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Abstract

The aim of this work is to analyze a convolution quadratureruary element approach to
simulate wave propagation in porous media. In Laplace domh& model results in an el-
liptic second order partial differential equation. Fitsbundary value problems of interest
are described and equivalent boundary integral formulatare derived. Unique solvabil-
ity of all discussed boundary value problems and bounddegmal equations is discussed,
first in Laplace domain and finally also in time domain. A Ghiediscretization in space
and a convolution quadrature discretization in time is gl Unique solvability of the
discrete systems and convergence of the approximate@wddire discussed. Finally, the
theoretical results are confirmed by numerical experiments

Zusammenfassung

Das Ziel dieser Arbeit ist die Analyse eines numerische Nifgsverfahrens zur Simu-
lation von Wellenausbreitung in porésen Medien. Das nusobeg Naherungsverfahren
basiert dabei auf ein Kombination der RandelementmethodeleniFaltungsquadratur-
methode. Die Wellenausbreitung in porésen Medien wird rilfetkéines elliptischen Dif-
ferentialoperators zweiter Ordnung und entsprechendedv®aiproblemen im Laplace—
Bereich beschrieben. Fir die betrachteten Randwertproblesnden &quivalente Ran-
dintegralformulierungen hergeleitet. Die eindeutigehairkeit der Randintegralgleichung
wird sowohl im Laplace—Bereich als auch im Zeitbereich digtti Die Randintegralglei-
chungen werden im Raum durch eine Galerkin Approximatiokrdtssiert. In der Zeit
wird eine Faltungsquadraturmethode verwendet. Im weitevied die eindeutige LOs-
barkeit der diskretisierten Integralgleichungen und dmwergenz der naherungsweisen
Losungen diskutiert. Schlussendlich werden die thearegis Ergebnisse mit Hilfe von
numerischen Beispielen bestatigt.
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1 INTRODUCTION

Wave propagation is a widespread phenomenon within our@mwient, and porous mate-
rials play an important role in many branches of engineerfgorous medium is a solid

permeated by an interconnected network of pores filled witial.fl The solid as well as

the pores are assumed to be continuous. Natural substarmateassrocks, soils, biological

tissues, foams, and ceramics can be considered as porous rredd-saturated porous
media cannot be modelled satisfyingly with the theory oktldynamics. Based on the
work of Terzaghi, Biot developed a theory to model porous mesiee [12, 13]. One of

the significant findings was the identification of three wawes® compressional waves
and a shear wave. For the numerical simulation, severabappes, both finite element
and boundary element, have been developed. An overviewease thpproaches and on
analytical solutions is given in [47].

In this thesis, a formulation based on the solid displacdraed the pore pressure as the
primary unknowns is chosen. The reduction to these unknaswargy possible in Laplace
domain. Boundary integral formulations based on this apprdeve been developed by
Schanz and Messner [39, 40, 46].

Boundary element methods are a popular method to solve boumdkie problems. A

main advantage of the boundary element method is the reducfithe problem to the

boundary. The boundary element method is especially daifabexterior boundary value
problems, since only the boundary of the domains has to leetized and the radiation
condition is already incorporated into the formulation. dogrehensive overview on the
topic is given by McLean [38], as well as Hsiao and Wendlart],[Sauter and Schwab
[45], and Steinbach [52]. Primarily, elliptic partial déffential operators are discussed.

An overview on the application of boundary element methodsarabolic and hyperbolic
partial differential equations is given in [17]. Basicallyd different approaches exist:
Space-time integral equation techniques use the fundamsritition in time domain to
formulate integral equations. Utilizing a Galerkin dig&zation by ansatz and test func-
tions with respect to time yields a time stepping procedArsecond approach is based on
the Laplace transformation. For fixed frequencies standauthdary element methods for
elliptic problems are applied. The transformation back time domain employs spe-
cial methods for the inversion of the Laplace or Fourier$farmation. The convolution
quadrature method as developed by Lubich [32, 33] falls thi® category. This method
approximates the convolution by a numerical integratiomida, where the integration
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weights are based on the boundary integral operators irmbamlomain and the underly-
ing multistep method. For poroelasticity this property ssential, since the fundamental
solution in time domain is not explicitly known.

The method was first applied to parabolic boundary integgalagons by Lubich and
Schneider [36], where the authors discussed an indireglesiayer approach. The analy-
sis is based on an ellipticity estimate of the single layamutary integral operator outside
a sector of the complex plane with an acute angle to the nvegaal axis.

For the wave equation a similar approach was studied in [3d]this case the single

layer boundary integral operator is only elliptic in a hpléne. The related estimates
for the single layer integral operator and the hyper-siagoberator were developed by
Bamberger and HaDuong [3,4]. The analysis for the wave equatas recently extended
to boundary value problems and transmission problems hghabnd Sayas [31].

The original convolution quadrature method was develomedrfultistep methods and
has been extended to Runge-Kutta methods in [6, 35]. In rquagmérs, fast numerical
implementations of the convolution quadrature method werestigated [5, 7,22, 23, 30].
An overview over recent theoretical results is given in [8].

The aim of this thesis is to extend the theoretical resultsife wave equation to poroe-

lasticity. It turns out that similar estimates as for the waguation can be shown. In

particular, the theory is applied to the mixed, the Dirittdad the Neumann boundary
value problem. Stability and convergence of the resultisgréte system are obtained and
confirmed by numerical examples.

Outline

Starting from constitutive equations, Biot’s linear theafyporoelasticity is derived in

Chapter 2. The resulting system of partial differential emums is transformed to the
Laplace domain, where a simplified system of partial difféied equations based on the
primary unknowns, the solid displacement and the pore presss derived. Suitable

boundary conditions are defined resulting in the statemktiteomixed boundary value
problem of interest.

In Chapter 3 the analytic preliminaries are introduced. Iditaah to some basics from
functional analysis, some definitions for a simplified niotatare introduced. Moreover,
Sobolev spaces and the Lamé system are discussed brietlyefraore the general frame-
work of strong ellipticity is introduced. In the following;zreen’s formulae are derived for
the operator of poroelasticity and ellipticity and boundless of the defined sesquilinear
form is established. With the help of these theoretical lteswnique solvability of the
mixed boundary value problem is shown. Finally, the condmheaivative of the solution
as well as it’s adjoint are discussed.



Furthermore, the fundamental solution of poroelasticgyeell as some of it's proper-
ties are introduced in Chapter 4. In the following, boundatggral operators and their
respective mapping properties are discussed. The symmeddtions within these bound-
ary integral operators are investigated, too. Moreoversh@n ellipticity of the single
layer boundary integral operator and the hyper-singulanbary integral operator. The
ellipticity estimates enable us to establish estimatesafioboundary integral operators.
The dependency of all these estimates on the Laplace paresistanalyzed and stated
explicitly. Moreover, the Steklov—Poincaré as well as tlonParé—Steklov operator are
introduced. Ellipticity estimates are shown for both imtgperators.

