operator

N k −N 0 : H̃s(R3) → Hs+4(R3)

for all s ∈ R.

Proof. See [121, page 82].

By using the definitions of the boundary integral operators we get the following
corollary.

Corollary 5.12. The operators

Vk − V0 : H−1/2(Γ) → H1/2(Γ),

Kk −K0 : H1/2(Γ) → H1/2(Γ),

K⊥
k −K⊥

0 : H−1/2(Γ) → H−1/2(Γ),

Dk −D0 : H1/2(Γ) → H−1/2(Γ)

are compact.

Proof. This follows immediately from Theorem 5.11 and the mapping properties of
the Newton potential, since the embedding Hs+4(R3) in Hs+2(R3) is compact.

Another important property to prove coerciveness of systems of boundary integral
equations is the connection of the double layer potential and the adjoint double layer
potential.

Lemma 5.13. For all k ∈ R there holds

〈Kkφ, ψ〉Γ = 〈φ,K⊥
−kψ〉Γ

for all φ ∈ H1/2(Γ) and ψ ∈ H−1/2(Γ).
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Proof. This follows from the definition of the double layer potential and the adjoint
double layer potential, see (5.11), and the definition of the duality pairing 〈·, ·〉Γ, see
Subsection 4.2.1.

The last two propositions imply that Kk and K⊥
k , for every k ∈ C, are adjoint up to

a compact perturbation.

To prove the coerciveness of the single layer potential for all wave numbers k ∈ C,
we have first to prove the ellipticity of the single layer potential for at least one wave
number k.

Lemma 5.14. For Im(k) > 0 or 0 ≤ k2 < λ0 the single layer potential Vk is
H−1/2(Γ)–elliptic, i.e.

|〈Vkw,w〉Γ| ≥ c1 ‖w‖2H−1/2(Γ)

with a fixed c1 > 0 and for all w ∈ H−1/2(Γ). Note that λ0 is the minimal Dirichlet
eigenvalue of the Laplace operator.

Proof. See [10, 98, 99].

If k does not fulfill the prior assumptions of Lemma 5.14, but k2 is not an Dirichlet
eigenvalue, i.e. the Dirichlet boundary value problem (5.1) has a unique solution,
then Vk is still invertible. If k2 = λ is a Dirichlet eigenvalue with the eigenfunction
Uλ then is γ1Uλ ∈ Ker(Vk) and γ1Uλ ∈ Ker(−1

2
I +K⊥

k ), see [59].

Lemma 5.15. For all k ∈ C the single potential Vk fulfills the G̊arding inequality

〈Vkw,w〉Γ + C(w,w) ≥ c1 ‖w‖2H−1/2(Γ)

for all w ∈ H−1/2(Γ) and a compact sesquilinear form C(·, ·), c1 > 0.

Proof. This is a direct consequence of Lemma 5.14 and Corollary 5.12.

Similar results are also obtainable for the hypersingular operator Dk.

Lemma 5.16. If Im(k) > 0 then the hypersingular operator Dk is H1/2–elliptic, i.e.

〈Dku, u〉Γ ≥ c1 ‖u‖2H1/2(Γ)

for all u ∈ H1/2(Γ), c1 > 0.

Proof. See [11, 42].
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If k does not fulfill the prior assumption of Lemma 5.16, but k2 is not a Neumann
eigenvalue, i.e. the Neumann boundary value problem (5.1) has a unique solution,
then Dk is still invertible. If k2 = λ is a Neumann eigenvalue with eigenfunction Uλ

then is γ0Uλ ∈ Ker(Dk) and γ0Uλ ∈ Ker(1
2
I +Kk).

Lemma 5.17. For all k ∈ C the hypersingular operator Dk fulfills a G̊arding in-
equality

〈Dku, u〉Γ + C(u, u) ≥ c1 ‖u‖2H1/2(Γ)

for all u ∈ H1/2(Γ) and compact sesquilinear form C(·, ·), c1 > 0.

Proof. This is a direct consequence of Lemma 5.16 and Corollary 5.12.

For k = 0 it is known that the eigenfunction of the hypersingular operator is indepen-
dent of the domain Ω, since it is just the constant function. Thus we can introduce
the regularized hypersingular operator D̃, which is induced by

〈D̃u, v〉Γ := 〈D0u, v〉Γ + 〈u, 1〉Γ〈v, 1〉Γ

for all u, v ∈ H1/2(Γ). This operator is H1/2(Γ)–elliptic, see [125]. Another proposi-
tion, which is needed to prove well posedness of a combined field integral equation,
describes the properties of the imaginary part of the single layer potential and of the
hypersingular operator.

Lemma 5.18. For k > 0 holds

Im(〈Vku, u〉Γ) ≥ 0, Im(〈V−ku, u〉Γ) ≤ 0,

Im(〈Dkv, v〉Γ) ≤ 0, Im(〈D−kv, v〉Γ) ≥ 0

for all u ∈ H−1/2(Γ) and v ∈ H1/2(Γ).

Proof. See [59].

From the boundary integral equations (5.15) and (5.16) we can deduce a lemma,
which will play a key role in proving injectivity of the local boundary integral system
presented later.

Lemma 5.19. For every g ∈ H1/2(Γ) and h ∈ H−1/2(Γ) the image properties

(−1

2
I +Kk)g ∈ Imag(Vk),

(
1

2
I +K⊥

k )h ∈ Imag(Dk)

hold.

Proof. See [59].
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5.4 Steklov–Poincaré operator

The theory of classical FETI/BETI methods is based upon the Steklov–Poincaré op-
erator which is involved in the Dirichlet–to–Neumann map. Therefore, we introduce
this operator, which is related to the Helmholtz equation, in this section and discuss
some of its properties.

Let g ∈ H1/2(Γ) be an arbitrary function, and let U ∈ H1(Ω) be the solution of the
Dirichlet boundary value problem

−∆U − k2U = 0 in Ω,

γ0U = g on Γ,

which is for the moment assumed to be uniquely solvable. Then the Steklov–Poincaré
operator Sk is defined as the mapping

Sk : g 7→ γ1U,

H1/2(Γ) → H−1/2(Γ).
(5.21)

If the Dirichlet problem is uniquely solvable, then the Steklov–Poincaré operator Sk

is well defined. If it is well defined and if the Neumann problem

−∆U − k2U = 0 in Ω,

γ1U = p on Γ

is uniquely solvable, then the Steklov–Poincaré operator is invertible.

Next we show that the Steklov–Poincaré operator related to the Helmholtz equation
is coercive if it is well defined.

Theorem 5.20. The solution operator E which maps g ∈ H1/2(Γ) to U ∈ H1(Ω)
satisfying

−∆U − k2U = 0 in Ω,

γ0U = g on Γ

is a continuous operator from H1/2(Γ) to H1(Ω) if the Dirichlet boundary value prob-
lem has a unique solution.

Proof. See [102].

The adjoint operator E ′ : H̃−1(Ω) → H−1/2(Γ) of E is defined by

〈g, E ′F 〉Γ := 〈Eg, F 〉Ω

for all g ∈ H1/2(Γ) and F ∈ H̃−1(Ω).
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Lemma 5.21. Let E1 be the compact embedding of H1(Ω) in H̃−1(Ω). Then the
operator E ′E1E is compact from H1/2(Γ) to H−1/2(Γ).

Proof. E is continuous fromH1/2(Γ) toH1(Ω), the embedding fromH1(Ω) to H̃−1(Ω)

is compact, and the adjoint operator of E is continuous from H̃−1(Ω) toH−1/2(Ω).

Theorem 5.22. The Steklov–Poincaré operator Sk as defined in (5.21) is coercive if
k2 is not a Dirichlet eigen wave number, i.e.

〈Skg, g〉Γ + C(g, g) ≥ c1 ‖g‖2H1/2(Γ)

for all g ∈ H1/2(Γ) and a compact sesquilinear form C(·, ·), c1 > 0.

Proof. We show that the Steklov–Poincaré operator Sk fulfills a G̊arding inequality.
If k2 is not a Dirichlet eigen wave number, we can find for every g ∈ H1/2(Γ) a
function U such that

−∆U − k2U = 0 in Ω,

γ0U = g on Γ

holds. By using Skg = Skγ0U = γ1U this gives

〈Skγ0U, γ0U〉Γ + (k2 + 1) 〈E ′E1Eγ0U, γ0U〉Γ︸ ︷︷ ︸
compact

=

∫

Γ

γ1U(x)γ0U(x) dsx + (k2 + 1)

∫

Ω

E1Eγ0U(x)Eγ0U(x) dsx.

By using Green’s formula and Eγ0U = U we get
∫

Γ

γ1U(x)γ0U(x) dsx + (k2 + 1)

∫

Ω

E1Eγ0U(x)Eγ0U(x) dsx

=

∫

Ω

[
∇U(x) · ∇U(x)− k2|U(x)|2

]
dx+ (k2 + 1)

∫

Ω

|U(x)|2 dx = ‖U‖2H1(Ω)

and the assertion follows by the trace theorem.

Remark 5.23. If k2 is a Dirichlet eigen wave number, then the Dirichlet datum
has to fulfill the solvability condition (5.4), otherwise no solution of the interior
Neumann boundary value problem exists. On the other side, if the solvability con-
dition is fulfilled, then several solutions with the given Dirichlet data exist. In this
case, the Steklov–Poincaré operator can be defined as a mapping from H

1/2
∗ (Γ) to

H−1/2(Γ)/{γ1Uλ}, where H1/2
∗ (Γ) is the space of all functions in H1/2(Γ) which fulfill

the solvability condition and Uλ is the eigenfunction of the Dirichlet boundary value
problem.
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Remark 5.24. The Steklov–Poincaré operator Sk is bounded if it is well defined
and it is injective if k2 is not a Neumann eigenvalue. These properties follow di-
rectly from the definition. Together with the G̊arding inequality this ensures that the
Steklov–Poincaré operator Sk is invertible if k2 is neither a Dirichlet nor a Neumann
eigenvalue.

One realization of the Steklov–Poincaré operator can be achieved by using boundary
integral operators. By solving the first boundary integral equation (5.13) we get the
representation

γ1U = Skγ0U = V −1
k (

1

2
I +Kk)γ0U. (5.22)

If we insert the representation of γ1U in (5.22) in the second boundary integral
equation (5.14) we obtain the so–called symmetric representation

Skγ0U = Dkγ0U + (
1

2
I +K⊥

k )V
−1
k (

1

2
I +Kk)γ0U.

Obviously, these representations are not well defined if k2 is a Dirichlet eigenvalue,
since in this case Vk is not invertible. This fits to the natural properties of the
Steklov–Poincaré operator Sk.

The symmetric formulation of the Steklov–Poincaré operator which is related to the
exterior Dirichlet problem is given by

Sc
kγ

c
0U = −(Dk + (

1

2
I −K⊥

k )V
−1
k (

1

2
I −Kk))γ

c
0U.

Although the exterior Dirichlet boundary value problem has a unique solution and the
Dirichlet–to–Neumann map is well defined, the representation by boundary integral
operators seems to struggle again if k2 is a Dirichlet eigenvalue. Vk is not invertible
in this case, but as mentioned in Corollary 5.3, it is still invertible on the image of
1
2
I −Kk, further the kernels of Vk and 1

2
I −K⊥

k coincide. This enables us to use this
representation also for exterior boundary value problems. Nevertheless this becomes
a crucial point in the numerical analysis as it will be discussed in Section 5.7.

5.5 Robin interface operators R

In this section we discuss possible choices for the operator R as used to describe
Robin type boundary conditions in (5.1). Recall, that the operator R : H1/2(ΓR) →
H̃−1/2(ΓR) is assumed to be real valued and strictly positive. We will mention three
possible choices. The first two fulfill all of these conditions, the third lacks the
mapping properties. These operators are:
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• The inverse single layer potential V −1
0 for the Laplace operator. The operator

is obviously real valued. Since V0 is a H̃−1/2(ΓR)–elliptic operator, cf. [62],
the other properties follow immediately. A drawback is that V −1

0 can not be
discretized directly.

• The embedding E1/2 from H1/2(ΓR) into H̃
−1/2(ΓR). It can be easily seen that

this operator is real valued and strictly positive. The mapping property follows
from the fact that H1/2(ΓR) can be compactly embedded in H̃−1/2(ΓR). A
drawback of this operator is that it is not an operator of the same order as the
hypersingular operator Dk. This would lead to additional problems to find a
suitable preconditioner for Dk + iηE1/2.

• The regularized hypersingular operator D̃, although it does not fulfill the map-
ping properties, cf. [62], seems to be the most practical one for an implemen-
tation. The operator is obviously real valued and also the strictly positiveness
would be given if the mapping properties would be correct. One possible ap-
proach would be to modify this operator to φ′

ΓR
◦ D̃ ◦ φΓR

where φΓR
is a

sufficiently smooth function with

φΓR
(x) = 0 for x ∈ Γ \ ΓR,

φΓR
(x) > 0 for x ∈ ΓR.

This would be a strictly positive, real valued operator which fulfills the mapping
properties. Unfortunately, the additional function φΓR

would require additional
work to discretize this operator. The most practical alternative is to use the
discretization of D̃ and only use ansatz and trial functions whose support lies
completely in ΓR. This would lead to a real valued positive definite matrix for
those degrees of freedom. Unfortunately, this matrix has no exact analytical
counterpart.

5.6 Local solution strategies for interior boundary value
problems of the Helmholtz equation

In this subsection we discuss the solution of local boundary value problems with
boundary integral equations. For simplicity we restrict ourselves to Neumann and
Robin boundary value problems, since these are the local problems appearing in
the domain decomposition approach. We start the discussion with the Neumann
boundary value problem:

Find U ∈ H1(Ω) such that

−∆U − k2U = 0 in Ω,

γ1U = p on Γ
(5.23)

is fulfilled.
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If only one local problem needs to be solved, an indirect approach is often the ap-
proach of choice, because they are easy to implement and lead to rather fast algo-
rithms. Although they are not useful for the tearing and interconnecting approach,
we will shortly mention them. Recall that the single layer potential ΨS

k (·) and the
double layer potential ΨD

k (·) fulfill the Helmholtz equation and the radiation condi-
tion (5.8). Therefore, one possibility is to solve the partial differential equation with
a single layer approach, i.e. we assume that the solution U has the representation
U = ΨS

kw with an unknown density function w. After applying the Neumann trace
onto this representation we have to solve the boundary integral equation

γ1Ψ
S
kw = (

1

2
I +K⊥

k )w = p on Γ.

The double layer approach is based on the representation U = ΨD
k v and leads to the

boundary integral equation

γ1Ψ
D
k v = Dkv = p on Γ.

Note that these two boundary integral equations are only uniquely solvable, if k2 is
not a Neumann eigen wave number, see Lemma 5.16. Further the density functions
w and v do not have a physical meaning, hence indirect approaches are in general
not useful for the tearing and interconnecting method, since they rely on Dirichlet
to Neumann/Robin maps. That’s why direct approaches are often preferred for
domain decomposition methods, but indirect approaches can still be used in certain
applications, see, for example, [7].

A more reasonable approach for our purposes is the direct approach. This means
we solve the second boundary integral equation (5.14) by replacing γ1U by the given
data p, i.e.

(
1

2
I −K⊥

k )p = Dkγ0U. (5.24)

Now we can compute the unknown Dirichlet datum γ0U , which is uniquely deter-
mined if k2 is not a Neumann eigen wave number. This is nothing else than applying
the unsymmetric Steklov–Poincaré operator. Instead of the unsymmetric version we
can also use the symmetric one. Equation (5.24) becomes

γ1U = Skγ0U = (Dk + (
1

2
I +K⊥

k )V
−1
k (

1

2
+Kk))γ0U = p. (5.25)

However, this operator is still not invertible if k2 is a Neumann eigen wave number,
further more it is not well defined if k2 is a Dirichlet eigen wave number, cf. Section
5.4. Instead of (5.25) we can consider the system

(
Dk

1
2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
=

(
p
0

)
(5.26)
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which is equivalent to equation (5.25) if k2 is not a Dirichlet eigenvalue, γ0U = u and
γ1U = t. This system has a unique solution if k2 is not a Neumann eigenvalue (this
includes k2 ∈ C\R+ and therefore Im(k) > 0). When we are considering the solution
of a Neumann problem in the next chapters this will be the formulation of choice.
Due to the lack of unique solvability for all wave numbers k, we will reformulate the
local subproblems within the domain decomposition approach in such a way that we
deal with local Robin boundary value problems instead, see Chapter 7 for further
details.

The Robin boundary value problem we will consider is of the form:

Find U ∈ H1(Ω) such that

−∆U − k2U = 0 in Ω,

γ1U + iηRγ0U = l on Γ.
(5.27)

Our aim is not to compute U itself, but only the Dirichlet datum γ0U . We already
have the Dirichlet–to–Neumann map γ1U = Skγ0U , if we add iηRγ0U on both sides
we get the equation

(Sk + iηR)γ0U = γ1U + iηRγ0U = l.

Note that R is a local operator only acting on γ0U|ΓR
. Again this formulation is only

well posed if k2 is not a Dirichlet eigen wave number. Therefore, we use, as for the
Neumann problem, a system of boundary integral equations, i.e.

(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
=

(
l
0

)
. (5.28)

This problem has for all wave numbers k ∈ R\{0} a unique solution if η 6≡ 0. To prove
this, we first prove a G̊arding inequality and afterwards we prove the surjectivity of
the system. Due to Theorem 3.9 this ensures unique solvability.

Theorem 5.25. The operator

(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)
: H1/2(Γ)×H−1/2(Γ) → H−1/2(Γ)×H1/2(Γ) (5.29)

fulfills a G̊arding inequality independent of η for all k ∈ C.

Proof. From

(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)
=

(
D̃ + iηR 1

2
I +K⊥

0

−(1
2
I +K0) V0

)
+

(
Dk − D̃ K⊥

k −K⊥
0

K0 −Kk Vk − V0

)

︸ ︷︷ ︸
compact
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we can deduce that

Re

(〈(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
,

(
u
t

)〉

Γ

+ C((u, t), (u, t))

)

= 〈D̃u, u〉Γ + 〈V0t, t〉Γ
≥ c

(
‖u‖2H1/2(Γ) + ‖t‖2H−1/2(Γ)

)

with a compact sesquilinear form C((u, t), (u, t)). Note that 〈Ru, u〉ΓR
is supposed to

be real valued.

Theorem 5.26. The operator in (5.29) is for all k ∈ R and η 6≡ 0 surjective.

Proof. We prove this in two steps:

• For every l ∈ H−1/2(Γ) there exists a u ∈ H1/2(Γ) and a t ∈ H−1/2(Γ) such
that

(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
=

(
l
0

)

is fulfilled. The Robin boundary value problem (5.5) has a unique solution U .
If we set u = γ0U and t = γ1U both equations are fulfilled, due to the boundary
integral equations (5.13) and (5.14).

• For every h ∈ H1/2(Γ) there exists a u ∈ H1/2(Γ) and a t ∈ H−1/2(Γ) such that

(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
=

(
p
h

)

is fulfilled with an arbitrary p ∈ H−1/2(Γ). This can be seen by setting u = −h
and t such that (−1

2
I+Kk)h+Vkt = 0, which is possible according to Corollary

5.19.

The two propositions combined prove the theorem.

An alternative way to show invertibility, is to prove injectivity (instead of surjectivity)
of the system. This way was chosen in [129].

Remark 5.27. For k2 ∈ C \ R we do not need to use Robin boundary conditions
because in this case, the Neumann boundary value problem always admits a unique
solution. Hence, the proof of Theorem 5.26 also works for the Neumann boundary
formulation (5.26) if Im(k) > 0, since Vk is invertible in this case.
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5.7 Exterior Neumann boundary value problem

In contrast to the interior Neumann boundary value problem, the exterior Neumann
boundary value problem

−∆U − k2U = 0 in Ωc,

γ1U = p on Γ,

lim
r→∞

∫

Br

|γ1U(x)− ikγ0U(x)|2 dsx = 0

always admits a unique solution. Unfortunately, this is not reflected by usual bound-
ary integral approaches. The problem is that for Dirichlet or Neumann eigen wave
numbers k2, density functions w and v exist such that ΨS

kw ≡ 0 and ΨD
k v ≡ 0 in Ωc.

This makes standard indirect approaches useless, and also direct approaches fail on
the first glance, since Dk is not invertible. But if we take a closer look on the second
boundary integral equation (5.16)

Dkγ
c
0U = −(

1

2
I +K⊥

k )γ
c
1U, (5.30)

we see that the right hand side is in the image of Dk, even if Dk is not invertible, cf.
Lemma 5.19. This implies that the boundary integral equation (5.30) has a solution
for all wave numbers k. Of course this solution suffers uniqueness if k2 is a Neumann
eigen wave number. Let us assume now that k2 = λ is a Neumann eigen wave number,
hence Dk is not invertible. Further, let uλ be in the kernel of Dk. All solutions of
(5.30) are given by u = γc0U + αuλ (we assume for simplicity that the dimension of
the eigenspace is one). If we plug this in the representation formula (5.10) for the
solution of the exterior boundary value problem we get

−ΨS
k (γ1U) + ΨD

k (γ0U + αuλ) = −ΨS
k (γ1U) + ΨD

k (γ0U) = U in Ωc

since ΨD(uλ) ≡ 0 in Ωc, cf. [137]. Thus in some cases, this approach seams still
feasible. Practical results show that this approach works quite well if the computed
datum is used only for the representation formula, since the eigenfunctions do not
change the results in this case (up to numerical errors), see [61]. But if the Cauchy
data are the point of interest, then this approach provides false results. For Vk and
the first boundary integral equation (5.15) we would obtain the same results.

Several modified approaches were introduced to handle this problem. One of the first
was the indirect approach by Brakhage and Werner [24], who introduced a formula-
tion based on a complex linear combination of the single and double layer potentials.
A similar direct approach was introduced by Burton and Miller [41]. These ap-
proaches work quite well, but the proofs are only able to establish well posedness
in a L2–setting and for smooth boundaries. The idea of a linear combination of the
two potentials was generalized by so–called combined field integral equations (CFIE)
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see [37, 40, 59, 83]. However, these approaches do not seem to fit into our analytical
domain decomposition approach, because we want to use similar approaches on all
subdomains, to simplify the global formulation and it’s verification.

Therefore, the idea is to use the following formulation, which is just rewriting of the
boundary integral equations (5.15) and (5.16), to solve the local exterior Neumann
problem:

Find u ∈ H1/2(Γ) and t ∈ H−1/2(Γ) such that
(

Dk −1
2
I +K⊥

k
1
2
I −Kk Vk

)(
u
t

)
=

(
−p
0

)
(5.31)

holds for the given Neumann data p ∈ H−1/2(Γ).

Note that we changed the sign of the boundary integral equations (5.15) and (5.16)
and that we are still using the outgoing normal vector (so t = γc1U). This will
be advantageous for the coupling in the domain decomposition approach. As for
the interior problem the system (5.31) fulfills a G̊arding inequality, but surjectiv-
ity/injectivity is not given if k2 is an Dirichlet eigen wave number. Nevertheless, it
can be shown that the system is always solvable for a right hand side (p, 0)⊤ and that
u is unique in this case. Since we are only interested in u and not in t, this seems to
be sufficient.

Lemma 5.28. The boundary integral operator as considered in (5.31) is injective in
u. In particular, the homogeneous system

Vkt+ (
1

2
I −Kk)u = 0, Dku+ (−1

2
I +K⊥

k )t = 0

implies u = 0 for all wave numbers k.

Proof. Let (u, t) ∈ H1/2(Γ)×H−1/2(Γ) be a solution of the homogeneous system

Vkt + (
1

2
I −Kk)u = 0, Dku+ (−1

2
I +K⊥

k )t = 0.

When applying the single layer potential Vk to the hypersingular boundary integral
equation, and when using the Calderon relation (5.17) we obtain

0 = VkDku+ Vk(−
1

2
I +K⊥

k )t

= (
1

2
I −Kk)(

1

2
I +Kk)u+ (−1

2
I +Kk)Vkt

= (
1

2
I −Kk)(

1

2
I +Kk)u+ (−1

2
I +Kk)(−

1

2
I +Kk)u

= (
1

2
I −Kk)

[
(
1

2
I +Kk) + (

1

2
I −Kk)

]
u

= (
1

2
I −Kk)u
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and therefore

Vkt = 0.