With the help of the representation formula boundary irdegquations are introduced
in Chapter 5. Boundary integral equations for the mixed, threcBlet and the Neumann
boundary value are derived. Unique solvability and est®&br their solutions are pre-
sented. Again, the dependency on the Laplace parameteall involved constants is
stated explicitly.

Moreover, the Galerkin discretization of boundary intégrpations is introduced in Chap-
ter 6. The theoretical framework is developed briefly. Eat#s for the Galerkin dis-
cretization of several boundary integral operators aregd. Furthermore, the discrete
boundary integral equations for the mixed, the Dirichled #le Neumann boundary value
problem are presented. Unique solvability and bounds fersihiutions are discussed.
Error estimates for the unknowns on the boundary as well mghésolution within the
domain are given. Additionally, indirect approaches fag irichlet and the Neumann
boundary value problem are discussed.

The convolution quadrature method is derived in Chapter Forkastimates for the ap-
proximation of operators are stated. A fast method, deesldyy Sauter and Banjai [7],
for the implementation of the convolution quadrature mdtisobriefly discussed. Finally
a Galerkin discretization in space and a convolution guadgapproximation in time are
discussed.

In Chapter 8, the analysis done in the Laplace domain is usebt&n statements in time
domain. The unique solvability for the continuous systerbaindary integral equations
as well as for the fully discretized system of boundary irégquations is discussed .
Finally, error estimates for the approximate solutionsgaven.

Numerical examples are discussed in Chapter 8. For this wedunte also a simple col-
location approach. In the following sections we compare@aderkin approach to the
collocation approach, and the theoretical convergencersghined throughout this work.
First the error in space and afterwards the error in time &eudsed for the mixed, the
Dirichlet and the Neumann boundary value problem.

In the last chapter we draw some conclusions and discuss gpemeguestions.






2 BIOT'S THEORY OF POROUS MATERIALS

In case of fluid infiltrated materials like water saturated, 9l impregnated rocks or air
filled foam, the elastic as well as the viscoelastic dedompf the material shows a rather
crude approximation of wave propagation phenomena. Dua totaraction of the solid
skeleton with the fluid in between and furthermore the payasfithe material, a different
theory is necessary.

In 1941, a theory based on the work of Terzaghi was present8iib[12]. In the follow-
ing years, this theory was extended several times. A cadlectf Biot's papers on porous
materials has been published by Tolstoy [55]. A second théoe theory of porous media
is based on the application of axioms of continuum mechawidsstorical treatment can
be found in the review article by de Boer [19]. In this work wdlwbncentrate on the
linear Biot theory. A review on linear models, analytic saus and numerical methods is
given in [47].

2.1 Governing equations

In Biot’s theory, a fully saturated material is assumed, ae.elastic skeleton with a sta-
tistical distribution of interconnected pores is consiger Introducingv  as the volume

of the interconnected pores, avifl as the volume of the solid, the porosity is denoted by
@=V'/V, whereV =VS+V'. In[13] the balance of momentum in the solid and in the
fluid are described as follows: Foe 1,2, 3 we have

o+ (1-9)fF = (1 @)psif — pa (4 — ) - g (f - )., 2.1)
2
of + ot = oot +pa (U - ) + < (0 - ), (2.2)

whereu® andu® denote the displacement of the solid and of the fluid respslgti Addi-
tionally, f? and fif are the volume forces of the solid and of the interstitialflwvhile ps
andp; are the respective densities. Moreover, the apparent neasstylo, is introduced
to describe the dynamic interaction between the fluid andkieéeton. Note that the Ein-
stein notation is used throughout this work. Finakydenotes the permeability. For an
isotropic and homogeneous elastic solid and for a viscaesstitial fluid the following
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partial stress formulations for the stress tensor of thi@l:ﬂﬂ and for the stress tensor of
the fluid oi‘; are obtained for, j = 1,2, 3,

2
0y = p(u’j+uf) + (/\ + %) URicBij + Quigy iy (2.3)
g = —9pd; = (QUy+ Ry ) 3. (2.4)

The elastic behaviour of the solid is governed by the LamétamtsA and . The con-
stantsQ andR characterize the coupling between the solid and the fluig.t®tal stress is
given as

f
ij = G} +0;j = U(U}j + U5 ) + AUy & — apdij, (2.5)

where

a:cp<l+%> € [0,1]

is Biot’s effective stress coefficient.
The balance of the mixture is obtained by adding the two @laytilances (2.1) and (2.2),
0 j + fi = (1— @)psl + @pry (2.6)
where
fi=(1- @)+ of
is the bulk body force. Inserting the total stress (2.5) th# balance equation (2.6), and
using the density
p = (1—-@)ps+ @ps
and the specific flux
6= o (4 )
results in
pu i+ (A +)us i —api+ fi = pll 4 pr G 2.7)

By using the specific flux| and the fluid stress tensor]f as given in (2.4), from (2.2) we
conclude Darcy’s law

s 1 .1
pr U7+ p (Pf + p_;) Gi+ G+ Pi= fif. (2.8)

In addition, the variation of fluid volume per unit referenadume is introduced as

¢—a+ L. 29)
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The variation of the fluid contert is governed by the mass balance
{ +Gij =0. (2.10)
Inserting (2.9) into (2.10) finally yields

2
auﬁi+%p+qa,i =0. (2.11)

Biot's model results in the three coupled partial differahgquations (2.7), (2.8) and
(2.11), where in addition appropriate initial and boundeoyditions have to be formu-
lated. The system describes seven unknowns, namely tledssfilacement’, the fluxq,
and the pore pressuge

2.2 Theu-p model in the Laplace domain

When assuming vanishing initial conditions, the partialedténtial equations (2.7), (2.8)
and (2.11) can be reformulated by using the Laplace tramsftoon

[ee]

f(s) = £{f(t)} :/f(t)e—stdt

0

with the complex Laplace variabkee C*. By convention we havé (t) = 0 fort < 0.
The Laplace transformation is a linear transformation aadsforms differentiation into
multiplication, resulting in the properties

L{af(t)+bglt)} =al{f(t)} +bL{g(t)} foralla,beC,
LMW} =" L{f(t)} forneN.

The Laplace transformation allows us to eliminate the deftux from equations (2.7),

(2.8) and (2.11). Without the Laplace transformation thimiation is not possible, since
in addition to the specific flux the time derivative of the dfiedlux appears as well.