When applying the hypersingular boundary integral operator Dk to the weakly sin-
gular boundary integral equation, we obtain in a similar way

0 = DkVkt+Dk(
1

2
I −Kk)u

= (
1

2
I −K⊥

k )(
1

2
I +K⊥

k )t+ (
1

2
I −K⊥

k )Dku

= (
1

2
I −K⊥

k )(
1

2
I +K⊥

k )t+ (
1

2
I −K⊥

k )(
1

2
I −K⊥

k )t

= (
1

2
I −K⊥

k )t

and therefore

Dku = 0.

Summarizing the above we conclude

Vkt = 0, (
1

2
I −K⊥

k )t = 0, Dku = 0, (
1

2
I −Kk)u = 0.

Dku = 0 is only satisfied for a non–trivial u if λ = k2 is an eigenvalue of the Neumann
eigenvalue problem. But this implies that

(
1

2
I +Kk)u = 0,

and therefore u = 0 follows. If k2 is not a Dirichlet eigen wave number, Vkt = 0
implies also t = 0. Otherwise, t can be a multiple of the Neumann trace of the
eigenfunction, i.e. t = cγ1Uλ for some c ∈ R.

Although the numerical tests seem to work in almost all cases (for further details
see Section 5.8), it is not possible to establish a rigorous numerical analysis for this
approach, since the unique solvability of u will be disturbed in the discrete case.
Therefore, we try to find a regularized version of this formulation. If we just want
to solve an exterior Neumann problem we can make use of the knowledge of the
Neumann datum. For example we can solve the modified system

(
Dk −1

2
I +K⊥

k
1
2
I −Kk Vk + iV0

)(
u
t

)
=

(
−p
iV0p

)
(5.32)

which is equivalent to (5.31), since t = p is known. Instead of V0 we can also use any
other real valued H−1/2(Γ)–elliptic operator. The operator as given in (5.32) fulfills
a G̊arding inequality. The proof works analogous to the proof of Theorem 5.25. The
surjectivity of the operator can be proved by a reinterpretation of equation (5.32) as
an interior Robin boundary value problem.
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Lemma 5.29. The operator
(

Dk −1
2
I +K⊥

k
1
2
I −Kk Vk + iV0

)
: H1/2(Γ)×H−1/2(Γ) → H−1/2(Γ)×H1/2(Γ)

is surjective.

Proof. The Robin boundary value problem

Find U ∈ H1(Ω) such that

−∆U − k2U = 0 in Ω,

γ0U + iV0γ1U = l on Γ
(5.33)

has a unique solution U ∈ H1(Ω) for all l ∈ H1/2(Γ). This can be proved analogously
as Lemma 5.7. If we want to compute the Neumann trace γ1U of the unique solution
U only, it is possible to use a similar formulation as in (5.28), which is also deduced in
an analogous way. More precisely the corresponding boundary integral formulation
is

(
Dk −1

2
I +K⊥

k
1
2
I −Kk Vk + iV0

)(
u
t

)
=

(
0
l

)
(5.34)

where l is the Robin datum as given in (5.33). With the interpretation as interior
Robin boundary value problem in mind, the surjectivity of the operator as given in
(5.34) can be proved as in Theorem 5.26.

The coerciveness and the surjectivity of the operator as given in Lemma 5.29 give
us the unique solvability of the equation posed in (5.32). Note that Vk + iV0 can
be inverted since Im(〈Vku, u〉Γ) ≥ 0, see Lemma 5.18. Hence the sum Vk + iV0 is
H−1/2(Γ)–elliptic. By eliminating t in equation (5.32) we get a CFIE which is closely
related to the one in [60], although the deduction is rather different. However, in a
domain decomposition method the local Neumann datum p is not known. In every
iteration of the global solving routine (see Section 7.7) we only know the tested
version of p, i.e. we only know 〈p, φi〉Γ for all test functions φi ∈ S1

h(Γ). Hence, it
is not possible to compute V0p for the right hand side correctly. To get rid of this
problem, we first exchange the operator V0 in (5.32) by the inverse of the modified

hypersingular operator D̃−1, which is also an H−1/2(Γ)–elliptic operator, i.e.
(

Dk −1
2
I +K⊥

k
1
2
I −Kk Vk + iD̃−1

)(
u
t

)
=

( −p
iD̃−1p

)
. (5.35)

The idea is to replace iD̃−1(t− p) by a new unknown s ∈ H1/2(Γ). This leads to the
3× 3 system




Dk −1
2
I +K⊥

k
1
2
I −Kk Vk I

−I −iD̃





u
t
s


 =



−p
0
−p


 . (5.36)
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Since only g without additional operators appears on the right hand side, this seems
to be a much more practical approach for the domain decomposition algorithm. Note
that we exchanged V0 by D̃−1 only to get rid of inverse operators in (5.36).

Lemma 5.30. The operator as defined in (5.36) is invertible for all wave numbers
k ∈ R.

Proof. This follows directly from the bijectivity of D̃ and from the unique solvability
of equation (5.35).

Remark 5.31. The solution of (5.36) can be constructed by taking the unique solu-
tion U of the exterior Neumann boundary value problem with Neumann data −p and
setting u = γ0U , γ1U = t = p and s = 0. Hence, for a right hand side of the form
(p, 0, p)⊤, we always obtain s = 0.

However, it is still not possible to use (5.36) in the domain decomposition approach,
since it is only feasible to couple the exterior Neumann trace just once with the
interior Neumann trace. Otherwise, we can not prove the coerciveness of the global
formulation. Hence, we have to apply some linear combinations to get rid of the
second appearance of the Neumann data p on the right hand side. By subtracting
the first line from the last line in (5.36) we get




Dk −1
2
I +K⊥

k
1
2
I −Kk Vk I

−Dk −1
2
I −K⊥

k −iD̃





u
t
s


 =



−p
0
0


 . (5.37)

By replacing u by u+ s in (5.37) we finally obtain




Dk −1
2
I +K⊥

k −Dk
1
2
I −Kk Vk

1
2
I +Kk

−Dk −1
2
I −K⊥

k −iD̃ +Dk





u+ s
t
s


 =



−p
0
0


 . (5.38)

The injectivity of this system follows immediately from the injectivity of the system
in (5.36). To show that a discretized version of (5.38) is also uniquely solvable, we
have to prove again a G̊arding inequality.

Theorem 5.32. The associated bilinear form of the operator as defined in (5.38)
fulfills a G̊arding inequality.

Proof. Since the differences D̃ −D0, Vk − V0, Kk −K0 and K⊥
k −K⊥

0 are compact,
we can replace the wave number k by 0. In the case of the hypersingular operator
we will use the regularized version D̃ instead. The corresponding associated bilinear
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form of this regularized operator is a compact perturbation of the original one and
is given by

a((u, t, s), (λ, µ, τ)) :=〈D̃u, λ〉Γ + 〈(−1

2
+K⊥

0 )t, λ〉Γ + 〈−D̃s, λ〉Γ

+ 〈(1
2
I +K0)u, µ〉Γ + 〈V0t, µ〉Γ + 〈(1

2
I +K0)s, µ〉Γ

+ 〈−D̃u, τ〉Γ + 〈(−1

2
−K⊥

0 )t, τ〉Γ + 〈−iD̃ + D̃s, τ〉Γ.

For (λ, µ, τ) = (u, t, s) we get the inequality

|a((u, t, s), (u, t, s))| = |〈D̃(u− s), (u− s)〉Γ − i〈D̃s, s〉Γ + 〈V0t, t〉Γ|
≥ c1| ‖u− s‖2H1/2(Γ) + i ‖s‖2H1/2(Γ) |+ c2 ‖t‖2H−1/2(Γ)

≥ c1

2
√
2
(‖u‖2H1/2(Γ) + ‖s‖2H1/2(Γ)) + c2 ‖t‖2H−1/2(Γ) .

The ellipticity of this regularized bilinear form implies the coerciveness of the original
bilinear form.

Remark 5.33. From Remark 5.31 and equation (5.38) we obtain s = 0.

5.8 Boundary element methods

In this section we discuss the boundary element discretization of the boundary in-
tegral equations related to local interior and exterior boundary value problems and
state their convergence properties.

We consider a discretization of the boundary Γ in N planar triangles τl andM nodes
xk such that

Γ =

N⋃

l=1

τ l.

By

hl =

(∫

τl

dsx

)1/2

we define the local mesh width and by

h = max
l=1,...,N

hl
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we define the global mesh width. Further we assume that the mesh is quasi–uniform,
i.e.

maxl=1,...,N hl
minl=1,...,N hl

≤ c

with a fixed constant c ≥ 1 independent of N . Let Zh = S0
h(Γ) = span{ψ0

k}Nk=1 be
the space of piecewise constant basis functions

ψ0
k(x) =

{
1 for x ∈ τk,

0 else.

For this space there holds the following approximation property, cf. [125].

Theorem 5.34. Assume u ∈ Hs(Γ) for some s ∈ [0, 1]. For σ ∈ [−1, 0] there holds
the approximation property

inf
vh∈S0

h(Γ)
‖u− vh‖Hσ(Γ) ≤ chs−σ |u|Hs(Γ) .

Further let

Wh = S1
h(Γ) = span{φ1

k}Mk=1

be the space of piecewise linear continuous basis functions with

φ1
k(x) =





1 for x = xk,

0 for x = xl 6= xk,

linear else.

For this trial space we have a similar approximation theorem, cf. [125].

Theorem 5.35. Assume u ∈ Hs(Γ) for some s ∈ [σ, 2] and σ ∈ [0, 1]. Then there
holds the approximation property

inf
vh∈S1

h(Γ)
‖u− vh‖Hσ(Γ) ≤ chs−σ |u|Hs(Γ) .

5.8.1 Fast boundary element techniques

Due to fully populated matrices, standard boundary element methods have quadratic
computational complexity. This was a major drawback of the boundary element
method, if used for solving challenging industrial problems. Fortunately, several fast
boundary element methods were developed in the last decades, which drastically
decreased the computational effort and memory requirements. The first methods
were the fast multipole method [75,76] and the Panel–Clustering method [79]. These
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methods are based on suitable series expansions of the kernel. Here we use H–
matrices [15, 77, 78, 120]. These matrices are organized in a hierarchical manner,
such that parts of the matrix can be approximated by low rank matrices. These H–
matrices offer a complete arithmetic, such as inversion or LU decomposition. There
are different methods to create the low rank blocks, on which the H–matrices are
based. One is the hybrid cross approximation [19], which is based on an expansion of
the fundamental solution. The method of our choice is the Adaptive Cross Approx-
imation (ACA) [13], which constructs sparse matrices on an algebraic base. Due to
the construction algorithm, this method allows a kind of black box implementation
for various kernels. Within this work we use such a black box implementation, which
is provided by the AHMED software package [12].

5.8.2 The interior Neumann/Robin problem

Within the domain decomposition approach we have in general to solve interior Robin
boundary value problems, see Chapter 7. In some cases interior Neumann boundary
value problems can be used instead, for example if it is known that the local wave
number is not a Neumann eigen wave number, for example if Im(k) > 0 is satisfied. To
simplify the upcoming notation of mixed Neumann/Robin boundary value problems,
we unify the notation of Neumann and Robin boundary conditions to

γ1U + iη(x)Rγ0U = l on Γ

with Γ = ΓN ∪ΓR and η(x) ≡ 0 for x ∈ ΓN and η(x) ≡ c for x ∈ ΓR with c ∈ R\{0}.
For readability, we further shorten the notation from η(x) to η. If η is assumed to
be identical zero, this means that Γ = ΓN . On the other hand, for η 6≡ 0 the Robin
boundary part ΓR is non–trivial.

As discussed in Section 5.6, we will use the boundary integral equation system (5.28)
(
Dk + iηR 1

2
I +K⊥

k

−(1
2
I +Kk) Vk

)(
u
t

)
=

(
l
0

)
(5.39)

with u ∈ H1/2(Γ) and t, l ∈ H−1/2(Γ), to solve the local Neumann (η ≡ 0) or (mixed)
Robin (η 6≡ 0) boundary value problem. Note that this equation is uniquely solvable if
η 6≡ 0 and k ∈ R or if η ≡ 0, Im(k) ≥ 0 and k2 is not a Neumann eigen wave number.
Further the operator as given in (5.39) fulfills a G̊arding inequality, cf. Theorem 5.25.
If we discretize the system (5.39) by using S0

h to approximate t ∈ H−1/2(Γ) and S1
h

to approximate u ∈ H1/2(Γ) we obtain the discrete problem:

Find (uh, th) ∈ Wh × Zh such that

〈(Dk + iηR)uh, vh〉Γ + 〈(1
2
I +K⊥)th, vh〉Γ = 〈l, vh〉Γ,

〈−(
1

2
I +Kk)uh, wh〉Γ + 〈Vkth, wh〉Γ = 0

(5.40)
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for all (vh, wh) ∈ Wh × Zh.

The corresponding matrix formulation is
(

Dk,h + iηRh
1
2
M⊤

h +K⊤
k,h

−(1
2
Mh +Kk,h) Vk,h

)(
u
t

)
=

(
l
0

)
.

By using Theorem 3.10 we can deduce the following theorem.

Theorem 5.36. Let η 6≡ 0 and k ∈ R or let η ≡ 0, Im(k) ≥ 0 and k2 not be a
Neumann eigen wave number. Further let (u, t) be the unique solution of (5.39).
Then, for a sufficient small mesh width h, the discrete problem (5.40) has a unique
solution (uh, th). Further we have the quasi–optimal estimate

‖u− uh‖H1/2(Γ) + ‖t− th‖H−1/2(Γ)

≤ c

(
inf

vh∈Wh

‖u− vh‖H1/2(Γ) + inf
wh∈Zh

‖t− wh‖H−1/2(Γ)

)
.

For u ∈ H2(Γ) and t ∈ H1
pw(Γ) we obtain

‖u− uh‖2H1/2(Γ) + ‖t− th‖2H−1/2(Γ) ≤ ch3(‖u‖2H2(Γ) + ‖t‖2H1
pw(Γ)).

By using the Aubin–Nitsche trick we get

‖u− uh‖L2(Γ)
≤ c(u, t)h2.

Proof. The proof can be found in [125].

Numerical example

As a numerical example we consider the Neumann boundary value problem

−∆U − k2U = 0 in Ω = (0, 1)3,

γ1U = p on Γ.
(5.41)

As an exact solution we use the fundamental solution

Û(x) =
eik|x−x̂|

|x− x̂|

of the Helmholtz equation, with the pole in x̂ = (2.0, 0.0, 2.0)⊤. For this example
we consider the wave numbers k = 1.0 and 4.0 which are well separated from the
Neumann eigen wave numbers of Ω. Hence, the Neumann boundary value problem
(5.41) has a unique solution. The boundary element discretization of the coupled
variational formulation (5.40) is done with respect to a globally uniform boundary
mesh of Ni plane triangular elements with Mi nodes and by using piecewise constant
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Ni Mi It rel. L2–error eoc

12 8 19 0.1215612
48 26 48 0.0311467 1.964
192 98 116 0.0076578 2.024
768 386 194 0.0018961 2.014
3072 1538 326 0.0004708 2.010
12288 6146 > 400 0.0001133 2.055

(a) k = 1.0

Ni Mi It rel. L2–error eoc

12 8 19 1.9399842
48 26 52 0.5320741 1.867
192 98 135 0.1633048 1.704
768 386 229 0.0371847 2.135
3072 1538 371 0.0036690 3.341
12288 6146 > 400 0.0007019 2.386

(b) k = 4.0

Table 5.1: Iteration numbers and errors for the interior scattering problem on the
cube.

basis functions ψi
m and piecewise linear continuous basis functions φi

n. In particular,
since no eigen wave numbers appear, we consider η ≡ 0 in the linear system (5.40).
This linear system is solved by a GMRES method with a relative reduction of the
residual norm of ε = 10−8. The results are given in Table 5.1. For the wave number
k = 1.0 we see a convergence order as predicted in the theory. In the case k = 4.0 the
error is rather large for the coarser meshes. Afterwards the convergence rate is faster
than the expected theoretical convergence rate. This is due to the so–called pollution
effect. This effect states that if we do not use enough elements per wavelength, the
approximate solution is much worse then the best approximation of the trial space.
For a detailed discussion of this effect see for example [73]. Hence, the convergence
rate is larger than suspected if we start to use enough elements, but goes afterwards
down again to the anticipated convergence rate.

5.8.3 Exterior Neumann scattering problem

In Section 5.7, we presented two viable boundary integral formulations, which also fit
in the proposed tearing and interconnecting approach, to solve the exterior Neumann
scattering problem. The first formulation

(
Dk −1

2
I +K⊥

k
1
2
I −Kk Vk

)(
u
t

)
=

(
−p
0

)
(5.42)



66 5 Boundary integral equations for acoustic scattering problems

possesses for all wave numbers k a unique solution u ∈ H1/2(Γ). But t ∈ H−1/2(Γ) is
not uniquely determined, if k2 is a Dirichlet eigen wave number. Since we are only
interested in u, we want to test if this formulation is viable in practice or not.

The discrete formulation of equation (5.42) is given by:

Find (uh, th) ∈ Wh × Zh such that

〈Dkuh, vh〉Γ + 〈(−1

2
+K⊥)th, vh〉Γ = 〈−p, vh〉Γ,

〈(1
2
I −Kk)uh, wh〉Γ + 〈Vkth, wh〉Γ = 0

(5.43)

for all (vh, wh) ∈ Wh × Zh.

The corresponding matrix formulation is

(
Dk,h −1

2
M⊤

h +K⊤
k,h

1
2
Mh −Kk,h Vk,h

)(
u
t

)
=

(
−p
0

)
. (5.44)

If equation (5.42) is uniquely solvable and the mesh width h is sufficient small, then
the discrete system (5.43) admits a unique solution. Again, the proof can be done
by utilizing the coercivity of the operator given in (5.42). In this case we have,
in addition, the same convergence estimates as for the interior problem. If k2 gets
close to a Dirichlet eigenvalue, the iteration numbers to solve problem (5.43) with
a GMRES solver increase moderately. See Figure 5.1 for the iteration numbers to
solve problem (5.43) with/without preconditioner on the unit cube (0, 1)3 for wave
numbers k between 0 and 10. The used block diagonal preconditioner, based on
operators of opposite order, will be discussed in Section 5.9. For this experiment
we used a triangulation with 386 nodes and 768 elements. However, if k2 gets close
to an eigenvalue, not only the iteration numbers are increasing, the solution th also
gets disturbed by a multiple of the eigensolution. Since the analytic eigensolution
is (0, γ1Uλ)

⊤ and we are only interested in the Dirichlet part of the solution, the
numerical solutions keep acceptable in this experiment. In Figure 5.2 we see that
the error of the Neumann data explodes in the surrounding of a Dirichlet eigenvalue,
while the error of the Dirichlet data keeps rather low.

Nevertheless, we want to use a formulation which can be proven to be stable for all
wave numbers k. Therefore we will use the regularized formulation (5.32)

(
Dk −1

2
I +K⊥

k
1
2
I −Kk Vk + iV0

)(
u
t

)
=

(
−p
iV0p

)
(5.45)

to solve the exterior Neumann boundary value problem. This equation has for all
wave numbers k a unique solution, see Section 5.7. The discrete formulation of the
regularized equation (5.45) is then given by
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Figure 5.1: Iteration numbers for the unmodified exterior block system.
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Figure 5.2: Error of Neumann and Dirichlet data for the unmodified exterior block
problem.



68 5 Boundary integral equations for acoustic scattering problems

Find (uh, th) ∈ Wh × Zh such that

〈Dkuh, vh〉Γ + 〈(−1

2
+K⊥)th, vh〉Γ = 〈p, vh〉Γ,

〈(1
2
I −Kk)uh, wh〉Γ + 〈(Vk + iV0)th, wh〉Γ = 〈V0p, wh〉Γ

(5.46)

for all (vh, wh) ∈ Wh × Zh.

The corresponding matrix formulation is
(

Dk,h −1
2
M⊤

h +K⊤
k,h

1
2
Mh −Kk,h Vk,h + iV0,h

)(
u
t

)
=

( −p
iV0p

)
.

This discrete problem has a unique solution if the mesh width h is small enough, see
Lemma 3.12. Further we gain the same convergence properties as for the interior
problem, see Theorem 5.36.

The matrix Vk,h + iV0,h is invertible, as already discussed in the last section. Hence,
we can eliminate the artificial variable t to obtain the CFIE–like formulation

(Dk,h + (
1

2
M⊤

h −K⊤
k,h)(Vk,h + iV0,h)

−1(
1

2
M⊤

h −K⊤
k,h))u

= −p− i(
1

2
M⊤

h −K⊤
k,h)(Vk,h + iV0,h)

−1V0p.

If we just want to solve an exterior acoustic scattering problem, this is the formulation
of choice. But this formulation is not suitable for the domain decomposition approach,
since in the iterative algorithm, which will be used to solve the global problem,
only the vector p is known and not the analytic function p. Hence, V0p can not be
computed.

Therefore we reformulate equation (5.45), i.e.,



Dk −1
2
I +K⊥

k
1
2
I −Kk Vk I

−I −iD̃





u
t
s


 =



−p
0
−p


 , (5.47)

as discussed in Section 5.7 (note V0 is replaced by D̃−1). This has the advantage that
only the Neumann data p is present on the right hand side. Hence, the corresponding
matrix formulation




Dk,h −1

2
M⊤

h +K⊤
k,h

1
2
Mh −Kk,h Vk,h Mh

−M⊤
h −iD̃h








u
t
s



 =




−p
0
−p



 (5.48)

can be used within an iterative global algorithm, see Section 7.6. In the practical
application we prefer the Schur complement formulation

(
Dk,h −1

2
M⊤

h +K⊤
k,h

1
2
Mh −Kk,h Vk,h + iMhD̃

−1
h M⊤

h

)(
u
t

)
=

( −p
iM⊤

h D̃
−1
h p

)
(5.49)

were the artificial variable s is eliminated.
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level Diri. V1 Diri. V2 Diri. V3 Neu. V1 Neu. V2 Neu. V3

0 2.47127 1.24449 1.29537 0.47323 0.11159 0.21507
1 1.10817 0.99370 0.99422 0.29747 0.14349 0.18713
2 0.26375 0.22568 0.22029 0.59564 0.08578 0.11482
3 0.05436 0.04978 0.04968 0.62962 0.02510 0.03477
4 0.01229 0.01173 0.01176 0.60604 0.00793 0.01109
5 0.00292 0.00285 0.00286 0.55294 0.00276 0.00385

Table 5.2: Relative L2–errors of the Dirichlet and Neumann datum for the non reg-
ularized approach V1, the regularized approach V2, and the regularized
domain decomposition approach V3.

Numerical example

As a numerical example we consider the Neumann boundary value problem

−∆U − k2U = 0 in Ωc = R
3 \ [0, 1]3,

γ1U = p on Γ.
(5.50)

As an exact solution we use the fundamental solution

Û(x) =
eik|x−x̂|

|x− x̂|

of the Helmholtz equation, with the pole in x̂ = (0.5, 0.5, 0.5)⊤. For this example we
consider the first Neumann eigen wave number k =

√
3π ≈ 5.4414 of the unit cube.

Although the Neumann boundary value problem (5.50) has a unique solution, this is
not true for the non–regularized formulation (5.42). Hence the corresponding discrete
problem (5.44) is nearly singular. Therefore we compare it with the regularized
formulation (5.46) for the pure exterior problem and with the regularized formulation
(5.49) which is used within the domain decomposition approach. The boundary
element discretization is done with respect to a globally uniform boundary mesh of
Ni plane triangular elements with Mi nodes and by using piecewise constant basis
functions ψi

m and piecewise linear continuous basis functions φi
n. The linear systems

are solved by a GMRES method with a relative reduction of the residual norm of
ε = 10−8. The results are given in Table 5.2 and Table 5.3. As discussed in Section
5.7, also the non–regularized approach provides in this example useful results for the
Dirichlet datum (which is the point of interest), which are only slightly worse as those
of the regularized formulations. The artificial Neumann datum is in this approach
completely wrong. The bad conditioning of the non–regularized formulation leads
further to higher iteration numbers. The two regularized formulations lead to quite
similar results, still the formulation for the pure exterior Neumann boundary value
problem gives slightly better results.
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level NP V1 NP V2 NP V3 BP V1 BP V2 BP V3

0 19 19 19 19 19 19
1 55 53 54 50 40 45
2 143 130 136 72 50 57
3 278 219 231 85 53 63
4 468 347 370 92 54 64
5 815 572 614 101 55 66

Table 5.3: Iteration numbers without preconditioner (NP) and with a block diagonal
preconditioner (BP) (see Section 5.9) for the non regularized approach V1,
the regularized approach V2, and the regularized domain decomposition
approach V3.

5.9 Preconditioning strategies

In this section we describe a suitable preconditioner for the local system

A =

(
−Vk,h 1

2
Mh +Kk,h

(1
2
Mh +Kk,h)

⊤ Dk,h

)
. (5.51)

Note that we changed the sign of the first line due to an aimed achievement of better
iteration numbers. We use a block diagonal preconditioner, which is based on the
idea of operators of opposite order, see [45,103,126]. This preconditioner consists of
the single layer potential and the regularized hypersingular operator of the Laplace
operator,

CA =

(
−M−1

0,hD̂hM
−1
0,h

M−1
1,h V̂hM

−1
1,h

)
.

The matrices M0,h and M1,h are the mass matrices of constant and linear basis func-

tions, respectively. The matrix V̂h is the discretization of the Laplace single layer
potential with piecewise linear ansatz functions,

V̂h[i, j] =

∫

Γ

∫

Γ

φi(x)
1

4π|x− y|φj(x)dsxdsy, φi, φj ∈ S1
h(Γ).

Since S1
h(Γ) is a conforming ansatz space in H−1/2(Γ), V̂h is well defined. A more de-

tailed discussion about the theory and results if preconditioning Dk,h by M−1
1,h V̂hM

−1
1,h

can be found in [45, 126].

D̂h is the discretization of the regularized Laplace hypersingular operator with piece-
wise constant ansatz functions based on the representation (5.12), i.e.

D̂h[i, j] =

∫

Γ

∫

Γ

curlΓ ψi(x) · curlΓ ψj(x)

4π|x− y| dsxdsy + 〈1, ψi〉Γ〈1, ψj〉Γ, ψi, ψj ∈ S0
h(Γ).
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With the help of Stoke’s theorem we can define curlΓ ψi in the weak sense by

∫

Γ

curlΓ ψi(x) · v(x)dx =

∫

∂τi

v(x) · ti(x)dsx

=

∫

τi

1 · curlΓ v(x)dx =

∫

Γ

ψi(x) curlΓ v(x)dx

for all test functions v. This leads to a formulation based on line integrals, i.e.

D̂h[i, j] =

∫

∂τi

∫

∂τj

ti · tj
4π|x− y|dsxdsy + 〈1, ψi〉Γ〈1, ψj〉Γ.

Hereby ti and tj are the direction vectors of the edges of the triangles τi and τj . Note
that this is a heuristic approach, since constant ansatz functions are not in H1/2(Γ).
Therefore, to the best of our knowledge, in contrast to the single layer potential
no rigorous theory is available yet. Another drawback is that double integrals on
the same line are not well defined, for these integrals heuristic values, which were
optimized by testing, were chosen.

Another possible preconditioning strategy, is to use an approximate inverse of V0,h
instead of M−1

0,hD̂hM
−1
0,h and an approximate inverse of D̃h instead of M−1

1,h V̂hM
−1
1,h .

Such approximate inverses can be computed quite efficiently by using the H–matrix
algebra. Of course efficiency depends on the approximation quality of the inverse,
which on the other hand influences the quality of the preconditioner. Therefore, a
compromise between efficiency and quality has to be made. For a single application
the construction of this preconditioner is probably to expensive, but for multiple
applications as in the domain decomposition approach presented in this work, it can
be more efficient. For further details see [14].

In this section we presented a particular choice of preconditioners, but there are
also many other preconditioners for the single layer potential and the hypersingular
operator, which could be used to create such a block diagonal preconditioner. Other
possible preconditioners would be the BPX preconditioner [70] or algebraic multigrid
preconditioners [94, 113].

Numerical example

To evaluate the performance of the local preconditioners, we use exactly the same
problem as we did for the interior scattering problem. Hence, the triangulation and
all other parameters are the same. We use a rather high approximation quality of
ε = 10−5 for the inverse operators. For a detailed explanation of this parameter
see [14]. The results are given in Table 5.4. The iteration numbers seem for both
preconditioners to be bounded. As anticipated by the theory, the preconditioner
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level k = 1.0 k = 2.0 k = 4.0 k = 8.0

OO AI non OO AI non OO AI non OO AI non

0 17 15 17 18 15 19 19 15 19 19 15 19
1 27 20 48 28 23 49 39 29 52 58 43 51
2 31 23 116 33 25 120 48 33 135 108 57 143
3 33 25 194 35 27 201 52 33 229 120 59 214
4 34 25 326 36 28 337 53 37 371 122 61 >400
5 35 27 >400 36 29 >400 53 37 >400 122 61 >400

Table 5.4: Iteration numbers for different wave numbers k. ’OO’ stands for the pre-
conditioner based on operators of opposite order, ’AI’ stands for the pre-
conditioner using the approximate inverse and ’non’ for the unprecondi-
tioned system.

level AI OO system

0 0.10 0.02 0.08
1 1.23 0.31 0.82
2 19.54 4.81 12.76
3 370.03 60.83 247.95
4 5504.56 1138.78 2967.56

Table 5.5: Times to construct the preconditioners based on the hierarchical matrices
(AI) and operators of opposite order (OO). In addition the construction
time of the linear equation system is given (system). All times are given
in seconds.

based on the approximate inverses works better, especially for higher wave numbers.
This has to be balanced with it’s more expensive construction. The times to construct
the linear equation system and two preconditioners for the case k = 1.0 are given in
Table 5.5. To achieve even better iteration numbers, probably a non block–diagonal
preconditioner has to be constructed.



6 BOUNDARY INTEGRAL EQUATIONS FOR

ELECTROMAGNETIC SCATTERING PROBLEMS

In this chapter we discuss boundary value problems of electromagnetic scattering.
First we discuss under which circumstances the problems possess a unique solution.
Based on the Stratton–Chu representation formula we then introduce the surface po-
tentials and boundary integral operators for the electromagnetic wave equation. After
stating the corresponding boundary integral equations, we discuss some important
properties of the boundary integral operators. Thereafter, we explain the solution
strategy which fits to the domain decomposition approach. Then we introduce suit-
able boundary element formulations. Finally we give some numerical examples and
describe a possible preconditioning strategy.

6.1 Boundary value problems

The Maxwell boundary value problem in a bounded domain Ω ⊂ R3 is stated by

curl curlU− k2U = 0 in Ω,

γDU = n×U|Γ × n = g on ΓD,

γNU = (curlU)|Γ × n = p on ΓN ,

γNU+ iηRγDU = l on ΓR.

(6.1)

As in the Helmholtz case, we call the boundary value problem a Dirichlet, Neumann
or Robin boundary value problem if Γ = ΓD, Γ = ΓN or Γ = ΓR, respectively. If non
of these cases applies, we call the boundary value problem a mixed boundary value
problem. Again we have to make some assumptions for the operator R.

Assumption 6.1. We assume that the operator R is strictly positive, self–adjoint and
that the sesquilinear form 〈Ru,Yu〉ΓR

is real valued up to a compact perturbation. For
the definition of Y see Definition 4.40.

As in the acoustic case, the interior boundary value problems are not for every k2 ∈ C

uniquely solvable. For k = 0, in contrast to the acoustic case, the boundary value
problems possess quite different properties. Therefore we exclude the case k = 0 in
the upcoming theory.

73
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Theorem 6.2. The solutions of the Dirichlet eigenvalue problem

curl curlU = λU in Ω,

γDU = 0 on Γ
(6.2)

have the following properties:

• Corresponding to the eigenvalue λ0 = 0 there is an infinite dimensional family
of functions U = ∇P for any P ∈ H1

0 (Ω).

• There is an infinite discrete set of eigenvalues λj > 0, j = 1, 2, . . . and cor-
responding eigenfunctions Uj 6= 0 such that equation (6.2) is satisfied and
0 < λ1 ≤ λ2 ≤ . . . with λj → ∞ as j → ∞ and Ui orthogonal to Uj in L2 if
i 6= j.

Proof. See [106, p. 97].

The eigenvalues of the Neumann eigenvalue problem

curl curlU = λU in Ω,

γNU = 0 on Γ,

have the same properties as the eigenvalues of the Dirichlet eigenvalue problem (6.2),
see [143]. Based on the introduced Dirichlet and Neumann eigenvalues of the interior
electromagnetic wave equation we can transfer the notation of Dirichlet and Neumann
eigen wave numbers directly from the Helmholtz case, cf. Remark 5.4.

Remark 6.3. In the case of a Dirichlet, Neumann or a mixed Dirichlet/Neumann
boundary value problem, i.e. ΓR = ∅, there exists a unique solution of the boundary
value problem (6.1) if k2 ∈ C \ R, see [143].

Theorem 6.4. The mixed boundary value problem

curl curlU− k2U = 0 in Ω,

γNU = p on ΓN ,

γNU + iηRγDU = l on ΓR.

(6.3)

has at most one solution if the operator R fulfills Assumption 6.1 and if ΓR is non–
trivial.

Proof. The weak formulation of the boundary value problem (6.3) is to find U ∈
H(curl,Ω) such that
∫

Ω

curlU(x) · curlV(x)dx− k2
∫

Ω

U(x) ·V(x) + iη

∫

ΓR

(RγDU(x)) · γDV(x)dsx

=

∫

ΓR

l(x) · γDV(x)dsx +

∫

ΓN

p(x) · γDV(x)dsx



6.1 Boundary value problems 75

is satisfied for all V ∈ H(curl,Ω). To prove that there is at most one solution of
the boundary value problem (6.3), we assume that U is a non–trivial solution of the
homogeneous boundary value problem

curl curlU− k2U = 0 in Ω,

γNU = 0 on ΓN ,

γNU+ iηRγDU = 0 on ΓR.

Further let us set V = U, this gives us

∫

Ω

[
| curlU(x)|2 − |U(x)|2

]
dx+ iη

∫

ΓR

(RγDU)(x) · γDU(x)dsx = 0. (6.4)

Since R is a strictly positive operator, γDU(x) = 0 for x ∈ ΓR follows. The Robin
boundary condition further implies γNU(x) = 0 for x ∈ ΓR. This finally implies, as
in the Helmholtz case (see Lemma 5.7), U(x) = 0 for x ∈ Ω, see also [106, p. 93].

Theorem 6.5. The mixed boundary value problem (6.3) has a solution.

Proof. The sesquilinear form of the variational formulation corresponding to the
Robin boundary value problem (6.3) is given by

a(U,YU) :=

∫

Ω

[
curlU(x) · curlYU(x)− k2U(x) · YU(x)

]
dx

+ iη

∫

ΓR

(RγDU)(x) · γDYU(x)dsx.

Since the imaginary part of the boundary integral is compact, see Assumption 6.1,
we have for the real part

Re (a(U,YU)) =

∫

Ω

[
curlU(x) · curlU(x) + k2U(x) ·U(x)

]
dx+ C(U,U)

with a compact sesquilinear form C, see Section 4.3.2. So a(·, ·) fulfills the generalized
G̊arding inequality

Re(a(U,YU) + C(U,U)) ≥ c ‖U‖2
H(curl,Ω) .

Since we have already shown injectivity, the proposition follows.

In contrast to the interior boundary value problems, the exterior boundary value
problems are not haunted by eigen wave numbers if k ∈ R \ {0}.
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Theorem 6.6. The exterior Dirichlet scattering problem

curl curlU− k2U = 0 in Ωc,

γDU = g on ΓD,

lim
r→0

∫

∂Br

|γNU(x)− ikγDU(x)|2dsx = 0

and the exterior Neumann scattering problem

curl curlU− k2U = 0 in Ωc,

γNU = p on ΓN ,

lim
r→0

∫

∂Br

|γNU(x)− ikγDU(x)|2dsx = 0

have for k ∈ R \ {0} a unique solution.

Proof. See [106, 139].

Remark 6.7. In Theorem 6.6 we used the weaker integral radiation condition instead
of the radiation condition of Silver–Müller, cf. [107], which is given by

lim
r→∞

r (curlU(x)× n− ikU(x)) = 0, with r = |x|. (6.5)

This condition is sufficient to eliminate incoming solutions and to ensure unique
solvability of exterior electromagnetic scattering problems. The interchangeability of
these two conditions is discussed, e.g., in [106,110].

6.2 Representation formula and integral operators

In this section we present the Stratton–Chu representation formula for the electro-
magnetic wave equation, which was first shown in [46]. Afterwards we define potential
operators in such a way that this representation formula can be written in a com-
pact form. Based on these potential operators, we introduce the boundary integral
operators and state the corresponding boundary integral equations.

Theorem 6.8 (Representation formula). The solution of the interior electromagnetic
wave equation curl curlU− k2U = 0 in Ω is given by the representation formula

U(x) = grady

∫

Γ

gk(x, y)γnU(y)dsy +

∫

Γ

gk(x, y)γNU(y)dsy

+ curly

∫

Γ

gk(x, y)(U(y)× n)dsy for x ∈ Ω.

(6.6)
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The solution of the exterior electromagnetic wave equation curl curlU − k2U = 0
in Ωc which satisfies the Silver–Müller radiation condition (6.5) is given by

U(x) = −gradx

∫

Γ

gκ(x, y)γnU(y)dsy −
∫

Γ

gκ(x, y)γNU(y)dsy

− curlx

∫

Γ

gκ(x, y)(U(y)× n)dsy for x ∈ Ωc.

Proof. See [26, 47].

Motivated by the Stratton–Chu representation formula we define the following po-
tential operators.

Definition 6.9. The vector–valued single layer potential is defined by

ΨA
k (λ)(x) :=

∫

Γ

gk(x, y)λ(y)dsy for x /∈ Γ,

The Maxwell double layer potential (or vector–valued double layer potential) is given
by

ΨM
k (λ)(x) := curlΨA

k (Rλ)(x) for x /∈ Γ

with RU = U× n.

The vector–valued single layer potential has the mapping property

ΨA
k : H

−1/2
‖ (Γ) → H1

loc(R
3),

see for example [81, Theorem 5.1].

The Stratton–Chu representation formula for bounded domains can now be written
as

U(x) = ΨM
k (γDU)(x) +ΨA

k (γNU)(x) + gradΨS
k (γnU)(x) for x ∈ Ω.

Obviously we have to deal with three instead of two traces. But for k 6= 0 we can
get rid of this third trace by using Theorem 4.31. For solutions of the differential
equation curl curlU− k2U = 0 in Ω we have the identity

γnU =
1

k2
divΓ(γNU).

Therefore, γnU can be eliminated in the representation formula, i.e.

U(x) = ΨM
k (γDU)(x) +ΨA

k (γNU)(x) +
1

k2
gradΨS

k divΓ(γNU)(x) for x ∈ Ω.

Further it motivates the following definition of the Maxwell single layer potential.
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Definition 6.10. The Maxwell single layer potential is defined as

ΨS
k (µ) := ΨA

k (µ) +
1

k2
gradΨS

k (divΓµ) for µ ∈ H
−1/2
‖ (divΓ,Γ).

The representation formula for the interior boundary value problem can now be
written in the compact form

U(x) = ΨM
k (γDU(x)) +ΨS

k (γNU(x)) for x ∈ Ω. (6.7)

Accordingly the representation formula for the exterior boundary value problem is
given by

U(x) = −ΨM
k (γc

DU(x))−ΨS
k (γ

c
NU(x)) for x ∈ Ωc. (6.8)

The proofs of the following theorem and corollary can be found in [84].

Theorem 6.11. The Maxwell single layer potential Ψk
Su and the Maxwell double

layer potential Ψk
Mv are for arbitrary u ∈ H

−1/2
‖ (divΓ,Γ) and v ∈ H

−1/2
⊥ (curlΓ,Γ)

radiating solutions of the partial differential equation curl curlU − k2U = 0 for
x /∈ Γ.

Corollary 6.12. The Maxwell single and double layer potential have the mapping
properties

ΨS
k : H

−1/2
‖ (divΓ,Γ) → Hloc(curl

2,Ω ∪ Ωc),

ΨM
k : H

−1/2
⊥ (curlΓ,Γ) → Hloc(curl

2,Ω ∪ Ωc).

The potentials corresponding to the electromagnetic scattering equation bear some
relations, which are not present in the acoustic case.

Lemma 6.13. The trace and the potential operators fulfill the following relations:

γNΨ
S
k (u) = (γDΨ

M
k (n× u))× n,

γNΨ
M
k (v) = k2(γD(Ψ

A
k (v × n)))× n.

Proof. We have

curlΨS
k (u)× n = curlΨA

k (u)× n = γ×Ψ
M
k (n× u)

= (γD(Ψ
M
k (n× u)))× n

and

curl curlΨA
k (v × n)× n = k2ΨA

k (v × n)× n = k2(γD(Ψ
A
k (v× n)))× n.
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Remark 6.14. If we take a look at Lemma 6.13, then we see that we have a symmetry
between the operators. If we would change the trace operators, i.e.

γ̃D := γ×, γ̃N =
1

k
γ× ◦ curl,

and modify the potential operators correspondingly,

Ψ̃
S

k (µ) := kΨA
k (µ)−

1

k
gradΨS

k divΓ(µ),

Ψ̃
M

k (µ) := curlΨA
k (µ),

then Lemma 6.13 would look like:

γ̃NΨ
S
k (µ) = γ̃DΨ

M
k (µ), γ̃NΨ

M
k (µ) = γ̃DΨ

S
k (µ).

In addition, we would have to change the scalar product to

〈u,v〉Γ̃ :=

∫

Γ

(u× n) · vdsx.

If we would use this notation, which is quite familiar in literature for electromagnetic
scattering, we would only have to deal with two boundary integral operators instead
of four. Furthermore, only the space H

−1/2
‖ (divΓ,Γ) would be required. On the other

hand, one of the trace operators would depend on the wave number k and the cor-
responding inner product would be non–symmetric. Nevertheless, the differences to
the Helmholtz case is interesting, since both single layer potential and hypersingular
operator are of the same order.

Based on the surface potentials we can now define boundary integral operators. This
happens by applying either the Dirichlet or the Neumann trace on the Maxwell single
or double layer potential.

Theorem 6.15 (Jump conditions). For the transition from the interior the following
representations for x ∈ Γ hold almost everywhere:

γDΨ
A
kw(x) =

∫

Γ

γD,x(gk(x, y)w(y))dsy =: Akw(x),

γDΨ
S
kw(x) =

∫

Γ

γD,x(gk(x, y)w(y))dsy +
1

k2
∇|Γ Ψ

S
k (div Γw(x)) =: Skw(x),

γDΨ
M
k v(x) = γD,x curlx

∫

Γ

gk(x, y)(v(y)× ny)dsy =:

(
1

2
I+ Ck

)
v(x),

γNΨ
S
kw(x) =

1

2
w(x) +

∫

Γ

γN,x(gk(x, y)w(y))dsy =:

(
1

2
I+ Bk

)
w(x),

γNΨ
M
k v(x) = γN,x curlx

∫

Γ

(gk(x, y)v(y)× ny)dsy =: Nkv(x).
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For the transition from the exterior it holds respectively, for x ∈ Γ

γc
DΨ

A
kw(x) =: Akw(x),

γc
DΨ

S
kw(x) =: Skw(x),

γc
DΨ

M
k v(x) =:

(
−1

2
I+ Ck

)
v(x),

γc
NΨ

S
kw(x) =:

(
−1

2
I+ Bk

)
w(x),

γc
NΨ

M
k v(x) =: Nkv(x).

This gives us the jump conditions

[γDΨ
A
k ]Γ = 0, [γNΨ

A
k ]Γ = −I,

[γDΨ
S
k ]Γ = 0, [γNΨ

S
k ]Γ = −I,

[γDΨ
M
k ]Γ = −I, [γNΨ

M
k ]Γ = 0.

Proof. See [33, 38].

Theorem 6.16. The boundary integral operators have the following mapping prop-
erties:

Sk : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

Ak : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

Bk : H
−1/2
‖ (divΓ,Γ) → H

−1/2
‖ (divΓ,Γ),

Ck : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

Nk : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ,Γ).

For Ak we have the additional mapping property

Ak : H
−1/2
‖ (Γ) → H

1/2
‖ (Γ).

Proof. For the first proposition we combine the mapping properties of the potential
operators and the trace operators. The proposition for Ak can be found in [88].

As hinted in Remark 6.14, the single layer potential and the hypersingular operator
bear a similar representation. The proof of the following theorem can be found in [26].

Theorem 6.17. For the sesquilinear form of the hypersingular operator Nk there
holds the representation

〈Nku,v〉Γ = −k2〈Ak(Ru),Rv〉Γ + 〈Vk(curlΓ u), curlΓ v〉Γ

for all u,v ∈ H
−1/2
⊥ (curlΓ,Γ).
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If we apply the trace operators on the representation formula for the solution of the
interior boundary value problem (6.7), we get the boundary integral equations

γDE = Sk(γNE) + (1
2
I+ Ck)(γDE),

γNE = (1
2
I+ Bk)(γNE) + Nk(γDE).

(6.9)

If we do the same for the representation formula for the solution of the exterior
boundary value problem (6.8), we get

γc
DE = −Sk(γ

c
NE) + (1

2
I− Ck)(γ

c
DE),

γc
NE = (1

2
I− Bk)(γ

c
NE) + −Nk(γ

c
DE).

(6.10)

Now we can prove the so called Calderon property.

Theorem 6.18. The interior and the exterior Calderon projector, i.e.

Cint =
(

1
2
I+ Ck Sk

Nk
1
2
I+ Bk

)
, Cext =

(
1
2
I− Ck −Sk

−Nk
1
2
I− Bk

)

are indeed projectors, i.e., C2
int = Cint and C2

ext = Cext.

Proof. As shown in Theorem 6.11 the Maxwell single and double layer potential are
solutions of the differential equation. Hence, the proof can be done as in the scalar
case, see [125].

This leads to some important relations among boundary integral operators.

Corollary 6.19. For the boundary integral operators the relations

SkNk =
1

4
I− C

2
k, (6.11)

NkSk =
1

4
I− B

2
k, (6.12)

−NkCk = BkNk, (6.13)

−CkSk = SkBk. (6.14)

hold.

Definition 6.20. If the operator Sk is invertible, i.e. if k2 is not a Neumann eigen
wave number, then we can define the Steklov–Poincaré operator by

Tk := S
−1
k (

1

2
I− Ck) : H

−1/2
⊥ (curlΓ,Γ) → H

−1/2
‖ (divΓ,Γ). (6.15)

A symmetric representation is given by

Tk := Nk + (
1

2
I+ Bk)S

−1
k (

1

2
I− Ck). (6.16)

The Steklov–Poincaré operator of electromagnetic scattering has similar properties
as the one in the Helmholtz case, see Section 5.4, i.e. Tk is not well defined if k2 is
a Dirichlet eigen wave number and is not invertible if k2 is a Neumann eigen wave
number.
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6.3 Properties of the boundary integral operators

The boundary integral operators corresponding to the electromagnetic scattering
problem bear similar properties as those for the acoustic scattering problem.

Lemma 6.21. For µ ∈ H
−1/2
‖ (divΓ,Γ) and λ ∈ H

−1/2
⊥ (curlΓ,Γ) there holds

〈Bkµ,λ〉Γ = −〈µ,C−kλ〉Γ

for all k ∈ R.

Proof. See [38].

As in the Helmholtz case, the boundary integral operators for different wave numbers
differ only by a compact part.

Theorem 6.22. The operators

Ak − Ak′ : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

Ck − Ck′ : H
−1/2
⊥ (curlΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ),

Bk − Bk′ : H
−1/2
‖ (divΓ,Γ) → H

−1/2
‖ (divΓ,Γ)

are compact for all k, k′ ∈ C.

Proof. See [88].

Before we can prove generalized G̊arding inequalities for arbitrary wave numbers k,
we first have to establish some ellipticity results.

Theorem 6.23. For k = iκ and κ ∈ R
+ there holds

〈Aku,u〉Γ ≥ c ‖u‖2
H

−1/2
‖

(Γ)

for all u ∈ H
−1/2
‖ (Γ).

Proof. For A0 see [33], for Ak, the proof works analogously .