By using the Laplace transformation we obtain from Darcys (3.8)

1 Pa\ . 1.
pf820i5+5 (pf+£) SQi+EOIi+IO,i =f,
and therefore X
. P K ~
- f' —pi— ps ST 2.12
i SK<pf<p+pa)+<p2<' Pipr u'> (212)
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follows. For the Laplace transform of (2.7) we conclude

MG+ (A + )T — api+ fi = psT+ B <ﬁf —ﬁ,i—Pf32@>,

where ,
p= SK(prZ;j—gDp;HPZ €t (213)
Analogously, the Laplace transform of (2.11) reads
asl + %ZSﬁJr Qﬁfs <ﬁf. —Pii — PfSZUiSji> =0.
Hence we consider the coupled system of partial differeatjaations
(p — Bps)S20® — uAGE — (A + p) graddivi® + (a — B)0p= f — BfT, (2.14)

B

L —ﬂdivf“‘, (2.15)
0fS

o — B)sdivi® —
(a—p) s

. ¢PS._.
Ap+-oP

where the related partial differential operator can betamitis

Do <—HA— (A + ) grad div+(p — Bps)s? (G—B)grad)

. 2
(a — B)sdiv —pifSA‘F%S

(2.16)

Note that
Pg = —ulA— (A + ) graddiv

is related to the system of linear elasticity.

In addition to the partial differential operator (2.16) weea to formulate appropriate
boundary conditions. We consider a bounded Lipschitz dofai R? with the boundary

I = 0Q, where the exterior normal vectoris given almost everywhere. For Dirichlet
boundary conditions we prescribe the solid displaceragand the pore pressufeon a
part of the boundaryp C ' Neumann boundary conditions describe the traction of the
solid displacemerti® and the negative specific fligin normal direction along the bound-
ary on a part of the boundafyy C I withT =T'p Uy andlp NIy = @. The traction is
given as

e =0o-n (2.17)
with the total stress tensar, see (2.5). The negative specific flux in normal direction is
defined as

B

—0 2.18
o1 nP ( )

Vip=—G-n=sBin+



2.2 Theu-p model in the Laplace domain 9

see (2.12). For the functidd = (G%,p)" the mixed boundary value problem of poroelas-
ticity in the Laplace domain is finally given as

P

f in Q,
o  onlp, (2.19)
y1U = gy only,

S G

with the Neumann trace operatat) = (T3, yfﬁ)T.

A rather similar set of equations can be derived by the litle@ory of porous media. The
differences between Biot’s model and the linear theory obpsmedia are studied in [48].
There it is shown that the theories for the compressible castradict each other, due to
problems in matching the respective material constantsnkrpure mathematical point of
view however, both partial differential operators shatera same properties. Therefore,
the mathematical theory developed in the subsequent alaptalso applicable to the
linear theory of porous media.






3 VARIATIONAL FORMULATIONS AND BOUNDARY VALUE
PROBLEMS

3.1 Preliminaries

In this section, some preliminaries from functional anelgse given. The main references
are [26, 38,45,52]. In particular, we introduce severahtiohs and discuss some basic
properties of the Lamé system, see [38,52].

Definition 3.1. Let XY be Hilbert spaces.

* Amapping &,-) : X xY — C is called a sesquilinear form if for allyu, € X, all
vi,Vo €Y andallA € C

a(u1+)\ U2,V1) = a(ul,vl) -|-)\a(u2,v1), (3 1)
a(uy,vi+Ava) = a(ug,vi) +Aalug, Vo). '

* A sesquilinear form is bounded (or continuous) if therestsd constantgsuch that
lau,v)| < ¢ llullx [IvIly (3.2)
forallue X andveY.

» The sesquilinear form(a -) satisfies the inf-sup condition if there exists a constant
y > 0 such that
a(u,v
sup 12UV

vev\{oy  [IVIly

> yllullx forallue X. (3.3)

* The sesquilinear form(a -) is called X-elliptic if there exists a constarits 0 and
a bijective linear operato® : X — Y such that

Rela(u,0u)] > ¢} ||u[|4 forallu e X. (3.4)

From the Riesz representation theorem we deduce that a kesguiform induces an
operator.

11
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Lemma 3.1. [52] For every sesquilinear form@(-,-) : X xY — C there exists a unique
linear and bounded operatar. X — Y* such that

a(u,v) = (Ayv) forallue X,vey,

where(-,-) denotes the duality pairing M xY. On the other hand, each bounded and
linear operatoA: X — Y* induces a sesquilinear form

a(u,v) :=(Auv) forallue X,veY.

Let X,Y be Hilbert spaces, lei(-,-) : X x Y — C be a continuous sesquilinear form and
letl] : Y — C be a continuous linear functional. We consider the absnatilem:

Findu € X such that
a(u,v) =1(v) (3.5)

forallvey.

Theorem 3.2. [26,38,45] For every € Y* the abstract problem (3.5) has a unique solution
u e X with

1
Jullx < v” Iy
if and only if the sesquilinear forra(-, -) satisfies the inf-sup condition (3.3).

Lemma 3.3. (Lax-Milgram) LetX,Y be Hilbert spaces and additionally let the sesquilinear
forma: X xY — C beX-elliptic. Then the variational problem (3.5) has a uniqakison
ue Xforalll € Y* with

1
lullx < Z 1©lx sy IHly- -
C(E';Ll —

Proof. The X-ellipticity estimate (3.4) can be written as

a(u, ©u)|
cillullx <=
uflx

Furthermore we have
Oully < [|O[lx_y llullx

and therefore

i ul <|a(u,@u)|< |a(u,v)|'
1®llx_y X~ [l©uly “venvioy [IVIly

The inf-sup condition (3.3) is consequently fulfilled andhbe equation (3.5) is uniquely
solvable. The estimate for the solution follows directlgrfr Theorem 3.2. O
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Most of the analysis of the partial differential equatiohparoelasticity will be done in the
Laplace domain. To get estimates in the time domain the dkgrey on the Laplace pa-
rameters has to be stated explicitly. This analysis is only possittlee Laplace parameter
sis an element of the half-space

Ct :={seC:Re[g > g > 0}.

This assumption restricts the choice of the time steppinthpotketoA-stable methods, see
Chapter 7 or [34].

We will use the following notation throughout the thesis
o :=min(1,0).
An important estimate is
max(1,Re[s))g < Re[g forallse Cj (3.6)

and similarly
max(1,|s|)o <|s| forallse CJ. (3.7)

To be able to apply the concept of ellipticity, see (3.4) h® system of poroelasticity, we
need to introduce an appropriate bijective operator asvial!