Theorem 6.24. If k ∈ C and Im(k) > 0, then the single layer potential Sk is

H
−1/2
‖ (divΓ,Γ)–elliptic. If k = iκ, κ ∈ R+ then it is in addition self–adjoint. The

same holds true for the hypersingular operator Nk with respect to H
−1/2
⊥ (curlΓ,Γ).
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Proof. We only consider the case k = iκ, κ ∈ R+. The proof for the general case
Im(k) > 0 can be found in [26]. For the single layer potential we have

〈Sku,u〉Γ = 〈Aku,u〉Γ +
1

(ik)2
〈Vk divΓ u, divΓ u〉Γ

≥ c1 ‖u‖2H−1/2
‖

(Γ)
+

c2
(ik)2

‖divΓ u‖2H−1/2(Γ) ≥ c ‖u‖2
H

−1/2
‖

(divΓ,Γ)
,

while for the hypersingular operator we conclude

〈Nku,u〉Γ = (ik)2〈Ak(u× n),u× n〉Γ + 〈Vk curlΓ u, curlΓ u〉Γ
≥ (ik)2c1 ‖u× n‖2

H
−1/2
‖

(Γ)
+ c2 ‖curlΓ u‖2H−1/2(Γ) ≥ c ‖u‖2

H
−1/2
⊥ (curlΓ,Γ)

due to ‖u× n‖2
H

−1/2
‖

(Γ)
= ‖u‖2

H
−1/2
⊥ (Γ)

. Since Sk and Nk are real–valued and symmetric

when assuming k = iκ and κ ∈ R
+, they are also self–adjoint.

Let us define the two auxiliary operators

S̃ku := A0u− 1

k2
∇Γ V0 divΓ u,

Ŝku := A0u+
1

k2
∇Γ V0 divΓ u

for all u ∈ H
−1/2
‖ (divΓ,Γ). These two operators are rather similar to the Maxwell

single layer potential. An obvious observation is that the operator

Ŝk − Sk : H
−1/2
‖ (divΓ,Γ) → H

−1/2
⊥ (curlΓ,Γ)

is compact, which will be used in the upcoming proof of Theorem 6.25. The operator
S̃k is H

−1/2
‖ (divΓ,Γ)–elliptic for k > 0, this can be shown as in Theorem 6.24.

In contrast to the Helmholtz case, for an arbitrary k ∈ C it is not possible to prove
a G̊arding inequality for the single layer potential or for the hypersingular operator.
However, we can prove the following generalized G̊arding inequalities.

Theorem 6.25. Sk and Nk fulfill for k > 0 the generalized G̊arding inequality

Re(〈Skµ,Xµ〉Γ + C1(µ,µ)) ≥ c ‖µ‖2
H

−1/2
‖

(divΓ,Γ)
,

Re(〈Nkλ,Yλ〉Γ + C2(λ,λ)) ≥ c ‖λ‖2
H

−1/2
⊥ (curlΓ,Γ)

for all µ ∈ H
−1/2
‖ (divΓ,Γ) and λ ∈ H

−1/2
⊥ (curlΓ,Γ), where C

1 and C2 are compact
sesquilinear forms, and X and Y are as given in Definition 4.40.
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Proof. By using the definition of Ŝk and the splitting properties of H
−1/2
‖ (divΓ,Γ), as

discussed in Subsection 4.3.2, we get

〈Ŝkµ,Xµ〉Γ = 〈A0µ,Xµ〉Γ +
1

k2
〈∇Γ V0 divΓµ,Xµ〉Γ

= 〈A0µ,Xµ〉Γ −
1

k2
〈V0 divΓµ, divΓ Xµ〉Γ

= 〈A0µ
0,µ0〉Γ + 〈A0µ

⊥,µ0〉Γ − 〈A0µ
0,µ⊥〉Γ − 〈A0µ

⊥,µ⊥〉Γ
− 1

k2
〈V0 divΓµ

0, divΓµ
0〉Γ −

1

k2
〈V0 divΓµ⊥, divΓµ

0〉Γ

+
1

k2
〈V0 divΓµ0, divΓµ

⊥〉Γ +
1

k2
〈V0 divΓµ⊥, divΓµ

⊥〉Γ.

From divΓµ
0 = 0 it follows that

〈Ŝkµ,Xµ〉Γ = 〈A0µ
0,µ0〉Γ + 〈A0µ

⊥,µ0〉Γ − 〈A0µ
0,µ⊥〉Γ − 〈A0µ

⊥,µ⊥〉Γ
+

1

k2
〈V0 divΓµ⊥, divΓµ

⊥〉Γ.

Moreover, since 〈A0µ
⊥,µ0〉Γ, 〈A0µ

0,µ⊥〉Γ and 〈A0µ
⊥,µ⊥〉Γ are compact sesquilinear

forms (see [88]), it follows that there exists a compact sesquilinear form C(µ, µ) such
that

Re(〈Skµ,Xµ〉Γ + C(µ,µ)) = 〈A0µ
0,µ0〉Γ +

1

k2
〈V0 divΓµ

⊥, divΓµ
⊥〉Γ

≥ c1
∥∥divΓµ⊥∥∥2

H−1/2(Γ)
+ c2

∥∥µ0
∥∥2
H

−1/2
‖

(Γ)

≥ c ‖µ‖2
H

−1/2
‖

(divΓ,Γ)

due to
∥∥µ⊥∥∥

H
−1/2
‖

(Γ)
≤ C

∥∥divΓµ⊥∥∥
H−1/2(Γ)

, see [88]. The proof for the hypersingular

operator Nk works analogously.

To establish a generalized G̊arding inequality for the upcoming local solution ap-
proach we need the following theorem.

Theorem 6.26. The sesquilinear forms

〈(1
2
I± Bk)u

⊥,v⊥〉Γ, 〈(1
2
I± Bk)u

0,v0〉Γ,

〈(1
2
I± Ck)v

⊥,u⊥〉Γ, 〈(1
2
I± Ck)v

0,u0〉Γ

are compact.

Proof. See [38, 84].

The following lemma can be found in [139].
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Lemma 6.27. For k > 0 there holds

Im(〈Sku,u〉Γ) ≥ 0, Im(〈S−ku,u〉Γ) ≤ 0,

Im(〈Nkv,v〉Γ) ≤ 0, Im(〈N−kv,v〉Γ) ≥ 0.

To prove surjectivity of systems of boundary integral equations related to boundary
value problems with Robin boundary conditions, the following results about the
images of the boundary integral operators are needed.

Lemma 6.28. For all u ∈ H
−1/2
‖ (divΓ,Γ) and v ∈ H

−1/2
⊥ (curlΓ,Γ) we have the image

properties

(
1

2
I+ Ck)u ∈ Imag(Sk), (

1

2
I+ Bk)v ∈ Imag(Nk).

Proof. This follows directly from the properties of boundary integral equations re-
lated do PDE’s in unbounded domains, see (6.10).

6.4 Robin interface operator R

In contrast to the Helmholtz case we discuss only one possible operator R. This
realization is based on the vectorial single layer potential A0, which is elliptic on
H̃−1/2(ΓR). Since the restriction of H

−1/2
⊥ (curlΓ,Γ) to ΓR is only in H−1/2(ΓR), we

have to modify the operator to φ′
ΓR

◦ A0 ◦ φΓR
where φΓR

is a continuous function
with

φΓR
(x) = min(dist(x,Γ \ ΓR), 1) for x ∈ ΓR,

φΓR
(x) = 0 for x ∈ Γ \ ΓR.

This is a strictly positive and real valued operator which fulfills the mapping proper-
ties. Further is the sesquilinear form 〈Ru,Yu〉Γ real valued up to a compact pertur-
bation, because the sesquilinear forms 〈Ru0,Yu⊥〉Γ, 〈Ru⊥,Yu0〉Γ, 〈Ru⊥,Yu⊥〉Γ are
compact, see Section 6.3 and 〈Ru0,Yu0〉Γ is real–valued since A0 is a real–valued and
self–adjoint operator.

6.5 Local Neumann/Robin boundary value problems

As in the Helmholtz case, there are various different approaches available to solve
the local Neumann or Robin boundary value problems. Since they have, in principle,
the same major properties in common, we will skip their detailed discussion in this
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section because it would just be a repetition of Subsection 5.6. The boundary value
problem we want to solve is given by

curl curlU− k2U = 0 in Ω,

γNU + iηRγDU = l on Γ
(6.17)

Note that if η ≡ 0 we have a standard Neumann boundary value problem. The
formulation of choice to solve the local Neumann/Robin boundary value problem is
given by:

Find u ∈ H
−1/2
‖ (divΓ,Γ) and t ∈ H

−1/2
⊥ (curlΓ,Γ) such that

(
Nk + iηR 1

2
I+ Bk

−1
2
I+ Ck Sk

)(
u
t

)
=

(
l
0

)
. (6.18)

The system (6.18) is uniquely solvable for Im(k) > 0 and η ≡ 0, or if k ∈ R \ {0} and
η 6≡ 0. Again this can be proven by showing surjectivity and a generalized G̊arding
inequality. Surjectivity can be proven as in the Helmholtz case, see Theorem 5.26
and Remark 5.27.

Theorem 6.29. For k 6= 0 and η ∈ R the generalized G̊arding inequality

Re

(〈(
Nk + iηR 1

2
I+ Bk

−1
2
I+ Ck Sk

)(
u
t

)
,

(
Yu
X t

)〉

Γ

+ C((u, t), (u, t))

)

≥ c

(
‖u‖2

H
−1/2
⊥ (curlΓ,Γ)

+ ‖t‖2
H

−1/2
‖

(divΓ,Γ)

)

is satisfied for all (u, t) ∈ H
−1/2
⊥ (curlΓ,Γ)×H

−1/2
‖ (divΓ,Γ) and a compact sesquilinear

form C.

Proof. For the diagonal parts we have

〈Nku,Yu〉Γ + C1(u,u) ≥ c1 ‖u‖2H−1/2
⊥ (curlΓ,Γ)

,

〈Skt,X t〉Γ + C2(t, t) ≥ c2 ‖t‖2H−1/2
‖

(divΓ,Γ)
,

Im(〈Ru,Xu〉Γ + C3(u,u)) = 0

with compact sesquilinear forms C1, C2 and C3, see Theorem. By using Theorem
6.26 we obtain

Re
(
〈(−1

2
I+ Ck)u,X t〉Γ + 〈(1

2
I+ Bk)t,Yu〉Γ

)

= Re
(
− 〈(1

2
I+ B0)t

⊥,u0〉Γ + 〈(1
2
I+ B0)t

0,u⊥〉Γ + 〈(−1

2
I+ C0)u

⊥, t0〉Γ

− 〈(−1

2
I+ C0)u

0, t⊥〉Γ + C4((u, t), (u, t)
)
= C5((u, t), (u, t))

for the off diagonal parts with compact sesquilinear forms C4 and C5. These two
statements combined prove the G̊arding inequality.
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6.6 The exterior Neumann boundary value problem

For k ∈ R+ we consider the exterior Neumann boundary value problem

curl curlU− k2U = 0 in Ωc,

γc
NU = p on ΓN ,

lim
r→0

∫

∂Br

|γNU(x)− ikγDU(x)|2dsx = 0.

(6.19)

Although the exterior Neumann boundary value problem (6.19) has a unique solution,
this is not true for standard boundary integral approaches. The reasons are the
same as in the acoustic scattering case, see the discussion in Section 5.7. Therefore,
modified approaches were developed. A first approach was given by Panich in [114],
which is based on the complex linear combination

U(x) = ΨS
ku(x) + ikΨD

k u(x)

of the single and double layer potential. However, this approach only works for
smooth domains and in a L2–setting. Other approaches, so–called combined field
integral equations (CFIE) for Lipschitz domains were developed, e.g. [36,127]. These
approaches use an additional operator B, i.e.

U(x) = ΨS
ku(x) + ikΨD

k Bu(x)

such that the analysis can be done in the natural trace spaces. In this work we want
to give another regularization approach, which is based on the boundary integral
equations (6.10) related to the exterior problem. This equations can be rewritten by

(
Nk −1

2
I+ Bk

1
2
I+ Ck Sk

)(
u
t

)
=

(
−p
0

)
(6.20)

with u = γc
DU and t = γc

NU. Equation (6.20) is not uniquely solvable if k2 is an
eigen wave number of the interior Dirichlet problem, since the Neumann trace of the
Dirichlet eigensolution Uk2 is in the kernel of Sk and 1

2
I− Bk. To regularize equation

(6.20), we add on both sides, as in the Helmholtz case, a term including the known
Neumann boundary datum p = t. This leads to the regularized formulation

(
Nk −1

2
I+ Bk

1
2
I+ Ck Sk + iS̃k

)(
u
t

)
=

( −p

iS̃kp

)
(6.21)

which is uniquely solvable. To utilize Theorem 3.16 we have to show the surjectivity
of the operator as given in (6.21) and the following generalized G̊arding inequality.

Theorem 6.30. The operator in (6.21) satisfies a generalized G̊arding inequality,
i.e. there exists a compact sesquilinear form C((·, ·), (·, ·)) such that

Re

(〈(
Nk −1

2
I+ Bk

1
2
I+ Ck Sk + iS̃k

)(
u
t

)
,

(
Yu
X t

)〉

Γ

+ C((u, t), (u, t))

)

≥ c

(
‖u‖2

H
−1/2
⊥ (curlΓ,Γ)

+ ‖t‖2
H

−1/2
‖

(divΓ,Γ)

)
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for all (u, t) ∈ H
−1/2
⊥ (curlΓ,Γ)×H

−1/2
‖ (divΓ,Γ).

Proof. Since the imaginary part of 〈S̃kt,Yt〉Γ is compact, the proof works analogically
as the proof of Theorem 6.29.

The surjectivity of the system in (6.21) can be proven by interpreting it as the
following interior Robin boundary value problem:

Find U ∈ H(curl,Ω) such that

curl curlU− k2U = 0 in Ω,

γDU + iS̃kγNU = p on Γ.

The proof works as in the Helmholtz case, see Lemma 5.29. Since

Im(〈Sk + iS̃kv,v〉Γ) ≥ c ‖v‖2
H

−1/2
‖

(divΓ,Γ)
for all v ∈ H

−1/2
‖ (divΓ,Γ),

see Lemma 6.27, it is possible to eliminate t in (6.21). This leads to the combined
field integral equation

(Nk + (
1

2
I− Bk)(Sk + iS̃k)

−1(
1

2
I+ Ck))u = −p− iS̃kp.

Note that this equation has a unique solution for all k > 0 since the same is true for
equation (6.21).

However, this formulation is not suitable for the domain decomposition approach
presented in this thesis. A possibility to construct a suitable formulation is to copy
the approach from the Helmholtz case. To do so, it would be necessary to find an
operator X such that the system




Nk −1

2
I+ Bk −Nk

1
2
I+ Ck Sk

1
2
I− Ck

−Nk −1
2
I− Bk Nk − iX





is injective/surjective and fulfills a generalized G̊arding inequality. However, it is still
an open problem to find such an operator X.

6.7 Boundary element methods

In this section we give a short introduction to suitable discrete ansatz spaces for
the electromagnetic wave equation. This deduction is mainly based on [26, 105].
Afterwards, we state the discretized formulation of the Neumann and Robin boundary
value problems. Finally we give a numerical example for the Neumann problem.
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For the discretization of the boundary integral equations (6.10), we use a conforming
Galerkin method with trial spaces

Vh ⊂ H
−1/2
⊥ (curlΓ,Γ), Wh ⊂ H

−1/2
‖ (divΓ,Γ).

As in the Helmholtz case we assume a regular triangulation of the boundary Γ.
The Cauchy datum γDE is the trace of the electric field. A suitable mathematical
description of an electric field is given by 1–forms, cf. [20]. Hence, it seems to be
natural to approximate an electric field by discrete 1–forms and the Cauchy data by
traces of discrete 1–forms. 1–forms are given by H(curl,Ω) conforming elements,
see [108]. Let us consider a regular finite element triangulation Ωh which fits to the
boundary triangulation Γh. The discrete 1–forms are then given by

N d
h (ωl) :=

{
U ∈

[
Pd(ωl)

]3
: U(x) · x = 0 for x ∈ ωl

}
,

N d
h (Ωh) :=

{
U ∈ H(curl,Ω) : U(x)|ωl

∈ N d
h for all ωl ∈ Ωh

}
.

Pd is hereby the space of multivariate polynomials of degree d. By applying the
traces γ× and γD we construct conforming trace spaces, i.e.

Ed
h(Γ) := γD(N d

h (Ωh)) ⊂ H
−1/2
⊥ (curlΓ,Γ),

Fd
h(Γ) := γ×(N d

h (Ωh)) ⊂ H
−1/2
‖ (divΓ,Γ).

In the simplest case d = 1, the space F1
h is a two dimensional H(div ,Ω)–conforming

trial space on Γh, see [27]. The Raviart–Thomas elements [119] are given by

Fd
h(Γh) = RT d

h(Γh) :=
{
u ∈ H

−1/2
‖ (divΓ,Γ) : u|τl ∈ RT d

h(τl) for all τl ∈ Γh

}

with

RT d
h(τl) :=

[
Pd−1(τl)

]3 ⊕ xPd−1(τl).

Since γ× = γD × n, we have an equivalent definition for the space Ed
h(Γh)

Ed
h(Γh) = RT d,×

h (Γh) :=
{
u ∈ H

−1/2
⊥ (curlΓ,Γ) : u|τl × n ∈ RT d

h(τl) for all τl ∈ Γh

}
.

In this way we can define the boundary element spaces without introducing a dis-
cretization of the domain Ω. Since we will only use the lowest order elements, i.e.
d = 1, we will skip this parameter in the notation. We further abandon the explicit
notation of the boundary discretization, i.e. we write Eh instead of Ed

h(Γh).

The trial functions of Eh and Fh are edge based, hence each edge belongs to one
degree of freedom and vice versa. The support of a basis function is the area of
the two adjacent elements. A basis function in Fh corresponding to an edge en is
explicitly given by

λn
lk :=

xk − x

2∆l
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if we restrict it to one adjacent triangle τl. xk is hereby the corner node of the triangle
τl which is not part of en. For the space Eh the basis function is given by, see Figure
6.1,

un
lk := n×

(
xk − x

2∆l

)
.

Figure 6.1: Basis functions in Eh and Fh restricted to one triangle.

For these conforming ansatz spaces we have the following approximation estimates.

Theorem 6.31. Let t ∈ Hs
t (Γ), divΓ t ∈ Hs(Γ) for some s ∈ [0, d]. Then there

exists a th ∈ Fd
h such that

‖t− th‖L2
t (Γ)

≤ chs(‖t‖Hs(Γ) + ‖divΓ t‖Hs(Γ)),

‖divΓ(t− th)‖L2(Γ)
≤ chs ‖divΓ t‖Hs(Γ) .

Let u ∈ Hs
t(Γ), curlΓ u ∈ Hs(Γ) for some s ∈ [0, d]. Then there exists a u ∈ Ed

h such
that

‖u− uh‖L2
t (Γ)

≤ chs(‖u‖Hs(Γ) + ‖curlΓ u‖Hs(Γ)),

‖curlΓ(u− uh)‖L2(Γ)
≤ chs ‖curlΓ u‖Hs(Γ) .

Proof. See [88, 119].

Theorem 6.32. [81] Under the assumptions as given in Theorem 6.31 and for any
ε > 0 we conclude the error estimates

inf
th∈Fd

h

‖t− th‖H−1/2
‖

(divΓ,Γ)
≤ chmin{ 3

2
−ε,s+ 1

2
−ε,1+s∗,s+s∗} (‖t‖Hs(Γ) + ‖divΓ t‖Hs(Γ)

)
,

inf
uh∈Fd

h

‖u− uh‖H−1/2
⊥ (curlΓ,Γ)

≤ chmin{ 3
2
−ε,s+ 1

2
−ε,1+s∗,s+s∗} (‖u‖Hs(Γ) + ‖curlΓ u‖Hs(Γ)

)
,

where s∗ is a domain dependent constant.
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Theorem 6.32 implies that a sequence of Raviart–Thomas element spaces Fhi
is a

conforming and approximating sequence for the space H
−1/2
‖ (divΓ,Γ). The same

holds for Ehi
and H

−1/2
⊥ (curlΓ,Γ), respectively. But in contrast to the Helmholtz case

this is not sufficient to show unique solvability or convergence properties of a discrete
formulation. Since we use a generalized G̊arding inequality to analyze the continuous
formulation, it is necessary that the discrete ansatz spaces satisfy the gap property,
see Definition 3.14.

Lemma 6.33. The approximating sequences Ehi
and Fhi

, fulfill the gap property with

respect to the splittings of H
−1/2
⊥ (curlΓ,Γ) and H

−1/2
‖ (divΓ,Γ) as introduced in Section

4.3.2.

Proof. See [29, 105].

Due to the definition of the gap property, the same holds also for the product spaces
Ehi

× Fhi
with respect to H

−1/2
⊥ (curlΓ,Γ)×H

−1/2
‖ (divΓ,Γ).

6.7.1 The interior Neumann/Robin scattering problem

The discrete variational formulation of (6.18) is given by:

Find uh ∈ Eh and th ∈ Fh such that

〈(Nk + iηR)uh,λh〉Γ + 〈(1
2
I+ Bk)th,λh〉Γ = 〈l,λ〉Γ,

〈(−1

2
I+ Ck)uh,µh〉Γ + 〈Skth,µh〉Γ = 0,

(6.22)

for all λh ∈ Eh and µh ∈ Fh.

Theorem 3.18 ensures that (6.22) has a unique solution if (6.18) has a unique solution
and if the mesh width h is fine enough. Further it provides the quasi–optimal error
estimate

‖u− uh‖H−1/2
⊥ (curlΓ,Γ)

+ ‖t− th‖H−1/2
‖

(divΓ,Γ)
≤ c

(
inf

xh∈Eh
‖u− xh‖+ inf

yh∈Fh

‖t− yh‖
)
.

Numerical example

As a numerical example for an interior scattering problem we consider the Neumann
problem

curl curlU− k2U = 0 in Ω,

γNU = p on Γ.
(6.23)
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Ei It rel. L2–error

18 35 0.570153
72 140 0.324963
288 482 0.174921
1152 1595 0.087530
4608 4129 0.058317

(a) k = 1.0

Ei It rel. L2–error

18 35 0.657105
72 130 0.356047
288 420 0.184889
1152 1267 0.095502
4608 3132 0.056626

(b) k = 2.0

Ei It rel. L2–error

18 35 1.927830
72 130 0.801602
288 402 0.274487
1152 1000 0.131463
4608 1952 0.067883

(c) k = 4.0

Ei It rel. L2–error

18 35 1.203550
72 134 1.655500
288 432 0.578021
1152 1390 0.234201
4608 3103 0.109620

(d) k = 8.0

Table 6.1: Errors and iteration numbers for the domain Ω = (0, 1)3 with different
wave numbers k.

As domain Ω we consider the unit cube (0, 1)3 and the unit sphere with the center
in the origin. As exact solution we chose

U(x) =


1 + ikr − k2r2

r3



1
0
0


− 3 + 3ikr − k2r2

r5
(x1 − x̂1)



x1 − x̂1
x2 − x̂2
x3 − x̂3




 eikr (6.24)

for x ∈ Ω and with r = |x̂ − x|. The source point x̂ is given by (2.0, 1.0, 1.0)⊤.
The boundary element discretization of the variational formulation (6.22) is done
with respect to a globally uniform boundary mesh of plane triangular elements with
Ei edges and by using first order Raviart–Thomas elements. The corresponding
linear system is solved by a GMRES method with a relative reduction of the residual
norm of ε = 10−8. The results are given in Table 6.1 and Table 6.2. Note that no
preconditioner was used to achieve these results, since efficiency was not the aim
of these examples. Nevertheless the rather high iteration numbers hint that a local
preconditioner has to be used for real–life problems. However, the convergence rate
matches with the theoretical predicted convergence rate.

If we chose k =
√
2 ≈ 4.44288, which is the first eigen wave number of the unit cube,

then the Neumann boundary value problem (6.23) has no unique solution. Within
the domain decomposition approach we therefore have to consider a Robin boundary
value problem. As a numerical example we consider the boundary value problem
(6.23) with the same parameters as for the last example. In addition we solve the
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Ei It rel. L2–error

183 314 0.157496
732 1009 0.080443
2928 2494 0.042221
11712 6138 0.027018

(a) k = 1.0

Ei It rel. L2–error

183 261 0.199227
732 763 0.101210
2928 1958 0.051270
11712 4929 0.027965

(b) k = 2.0

Ei It rel. L2–error

183 295 0.852927
732 872 0.301616
2928 1786 0.153936
11712 3534 0.065094

(c) k = 4.0

Ei It rel. L2–error

183 299 1.827410
732 910 0.355420
2928 2303 0.164986
11712 4451 0.081153

(d) k = 8.0

Table 6.2: Errors and iteration numbers for the unit sphere with different wave num-
bers k.

Ei It rel. L2–error

18 35 5.555442
72 128 0.929762
288 423 2.075114
1152 1236 7.755683
4608 2852 21.55586

(a) Neumann problem

Ei It rel. L2–error

18 35 4.445549
72 128 0.924866
288 411 0.351006
1152 1061 0.146243
4608 1935 0.071093

(b) Robin problem

Table 6.3: Errors and iteration numbers for the domain Ω = (0, 1)3 of the Neumann
and Robin boundary value problem for the eigen wave number k =

√
2π ≈

4.44288.

problem (6.23) with the Robin boundary condition

γNU+ iRγDU = l on Γ.

As Robin operator R we chose hereby the vectorial single layer potential A0. The
results, which clearly indicate the stability of the boundary element method in the
case of Robin boundary conditions, are given in Table 6.3.

6.7.2 Preconditioning strategies

The implementation of a preconditioner for the local problem is nearly unavoidable
for practical problems. But standard preconditioners fail since the singular values of
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the matrices of the single layer potential and the hypersingular operator accumulate
around zero and infinity, see [109]. Suitable preconditioners were given in [2,18], but
these preconditioners enforce a complete reimplementation of standard electromag-
netic scattering boundary element codes. Another approach is given in [8]. This
approach reuses parts of existing boundary element codes but it is quite expensive
since the single layer potential has to be computed on a barycentric mesh, which
has six times more edges (degrees of freedom) as the original mesh, see [30] and
Figure 6.2. Hence there is a strong need in a further investigation of appropriate
preconditioning strategies.

Figure 6.2: Part of an ordinary boundary mesh (black lines) with it’s corresponding
barycentric mesh (black and red lines).



7 DOMAIN DECOMPOSITION METHODS FOR
ACOUSTIC SCATTERING

In this chapter we first discuss some geometrical assumptions and definitions for
the domain decomposition approach. Afterwards, we formulate a classical Dirichlet
domain decomposition method, see for example [101,117,124,136]. In the beginning
we assume that all appearing local Dirichlet and Neumann problems are uniquely
solvable. Then, step by step, we get rid of these assumptions by introducing artificial
Robin interface conditions and by replacing the local Steklov–Poincaré operator by a
local system of boundary integral equations. Therefore, we explain how these artificial
Robin interface conditions can be chosen and which class of problems is covered
by the presented theory. Thereafter, we show that the boundary value problem
can be reformulated in such a way that also transmission problems can be treated.
Then we introduce suitable trial and test spaces for the variational formulation and
give some approximation estimates for the resulting discrete problems. Afterwards,
we discuss the idea of the tearing and interconnecting method and introduce an
algebraic deduction of this approach. Since one of the motivations for this tearing
and interconnecting approach is a feasible efficient parallel implementation, a major
concern is to reduce the global iteration numbers, because communication between
processors often becomes the most time consuming factor. Therefore we present a
preconditioner for the global tearing and interconnecting system which was motivated
by Farhat, Macedo and Lesoinne [65]. Finally, we describe some numerical examples.

7.1 Geometric domain decomposition

We assume that the Lipschitz domain Ω is divided
into p non overlapping subdomains Ωi, such that

Ω =

p⋃

i=1

Ωi, Ωi ∩ Ωj = ∅, for i 6= j.

Γ12

Γ23

Γ34

Γ14

ΓD
ΓN

Ω1
Ω2

Ω3
Ω4

By Γi := ∂Ωi we denote the boundary of a subdomain. For neighbouring domains
we define the interface Γij := Γi ∩ Γj . The skeleton of the domain decomposition is
defined by

ΓS :=

p⋃

i=1

Γi = Γ ∪
⋃

i<j

Γij .

95
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The normal vectors ni are defined as the outgoing normal vectors for every subdo-
main. We further assume that the function k(x) is piecewise constant, i.e. k(x) = ki
in Ωi.

Notation 7.1. In this chapter we will use a simplified notation for the boundary
integral operators. Since we assume a constant wave number ki with respect to each
subdomain, the boundary integral operators will just be indexed with their subdomain
number, e.g. the single layer potential with wave number ki for the domain i will just
be donated by Vi.

7.2 Dirichlet domain decomposition methods

In this section we derive the variational formulation of a domain decomposition ap-
proach starting from a global boundary value problem. In principle different bound-
ary conditions are possible, for example Dirichlet, Neumann, Robin or mixed bound-
ary conditions. For simplicity and to reduce technical efforts we will restrict ourselves
to Neumann boundary conditions. Parts of the upcoming theory are already pub-
lished in [129].

As a model problem we consider the Neumann boundary value problem

Find U ∈ H1(Ω) such that

−∆U − k2(x)U = 0 in Ω,

γ1U = p on Γ.
(7.1)

We will refer to this problem as the global problem. Let us assume that this problem
is uniquely solvable, although we have seen that unique solvability will not hold for
all wave numbers k.

The global problem (7.1) can be described by local subproblems which are coupled
by interface conditions. These local problems are given by

Find U ∈ H1(Ω) such that

−∆Ui − k2(x)Ui = 0 in Ωi,

γ1,iUi + γ1,jUj = 0 on Γij ,

γ1,iUi = p on Γ ∩ Γi.

(7.2)

with Ui = U|Ωi
.

A rigorous deduction of the equivalence of (7.2) and (7.1) in the weak sense can be
found in [117].

By enforcing the continuity of the Dirichlet traces by an additional equation we don’t
have to find one global function U ∈ H1(Ω) instead we are now searching for local
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functions Ui ∈ H1(Ωi) for i = 1, . . . , p, which fulfill transmission conditions. This
leads to

-0.6cm-

0.6cm

Find Ui ∈ H1(Ωi) for i = 1, . . . , p such that

−∆Ui − k2(x)Ui = 0 in Ωi,

γ0Ui − γ0Uj = 0 on Γij ,

γ1,iUi + γ1,jUj = 0 on Γij ,

γ1,iUi = p on Γ ∩ Γi.

At this point we assume that k2i is not a Dirichlet eigenvalue of the subdomain Ωi.
We do not want to force the differential equation in the domain explicitly, hence we
introduce the local Steklov–Poincaré operators

Si = Di + (
1

2
I +K⊥

i )V
−1
i (

1

2
I +Ki),

see Section 5.4, to get rid of the partial differential equation in the domain. If we
substitute the Neumann trace γ1Ui by Siγ0Ui we can implicitly enforce that the
partial differential equation is fulfilled in the subdomains. It remains to find local
Dirichlet traces ui = γ0Ui ∈ H1/2(Γi) such that

ui − uj = 0 on Γij,

Siui + Sjuj = 0 on Γij,

Siui = p on Γ ∩ Γi.

(7.3)

The coupled transmission problem (7.3) is uniquely solvable if (7.1) is uniquely solv-
able and if all local Steklov–Poincaré operators Si are well defined.

By enforcing the continuity of the Dirichlet traces in a strong way we end up with

Find u = γ0U ∈ H1/2(ΓS) such that

Siu|Γi
+ Sju|Γj

= 0 on Γij, (7.4)

Siu|Γi
= p on Γ ∩ Γi.

The variational formulation of the operator equation (7.4) is

Find u ∈ H1/2(ΓS) such that

p∑

i=1

∫

Γi

Siu(x)v(x) dsx =

∫

Γ

p(x)v(x) dsx (7.5)

for all v ∈ H1/2(ΓS).
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Since all local Steklov–Poincaré operators Si are well defined, when assuming that k2i
is not a Dirichlet eigen wave number related to Ωi, and satisfy a G̊arding inequality,
see Theorem 5.22, the sum of all local operators also fulfills such an inequality, i.e.
there exists a compact sesquilinear form C(·, ·) such that for all u ∈ H1/2(ΓS)

Re

(
p∑

i=1

〈Siu, u〉Γ + C(u, u)

)
≥ c1 ·

p∑

i=1

‖u‖2H1/2(Γi)
≥ c2 · ‖u‖2H1/2(ΓS)

holds.

The sesquilinear form as considered in the variational formulation (7.5) is injective
when assuming that the global boundary value problem (7.1) has a unique solution.
Hence, we can ensure stability and related error estimates for a Galerkin discretization
of (7.5) when using a mesh with a sufficient small mesh size h. But since we will
use a tearing and interconnecting approach for an iterative solution of the resulting
linear system, we need to consider the local Steklov–Poincaré operators for their
invertibility which is violated if k2i is a Neumann eigen wave number of Ωi. In this
case we have to modify the interface conditions.

7.3 Robin interface conditions

To achieve a uniquely solvable boundary value problem we will use an idea as given by
Farhat and Roux, see [67]. Instead of Neumann boundary conditions we use modified
Robin interface conditions. As proven in Chapter 5, these modified Robin boundary
value problems always posses a unique solution. Let us assume that appropriate
Robin operators are given per interface, i.e. on the interface Γij we have the Robin
operator Rij.

Let us define
(Riu|Γi

)(x) := (Riju|Γij
)(x) for x ∈ Γij (7.6)

and

ηi(x) :=





ηij for x ∈ Γij , i < j,

−ηij for x ∈ Γij , i > j,

0 for x ∈ Γi ∩ Γ .

(7.7)

In the case of a wave number ki /∈ R+ we define ηi(·) ≡ 0, otherwise we assume
ηi(·) 6≡ 0 and that ηi does not change its sign on Γi. This can be guaranteed ei-
ther when considering a checker board domain decomposition [65], or when enforcing
Robin type boundary conditions only on a part of the local boundary Γi, i.e. set-
ting ηij = 0 on some coupling boundaries Γij. The only assumption we have to
make is that each bounded scattering subdomain Ωi with k

2
i ∈ R+ has at least one

bounded scattering neighbour, then the Robin interfaces can be chosen such that all
subproblems are uniquely solvable. Note that only bounded scattering domains rely
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Algorithm 1 Algorithm to define the Robin interfaces
Require: All domains Ωi are white
for i = 1 to p do
if Ωi has no black neighbour then
color Ωi black.

end if
end for
for i = 2 to p do
for j = 1 to i− 1 do
if (Ωi=white AND Ωj=black) OR (Ωi=black AND Ωj=white) then
set Γij to Robin interface.

end if
end for

end for

on a Robin boundary condition to be uniquely solvable, for other domains Robin
boundary conditions may not lead to uniquely solvable problems. A possible algo-
rithm describing how to chose the Robin interface conditions is given by Algorithm
1. There we assume that all domains are bounded scattering domains, if this is not
the case one has to apply this algorithm to all groups of connected scattering do-
mains. In the white domains we set ηi ≥ 0 and in the black domains ηj ≤ 0. If we
have an isolated bounded scattering domain we can not ensure unique solvability for
the boundary value problem considered in this subdomain. A possible solution is to
divide this scattering subdomain into two scattering subdomains.

Instead of (7.4), we will use the obviously equivalent formulation:

Find γ0U ∈ H1/2(ΓS) such that

(Si + iηiRij)γ0U|Γi
+ (Sj + iηjRij)γ0U|Γj

= 0 on Γij , (7.8)

Siγ0U|Γi
= p on ΓN ∩ Γi.

Since this is in fact the same system as before, it is of course also uniquely solvable.
Differences to the original formulation appear only if applying the tearing and in-
terconnecting approach, i.e. the local problems are changed even though the global
problem remains unchanged.

Remark 7.2. In this thesis we consider the Robin interface conditions only to ensure
uniqueness of the local problems. But they can also be used to improve the spectral
condition number of the resulting linear system, see, for example, [72].

Finally, we focus on the Dirichlet eigenvalues. Since the local Steklov–Poincaré Si

operator is not well defined for Dirichlet eigen wave numbers, we exchange the ap-



100 7 Domain decomposition methods for acoustic scattering

plication of the local Steklov–Poincaré operator by

(Si + iηiRi)γ0U|Γi
= (Di + iηRi + (

1

2
I +K⊥

i )V
−1
i (

1

2
I +Ki))γ0U|Γi

= (Di + iηRi)γ0U|Γi
+ (

1

2
I +K⊥

i )ti

where ti ∈ H−1/2(Γi) is a solution the boundary integral equation

Viti = (
1

2
I +Ki)γ0U|Γi

.

This translates (7.8) to

Find u ∈ H1/2(ΓS) and ti ∈ H−1/2(Γi) for i = 1, . . . , p such that

(Di + iηiRi)u|Γi
+ (

1

2
I +K⊥

i )ti

+(Dj + iηjRj)u|Γj
+ (

1

2
I +K⊥

j )tj = 0 on Γij ,

Diu|Γi
+ (

1

2
I +K⊥

i )ti = p on Γ ∩ Γi,

−(
1

2
+Ki)u|Γi

+ Viti = 0 on Γi.

The related variational formulation reads:

Find u ∈ H1/2(ΓS) and ti ∈ H−1/2(Γi) for i = 1, . . . , p such that

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

+ 〈iηiRiu|Γi
, v|Γi

〉Γi

]
=

∫

Γ

p(x)v(x)dsx

(7.9)

for all v ∈ H1/2(Γ) and

〈Viti, τi〉Γi
− 〈(1

2
I +Ki)u|Γi

, τi〉Γi
= 0 (7.10)

for all τi ∈ H−1/2(Γi), i = 1, . . . , p.

Theorem 7.3. The coupled variational problem (7.9) and (7.10) admits a unique
solution u ∈ H1/2(ΓS). In particular, the associated sesquilinear form is coercive.
Moreover, if the Neumann boundary value problem (7.1) is uniquely solvable, the
associated sesquilinear form is also injective.
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Proof. Coercivity follows from the coercivity of the local operators, i.e.

Re

(
p∑

i=1

〈(
Di

1
2
I +K⊥

i

−(1
2
I +Ki) Vi

)(
u|Γi

ti

)
,

(
u|Γi

ti

)〉

Γi

+ C((u, t), (u, t))

)

≥ c

(
‖u‖2H1/2(ΓS)

+

p∑

i=1

‖ti‖2H−1/2(Γi)

)

with t = (t1, . . . , tp)
⊤ and a compact sesquilinear form C. It remains to prove injec-

tivity. Let u ∈ H1/2(ΓS) and ti ∈ H−1/2(Γi) for i = 1, . . . , p be any solution of the
homogeneous system

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

+ 〈iηiRiu|Γi
, v|Γi

〉Γi

]
= 0

for all v ∈ H1/2(ΓS) and

〈Viti, τi〉Γi
− 〈(1

2
I +Ki)u|Γi

, τi〉Γi
= 0

for all τi ∈ H−1/2(Γi), i = 1, . . . , p. With the definition of Ri and ηi we also have

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

]
= 0

for all v ∈ H1/2(ΓS). Let us define

φi(x) =

∫

Γi

U∗
i (x, y)ti(y)dsy −

∫

Γi

∂

∂ny
U∗
i (x, y)u|Γi

(y)dsy for x ∈ Ωi,

which satisfies

∆φi(x) + k2φi(x) = 0 for x ∈ Ωi,

and

∂

∂nx

φi(x) = (
1

2
I +K⊥

i )ti(x) + (Diu|Γi
)(x) for x ∈ Γi

as well as

φi(x) = (Viti)(x) +
1

2
u|Γi

(x)− (Kiu|Γi
)(x) = u|Γi

for x ∈ Γi.
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Hence we may consider φi = φ|Ωi
∈ H1(Ωi) as the restriction of a function φ ∈ H1(Ω).

By using Green’s first formula, we obtain

0 =

p∑

i=1

[
〈Diu|Γi

, V|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, V|Γi
〉Γi

]

=

p∑

i=1

∫

Γi

∂

∂ny
φi(x)V|Γi

(x)dsx

=

p∑

i=1

∫

Ωi

[
∇φi(x) ·∇V|Ωi

(x)dx− k2i φi(x)V|Ωi
(x)
]
dx

=

∫

Ω

[
∇φ(x) ·∇ V (x)− k2(x)φ(x)V (x)

]
dx

for all V ∈ H1(Ω). Since this is the weak formulation of the Neumann boundary
value problem

∆φ(x) + k2(x)φ(x) = 0 for x ∈ Ω,
∂

∂nx

φ(x) = 0 for x ∈ Γ,

φ(x) = 0 for x ∈ Ω follows. Recall that the Neumann boundary value problem
(7.1) was assumed to be uniquely solvable. From φi(x) = 0 for x ∈ Ωi we conclude
u|Γi

(x) = 0 for x ∈ Γi as well as ni ·∇x φi(x) = 0 for x ∈ Γi. Therefore we conclude

(
1

2
I +K⊥

i )ti(x) = 0, (Viti)(x) = 0 for x ∈ Γi.

If k2i is not a Dirichlet eigenvalue, then the single layer potential Vi is injective and
ti = 0 follows. On the other hand, if λ = k2i is a Dirichlet eigenvalue, we also have

(
1

2
I −K⊥

i )ti(x) = 0 for x ∈ Γi.

Again, ti(x) = 0 follows.

7.4 The exterior Neumann boundary value problem

The Neumann boundary value problem in an unbounded domain Ωc is given by:

Find U ∈ H1(Ω) such that

−∆U − k2(x)U = 0 in Ωc,

γc1U + p = 0 on Γ,

lim
r→∞

∫

Br

|γ1U(x)− ikγ0U(x)|2 dsx = 0.
(7.11)
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Note that this problem always admits a unique solution. For a domain decomposition
approach we assume that Ωc is divided into p+ 1 subdomains such that

Ω =

p⋃

i=0

Ωi, Ωi ∩ Ωj = ∅, for i 6= j.

We further assume that Ω0 is the complement of a bounded, simply connected Lip-
schitz domain. All other subdomains are assumed to fulfill the assumptions of Section
7.1. Also the notations of Section 7.1 can be applied directly. To transfer the results of
the interior boundary value problem easily to the exterior boundary value problem we
define γ1,0 := −γc1,0 and S0 := −Sc

0. This enables us to state the localized formulation
of the Neumann boundary value problem (7.11) in the compact form:

Find U ∈ H1(Ω) such that

−∆Ui − k2(x)Ui = 0 in Ωi,

γ1,iUi + γ1,jUi = 0 on Γij,

γ1,iUi = p on Γ ∩ Γi,

lim
r→∞

∫

Br

|γ1U0(x)− ikγ0U0(x)|2 dsx → 0

(7.12)

with Ui = U|Ωi
.

Under the assumption that k2i is not an eigen wave number of the domain Ωi, the
formulation (7.12) can, as in the case of the interior boundary value problem, be
reformulated to

Find γ0U ∈ H1/2(ΓS) such that

(Si + iηiRij)γ0U|Γi
+ (Sj + iηjRij)γ0U|Γj

= 0 on Γij , (7.13)

Siγ0U|Γi
= p on ΓN ∩ Γi.

Note that we assume η0 ≡ 0, because the exterior Neumann boundary value problem
already admits a unique solution, cf. Section 7.3. To get rid of possible eigen wave
numbers we replace for i > 0 the application of the Dirichlet–to–Robin map Si+iηiRi

by

(Si + iηiRi)γ0U|Γi
= (Di + iηRi + (

1

2
I +K⊥

i )V
−1
i (

1

2
I +Ki))γ0U|Γi

= (Di + iηRi)γ0U|Γi
+ (

1

2
I +K⊥

i )ti

where ti ∈ H−1/2(Γi) is a solution the boundary integral equation

Viti = (
1

2
I +Ki)γ0U|Γi

.
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The application of the Steklov–Poincaré operator S0 with respect to the unbounded
domain Ω0 is replaced by

S0γ0U|Γ0 = (D0 + (
1

2
I −K⊥

0 )V
−1
0 (

1

2
I −K0))γ0U|Γ0

= D0γ0U|Γ0 + (
1

2
I −K⊥

0 )t0 −D0s

where t0 ∈ H−1/2(Γi) and s ∈ H1/2(Γ0) are solutions of the boundary integral equa-
tion system

V0t0 + (
1

2
I +K0)s = (−1

2
I +K0)γ0U|Γ0,

−(
1

2
I +K⊥

0 )t0 + (D0 − iD̃0)s = D0γ0U|Γ0 ,

see Section 5.7. Inserting these replacements of the Dirichlet–to–Robin map in for-
mulation (7.13) leads to:

Find u ∈ H1/2(ΓS), ti ∈ H−1/2(Γi) for i = 1, . . . , p and s ∈ H1/2(Γ0) such that

D0u|Γ0 + (
1

2
I −K⊥

0 )t0 −D0s+Dju|Γj
+ (

1

2
I +K⊥

j )tj = 0 on Γ0j ,

(Di + iηiRi)u|Γi
+ (

1

2
I +K⊥

i )ti

+(Dj + iηjRj)u|Γj
+ (

1

2
I +K⊥

j )tj = 0 on Γij ,

D0u|Γ0 + (
1

2
I −K⊥

0 )t0 −D0s = p on Γ ∩ Γ0,

Diu|Γi
+ (

1

2
I +K⊥

i )ti = p on Γ ∩ Γi,

(
1

2
I −K0)u|Γi

+ V0t0 + (
1

2
I +K0) = 0 on Γ0,

−(
1

2
I +Ki)u|Γi

+ Viti = 0 on Γi,

−D0u|Γ0 − (
1

2
I +K⊥

0 )t0 + (D0 − iD̃0)s = 0 on Γ0.

The resulting variational formulation is then given by:

Find u ∈ H1/2(ΓS), ti ∈ H−1/2(Γi) for i = 0, . . . , p and s ∈ H1/2(Γ0) such that

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

+ 〈iηiRiu|Γi
, v|Γi

〉Γi

]

+ 〈D0u|Γ0, v|Γ0〉Γ0 + 〈(−1

2
I +K0)t0, v|Γ0〉 − 〈D0s, v|Γ0〉Γ0 =

∫

Γ

p(x)v(x)dsx

(7.14)
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is satisfied for all v ∈ H1/2(ΓS),

〈Viti, τi〉Γi
− 〈(1

2
I +Ki)u|Γi

, τi〉Γi
= 0 (7.15)

for all τi ∈ H−1/2(Γi), i = 1, . . . , p,

〈V0t0, τ0〉Γ0 + 〈(1
2
I −K0)u|Γ0, τ0〉Γ0 + 〈(1

2
I +K0)s, τ0〉Γ0 = 0 (7.16)

for all τ0 ∈ H−1/2(Γ0) and

〈(−1

2
I −K⊥

0 )t0, φ〉Γ0 − 〈D0u|Γ0
, φ〉Γ0 + 〈(−iD̃ +D0)s, φ〉Γ0 = 0 (7.17)

for all φ ∈ H1/2(Γ0).

Theorem 7.4. The variational formulation (7.14)–(7.17) admits a unique solution
u ∈ H1/2(ΓS). In particular, the associated sesquilinear form is coercive and injective.

Proof. An associated sesquilinear form of (7.14)–(7.17) is given by

a((u, t, s), (λ, τ, µ)) := 〈D0u|Γ0, λ|Γ0〉Γ0 + 〈(−1

2
I +K⊥

0 )t0, λ|Γ0〉Γ0 − 〈D0s, λ|Γ0〉Γ0

+ 〈(1
2
I −K0)u|Γ0, τ0〉Γ0 + 〈V0t0, τ0〉Γ0 + 〈(1

2
I +K0)s, τ0〉Γ0

− 〈D0u|Γ0
, µ〉Γ0 − 〈(1

2
I +K⊥

0 )t0, µ〉Γ0 + 〈(D0 − iD̃0)s, µ〉Γ0

+

p∑

i=1

(
〈Diu|Γi

, λ|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, λ|Γi
〉Γi

− 〈(1
2
I +Ki)u|Γi

, τi〉Γi
+ 〈Viti, τi〉Γi

)
.