Definition 3.2. Let X, X», X3, X4 be Hilbert spaces ovet and let us consider the product
space
X:X1><X2><X3><X4.

The mappin@®,p : X — X is defined as

Oab = (3.8)

where ab € C. Furthermore we write

@a:= 01 (3.9)

Sobolev spaces

We will consider the setting of a bounded dom&inc R® which is assumed to be Lip-
schitz. We denote it's boundary with= dQ. We will make use of standard results for
Sobolev spaces, see, e. g., [1, 38,45].
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We denote the space of infinitely times differentiable fiored with compact support as
D(Q) :=Cg(Q) C C*(Q). The Sobolev spaces are denoteddyQ) for r € R, see [38].
For vector valued functions the Sobolev spaces are takepaoemtwise.

We denote the norm of a Sobolev space by
HVHr,Q = HVH[Hr(Q)}d forr>0andd e N

for an element € [H'(Q)]9. The dual spaces with respect to the inner product

(f.W)g = [ F(X)-v(x) dx
-]

are denoted bjH "(Q)]9. The norm forf € H—"(Q) is given by

f,v
Il ai= sup ‘Yo

r>0.
oxvenr @ Vil

For a Lipschitz domaif2 the Sobolev spaces on the boundary are denoted'bly) for
r € (0,1), for the definition we refer to [38]. For an elemant [H'(I)]¢ we denote the
norm by

[Uller o= Ul e rype-
Forr € (—1,0) the spacéd'(I") is defined by duality with respect to the inner product

OV = /g(x) -v(X) ds.
r

The norm is denoted by

) g,v
lglri= sup %Vr

re(—1,0)
0£ve[HT ()] IVl

For the definition of Sobolev spaces of higher order, a boynadh a higher regularity is
necessary. For Lipschitz domains, Sobolev spaces withehigigularity are defined with
respect to piecewise smooth boundaries, see [45, 52].

For an open parfg C I' of the boundary”, Sobolev spaces of the ordek [0,1) are
defined by

H'(To) :={u=10r,: UeH(N)},
H'(Mo) :={u=10lr,: Uc H"(I) and sup@ € o}

with the norm
Jullry = inf { Gl : G € H(F) anddjr, = u}
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The spaces for negative order are defined by duality as

[H"(Fo)]* forr>0
[H'(Fg)]* forr > 0.

Definition 3.3. The trace operatoyp for a function ue D(Q) is defined by

You :=ulr.

Theorem 3.4. [38] If Qs a Lipschitz domain and if 2 < r < 3/2, then the trace operator
Yo has a unique extension to a bounded linear operator

Yo 1 H'(Q) = H™Y2(r),
and this extension has a continuous right inverse.

For fixeds € C} an equivalent norm il (Q) is introduced as

1

. 2 2 \2
IVilga = (lgratvizo+[Isvi3q) "

For a vector valued € [H1(Q)]9 the norm is taken component wise. Additionally we
introduce the equivalent norm

1
IVllzq =g IOVl (3.10)

In particular forU = (u,p) " with u € [H%(Q)]3 andp € H(Q) we have

2

1
2 2 2
P = larackilfg + s + | Sarace| +1plGo.
From this we conclude the relations
2
a a 1 E
Il [(up)llyq < T Il (us P}l < Il Pl g o < e I (U, P)lljs,@ < o2 [(up)l1q-
(3.11)
Another useful estimate is o
S
[OU][1q < v |||U||||g|,Q (3.12)

due to
1 _ s
IOy q < p 1OV llig.0 = o Y Il5.q-
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In the time domain we apply the spaces

HH(0, T.H¥(Q)) = {u(t,-) € HX(Q)/[|u(t,") [, o € H"(0,T) andu= 0 fort < 0}.
and

HH(0, T, H (M) ={u(t,-) € H¥(M)| [Ju(t, )|l - € H"(0,T) andu=0 fort < 0}.

An equivalent norm foH(0, T; HX(Q)) is denoted by

T , 3
rkQ = (/ &ter(ta')Hk,Q‘ dt) ; (3.13)

If

0

whereas an equivalent norm foe Hf (0, T;HX(I)) is denoted by

: A\
Illyr = ( J]ar g, e, dt) .

0

Definition 3.4. For a,b € R and se C we abbreviate estimates of the kind
a<cc(s)b

as
a<cy(s)b (3.14)

as long as ¢ > 0 does not depend on the Laplace parameter s.

The Lamé system

Some well known results for the Lamé system will be statedhis $ection. For a more
detailed presentation see, €. g., [38,52]. The operatonedt elasticity is given by

Pe = —uA— (A + p)graddiv.

The operator is considered in a Lipschitz dom@irc R3 with boundaryl” = dQ, where
the outer normal vectan is defined almost everywhere. For the oper&erthere holds
Betti’'s formula

aF(u,v) = (Peu,V)q + (TEU,V);

with the boundary stress operator

Teu:=Adivun+2udu+ punxcurlu onfl, (3.15)
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the sesquilinear form

/ 2ue;j(u)gj (V) + A divudivy] dx,
Q

and the strain tensor 1
€ij (u) = 5 (djui +diuj) .

A non-trivial result, Korn’s second inequality, results eflipticity and coercivity esti-
mates.

Theorem 3.5(Korn’s second inequality)Let Q be a Lipschitz domain, then we have

/a, Jei (@) b+ U3 2 lul2g  forallue Q)

Proof. See [38,41]. n

By adding thdL,(Q)]3-norm to the sesquilinear foraf (-, -), we end up with an equivalent
norm in[H(Q)]3.

Theorem 3.6.For u >0, A > 0 and se C} the following estimates hold for all @
HH(Q)]®

af(uu)+[ull§q 2 (3.16)
2
af(u,u)+ [Isulg.o = ®lullfyq- (3.17)

Proof. Inequality (3.16) follows immediately from Korn’s secomeguality. Furthermore,
by applying estimates (3.16) and (3.7) we end up with

2 2 2
lulllig o = llgradullg o + [Isullg o
2 2
< ullf.q +IIsulo

< cpa® (u,u) + max(L, |s) |Jull3

sf”
o2 lulga

Cz E
< oz 2+ suf3o)

< ¢y |af(u,u) +
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3.2 Strong ellipticity

Rather general approaches for the analysis of boundaryratteguations have been de-
veloped, see, e. g. [26,38,45,52]. We follow the approagies in [38], where strongly
elliptic differential operators are considered.

A general partial differential operatéof second order is given by

3 3 3
=3 > Oi(Adu) + z Ajdju+Au onQcCR?
j=1Kk=1
where the coefficients

Ajk = [ pq} Aj=[abg], A=[ap] 1<p<3andi<q<3
are functions fronf into C3*3, the space of complex:33 matrices. Notice that is in
general vector valued.