Note that the Robin boundary integral operators cancel each other. To prove a
G̊arding inequality we exchange all appearing hypersingular operators Di by the
local regularized Laplace hypersingular operators D̃i, in the case of all other boundary
integral operators we exchange the wave numbers ki by 0, e.g. Vi, which depends
on the local wave number ki, is replaced by the Laplace single layer potential Ṽi.
Since all of these changes are compact perturbations, see Corollary 5.12, they do not
influence the proof of a G̊arding inequality. The associated shifted sesquilinear form
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is then given by

ã((u, t, s), (λ, τ , µ)) := 〈D̃0u|Γ0, λ|Γ0〉Γ0 + 〈(−1

2
I + K̃⊥

0 )t0, λ|Γ0〉Γ0 − 〈D̃0s, λ|Γ0〉Γ0

+ 〈(1
2
I − K̃0)u|Γ0, τ0〉Γ0 + 〈Ṽ0t0, τ0〉Γ0 + 〈(1

2
I + K̃0)s, τ0〉Γ0

− 〈D̃0u|Γ0
, µ〉Γ0 − 〈(1

2
I + K̃⊥

0 )t0, µ〉Γ0 + 〈(D̃0 − iD̃0)s, µ〉Γ0

+

p∑

i=1

(
〈D̃iu|Γi

, λ|Γi
〉Γi

+ 〈(1
2
I + K̃⊥

i )ti, λ|Γi
〉Γi

− 〈(1
2
I + K̃i)u|Γi

, τi〉Γi
+ 〈Ṽiti, τi〉Γi

)
.

By identifying test and trial functions we obtain

ã((u, t, s), (u, t, s)) = 〈D̃0(u|Γ0
− s), (u|Γ0

− s)〉Γ0 + 〈Ṽ0t0, t0〉Γ0 − i〈D̃0s, s〉Γ0

+

p∑

i=1

(
〈D̃iu|Γi

, u|Γi
〉Γi

+ 〈Ṽiti, ti〉Γi

)
.

Finally, this gives us the deserved inequality

|ã((u, t, s), (u, t, s))| ≥ c1

∣∣∣
∥∥u|Γ0

∥∥2
H1/2(Γ0)

+ i ‖s‖2H1/2(Γ0)

∣∣∣

+ c2

p∑

i=1

∥∥u|Γi

∥∥2
H1/2(Γi)

+ c3

p∑

i=0

‖ti‖2H−1/2(Γi)

≥ c1

2
√
2

(∥∥u|Γ0

∥∥2
H1/2(Γ0)

+ ‖s‖2H1/2(Γ0)

)

+ c2

p∑

i=1

∥∥u|Γi

∥∥2
H1/2(Γi)

+ c3

p∑

i=0

‖ti‖2H−1/2(Γi)

≥ c

(
‖u‖2H1/2(ΓS)

+

p∑

i=0

‖ti‖2H−1/2(Γi)
+ ‖s‖2H1/2(Γ0)

)

with positive constants c, c1, c2, c3. It remains to prove injectivity. Let u ∈ H1/2(ΓS)
and ti ∈ H−1/2 for i = 1, . . . , p. For s ∈ H1/2(Γ0) we get s ≡ 0, since s 6≡ 0 would be
a contradiction to the two local equations (7.16) and (7.17), see Remark 5.33. The

variational formulation for the homogeneous system is to find u ∈ H
−1/2
⊥ (curlΓ,ΓS)

and ti ∈ H
−1/2
‖ (divΓ,Γi) such that

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

+ 〈iηRiu|Γi
, v|Γi

〉Γi

]

+ 〈D0u|Γi
, v|Γi

〉Γ0 + 〈(−1

2
I +K⊥

0 )t0, v|Γ0〉Γ0 = 0

(7.18)
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for all v ∈ H1/2(ΓS),

〈Viti, τi〉Γi
− 〈(1

2
I +Ki)u|Γi

, τi〉Γi
= 0

for all τi ∈ H−1/2(Γi), i = 1, . . . , p.

〈V0t0, τ0〉Γ0 + 〈(1
2
I −K0)u|Γ0

, τ0〉Γ0 = 0

for all τ0 ∈ H−1/2(Γ0) and

〈(−1

2
I −K⊥

0 )t0, ψ〉Γ0 − 〈D0u|Γ0
, ψ〉Γ0 = 0 (7.19)

for all ψ ∈ H1/2(Γ0). By using the definition of Ri and ηi we can rewrite (7.18) as

p∑

i=1

[
〈Diu|Γi

, v|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti, v|Γi
〉Γi

]

+ 〈D0u|Γi
, v|Γi

〉Γ0 + 〈(−1

2
I +K⊥

0 )t0, v|Γ0〉Γ0 = 0

for all v ∈ H1/2(ΓS). By defining

φi(x) =

∫

Γi

U∗
i (x, y)ti(y)dsy −

∫

Γi

∂

∂ny
U∗
i (x, y)u|Γi

(y)dsy for x ∈ Ωi,

for i > 0 and

φ0(x) = −
∫

Γ0

U∗
0 (x, y)t0(y)dsy +

∫

Γ0

∂

∂ny
U∗
0 (x, y)u|Γ0

(y)dsy for x ∈ Ω0

we once again gain a function φ which is a solution of the homogeneous Neumann
problem and fulfills φi(x) = u|Γi

= 0, see the proof of Theorem 7.3. Showing ti = 0
for i > 0 can be done as in the proof of Theorem 7.3. For the unbounded domain we
get instead

(
1

2
I −K⊥

0 )t0 = 0 on x ∈ Γ0.

In combination with equation (7.19), this again leads to t0 = 0.

7.5 The transmission problem

Transmission problems are very common problems of practical interest. For the
Helmholtz transmission problem there is a lot of literature available, see, e.g., [52,118].
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A coupled finite and boundary element approach seems to be natural, since non
constant coefficients can be treated in the interior and the exterior can be treated
easily by a boundary element method. One incarnation of such an approach, which
guarantees uniqueness is given in [86]. An approach using boundary elements also
for the interior, is for example, given in [93]. This approach has several similarities to
the one we present here. The major differences are that a mortar method is used to
couple the different fields, that only the case of two subdomains is treated and that
it is not stable for artificial exterior eigenvalues due to a naive boundary integral
formulation. A stable approach for the transmission problem, which can handle
multiple interior subdomains is given in [85]. So far, in this work we have only
treated boundary value problems, but by reformulating the transmission problem we
will see that within this framework this kind of problem can also be dealt with. Since
we use a boundary integral approach we assume that in the interior we also have to
solve a homogeneous Helmholtz equation. We further assume due to simplicity, that
only one interior domain with a constant wave number k1 is present. The extension
to several interior domains is straightforward. So the transmission problem is given
by

−∆U − k21U = 0 in Ω1, (7.20)

−∆Us − k20U
s = 0 in Ω0, (7.21)

γc0U
s − γ0U = g on Γ, (7.22)

γc1U
s + γ1U = p on Γ, (7.23)

lim
r→∞

r(γ1U
s − ik0γ0U

s) → 0 uniformly. (7.24)

Hereby is Us the scattered field, and U = Us + U i is the total field, with U i as
the incoming field. The Cauchy data are induced by the incoming field, in other
words −γc0U i = g ∈ H1/2(Γ) and −γc1U i = p ∈ H−1/2(Γ). In our approach the
primal unknown will be the Dirichlet trace of the total field, i.e. γ0U . To keep the
formulations simple let us assume that both, the interior Steklov–Poincaré operator
S1 and the exterior Steklov–Poincaré operator S0 are well defined, i.e. k20 and k21
are not Dirichlet eigen wave numbers. For the general case we can use the system
formulation (5.28) as introduced for the boundary value problems. Hence, equation
(7.23) can be reformulated as

S0γ0U
s + S1γ0U = p

and since Us = U − U i we can rewrite this as

S0γ0U + S1γ0U = p + S0g. (7.25)

By solving equation (7.25) we get the Dirichlet datum γ0U , which gives us also

f̃ := γc0U
s. By solving the exterior Dirichlet boundary value problem

−∆Us − k20U
s = 0 in Ω0, (7.26)

γc0U
s = f̃ on Γ, (7.27)

lim
r→∞

r(γ1U
s − ikγ0U

s) → 0 uniformly. (7.28)
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we obtain the scattered field Us. This can be used to compute γ1U , see (7.23), which
on the other hand can be used, together with γ0U , to compute U in the interior via
the representation formula (5.9). The proofs of unique solvability of the continuous
and of the discrete formulation can be done in an analogous way as it was done for the
interior and exterior boundary value problems. Note that the transmission problem
itself has a unique solution in Hloc(∆,R

3) if k0, k1 ∈ R+, see for example [121].

7.6 Boundary element discretizations

For the Galerkin discretization of the coupled variational formulation (7.9) and (7.10)
let

Wh = span{ϕk}MS
k=1 ⊂ H1/2(ΓS)

be a boundary element space on the skeleton, e.g., of piecewise linear continuous basis
functions ϕk, which are defined with respect to a quasi–uniform boundary mesh with
mesh size hS. We also define local restrictions of Wh onto Γi, in particular

Wi,h = Wh|Γi
= span{ϕi

k}Mi
k=1 ⊂ H1/2(Γi).

By using the isomorphisms

vi ∈ R
Mi ↔ vi,h =

Mi∑

k=1

vi,kϕ
i
k ∈ Wi,h, v ∈ R

MS ↔ vh =

MS∑

k=1

vkϕk ∈ Wh

there exist Boolian connectivity matrices Ai ∈ RMi×MS mapping some v ∈ RMS of
global nodal values onto the vector vi = Aiv ∈ RMi of the local subdomain boundary
nodal values. In addition, let

Zi,h = span{ψi
k}Ni

k=1 ⊂ H−1/2(Γi)

be another local boundary element space, e.g., of piecewise constant basis functions
ψi
k, which are defined with respect to a local quasi–uniform boundary mesh with

average mesh size hi. The Galerkin boundary element discretization of the variational
formulation (7.9) and (7.10) now reads:

Find uh ∈ Wh and ti,h ∈ Zi,h such that

p∑

i=1

[
〈Diuh|Γi

, vh|Γi
〉Γi

+ 〈(1
2
I +K⊥

i )ti,h, vh|Γi
〉Γi

+ 〈iηRiuh|Γi
, vh|Γi

〉Γi

]

=

∫

Γ

p(x)vh(x)dsx

(7.29)
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for all vh ∈ Wh and

〈Viti,h, τi,h〉Γi
− 〈(1

2
I +Ki)uh|Γi

, τi,h〉Γi
= 0 (7.30)

for all τi,h ∈ Zi,h, i = 1, . . . , p.

Since the sesquilinear form of the coupled variational problem (7.9) and (7.10) is
coercive and injective, see Theorem 7.3, the stability of the Galerkin variational
formulation (7.29) and (7.30) follows for sufficient small mesh widths hi and hS, see
Lemma 3.12. In particular, there holds the quasi–optimal error estimate

‖u− uh‖2H1/2(ΓS)
+

p∑

i=1

‖ti − ti,h‖2H−1/2(Γi)

≤ c
{

inf
vh∈Wh

‖u− vh‖2H1/2(ΓS)
+

p∑

i=1

inf
τi,h∈Zi,h

‖ti − τi,h‖2H−1/2(Γi)

}
.

When assuming optimal regularity γ0U = u ∈ H2
pw(ΓS), i.e. U ∈ H5/2(Ω) and when

using the Aubin–Nitsche trick, see, e.g. [125], we finally obtain the error estimate

‖u− uh‖L2(ΓS)
≤ c(u, ti)h

2
S +

p∑

i=1

c(ti)h
2
i . (7.31)

Remark 7.5. For a Galerkin discretization of the coupled variational formulation
(7.14)–(7.17) to solve boundary value problems in unbounded domains Ωc we can use
the same trial and test spaces. Then we can ensure the same error estimates for the
approximate solution.

7.7 Tearing and interconnecting methods

In this section we introduce the classical tearing and interconnecting approach, as
originally introduced by Farhat and Roux [67, 68] using local finite element solvers.
This classical approach is nowadays called one–level–FETI method, since other FETI
methods like dual–primal FETI (FETI–DP) [64] have appeared. These methods are
generally used for an efficient numerical solution of partial differential equations,
which induce an elliptic or semi–elliptic symmetric sesquilinear form. Since the de-
duction of the method is usually based on a reformulation as a minimization problem,
it was often thought that the method is only applicable in these cases, see [101, p.
28]. De La Bourdonnaye, Farhat, Macedo and Tezaur showed in [53, 66] that this
method is also applicable for the Helmholtz equation, by using a saddle point formu-
lation instead of a minimization problem. This method is called FETI–Helmholtz or
in short FETI–H. The partial differential equation still has to be self–adjoint, oth-
erwise the domain decomposition approach can not to be reformulated as a saddle
point problem. In our approach we will only use algebraic arguments to deduce the
tearing and interconnecting method. This enables us, in principle, to use the method
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for arbitrary elliptic partial differential equations of second order. Furthermore we
will use a boundary element method instead of a finite element method to solve the
local problems. Tearing and interconnecting methods based on boundary elements
were introduced by Langer and Steinbach in [95] and are called BETI methods. The
same authors later introduced the FETI/BETI method [96], which couples finite and
boundary element approaches.

Ω1Ω2

Ω3 Ω4

Ω5

Ω1Ω2

Ω3 Ω4

Ω5

Figure 7.1: In the left figure we see the global degrees of freedom, which are split
on the right figure to local degrees of freedom. To ensure continuity of
the global solution, these local degrees of freedom are again connected by
Lagrangian multipliers (dotted lines).

For simplicity we start by assuming that Ω is a bounded domain. The Galerkin
variational formulation (7.29) and (7.30) is equivalent to a linear system of algebraic
equations



V1,h −K̃1,hAi

. . .
...

Vp,h −K̃p,hAp

A⊤
1 K̃

⊤
1,h . . . A⊤

p K̃
⊤
p,h

p∑
i=1

A⊤
i [Di,h + iηiRi,h]Ai







t1
...
tp
u


 =




0
...
0

p∑
i=1

A⊤
i pi




(7.32)
where the block matrices are defined by

Vi,h[ℓ, k] = 〈Viψi
k, ψ

i
ℓ〉Γi

,

K̃i,h[ℓ, n] = 〈(1
2
I +Ki)ϕ

i
n, ψ

i
ℓ〉Γi

,

K̃⊤
i,h[m, k] = 〈(1

2
I +K⊥

i )ψ
i
k, ϕ

i
m〉Γi

,

Di,h[m,n] = 〈Diϕ
i
n, ϕ

i
m〉Γi

,

Ri,h[m,n] = 〈Riϕ
i
n, ϕ

i
m〉Γi
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for k, ℓ = 1, . . . , Ni, m,n = 1, . . . ,Mi and i = 1, . . . , p. In addition,

p
i
[m] = 〈p, ϕi

m〉Γi∩Γ for m = 1, . . . ,Mi.

To tear the global vector u ∈ RMS we introduce the local unknowns ui = Aiu ∈ RMi.
To ensure the global continuity, we must additionally require the interconnecting
condition in the form

p∑

i=1

Biui = 0 . (7.33)

In particular for xr ∈ Γij belonging to two subdomains, the interconnecting condition
(7.33) states the continuity condition

ui,h(xr) = uj,h(xr).

For i < j let ri and rj denote the local indices of the global index r. Then there
exists an index q(r) so that we can define

Bi[q(r), ri] = 1, Bj [q(r), rj] = −1, (7.34)

to end up with

ui,ri − uj,rj = 0,

where ui,ri is ri–th entry of the local vector ui. Note that all entries of the matrices Bi

which are not explicitly set to 1 or−1 are assumed to be zero. The function q(·) will be
discussed later. For degrees of freedom which belong to more than two subdomains,
we have several possibilities to enforce continuity. The two most common approaches
are fully redundant Lagrange multipliers and non redundant Lagrange multipliers.
In Figure 7.2 we can see the two different cases. We will use the non redundant

Ω1 Ω2

Ω3Ω4

Ω1 Ω2

Ω3Ω4

Figure 7.2: Non–redundant and fully redundant Lagrange multipliers.

multipliers. If a global degree of freedom with index r belongs to l > 2 subdomains
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Ωi, which have the subdomain numbers i1, . . . , il with im < in for m < n, we define
rin as the local index of the global index r in the domain Ωin . Further we set

Bi1[q(r) + n− 2, ri1] = 1, for n = 2, . . . , l,

Bin[q(r) + n− 2, rin] = −1, for n = 2, . . . , l.
(7.35)

The function q(·) is recursively defined by

q(1) := 1, q(r) := q(r − 1) + d(r − 1)− 1,

where d(r) is the number of subdomains adjacent to the global degree of freedom
with index r.

The global equation in (7.32) can be written as

p∑

i=1

A⊤
i

[
(Di,h + iηiRi,h)ui + K̃⊤

i,hti − p
i

]
= 0. (7.36)

Again we first discuss the case with only two adjacent subdomains. For xr ∈ Γij with
local indices ri and rj we can rewrite each line of this equation as

[
(Di,h + iηiRi,h)ui + K̃⊤

i,hti − p
i

]

ri
+
[
(Dj,h + iηjRj,h)uj + K̃⊤

j,htj − p
j

]

rj
= 0.

Hence, for i < j we may introduce a discrete Lagrange multiplier λq(r) to define

[
(Di,h + iηiRi,h)ui + K̃⊤

i,hti − p
i

]
ri
= −λq(r),

[
(Dj,h + iηjRj,h)uj + K̃⊤

j,htj − p
j

]
rj
= λq(r).

If xr belongs to l > 2 subdomains (again with subdomain numbers in, n = 1, . . . , l
and with local indices rin), then we can rewrite each line of the global equation (7.36)
as

l∑

n=1

[
(Din,h + iηinRin,h)uin + K̃⊤

in,htin − p
in

]
rin

= 0.

By defining
[
(Din,h + iηinRin,h)uin + K̃⊤

in,htin − p
in

]

rin

= λq(r)+n−2, for n = 2, .., l

[
(Di1,h + iηi1Ri1,h)ui1 + K̃⊤

i1,h
ti1 − p

i1

]

ri1

= −
l∑

n=2

λq(r)+n−2,

and by using (7.34) and (7.35) we end up with the local systems

(Di,h + iηiRi,h)ui + K̃⊤
i,hti − p

i
= B⊤

i λ for i = 1, . . . , p.
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Hence, the linear system (7.32) is equivalent to




D1,h + iηR1,h K̃⊤
1,h −B⊤

1

−K̃1,h V1,h
. . .

...

Dp,h + iηRp,h K̃⊤
p,h −B⊤

p

−K̃p,h Vp,h
B1 . . . Bp







u1
t1
...
up
tp
λ







p
1

0
...
p
p

0
0




. (7.37)

Remark 7.6. Within this thesis we always consider a global Neumann boundary
value problem, since this is the technical easiest choice. However, Dirichlet or mixed
problems can also be solved by using this approach. For the continuous formulation
this is obvious, by using the standard extension approach for the given Dirichlet data
and by restricting the ansatz spaces to the Neumann boundary. How to deal with
Dirichlet boundary conditions in the tearing and interconnecting is not as obvious.
Two similar methods, independently appeared at the same time. These methods deal
with Dirichlet boundary conditions in such a way, that the general tearing and inter-
connecting approach, in the way we presented it, is nearly unaffected. These methods
are called all–floating BETI [111,112] and total–FETI [56]. The idea is to not enforce
the given Dirichlet data in a strong way, but rather to use Lagrangian multipliers in-
stead to ensure the Dirichlet condition. By using this approach the block diagonal
parts of the matrix in (7.37) are unaffected, only the right hand side and the matrices
Bi are modified.

Remark 7.7. Although in this thesis we only use a one–level tearing and intercon-
necting approach, it is also possible to use this algebraic deduction for dual–primal
tearing and interconnecting approaches.

Let us consider a local system in (7.37),

(
Di,h + iηiRi,h K̃⊤

i,h

−K̃i,h Vi,h

)(
ui
ti

)
=

(
p
i
+B⊤

i λ

0

)
, (7.38)

which corresponds to the Galerkin discretization of the boundary integral equations
(5.28). Since the associated sesquilinear form is coercive and injective, stability of
the local Galerkin scheme (7.38) follows for a sufficiently small mesh width hi < h0.
Because of this, the Schur complement system of (7.37),

p∑

i=1

(
Bi 0

)
(
Di,h + iηiRi,h K̃⊤

i,h

−K̃i,h Vi,h

)−1(
B⊤

i λ
0

)

= −
p∑

i=1

(
Bi 0

)
(
Di,h + iηiRi,h K̃⊤

i,h

−K̃i,h Vi,h

)−1(
p
i

0

)
,
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is well defined for hi < h0 and can be written as

Fhλ = d. (7.39)

Note that the linear system (7.39) corresponds to the standard dual system in tearing
and interconnecting domain decomposition methods.

Since we are using a boundary element approach, the discretization approach is the
same for an exterior boundary value problem in an unbounded domain Ωc. The only
difference lies in the additional local equation (7.17) and the additional auxiliary vari-
able s for the unbounded subdomain. Nevertheless, the tearing and interconnecting
approach is not influenced by these additional parts. The formulation (7.37) just
changes to



D0,h −1
2
M⊤

h +K⊤
0,h −D0,h −B⊤

0
1
2
Mh −K0,h V0,h

1
2
Mh +K0,h

−D0,h −1
2
M⊤

h −K⊤
0,h −iD̃0,h +D0,h

. . .
...

B0 · · ·







u0 + s
t0
s
...
λ




=




−p
0

0
0
...
0



.

Hence, the block for the unbounded subdomain Ω0 is a 3×3 block, all other subblocks
are still 2× 2 blocks as in (7.37). A column and row manipulation leads to




D0,h −1
2
M⊤

h +K⊤
0,h −B⊤

0
1
2
Mh −K0,h V0,h Mh

M⊤
h −iD̃0,h −B⊤

0
. . .

...
B0 B0 · · ·







u0
t0
s
...
λ




=




−p
0

0
−p

0
...
0



.

The corresponding Schur complement is then given by

(
B0 0 B0

)



D0,h −1

2
M⊤

h +K⊤
0,h

1
2
Mh −K0,h V0,h Mh

M⊤
h −iD̃0,h




−1


B⊤

i λ
0

B⊤
i λ





+

p∑

i=1

(
Bi 0

)
(
Di,h + iηiRi,h K̃⊤

i,h

−K̃i,h Vi,h

)−1(
B⊤

i λ
0

)

= −
(
B0 0 B0

)



D0,h −1
2
M⊤

h +K⊤
0,h

1
2
Mh −K0,h V0,h Mh

M⊤
h −iD̃0,h




−1

B⊤

i p0
0

B⊤
i p0




−
p∑

i=1

(
Bi 0

)
(
Di,h + iηiRi,h K̃⊤

i,h

−K̃i,h Vi,h

)−1(
p
i

0

)
,

and in short by

Fhλ = d.
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Note that for an implementation we prefer to eliminate the additional unknown s
in the system for the exterior problem and to use the equivalent regularized 2 × 2
system instead. For further details see Sections 5.7 and 5.8.

7.8 Preconditioning strategies

The preconditioning of domain decomposition methods is one of the major topics
in this field. For tearing and interconnecting approaches various results were ob-
tained. Mandel and Tezaur published the first convergence proof of the one–level
FETI method [100] for two–dimensional elliptic problems. Later, Klawonn and Wid-
lund extended these results to three–dimensional problems [91,92]. Similar results for
unbounded domains were established by Pechstein [115, 116]. Most of these results
provide a preconditioner CF such that

κ(CFF ) ≤ c

(
1 + log

(
H

h

))p

,

where H is a measure of the size of the subdomains Ωi and h describes the mesh
width within the local subdomains. However, all of these results rely on the (semi–
)ellipticity of the sesquilinear form corresponding to the partial differential equation.
In addition, most approaches utilize kernels of local operators, which are known in
advance, to construct the preconditioner. The Helmholtz equation does neither lead
to an elliptic sesquilinear form, nor possess the local operators in general a kernel.
Therefore, most of this established theory can not be used for the acoustic scattering
problem. However, Farhat, Macedo and Lesoinne presented a preconditioner for the
FETI–H method in [65]. But we do not know any analytical result for an estimate
of the condition number of the preconditioned system when using this approach. Be-
cause there is no natural coarse space which can be utilized to propagate information
between the subdomains, it is necessary to introduce an artificial coarse space.

Let rk be the k–th residual of the global problem within an iterative scheme, i.e.

rk = d− Fλk.

Now we modify the algorithm in such a way that the residual rk is orthogonal to a
given subspace which is represented by the columns of the matrix Q, e.g.