Definition 3.5. A second order partial differential operatd? is called uniform strongly
elliptic on Q if

3 3
ZZ [AK()&n] " &in | > cl&|n/?

foraller,EeR3,ne(C3andc>O.

The operator of poroelasticity (2.16) turns out to be sthpegjiptic.
Theorem 3.7.Forse CJ andu >0,2u+A >0,k >0, ¢ > 0, (pa+ @ps) > Othe partial
differential operatorP as given in(2.16)is strongly elliptic.

Proof. The Fourier transform of the main pa? is 730(5), Whereﬁo(f) is the homoge-
neousC***-valued quadratic polynomial

S (MElEP (uN)EE 0

with the 3x 3 identitylz and& = (€1,&) . Thus forn = (n1,n2) ",

n*Po(&)n = (2m)? {u &2 e+ (+A) [ &N+ % !zz|2|nzrz]

and thereforé® is strongly elliptic if and only if

B

>0, 2u+A>0, Re{
H H SPf

|>0
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The last constant is given as

B _ K? _ K@+ 5*¢%(0a + 9PF)
ot @*+SK(Pat PPF) @2+ sK(pat @pr) |2
and therefore the real part is strictly positive under tivegiassumptions. n

3.3 Green’s formula in poroelasticity

Let Q be a Lipschitz domain and latbe the outward unit normal vector &én= 0Q, which

is defined almost everywhere. The componentwise multipdinaf the partial differential
equation (2.14) with the complex adjoint of a test functgrintegration ovef, applying

integration by parts, and summation gives

/[ﬂ_ﬁﬂf]\_" dx:/[(p_ﬁpf>§¢—“@jj — (A + )T + (a = B)Pi] % dx
Q Q

= aF(G8,v) + (p — Bps)S (T°, V) — a (P, divV) g — B (P, V) g — (TEG®— apn,V) .
(3.18)

Recall that tha_,-inner products are defined as

(uvig = [ U6 V9 o

Q
and

(1.9)r = [ 109960 dse
r
When multiplying the partial differential equation (2.15fthe complex adjoint of a test
functiong we obtain accordingly

_/%div?dex:/ (c>r—[3)sdivUS_p£fSAﬁ+(I’%Sﬁ gdx
Q Q
= as(divi®,q)q + Bs(0°,0a)q + pB <Dp,Dq>Q+ﬁs -
B .
_Bs<n ) q> pfs(o"'np,q>r,
(3.19)

Now, by combining (3.18) and (3.19) we conclude Green’s fostula in poroelastic-

T s () O, 0, em
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with the sesquilinear form

ao((0°,P); (v,q)) = a=(T%,v) + (p — Bps)S* (B°, V) — o (P, divV) o — B(OP,V)o
B @’s

+ as{divi®,q)q + Bs(0° 0q)q + R

and with the boundary stress operator

as TelG®—apn Te —an) /g
Vl(ﬁ)— psnas+ Lanp| ~ \psnT Lo (ﬁ) (3.22)

The boundary stress operator (3.22) reflects the dependétiay elastic stress on the pore
pressure, while the flux of the pore pressure depends on spéadement. The boundary
stress operator can be rewritten by using the stress tesser(2.5), the normal vector and
the negative specific flux, see (2.18).

In order to deduce Green’s second formula for the partidgidihtial equations in poro-
elasticity we need to introduce the formally adjoint pdrdidferential operator as

N (—uA—O\ + p) grad div+(p — Bpy ) —(a_—ﬁﬁgrad)
P = — . B s |, (3.23)
—(a—B)div —p—f§A+?

and the related adjoint boundary stress operator

Te asn
= (W B an)' (3.24)

Then, Green'’s first formula for the adjoint partial diffeti@hoperator reads

waniw-((§)2(), (), o

and therefore by equalizing (3.20) and (3.25), we concludee@®s second formula in
poroelasticity,

(2D, D el6) ),

For readability we introduce functions = (G5,p) " andV = (v,q)". Green’s formulae
can therefore be applied to the following setting. We deaoteterior domain by2~ and
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the corresponding exterior domain By := R3\ Q. Green’s first formulae for both the
interior and exterior problems read as

ag:(U,V) = (PU,V)o: F(yfU, )5 V), forallU e [H3(Q)]%V e [HY(QF))*,
(3.27)

ag+(U,V) = <u,75v>Qi T (YU, 7V, forall U e [HL(QF)4V € [HX(Q5))*.
(3.28)

The radiation condition for the exterior problem is embetid®#o the Sobolev space
[H1(Q™)]% For poroelasticity the physically relevant solutionsshexponential decay

as||x|| — o and so the Sobolev spaf@id’(Q*)]* can be used for the formulation of the
relevant variational problem.

The jumps of the traces ovErof the conormal derivatives and the adjoint conormal deriva
tives are denoted by

Ulr=%nU-%U, yUlr=xnU-yU, Wlr=yU-yu.

Additionally, if yjU = y;U we denote it simply bywU. This notation will be used
accordingly fory,U andyU.

Lemma 3.8. Let uc [Lo(R3)]* with u|g+ € [HY(QF)]*. If
Pui“=0 onQ*,
then
(PU.g)r = (U.Py) = (Ul i)r+ (il ow)r  forall g e [DES)), (3.29)
and

ag+(Ulq+,V)+ag-(Ulg V)= (v U.vo V) — (yfU.yg V) forallV e [HY(R3\)]%
(3.30)

3.4 Boundary value problems

With the help of Green’s formulae (3.27) and (3.28) we canyarearelated boundary value
problems. Unique solvability is proven by the Lemma of Lakgvam (Lemma 3.3),
which requires boundedness and ellipticity of the sesugdr form (3.21). Furthermore
the dependency of the ellipticity and boundedness corsstanthe Laplace parametgr
will be studied.
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For readability we use the abbreviatidis= (u, p) " andV = (v,q) " and the operatd®s
as introduced in (3.9). The operat®g is bounded by

S
g

[Osllx_,x <maxl,|s) < —. (3.31)

whereX is defined as in Definition 3.2.

Theorem 3.9. Let the Lamé constanfs > 0 and 4 > 0, the permeabilityc > 0, the solid
and partial densitieps > 0 and p; > 0, the coupling constants Q 0 and R> 0 and the
porosity@ € (0,1). Moreover, let £ Cf. Then we have

Relag(U,0U)] 2 0% || U2

forallU € [HY{(Q))%

Proof. The real part of the sesquilinear form (3.21) with the testfion (su p) is given
by

Refaq((u, p); (su p))] = Re[s|a"(u,u) + [s|”Re[s(p — Bpr)] [lullg.q

¢

_ 1
+Re[(B - B)siuOpla] + - Re| ] 10plEq + % Rels 91 0

Sincea is real valued, the corresponding mixed term vanishes.

For Im[B] = 0 the second mixed part vanishes as well. In this case thamgmgaarts can
be estimated further. We have

ARels] + K; s|?Refs] + Ko Re[s)? + 0?02k Im [g)?
Re[s(p—Bpf)]:P(p e[s 1\;\)2 ij(p jfp,ji]f @*pikIm[s] (3.32)

with

K1 = k(ppa+ @psps(1— @)K (pa+ @pt)),
K2 = ¢?Kppa+ K@3p1 ps(1— @) + p@?K (pa+ @pr).

By using (3.7), the denominator can be estimated by

2
< I

~J

|02+ sk (pa+ 0p1) | (3.33)

with the notation as introduced in Definition 3.4. Thus weéhav

s*Re[s(p— Bps)] 2 a?Rels]|s”.
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Furthermore we have

2 2
iRe{g} _ K@P(¢?+K?Re[g (pa-+ 9p1)) (3.34)
pr LS | @2 + K (pa+ @pt) |

and therefore

2
1R [E} >Z Rze[‘c’].
Pf S E

Finally we end up with the estimate

ao((u, p); (su p))

> E 2 2 12, Re[sa’ 2 2
Z Re[s]a~(u,u) + o”Refs]|s|"[[ullg o + 52 lgradpllpq + Rels || pllg.q -

Korn’s second inequality, or more precisely estimate (Bylélds the desired result. These
estimates complete the proof for the caséfimn= 0.

For Im[] # 0 we can estimate the mixed part further by
Re| (B~ B)s(u,0p)o| = ~2im[B]lIs| TPl Iuloq
and we end up with
@

Relaq((u, p); (su p))] > Re[s|a"(u,u) + [s|”Re[s(p — Bpr)] [lullg.q + & Reld| Pl5a

1 [B
~2lm[B]]is|3ploa uloq+ 5-Re| 2] 10pI3

~ReglaE(u.u)+ (1s7Re[stp ~ Bpr)] - 25 Im B8 ) [l

2
+ (8\/Ilm[/3]| S10pIRq— 3 /MBI ||u||%,Q)

1 2
+ (- Re| ] - s2imigiiis) 101G + % Rets 1Pl
> Refs aF(u.u)+ ([s7Re[s(p - Bp1)] — 25 Im B8 [l
1 2
+ (5 Re| 2] - 2ImiplIs ) 1Pl + % Rels Pl
for all € > 0. Due to Res| > 0 it is sufficient to ensure
S2Re[s(p ~ Bor)] — 5 Im[B]/Is >0, (3.35)
1 B 2
ERe{g} —&“[Im[B]||s| >0 (3.36)
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for an appropriately chosen In particular,e? needs to satisfy the inclusion

m[B]lls , 1 Relf]
Is”Re[s(p — Bpt)] pr [Im[B][ s

(3.37)

Hence we have to ensure

1
im[B]2 < 2-Re| ¢ | Refs(p - Bpr)].
Indeed, by using

@*k2p?|Im[g|?
| 9P+ sk(pa+ @ps)[*

ImB][?

and (3.32), (3.34) we obtain

ps Im[B]?
el - 5o e[

@Pk2p? |Im [s)|°
[0@*Rels] + Ky |s°Re[s| + Kz Re[s)* + ¢*p?k Im [s]* ]k 92(9? + k2 Rels] (pa+ @pr))
. @®k2p?[Im s
(K1Re[s + @Bp?k2) |Im [s]|* + @®pZk* |Im []|* Re[s] (pa + @pr)

@
= @+ K7Re[s (pat 9p1) !

(3.38)
Thus we can chose
B
,_1(  imiglsi 1 Rel§]
£°== 5 — ,
2\ |s?Re[s(p—Bps)] Pt lim[s][]s]
which obviously fulfills the inclusion (3.37). By using thetiesate (3.38),
m(B)%s? ¢ 1..[B
2 — @+ K?Re[s| (pa+ @pr) s]’
s|“Re[s(p — Bps)] Pa+ @ps) Pt
we end up with an estimate for the term (3.36)
1 /3} ) 11 {/3} 11 2 [/3]
—Re|[—=| —&7|Im s>-—Re|=| —=— Re|—|.
pf {S m 1l |_2Pf s] 2pr¢?+k2Re[d(pat@ps) |S
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This term can be simplified to

1

2 (1_ ¢2+K2Re§(pa+ com)) ERe[g]
_ 1 K’Rels|(pa—p1) K@@+ K*Rels| (Pa+ @pr1))
2¢?+k?Rels| (pa+ 9pr) |92+ sK(pa+ 91) |
_ 1k¢?(k’Rels| (pa+ ¢p1))
|92+ sk(pat @pr)]”

We havex3¢(pa+ @ps) > 0 and together with the estimate (3.33) this results in

1k¢(k*Rels| (pa+@p1)) _ Re[s g
2 |@+sklpatopr) ISP
Again, using (3.38), i. e.

o ImiB)Is? i
Re[£] ~ ¢+ KRels(Pat9pr)

[s/”Re[s(p — Bpr)]
yields an estimate for the term (3.35)

SPRe[s(p~Bon)] — 5 Im(B]l]s
1 a
=2 (1_ ¢+ K2Re[g] (0a + ¢p1)

The right hand side term is given as

¢’
s*Re[s(o - Bpr)] (1— %+ k2Re[s| (pa+ cppf)>

_ Is”® (p@*Rels] +Ki[s”Re[s + KoRe[s” + ¢*pfk Im[s®)  k2Re[s] (pa-+ )
B |92+ sk (pa+ 9pr) | @+ k2Rels (pa+ @ps)

) 157Re[s(p — 1)

with

K1 = K(ppa+ @psps(1— @)K (pa+ @p1)),
K2 = ¢’k ppa—+ K@>ps ps(1— @) + p@PK (Pa+ @pr).

Estimate (3.33) and the estimaie® Re[s| + K, Re[s]* + @*p?kIm [5)? > 0 yield

@ K1 |s|” Re[s]” k2(p0a+ @ps ) 02
" Re{s(p - por)] (1_¢2+K2Re[8] (pa+<ppf)) S (@*+Kk2Re[s| (pa+ @pt))
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Moreover we havé;k?(pa + @ps) > 0 and

@+ K°Rels] (Pa+ @pr) < max(1,Re[s]) (¢ + k*(Pa+ @pr) S ——

Re[g
o

Combining these estimates with estimate (3.33) yields

K1|s/” Res k?(pa+ @p1)0?