Q⊤rk = Q⊤(d− Fλk) = 0. (7.40)

This restriction is also a solution constraint, since the residual represents the jump
of the Dirichlet datum on the interface,

rk = d− Fλk =

p∑

i=1

Biu
k
i .
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To enforce the orthogonality, we first introduce a new iterate λ̃
k
via

λ̃
k
= λk + µk = λk +Qγk (7.41)

where γk is chosen in such a way that the orthogonality constraint holds (this is

possible ifQ⊤FQ is invertible). By inserting λ̃
k
in (7.40) we obtain the linear equation

system

Q⊤FQγk = Q⊤(d− Fλk).

By solving this system and inserting γk in (7.41) we get an alternative representation

of λ̃
k
,

λ̃
k
= Pλk + λ0,

with the projector

P = I −Q(Q⊤FQ)−1Q⊤F

and

λ0 = Q(Q⊤FQ)−1Q⊤d.

By inserting this representation of λ̃ = lim λ̃
k
in Fλ = d we obtain

FPλ+ Fλ0 = d.

If we multiply this equation with the transposed projector P⊤ we get

P⊤FPλ = P⊤d,

since P⊤Fλ0 = FPλ0 = 0. This is the projected system we have to solve. Since

P⊤FP = (I − FQ(Q⊤FQ)−1Q⊤)F (I −Q(Q⊤FQ)−1Q⊤F )

= F − FQ(Q⊤FQ)−1Q⊤F

= FP,

we can save one application of P and therefore one application of F in each iteration.

An important question is how to choose the subspace (the columns of Q) to which rk

should be orthogonal. As in the paper [65] we have chosen planar waves, which are
evaluated at a local level. More precisely we chose for every subdomain Ωj a set of
spatial directions and evaluate the planar wave (which has the wave number kj) in
this direction on every node of the subdomain. So the matrix Qj for the subdomain
Ωj is given by

Qj [·, l] = eikθ
⊤
l x(·) · χΓj

(x)
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for all directions θl and all subdomains Ωj , where χΓj
= 1 if x ∈ Γj and 0 otherwise.

The global matrix is finally constructed by

Q = [Q1 · · ·Qi · · ·Qp].

By using this local approach one speeds up the construction of Q⊤FQ, since only a
few local problems have to be solved for every direction (when computing FQ). Still
it is not ensured that Q⊤FQ is invertible at all. To guarantee the invertibility we
may have to eliminate certain columns of Q. In our case, this is realized during a LU
factorization of Q⊤FQ.

Another question is how to chose the directions θl. In our numerical examples we got
the best results, when we distributed the directions uniformly. We may achieve better
results by using a problem dependent choice. The optimal number of directions per
subdomain is also not obvious. More directions generally improve the convergence
rate, but increase the computational effort to construct the preconditioner. By using
too many directions, the matrix Q⊤FQ becomes numerically instable and a lot of
directions have to be deleted. In a very few numerical examples we got a better
iteration number when using fewer directions, but this happened only for rather
small problems. Numerical results for the FETI–H method using this preconditioning
approach can be found in [65, 132, 141]. These papers state that this preconditioner
is stable with respect to h,H and k, if the number of directions is chosen correctly.
Note that all of these statements are based on numerical observations and are not
proved in a rigorous way. The correct choice of directions per subdomain is also a
difficile problem. Interestingly, the method seems already to be relatively stable with
respect to h, when no preconditioner is used at all.

7.9 Numerical examples

In this section we give several numerical examples in order to test the presented
theory for the acoustic scattering. Some of these numerical examples have been
already published in [128]. In all the upcoming examples we use as Robin operator

R the regularized hyper singular operator D̃ which is discretized only on the internal
(with respect to an interface) degrees of freedom, for a more detailed discussion see
Section 5.5. In the first example we examine our algorithm on robustness with respect
to local eigen wave numbers. In the second example we investigate the behaviour of
the method for the case of multiple subdomains. Furthermore, in this example we
also study the effectiveness of the proposed preconditioner. Afterwards we apply the
method to different geometries, e.g. a sphere and a long bar. Thereafter we give an
example with jumping coefficients and test the condition of the system in this case,
i.e. we examine the iteration numbers. Finally, we give an example for an unbounded
domain Ωc.
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7.9.1 Two bricks

In this example we consider the Neumann
boundary value problem

−∆U − k2U = 0 for x ∈ Ω,

γ1U = p for x ∈ Γ.

Ω1 Ω2

Figure 7.3: Two bricks.

The domain Ω is given by (−1.0, 1.5) × (0.0, 1.0) × (0.0, 1.0), which is divided into
two subdomains by the yz–plane, see Figure 7.3. As an exact solution we use the
fundamental solution Û(x) with the singularity in x̂ = (2.0, 0.0, 1.5)⊤, i.e.

Û(x) =
eik|x−x̂|

|x− x̂| .

The boundary element discretization of the coupled variational formulation (7.9)
and (7.10) is done with respect to a globally uniform boundary mesh of Ni plane
triangular elements with Mi nodes per subdomain and by using piecewise constant
basis functions ψi

m and piecewise linear continuous basis functions φi
n. The linear

system (7.39) is solved by a GMRES method with a relative reduction of the residual
norm of ε = 10−8. First we consider the global wave number k = 2.0, which neither
corresponds to a Dirichlet nor to a Neumann eigenvalue of both subproblems. The
results, which confirm the error estimate (7.31), are given in Table 7.1. The iteration
numbers seem to be bounded or growing logarithmically with respect to h. Such a
behaviour was already observed for the FETI–H method in [65].

Ni Mi It rel. L2–error

12 8 3 0.528489
48 26 8 0.139577
192 98 10 0.032139
768 386 11 0.007769
3072 1538 12 0.001777
12288 6146 13 0.000441

Table 7.1: Numerical results for two subdomains, k = 2.0.

In a second example we consider the global wave number k =
√
3π ≈ 5.4414, which

corresponds to the first Dirichlet and Neumann eigenvalue of the unit cube Ω1. The
results given in Table 7.2 confirm the stability of the proposed approach.
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Ni Mi It rel. L2–error

12 8 3 1.517652
48 26 8 12.03050
192 98 14 0.516757
768 386 15 0.080376
3072 1538 15 0.020412
12288 6146 15 0.005689

Table 7.2: Numerical results for two subdomains, k =
√
3π.

7.9.2 Multiple subdomains

Again we apply our method to the Neumann boundary value problem

−∆U − k2U = 0 for x ∈ Ω,

γ1U = p for x ∈ Γ.
(7.42)

For this example we choose the domain Ω as the unit cube (0, 1)3. We divide this cube
uniformly in p3 subcubes with p = 2, 3, 4, 5. As an exact solution we consider the
fundamental solution Û(x) with the center in x̂ = (−0.2, 2.0, 1.0)⊤. The boundary
element discretization of the coupled variational formulation (7.9) and (7.10) is done
with respect to a globally uniform boundary mesh of Ni plane triangular elements
with Mi nodes per subdomain and by using piecewise constant basis functions ψi

m

and piecewise linear continuous basis functions φi
n. The size of the Schur complement

system, i.e. the number of Lagrangian multipliers is given by Λi. The linear system
(7.39) is solved by a GMRES method with a relative reduction of the residual norm of
ε = 10−8. We further consider a global wave number k = 2.0. The numerical results
are given in Table 7.3. Note that no global preconditioner is used in this example.
Again we observe a quadratic convergence order as foreseen by the theory. It seems
that the iteration numbers are stable with respect to h, but increase quite fast with
respect to the number of subdomains.

Therefore, we want to test the efficiency of the proposed preconditioner. For this
test we consider different wave numbers k = 1.0, 2.0, 4.0, 8.0 and different amounts
of plane waves per subdomain θn = 0, 2, 4, 6, 8 used by the preconditioner. The same
triangulation as in the unpreconditioned example is used. The results are given in
Table 7.4. Since every preconditioned iteration step is at least as expensive as two
non–preconditioned iteration steps, the preconditioner is possibly only useful in the
case of many subdomains. By scaling the amount of plane waves per subdomain
in a linear way, with respect to the wave number and the number of subdomains, it
seems that the iteration numbers remain constant. The observation that the iteration
numbers appear to be stable with respect to h also holds for the preconditioned case.
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p3 Ni Mi Λi It rel. L2–error

8 24 14 49 23 0.3195067
8 96 50 139 29 0.0982673
8 384 194 462 31 0.0252838
8 1536 770 1687 35 0.0060063
8 6144 3074 6439 41 0.0013786

27 24 14 206 54 0.1599704
27 96 50 602 58 0.0450600
27 384 194 2042 59 0.0109017
27 1536 770 7514 62 0.0024980

64 24 14 531 100 0.0962217
64 96 50 1575 105 0.0252739
64 384 194 5391 104 0.0059219
64 1536 770 19935 105 0.0014740

125 24 14 1084 165 0.0634685
125 96 50 3244 156 0.0156664
125 384 194 11164 137 0.0038170
125 1536 770 41404 137 0.0007976

Table 7.3: Numerical results for p3 subdomains and k = 2.0.

7.9.3 Sphere

In this example we again solve the Neumann boundary value problem (7.42). The
domain Ω is given by the unit sphere with the origin as center. We divide the unit
sphere in 8 and 27 subdomains, see Figure 7.4. The geometrical properties of the
boundary mesh are of rather poor quality. This is due to the construction of the
meshes, which were originally boundary meshes of the subdivision of the unit cube.
These meshes were afterwards projected onto the unit sphere. For this example the
wave number k = 2.0 is considered. As an exact solution we use the fundamental
solution Û(x) with the singularity in (−0.9, 0.0, 2.0)⊤. The linear system is solved by
a GMRES method with a relative reduction of the residual norm of ε = 10−8. The
results which are obtained without the usage of a global preconditioner can be found
in Table 7.5.

7.9.4 Long bar

In this example we once again consider the Neumann boundary value problem (7.42).
The domain Ω is given by (0, 100)×(0, 1)×(0, 1) and it is divided into 100 unit cubes,
see Figure 7.5. We use the fundamental solution of the Helmholtz equation Û with
the singularity in (−0.9, 0.0, 2.0)⊤ as exact solution. For this experiment, the wave
number k is set to 1.0. We test this example once without a preconditioner and once
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p3 k l θn = 0 θn = 2 θn = 4 θn = 6 θn = 8

8 2.0 0 23 15 11 7 8
1 29 21 19 17 16
2 31 24 23 21 21
3 35 29 27 26 24

4.0 0 27 19 13 6 12
1 32 23 21 18 16
2 35 27 24 22 21
3 40 31 27 25 24

8.0 0 43 31 16 2 1
1 49 39 28 21 17
2 54 41 31 25 22
3 56 42 35 29 27

27 2.0 0 54 25 17 12 13
1 58 32 26 24 22
2 59 34 28 27 25
3 62 37 31 29 28

4.0 0 69 36 23 17 22
1 70 38 33 28 24
2 68 39 33 29 27
3 71 44 39 36 31

8.0 0 88 56 39 25 2
1 80 53 42 36 31
2 81 55 44 37 32
3 88 53 47 41 35

64 2.0 0 100 32 19 13 14
1 105 39 28 25 24
2 104 41 32 23 25
3 105 43 35 31 29

4.0 0 130 47 28 18 19
1 128 52 39 33 29
2 121 50 41 36 29
3 119 52 45 40 36

8.0 0 157 93 69 49 24
1 162 89 70 59 50
2 145 77 61 53 47
3 149 70 60 50 42

125 2.0 0 165 37 21 14 14
1 156 43 31 26 26
2 137 44 35 30 29
3 137 47 40 31 30

4.0 0 215 59 31 18 17
1 205 60 40 35 33
2 191 56 44 38 34
3 181 57 49 43 38

8.0 0 254 138 88 57 35
1 267 128 95 74 64
2 252 124 81 64 57
3 234 93 71 60 51

Table 7.4: Iteration numbers for the unit cube with p3 subdomains and different wave numbers
using the proposed preconditioner with different amounts of plane waves per subdomain.
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Figure 7.4: The unit sphere divided in 8 and 27 subdomains.

level Ni Mi It rel. L2–error

0 24 14 28 0.096700
1 96 50 38 0.030646
2 384 194 42 0.012988
3 1536 770 47 0.004205

(a) 8 subdomains.

level Ni Mi It rel. L2–error

0 24 14 72 0.166084
1 96 50 78 0.115071
2 384 194 80 0.078111
3 1536 770 87 0.050307

(b) 27 subdomains.

Table 7.5: Results for the unit sphere with wave number k = 2.0.

again with one plane wave per subdomain. We use a GMRES method with a relative
reduction of the residual norm of ε = 10−8. The results are given in Table 7.6. We
can see that for this geometry the preconditioner is already very efficient with only
one plane wave per subdomain.

level Ni Mi Λi It1 It2 rel. L2–error

0 24 14 495 16 121 0.0767380
1 96 50 1287 15 116 0.0199389
2 384 194 4059 17 112 0.0039138
3 1536 770 14355 21 116 0.0011179

Table 7.6: Iteration numbers with (It1) and without (It2) preconditioning for the bar
with k = 1.0.
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Figure 7.5: Long bar.

7.9.5 Jumping coefficients

Now we solve the Neumann boundary value problem

−∆U − k2(x)U = 0 for x ∈ Ω,

γ1U = p for x ∈ Γ,

with a piecewise constant function k(x). Let Ω be the unit cube (0, 1)3, which is
divided into p3 subcubes for p = 2, 3, 4, 5. For p = 3, 5 we assume that the subdomains
are colored in a checkerboard way. For p = 2, 4 we assume that we have black and
white layers, see Figure 7.6. In the white domains we set k1 = 1.0 and in the black
domains k2 = 4.0. Since we do not have an exact solution for this example, we only
give iteration numbers. Nevertheless, the right hand side is imposed by a fundamental
solution with wave number k = 2.0 and x̂ = (−0.9, 0.0, 2.0)⊤. Once more a GMRES
method with a relative reduction of the residual norm of ε = 10−8 is used to solve
the linear system. We tested the iteration numbers without preconditioning and a
second time with 4 plane waves per subdomain. For these plane waves we always
used the local wave number ki. The results are given in Table 7.7. As we can see the
iteration numbers hardly differ from those, if we would choose k = 4.0 everywhere, see
Table 7.4. In the case of a layer–like distribution of the wave numbers, the iteration
numbers seem to be slightly higher, on the other hand in the checkerboard case they
seem to be slightly lower.

Figure 7.6: Examples for a layer like and checkerboard like distribution of the coeffi-
cients k1 and k2.
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p3 θn level It

8 0 0 27
8 0 1 33
8 0 2 35
8 0 3 38
8 4 0 12
8 4 1 21
8 4 2 24
8 4 3 27
64 0 0 122
64 0 1 129
64 0 2 127
64 0 3 125
64 4 0 27
64 4 1 44
64 4 2 47
64 4 3 51

(a) Layer–like domain de-
composition.

p3 θn level It

27 0 0 62
27 0 1 67
27 0 2 67
27 0 3 71
27 4 0 21
27 4 1 32
27 4 2 35
27 4 3 41
125 0 0 191
125 0 1 193
125 0 2 176
125 0 3 168
125 4 0 28
125 4 1 41
125 4 2 42
125 4 3 45

(b) Checkerboard–like
domain decomposition.

Table 7.7: Iteration numbers in the case of jumping coefficients.

7.9.6 Exterior boundary value problem

In this example we solve the Neumann boundary value problem

−∆U − k2U = 0 for x ∈ Ωc,

γ1U = p for x ∈ Γ,
(7.43)

for an unbounded domain Ωc. The geometrical domain decomposition for this exam-
ple can be explained as follows: we take the unit cube (0, 1)3, divide it into 3×3×3 =
27 subcubes and exclude the middle subcube [1/3, 2/3]3, i.e. Ωc = R3 \ [1/3, 2/3]3.
So we have 26 bounded subdomains and one unbounded subdomain which is the
complement of the unit cube (0, 1)3. We use the fundamental solution Û(x) with the
singularity in (0.5, 0.5, 0.5)⊤ as an exact solution and the wave number k = 1.0 for
all domains. We solve the variational formulation (7.14)–(7.17) by using a GMRES
method with a relative reduction of the residual norm of ε = 10−8. For the precon-
ditioning we use one plane wave per subdomain. The size of the Schur complement
system, i.e. the number of Lagrangian multipliers is given by Λi. The results are
given in Table 7.8. Once again we observe the estimated convergence rate as given
in (7.31). The iteration numbers also seem to be rather stable with respect to h.
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level Nb Mb Nu Mu Λi It rel. L2–error

0 24 14 216 110 302 20 0.0171532
1 96 50 864 434 986 33 0.0031446
2 384 194 3456 1730 3578 37 0.0006652
3 1536 770 13824 6914 13658 43 0.0001682

Table 7.8: Results for the exterior Helmholtz problem.



8 DOMAIN DECOMPOSITION METHODS FOR
ELECTROMAGNETIC SCATTERING

Several domain decomposition approaches have been applied to the electromagnetic
wave equation, see, e.g., [3, 133]. Mostly the underlying problem is the eddy current
problem, which leads to elliptic bilinear forms or operators. For this problem also
preconditioners were developed and analyzed, see for example, [4, 90]. The tearing
and interconnecting method is also well suited for the eddy current problem, since
preconditioners CF for the tearing and interconnecting system F were developed
which, just as in the scalar case, lead to condition number estimates of the form

κ(CFF ) ≤ c

(
1 + log

(
H

h

))p

,

see [134, 135]. For the scattering problem, less theory is available. There are some
approaches for the transmission problem, see for example [87]. For boundary value
problems with multiple subdomains, a FETI–DP approach was applied and tested
for the electromagnetic wave equation in [97], the resulting method is called FETI–
DPEM. However, only numerical results are given in the above mentioned paper and
in the references therein.

In this chapter we will proceed in an analog fashion as in the last chapter, although
we will skip some redundant parts. Before we formulate again a classical Dirichlet
domain decomposition, we have to carry over the Hodge–splitting of the trace spaces
to spaces defined on the skeleton. Thereafter we introduce suitable Robin interface
conditions and reformulate the local Steklov–Poincaré operators, such that we get
a stable local formulation with respect to local eigen wave numbers. Afterwards
we introduce a conforming boundary element formulation based on Raviart–Thomas
elements. Since the deduction of the tearing and interconnecting approach does not
rely upon the underlying problem, we will skip the rededuction and state the results
only. In the end of the chapter we give a numerical example.

In this chapter we will use the same geometrical assumptions, definitions and nota-
tions as they were given in Section 7.1. In addition, we make the stronger assumption
that all subdomains are Lipschitz polyhedrons and not only Lipschitz domains.

8.1 Spaces on the skeleton

The following construction is close to the one in [29, Section 4.3.1]. The trace space

H
−1/2
⊥ (curlΓ,ΓS) is defined as the Dirichlet trace of H(curl,Ω) on the skeleton. We

127
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define the norm by using local restrictions. For u ∈ H
−1/2
⊥ (curlΓ,ΓS) the norm is

given by

‖u‖2
H

−1/2
⊥ (curlΓ,ΓS)

:=

p∑

i=1

∥∥u|Γi

∥∥2
H

−1/2
⊥ (curlΓ,Γi)

.

The space H
1/2
‖ (ΓS) is defined as the Dirichlet trace of H1(Ω) on the skeleton, it’s

norm is also locally defined as the norm of H
−1/2
⊥ (curlΓ,ΓS). Since the surface curl

of a function depends on the direction of the normal vector we use curlΓ u only on
the subdomain level. Note that (curlΓ u|Γi

)|Γij
= −(curlΓ u|Γj

)|Γij
. Now let us define

a Hodge–type splitting for functions in H
−1/2
⊥ (curlΓ,ΓS).

As in Subsection 4.3.2 we consider the local subproblems

∆Ψi = 0 in Ω,

γ1Ψi = ωi on Γ

with ωi = curlΓ u|Γi
. Again we set Wi = gradΨi ∈ H(div 0,Ωi). Now we can define

the function W by W|Ωi
= Wi. We have W ∈ H(div 0,Ω) since γnWi = −γnWj

on Γij, see [143]. Let us define

P S := γD ◦ JS : H
−1/2
⊥ (curlΓ,ΓS) → H

1/2
‖ (ΓS),

where JSu := LW and L is defined as in Subsection 4.3.2.

Corollary 8.1. The operator P S is a projection and satisfies

• curlΓ(P
Su)|Γi

= curlΓ u|Γi
for all u ∈ H

−1/2
⊥ (curlΓ,ΓS).

• P Su = 0 for u ∈ H
−1/2
⊥ (curlΓ,ΓS) and curlΓ u|Γi

= 0 for all i.

•

∥∥P Γu
∥∥
H

1/2
‖

(ΓS)
≤ C

p∑
i=1

∥∥curlΓ u|Γi

∥∥
H−1/2(Γi)

for all u ∈ H
−1/2
⊥ (curlΓ,ΓS).

Proof. If we utilize Lemma 4.31 we get on the global level

curlΓ P
Su = curlΓ γDJ

Su = curlΓ γDLW = γn curlLW = γnW

and locally

γnW|Γi
= γ1Ψi = ωi = curlΓ u|Γi

.

The other properties follow immediately.
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Now we define

X(curlΓ,ΓS) := P S(H
−1/2
⊥ (curlΓ,ΓS)),

N(curlΓ,ΓS) := Ker(P S) ∩H
−1/2
⊥ (curlΓ,ΓS),

and finally we end up with the stable direct splitting

H
−1/2
⊥ (curlΓ,ΓS) = X(curlΓ,ΓS)⊕N(curlΓ,ΓS). (8.1)

It is possible to establish some extra regularity for one of the subspaces.

Corollary 8.2. The embedding X(curlΓ,Γ) →֒ L2
t (ΓS) is compact.

Proof. This follows immediately from the compact embedding H
1/2
‖ (ΓS) →֒ L2

t (ΓS).

Due to the construction, the restriction of the splitting to the subdomains coincides
with the local splittings. The sign flip operators X and Y for H

−1/2
⊥ (curlΓ,ΓS) are

defined as in Subsection 4.3.2, i.e. X is defined by

(u,v) 7→ (−u,v),

X(curlΓ,ΓS)×N(curlΓ,ΓS) → X(curlΓ,ΓS)×N(curlΓ,ΓS),

and Y by Y := −X .

8.2 Dirichlet domain decomposition methods

In this section we deduce a variational formulation of the domain decomposition
approach, starting with the global Neumann boundary value problem. As in the
Helmholtz case it would also be possible to treat Dirichlet or mixed boundary value
problems, however we once again restrict ourselves to the technically easiest case of
a Neumann boundary value problem.

Let us assume that the global Neumann boundary value problem

Find U ∈ H(curl,Ω) such that

curl curlU− k2(x)U = 0 in Ω,

γNU = p on Γ
(8.2)

admits a unique solution. The corresponding variational formulation is given by



130 8 Domain decomposition methods for electromagnetic scattering

Find U ∈ H(curl,Ω) such that

∫

Ω

[
curlU(x) · curlV(x)− k2(x)U(x) ·V(x)

]
dx−

∫

Γ

p(x) · γDV(x)dsx = 0

for all V ∈ H(curl,Ω).

To split this global problem into smaller local ones, we have to determine appropriate
interface conditions. From

∫

Ω

[
curlU(x) · curlV(x)− k2U(x) ·V

]
dx−

∫

Γ

p(x) · γDV(x)dsx

=

∫

Ω

[
curl curlU(x) ·V(x)− k2U(x) ·V(x)

]
dx

=

p∑

i=1

∫

Ωi

[
curl curlU(x) ·V(x)− k2U(x) ·V(x)

]
dx

=

p∑

i=1

[∫

Ωi

curlU(x) · curlV(x)− k2U(x) ·V(x)

]
dx

−
p∑

i,j=1

∫

Γi,j

γN,iU(x) · γD,iV(x)dsx −
∫

Γ

p(x) · γDV(x)dsx = 0

for all U,V ∈ H(curl,Ω) we conclude that

p∑

i,j=1

∫

Γi,j

γNi
U(x) · γD,iV(x)dsx = 0.

This provides us the necessary interface conditions. By using a density argument we
get

γN,iU+ γN,jU = 0 on Γij.

The localized formulation of problem (8.2) is then given by:

Find U ∈ H(curl,Ω) such that

curl curlUi − k2iUi = 0 in Ω,

γN,iUi + γN,jUj = 0 on Γij,

γNU = p on Γ,

with Ui = U|Ωi
.
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Note that the continuity of the Dirichlet trace γDUi = γDUj is already incorporated
in the space H(curl,Ω). By introducing local functions Ui and explicitly enforcing
the continuity of the Dirichlet trace we can reformulate this as:

Find Ui ∈ H(curl,Ωi) for i = 1, . . . , p such that

curl curlUi − k2iUi = 0 in Ωi,

γDUi − γDUj = 0 on Γij,

γN,iUi + γN,iUj = 0 on Γij,

γN,iU = p on Γ ∩ Γi.