2 53
(@1 K2Re[d (pat opy)) ~ Rellls"e

Hence we end up with the estimate

ag((u, p); (sup))

> E 3 2.2, Rels|g? 2 2
2 Re[ga™(u,u) + o”Rels][s|[Jullg o + 52 lgradpl|o.q + Re[s] [ pllo.q -

Again, Korn’s second inequality, or more precisely esten@.17), yields the desired re-
sult. O

Corollary 3.10. The sesquilinear forn8.21)is bounded, i. e.

1

a(U.V) S S lIVIllsellVilg o

forallU € [HY(Q)]*and Ve [HY(Q))%
Proof. The sesquilinear form is given as in (3.21),

aQ((u7 p)' (Vv q)) = aE(u,v) + (p - Bpf)sz <u7V>Q —-a <p7diVV>Q - B <Dp=V>Q
B ¢’s

+as{divu,q)q + Bs{u,g)q + st,<Dp’ Hag + -5 (P.A)g-
All constants in the sesquilinear form have to be estimatéslhave

@ +sK[(1— @)psps @+ (1— @) pspa+ PP1 Pa]
@° + SK(Pa+ @ps)

and with the help of estimate (3.7) we conclude

o —Bps| =

1
’p_BPf’ SE

Moreover we have

B = P1SP?K
SK(pt @+ pa) + @2
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and therefore
<
E

‘
Spf

1
00t 4 [sVilo.q [ISUlo.q + 1EVIlo.q IPlloq

laa((u, p); (% Q)| < [[EVllgq [IOU

1
+[IsMlo.q gDp + [Isdlo.q [ Bullo.q + [[Cdllo,q Isulo.o
0,0
1
+[/0dlloq gDp + [Isdlo.q Il Pllo.o
00
1 1
< = V. u =
S 5 llwalliga (lullsa+ 1l gpllsa)
1
< 2 Ml @ p -

A useful estimate as stated in [3] is given by the followingfea.

Lemma 3.11. For any functionp € HY/2(I") and se C} there exists an extension
ue HY(Q) such that

—Au+su=0 inQ,
u=¢@ onl

and
llulllis.o < max(1, |s|)*/2 ll1/2r -

Let £ denote the continuous right inverse of the trggas stated in Theorem 3.4. For the
extensiore ¢ of the boundary daturg an estimate of the kind

lulllis.o < Isllell1/2r

is straight forward. However, Lemma 3.11 defines an extensibich has an optimal
bound with respect tg, see [31].

The ellipticity estimate (Theorem 3.9), the boundednesthefsesquilinear form (3.21)
(Corollary 3.10) and the extension operator as defined in La®uhl give us a bound for
the solution of the mixed boundary value problem (2.19).
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Theorem 3.12.The mixed boundary value problem
PU=f in Q,
wU=9gp onlp,
=gy only

has a unique solution & [H1(Q)]* satisfying

S|

|S|3/2
oab 5 190112, -

~ < JL D
|||U|||‘s|7Qf\J O_glg/

(I 1-s0+ lonl_1/zry ) +

Proof. The respective variational formulation of the boundaryegbroblem is given as:
FindU € [H1(Q)]* with yyU = gp onTp such that
ag(U,V) = (f,V)q + (9N, YoV, (3.39)
forallV € [H(Q,Ip)]*.

First we extend the functiogp € [HY/2(I'p)]* to a functiongp € [HY/2(T)]* such that
dp = gpo onlp. Furthermore, the extension operator as defined in LemniaiSised to
define the functioty € [H1(Q)]* such that

Uglr = 0b

Next we split up the solutiok) into U = Ug + Ug with Ug € [H3(Q,Tp)]* to be found.
Insertion into (3.39) yields a variational problem:

FindUp € [H3(Q,p))*
an(Uo,V) = (f,V)q + (gn, V) —aa(Ug,V)
forall Vv in [H3(Q,p)]*.
Utilizing Corollary 3.10 and Theorem 3.9 results in
a°0 | Uoll?, , < Refaa(Uo, OsUol
S1(F,Uo)gl + | (on, Osytlo)r, | + an (Ug, ©5Uo) |

S|
S (I 2.0+ llon ] -1/2r, ) 1@Uoll g+ 1ol g o Vgl g o
Estimate (3.12) can be applied {@sUo||, o resulting in

S|

1ol g S s (Ifl-s.0+ lonl-y/zr, + 1Uglllg o) -
Applying Lemma 3.11 to estimate the norm of the functigyresults in the given state-

ment. ]
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It is well known that the conormal derivative, as defined ir223, of a solution of a ho-
moegeneous boundary value problem is bounded. An estimaigan in the following
lemma.

Lemma 3.13. LetU € [H1(Q)]* such thatPU = 0. Then

/2
ViUl_1/20 S o3z Vllgq-

Proof. Applying Green’s first formula and Corollary 3.10 results in

iy,
MUl or = sup '<|1—"’>r'
ozgemvzrys 19lly2r
wp  [0(U.E0)

ozgenzrp 1@llyar
L1V Il 5.0 €0l 5,0

0£@e[H/2(I))4 1@ll1/2r

Y

where€ is an extension of into [H1(Q)]?, as described in Lemma 3.11 componentwise.
Thus we have

max(1, |s|)*/2
AU zr S =5 — IVl 0
which together with the estimate (3.7) concludes the proof. ]

The estimate as given in Lemma 3.13 can be extended to thegtithp conormal deriva-
tive.

Corollary 3.14. LetU € [HY(Q~uQ*)]* such thatPU = 0in Q- UQ™. Then
|S|1/2
1Yl Z1or S oz MY Nl g -
The adjoint conormal derivative as given in (3.24) fulfillsieilar bound.
Lemma 3.15. Given Ve [H1(Q~ UQ™)]* such thatPV = 0in Q- UQ*. Then

_ |S|1/2
IVl 120 S 9572 IV lljs@ -
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Proof. Applying Green'’s first formula for the adjoint problem and Gltary 3.10 results
in

VAV Z1/2r = sup [V, o)r|
0£pe[HY/2(M))4 ll1/2r
sup laa(€@.V)|

ozgerzrys 19lly2r

sup zlleellg o Vilge
0£pe[HY/2(M))4 lll1/2,r

The estimate

1
l20llg.0 < 5 ll€0llsa

and Lemma 3.11 conclude the proof.