At this point, for simplicity we assume that for all i, ki is not an eigen wave number of
the local Neumann boundary value problem in Ωi. We soon get rid of this constraint.
By using the local Steklov–Poincaré operators Ti, which are well defined due to the
previous assumption, we can describe solutions of the partial differential equation in
the subdomains. The corresponding global problem then reads:

Find ui = γDUi ∈ H
−1/2
⊥ (curlΓ,Γi) for i = 1, . . . , p such that

γDui − γDuj = 0 on Γij,

Tiui + Tjuj = 0 on Γij,

Tiui = p on Γ ∩ Γi.

By enforcing the continuity of the Dirichlet traces in a strong manner we get:

Find u = γDU ∈ H
−1/2
⊥ (curlΓ,ΓS) such that

Tiu|Γi
+ Tju|Γj

= 0 on Γij,

Tiu|Γi
= p on Γ ∩ Γi.

(8.3)

The variational form is then given by:

Find u ∈ H
−1/2
⊥ (curlΓ,ΓS) such that

p∑

i=1

∫

Γi

Tiu(x) · v(x)dsx =

∫

Γ

p(x) · v(x)dsx (8.4)

for all v ∈ H
−1/2
⊥ (curlΓ,ΓS).

If we assume that all local Steklov–Poincaré operators Ti are well defined, we conclude
the generalized G̊arding inequality

Re

(
p∑

i=1

〈Tiu,Xu〉Γi
+ C(u,Xu)

)
≥ c1

p∑

i=1

‖u‖2
H

−1/2
⊥ (curlΓ,Γi)

≥ c2 ‖u‖2H−1/2
⊥ (curlΓ,ΓS)
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for all u ∈ H
−1/2
⊥ (curlΓ,ΓS) where C(·, ·) is a compact sesquilinear form. Since the

global boundary value problem was assumed to be uniquely solvable, and since all
local Steklov–Poincaré operators are assumed to be well defined, a Galerkin dis-
cretization of (8.4) is stable for a sufficient small mesh size h and admits related a
priori error estimates. However, since we want to use a tearing and interconnecting
approach, we have to prove solvability of the local problems for all wave numbers ki.
Therefore, we have to modify the interface conditions.

8.3 Robin interface conditions

As for the Helmholtz equation we use an operator Ri to describe the modified Robin
transmission conditions. We also carry over the notation for ηij and ηi, see Section
7.3. An equivalent problem to (8.3) is given by:

Find γDU ∈ H
−1/2
⊥ (curlΓ,ΓS) such that

(Ti + iηijRij)γDU|Γi
+ (Tj + iηijRij)γDU|Γj

= 0 on Γij,

TiγDU = p on Γi ∩ Γ.

Since the local Steklov–Poincaré operators Ti are not well defined for eigen wave
numbers of the local subproblems, we exchange the local Dirichlet–to–Neumann maps
by systems, see Section 6.5. This leads to the formulation:

Find u = γDU ∈ H
−1/2
⊥ (curlΓ,ΓS) and ti = γNUi ∈ H

−1/2
‖ (divΓ,Γi) such that

(Ni + iηiRi)u|Γi
+ (

1

2
I+ Bi)ti + (Nj + iηjRj)u|Γj

+ (
1

2
I+ Bj)tj = 0 on Γij,

(Ni + iηiRi)u|Γi
+ (

1

2
I+ Bi)ti = p on Γi ∩ Γ,

(−1

2
I+ Ck)u|Γi

+ Skti = 0 on Γi.

The variational formulation is therefore given by:

Find u ∈ H
−1/2
⊥ (curlΓ,ΓS) and ti ∈ H

−1/2
‖ (divΓ,Γi) for i = 1, . . . , p such that

p∑

i=1

[
〈Niu|Γi

,v|Γi
〉Γi

+ 〈(1
2
I+ Bi)ti,v|Γi

〉Γi
+ 〈iηiRiu|Γi

,v|Γi
〉Γi

]
=

∫

Γ

p(x) · v(x)dsx

(8.5)

for all v ∈ H
−1/2
‖ (divΓ,ΓS) and

〈Siti,µi〉Γi
+ 〈(−1

2
I+ Ci)u|Γi

,µi〉Γi
= 0 (8.6)

for all µi ∈ H
−1/2
‖ (divΓ,Γi), i = 1, . . . , p.
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Theorem 8.3. The coupled variational problem (8.5) and (8.6) admits a unique

solution u ∈ H
−1/2
⊥ (curlΓ,ΓS) and ti ∈ H

−1/2
‖ (divΓ,Γi). In particular, the associated

sesquilinear form fulfills a generalized G̊arding inequality. Moreover, if the Neumann
boundary value problem (8.2) is uniquely solvable, the associated sesquilinear form is
also injective.

Proof. Since the sesquilinear forms of the local Robin systems fulfill a generalized
G̊arding inequality and because of the splitting properties of the skeleton space
H

−1/2
⊥ (curlΓ,ΓS), see Section 8.1, the global generalized G̊arding inequality

Re

(
p∑

i=1

〈(
Ni (1

2
I+ Bi)

−(1
2
I− Ci) Si

)(
u|Γi

ti

)
,

(
Yu|Γi

X ti

)〉

Γi

+ C((u, t), (u, t))

)

≥ c ·
(
‖u‖2

H
−1/2
⊥ (curlΓ,ΓS)

+

p∑

i=1

‖ti‖2H−1/2
‖

(divΓ,Γi)

)
.

holds for all u ∈ H
−1/2
⊥ (curlΓ,ΓS) and ti ∈ H

−1/2
‖ (divΓ,Γi) with a compact sesquilin-

ear form C(·, ·). It remains to prove injectivity. Let u ∈ H
−1/2
⊥ (curlΓ,ΓS) and

ti ∈ H
−1/2
‖ (divΓ,Γi) for i = 1, . . . , p be a non–trivial solution of the homogeneous

system

p∑

i=1

[
〈Niu|Γi

,v|Γi
〉Γi

+ 〈(1
2
I+ Bi)ti,v|Γi

〉Γi
+ 〈iηRiu|Γi

,v|Γi
〉Γi

]
= 0

for all v ∈ H
−1/2
⊥ (curlΓ,ΓS) and

〈Siti, τ i〉Γi
− 〈(1

2
I− Ci)u|Γi

, τ i〉Γi
= 0

for all τ i ∈ H
−1/2
‖ (divΓ,Γi), i = 1, . . . , p. With the definition of Ri and ηi we also

have
p∑

i=1

[
〈Niu|Γi

,v|Γi
〉Γi

+ 〈(1
2
I+ Bi)ti,v|Γi

〉Γi

]
= 0

for all v ∈ H
−1/2
⊥ (curlΓ,ΓS). Let us define

φi(x) = ΨS
i ti(x) +ΨM

i ui(x) for x ∈ Ωi,

which satisfies

curl curlφi(x)− k2φi(x) = 0 for x ∈ Ωi

and

γNφi(x) = (
1

2
I+ Bi)ti(x) + (Niu|Γi

)(x) for x ∈ Γi
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as well as

φi(x) = (Siti)(x) +
1

2
u|Γi

(x)− (Ciu|Γi
)(x) = u|Γi

(x) for x ∈ Γi.

We consider φi = φ|Ωi
∈ H(curl,Ωi) as the restriction of a function φ ∈ H(curl,Ω).

We then obtain, by using Green’s first formula,

0 =

p∑

i=1

[
〈Niu|Γi

,v|Γi
〉Γi

+ 〈(1
2
I+ Bi)ti,v|Γi

〉Γi

]

=

p∑

i=1

∫

Γi

γN,yφi(x)v|Γi
(x)dsx

=

p∑

i=1

∫

Ωi

[
curlφi(x) · curl v|Ωi

(x)dx− k2iφi(x)v|Ωi
(x)
]
dx

=

∫

Ω

[
curlφ(x) · curl v(x)− k2(x)φ(x)v(x)

]
dx

for all v ∈ H(curl,Ω). Since this is the weak formulation of the Neumann boundary
value problem

curl curlφ(x) + k2(x)φ(x) = 0 for x ∈ Ω, γNφ(x) = 0 for x ∈ Γ,

φ(x) = 0 for x ∈ Ω follows. Recall that the Neumann boundary value problem
(8.2) was assumed to be uniquely solvable. From φi(x) = 0 for x ∈ Ωi we conclude
u|Γi

(x) = 0 for x ∈ Γi as well as γNφi(x) = 0 for x ∈ Γi. Therefore, we conclude

(
1

2
I+ Bi)ti(x) = 0, (Siti)(x) = 0 for x ∈ Γi.

If k2i is not a Dirichlet eigenvalue, the single layer potential Si is injective and ti(x) = 0
follows. On the other hand, if λ = k2i is a Dirichlet eigenvalue, we also have

(
1

2
I− Bi)ti(x) = 0 for x ∈ Γi.

Again, ti(x) = 0 follows.

8.4 Boundary element discretizations

For the Galerkin discretization of the coupled variational formulation (8.5) and (8.6)
let

Eh := Eh(ΓS) = span{φk}MS
k=1 ⊂ H

−1/2
⊥ (curlΓ,ΓS)

be the boundary element space on the skeleton, e.g. of lowest order Raviart–Thomas
elements, see Section 6.7. We further assume a quasi–uniform boundary mesh with
mesh size hS.
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Theorem 8.4. The space Eh(ΓS) fulfills the gap property with respect to the splitting

(8.1) of H
−1/2
⊥ (curlΓ,ΓS) as introduced in Section 8.1.

Proof. See [29, Section 4.3.2].

We also define local restrictions of Eh onto Γi, in particular

Ei,h = Eh|Γi
= span{φi

k}Mi
k=1 ⊂ H

−1/2
⊥ (curlΓ,Γi).

By using the isomorphisms

vi ∈ R
Mi ↔ vi,h =

Mi∑

k=1

vi,kφ
i
k ∈ Ei,h, v ∈ R

MS ↔ vh =

MS∑

k=1

vkφk ∈ Eh

there exist Boolian connectivity matrices Ai ∈ R
Mi×MS mapping some v ∈ R

MS of
global edge values onto the vector vi = Aiv ∈ RMi of the local subdomain boundary
edge values. In addition, let

Fi,h = span{ψi
k}Ni

k=1 ⊂ H
−1/2
‖ (divΓ,Γi)

be the local boundary element space of lowest order Raviart–Thomas elements with
basis functions ψi

k, which are defined with respect to a local quasi–uniform boundary
mesh with average mesh size hi. The Galerkin boundary element discretization of
the variational formulation (8.5) and (8.6) now reads:

Find uh ∈ Eh and ti,h ∈ Fi,h such that

p∑

i=1

[
〈Niuh|Γi

,vh|Γi
〉Γi

+ 〈(1
2
I+ Bi)ti,h,vh|Γi

〉Γi
+ 〈iηRiuh|Γi

,vh|Γi
〉Γi

]

=

∫

Γ

p(x) · vh(x)dsx

(8.7)

for all vh ∈ Eh and

〈Siti,h,µi,h〉Γi
+ 〈(−1

2
I+ Ci)uh|Γi

,µi,h〉Γi
= 0 (8.8)

for all µi,h ∈ Fi,h, i = 1, . . . , p.

Since the sesquilinear form of the coupled variational problem (8.5) and (8.6) fulfills
a generalized G̊arding inequality and is injective, see Theorem 8.3, the stability of
the Galerkin variational formulation (8.5) and (8.6) follows for sufficient small mesh
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widths hS and hi, because Eh and Fh,i fulfill the gap property, see Theorem 3.18. In
particular, there holds the quasi–optimal error estimate

‖u− uh‖2H−1/2
⊥ (curlΓ,ΓS)

+

p∑

i=1

‖ti − ti,h‖2H−1/2
‖

(divΓ,Γi)

≤ c

{
inf

vh∈Eh
‖u− vh‖2H−1/2

⊥ (curlΓ,ΓS)
+

p∑

i=1

inf
zi,h∈Fi,h

‖ti − zi,h‖2H−1/2
‖

(divΓ,Γi)

}
.

By using first order Raviart–Thomas elements, we finally obtain the estimate

‖u− uh‖L2(ΓS)
+

p∑

i=1

‖ti − ti,h‖L2(Γi)
≤ c(u, ti)hS +

p∑

i=1

c(ti)hi (8.9)

for u ∈ H1
t (ΓS), ti ∈ H1

t (Γi), curlΓ u ∈ H1(ΓS) and divΓ ti ∈ H1(Γi).

8.5 Tearing and interconnecting methods

To derive the tearing and interconnecting approach for the electromagnetic wave
equation, the idea is the same as for the Helmholtz case. The only change is that the
degrees of freedom are edge based instead of node based, see Figure 8.1. The splitting
of the degrees of freedom and the interface equations works therefore as described in
detail in Section 7.7.

Ω1Ω2

Ω3 Ω4

Ω5

Ω1Ω2

Ω3 Ω4

Ω5

Figure 8.1: The tearing and interconnecting approach for an edge–based discretiza-
tion.
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The Galerkin variational formulation (8.7) and (8.8) is equivalent to the linear system




S1,h C̃1,hAi

. . .
...

Sp,h C̃p,hAp

A⊤
1 B̃1,h . . . A⊤

p B̃p,h

p∑
i=1

A⊤
i [Ni,h + iηiRi,h]Ai







t1
...
tp
u


 =




0
...
0

p∑
i=1

A⊤
i gi




(8.10)

with

Si,h[ℓ, k] = 〈Siψ
i
k,ψ

i
ℓ〉Γi

,

C̃i,h[ℓ, n] = 〈(−1

2
I+ Ci)φ

i
n,ψ

i
ℓ〉Γi

,

B̃i,h[m, k] = 〈(1
2
I+ Bi)ψ

i
k,φ

i
m〉Γi

,

Ni,h[m,n] = 〈Niφ
i
n,φ

i
m〉Γi

,

Ri,h[m,n] = 〈Riφ
i
n,φ

i
m〉Γi

for k, ℓ = 1, . . . , Ni, m,n = 1, . . . ,Mi, and i = 1, . . . , p. In addition,

p
i
[m] = 〈p,φi

m〉Γi∩Γ for m = 1, . . . ,Mi.

By applying the tearing and interconnecting approach as we did in the Helmholtz
case, we obtain the linear system



N1,h + iη1Ri,h B̃1,h −B⊤
1

C̃1,h S1,h

. . .
...

Np,h + iηpRp,h B̃p,h −B⊤
p

C̃p,h Sp,h

B1 . . . Bp







u1
t1
...
up
tp
λ




=




p
1

0
...
p
p

0
0




. (8.11)

Again we eliminate the primal degrees of freedom and we end up with the Schur
complement system

p∑

i=1

(
0 Bi

)
(
Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
B⊤

i λ
0

)
(8.12)

= −
p∑

i=1

(
Bi 0

)
(
Ni,h + iηiRi,h B̃i,h

C̃i,h Si,h

)−1(
p
i

0

)
. (8.13)

As in the Helmholtz case, this can be shortened to

Fhλ = f.



138 8 Domain decomposition methods for electromagnetic scattering

Ei Λi It rel. L2–error

36 8 5 0.1824189
144 28 17 0.0895037
576 104 49 0.0440296
2304 400 142 0.0234164

(a) k = 1.0

Ei Λi It rel. L2–error

36 8 5 0.7042192
144 28 19 0.3055468
576 104 47 0.1472184
2304 400 104 0.0772003

(b) k = 4.44288

Table 8.1: Iteration numbers and errors for two bricks.

8.6 Numerical examples

As first example we consider the Neumann boundary value problem

curl curlU− k2U = 0 in Ω,

γNU = p on Γ.
(8.14)

The domain Ω is given by (−1.0, 1.5) × (0.0, 1.0) × (0.0, 1.0) and is divided by
the yz–plane, see Figure 7.3. As an analytical solution we use (6.24), with x̂ =
(−3.0, 2.1, 1.1)⊤. The boundary element discretization of the coupled variational for-
mulation (8.7) and (8.8) is done with respect to a globally uniform boundary mesh
with Ei edges per subdomain and by using first order Raviart–Thomas elements.
As Robin operator we use the discretization of A0 which is restricted to the degrees
of freedom, whose support lies completely within the interface. The number of La-
grangian multipliers is given by Λi. The linear system (8.12) is solved by a GMRES
method with a relative reduction of the residual norm of ε = 10−7. We consider two
different wave numbers, the first is k = 1.0 and the second is the first Dirichlet and
Neumann eigen wave number of the unit cube, i.e. of Ω1, k =

√
2π ≈ 4.44288. The

results are given in Table 8.1.

In a second example we solve the Neumann boundary value problem (8.14) in the
unit cube, i.e. Ω = (0, 1)3, which is divided into 8 subcubes. We further use the same
analytical solution, variational formulation and boundary elements, as in the last ex-
ample. In this example we consider different wave numbers, i.e. k = 1.0, 2.0, 4.0, 8.0.
The results are given in Table 8.2.

Both experiments confirm the error estimate as given in (8.9). Note that the iter-
ation numbers are rapidly increasing without preconditioner. In combination with
the effort to solve the local system without a preconditioner, the algorithm is too
expensive. Hence, a local and a global preconditioner have to be used to compute
larger problems. Probably, a similar preconditioning approach, such as in the acous-
tic scattering case, is applicable. Another possibility would be to use a dual–primal
approach as it was done in [97].
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Ei Λi It rel. L2–error

36 90 60 0.1133393
144 324 147 0.0550944
576 1224 476 0.0266769

(a) k = 1.0

Ei Λi It rel. L2–error

36 90 60 0.1976629
144 324 154 0.0965666
576 1224 471 0.0465483

(b) k = 2.0

Ei Λi It rel. L2–error

36 90 62 0.4037713
144 324 160 0.1874552
576 1224 475 0.0891713

(c) k = 4.0

Ei Λi It rel. L2–error

36 90 60 0.9432815
144 324 153 0.3776120
576 1224 397 0.1769975

(d) k = 8.0

Table 8.2: Iteration numbers and errors for the unit cube for different wave numbers
k.
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9 CONCLUSIONS AND OUTLOOK

We have derived a regularized boundary element tearing and interconnecting method
for interior acoustic and electromagnetic scattering problems. We also proved that
the real valued wave number k can be exchanged by a complex wave number with
Im(k) > 0. This corresponds either to damped acoustic waves or to an eddy current
problem. A mixture of complex and real valued wave numbers is also possible. The
well posedness for real valued wave numbers k was established by introducing Robin
boundary interface conditions, which lead to local uniquely solvable subproblems.
To avoid ill posed Dirichlet–to–Robin maps we reformulated the local formulation by
introducing a local auxiliary Neumann data. A (to the best of our knowledge) new
algebraic deduction of the tearing and interconnecting approach was given, which
extends in principle the applicability of the tearing and interconnecting method to
arbitrary partial differential equations of second order.

We further described another direct regularized combined field integral equation
(CFIE) for the exterior acoustic and electromagnetic scattering problem, by inter-
preting the exterior scattering problem as interior Robin boundary value problem.
This approach is different from other CFIE approaches, since it is not based on an
artificial combination of single and double layer potentials. Instead it is based on a
regularization of the Steklov–Poincaré operator.

For the acoustic scattering problem we modified the regularized exterior problem,
such that we could integrate it into the boundary element tearing and interconnect-
ing approach. This allows us to solve exterior scattering problems with jumping
coefficients under the assumption that the wave number is constant in the comple-
ment of a bounded domain Ω. It further allows us to solve transmission problems
with multiple interior subdomains.

For the electromagnetic scattering problem a modification of the regularized exterior
field integral equation still has to be found, such that it can be integrated into the
boundary element tearing and interconnecting approach. This relies on finding an
operator X, which fulfills a generalized G̊arding inequality and gives a unique solvable
Robin boundary value problem with boundary condition γNU+ ikX−1γDU. The re-
maining parts of the integration in the boundary element tearing and interconnecting
approach should be straightforward.

A big advantage of the tearing and interconnecting approach is the easy coupling of
finite and boundary element methods. For the implementation this would be straight
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forward and would not differ from other coupled FETI/BETI approaches. For the
theory further investigations would be necessary.

For the electromagnetic scattering case, a local preconditioning strategy has to be
established and implemented. A hint describing how such a strategy may work,
is given in Section 6.7. Furthermore, a global preconditioning approach has to be
developed. This could be done by adapting the artificial coarse space idea as used
for the acoustic scattering. This may be done by adapting the plane waves in the
correct manner. Another possibility could be a dual–primal approach, as it was used
in [97].

For larger local electromagnetic scattering subdomains, a fast boundary element tech-
nique has to be used. Until now, in this work this is only done for the acoustic
scattering case.

The computation of the entries of the Maxwell matrices is very crucial, since accuracy
is a major point. Until now the integration is done via a Duffy transformation,
see [57], which is quite expensive since a Gauss product approach is used. Optimized
integration formulae may lead to better results, see [48, 131].
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Lecture Notes in Computational Science and Engineering 59, 1-38 (2008)., 2008.

[88] R. Hiptmair and C. Schwab. Natural boundary element methods for the electric
field integral equation on polyhedra. SIAM J. Numer. Anal., 40(1):66–86, 2002.

[89] G. C. Hsiao and W. L. Wendland. Boundary integral equations, volume 164 of
Applied Mathematical Sciences. Springer-Verlag, Berlin, 2008.

[90] Q. Hu and J. Zou. A nonoverlapping domain decomposition method for
Maxwell’s equations in three dimensions. SIAM J. Numer. Anal., 41(5):1682–
1708 (electronic), 2003.

[91] A. Klawonn and O. B. Widlund. A domain decomposition method with La-
grange multipliers and inexact solvers for linear elasticity. SIAM J. Sci. Com-
put., 22(4):1199–1219 (electronic), 2000.

[92] A. Klawonn and O. B. Widlund. FETI and Neumann-Neumann iterative sub-
structuring methods: connections and new results. Comm. Pure Appl. Math.,
54(1):57–90, 2001.



150 Bibliography

[93] A. R. Laliena, M.-L. Rapún, and F.-J. Sayas. Symmetric boundary inte-
gral formulations for Helmholtz transmission problems. Appl. Numer. Math.,
59(11):2814–2823, 2009.

[94] U. Langer and D. Pusch. Data-sparse algebraic multigrid methods for large
scale boundary element equations. Appl. Numer. Math., 54(3-4):406–424, 2005.

[95] U. Langer and O. Steinbach. Boundary element tearing and interconnecting
methods. Computing, 71(3):205–228, 2003.

[96] U. Langer and O. Steinbach. Coupled boundary and finite element tearing
and interconnecting methods. In Domain decomposition methods in science
and engineering, volume 40 of Lect. Notes Comput. Sci. Eng., pages 83–97.
Springer, Berlin, 2005.

[97] Yujia Li and Jian-Ming Jin. A vector dual-primal finite element tearing and
interconnecting method for solving 3-D large-scale electromagnetic problems.
IEEE Trans. Antennas and Propagation, 54(10):3000–3009, 2006.

[98] Ch. Lubich. On the multistep time discretization of linear initial-boundary
value problems and their boundary integral equations. Numer. Math.,
67(3):365–389, 1994.

[99] Ch. Lubich and R. Schneider. Time discretization of parabolic boundary inte-
gral equations. Numer. Math., 63(4):455–481, 1992.

[100] J. Mandel and R. Tezaur. Convergence of a substructuring method with La-
grange multipliers. Numer. Math., 73(4):473–487, 1996.

[101] T. P. A. Mathew. Domain decomposition methods for the numerical solution
of partial differential equations, volume 61 of Lecture Notes in Computational
Science and Engineering. Springer-Verlag, Berlin, 2008.

[102] W. McLean. Strongly elliptic systems and boundary integral equations. Cam-
bridge University Press, Cambridge, 2000.

[103] W. McLean and O. Steinbach. Boundary element preconditioners for a hyper-
singular integral equation on an interval. Adv. Comput. Math., 11(4):271–286,
1999.

[104] J. M. Melenk. On generalized Finite Element Methods. PhD thesis, University
of Maryland, 1995.

[105] P. Meury. Stable Finite Element Boundary Element Galerkin Schemes for
Acoustic and Electromagnetic Scattering. PhD thesis, ETH Zürich, 2007.
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