4 SURFACE POTENTIALS AND BOUNDARY INTEGRAL
OPERATORS

To describe solutions of the partial differential equasi¢®.14) and (2.15) we use appro-
priate surface potentials which are based on the use ofteddiandamental solution. We
proceed as in [38], see also [26, 52].

4.1 Fundamental solution

A fundamental solution of the partial differential operafd as defined in (2.16) is given
by, see, e.g., [46],

U'E(X y) R(xy) 4 4
Gs(x,y)= |, e C* 4.1
00) [Uj«x,y) PP(X.y) 4.
where
1 a2 —a? a? —qa?
U_E _ 4 2 —alr R 4 1 —0aor . 2_R — a3l
i (X,Y) 4 (p— Bpr )2 10{12 022 —0’1 azze +(8jo3 — Rs)e
fori, ) =1,2,3 with
g2 1| ¢?$p;  S(p—Bpi)  Spi(a—P)?
127~ 2 BR A +2u B(A +2u)
N <¢282pf+52(p—l3pf) SZPf(“_B)2)2_4S4(P2Pf(p_ﬁpf) 4.2)
BR A+2u B(A +2u) BR(A +2u) '
and
a2 S=Bpt) 2 S(P—PBpr)
3 “ ) 4 )\+2“ bl
as well as
3rir 3r rj
Re= r2 5J r aj+a|%r,ir7ja r=|x-yl.

31
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Moreover, there holds

s(a —B)psr

Pi(x,y) = ’
109Y) = 2B + 2u)(02 — a2)

Uj(x,y) =sR(xy),

SPt
PP(x,y) =

1 1
(al+ F> g ' — (02+ F) eazr} )

[(af — aZ)e™*" — (a5 — aF)e™*']

for j =1,...,3. The parameters represent the three waves occurringaelasticity.a; »
represent the fast and slow compressional wavesignide shear wave. If the property

Re[ai] >0 fori=1,...,3. (4.3)
is fulfilled, the fundamental solutioBs(X,y) decays exponentially as= [x—y| — oo.
For a3 this property follows from an appropriate choice of all paeders involved.

Lemma4.1.Letse Cf andp e (0,1),p >0, p; >0, pa >0, ps > 0andk > 0, then
Refaz] >0

andas(s) is an analytic function of s.

Proof. Sinceas is defined as a square root of a complex value, we simply takedhare

root with the real part greater or equal to zero. This apgrdais if the real part is equal
to zero. However if ImMfa3] # 0 we automatically get Rers] # 0 and thus Réxs] > 0.

Remember
a? = Sz(P—BPf)_
u
We have )
0—Bpr = 21+sc2 _ C1C3‘|—SCZC3+SC4012+ S| CaCq (4.4)
315G |C3 + s
with

C1=p¢% Co=KPPa+KPPrps(1— ),
C3=¢?,  Ca=K(Pa+t PPF).

Settings = a-+ bi we have Injs| = b, Im[s?] = 2aband Im[s®] = b(3a? — b?). Inserting
these definitions results in

Im [C]_Cgsz +s3cocs+ |s? secy + |sf? 520204}

= b [a32¢4C; + b?a2C,C4 + 82(3C2C3 + CaC1) + b?(CaC1 — CoC3) + 82¢1C5)
= b [b?(CaC1 — C2C3 + 82CoCs) + a32C4C4a%(3C2C3 + C4C1) -+ 82C1 Cg)
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for the enumerator of (4.4). We can further estimate

C4C1 — C2C3 = —(KPPa+ KPPEPs(1— 9)) 9% + p@°K (Pa+ PPF)
= —@°KPPa— O°KPrPs(1— @) + P@PK Pa+ 9P K (ps(1— @) + PF @)
= ¢*pék
and since; > 0 fori=1,...,4 anda= Re[g > 0 we conclude that the imaginary part of
s?(p — Bps) can only be zero if the imaginary part®is zero. If Im[s| = 0, the expression

or32 is strictly positive sincep — Bps is strictly positive. Therefore Res] can always be
chosen strictly positive. ]

For the other two parameters we have to postulate the pyo{@e8). Additionallya; # a»
has to be satisfied.

Assumption 4.1. We assum®e[a;] > 0 andRe[a] > 0. Furthermore we assume

Re[((pzszpf L Slo—ppr) +s?m(a—/3>2>2_4s4cp2pf<p—ﬁm

BR A+2u B(A+2u) BR(A +2p) ] >0 (4.5)

- (‘stzpf (o — Bpr) szpf(G—B)z)z_AS“(pzpf(p—Bpf)
BR A+2u B(A+2u) © BR(A+2u)

Remark 4.1. Letse Cf andg € (0,1), p >0, p; > 0, pa > 0, ps > 0andk > 0, then the
fundamental solution as defined(#.1)is an analytic function with respect to s.

Proof. The square root functiogysis analytic forse C\ {s€ R|s < 0}. Sincef # 0 for
se Cj, assumption (4.5) guarantees thatanda, are analytic. With the help of the same
argument the proof of Lemma 4.1 guarantees thanda, are analytic.

Furthermores®(p — Bps) # 0 for s€ C& and due to assumption (4.6} # a? and there-
fore the fundamental solution itself is analytic with respi® s. O

The singular behaviour of the fundamental solution as giwef@.1) is well known. We
have

Ui'jz(x,y) = m {rVirJ +(3—5v)J; }%—FO(].), Ui(x,y) = O(1),
PP(xy) = gag + O, R(xy) =O(L).
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It turns out that the singularity of the bIod:JgJE(x, y) is the singularity of the fundamental
solution of linear elastostatics, wherd¥x, y) has the same singularity as the fundamen-
tal solution of the Laplace operator. In the remainder offtinelamental solution (4.1) no
further singularities appeatr.

We define the operator, see (3.8)
Remark 4.2. UF and P° are symmetric with respect to x and y, thuS,y) = UE(y,x)
and PP(x,y) = Plp(y, X), whereas Pand U; are skew symmetric and thugRy) = —R (Y, X)

and Uj(x,y) = —Uj(y,x). Finally, the transposed of the fundamental solution careke
pressed as

Gs(y,X) T = AGs(x,y)A L.

Remark 4.3. By using the operaton one can rewrite the conormal derivative of the
adjoint problem as

Vi=ApA L

4.2 Boundary integral operators

By using the fundamental solutidBs(x,y) we introduce the Newton potential

(N(S) F)(x) = /Gs(x,y)f(y) dy forxe RS
Q
Since the underlying partial differential operaf@ras given in (2.16) is a strongly elliptic
operator with constant coefficients, see (3.7), we conglsele, e.g. [26, 38],
N(s): [HY(R3)]* = [HTY(R3* forallse C,r e R.

In addition to the Newton potenti&l(s) we introduce the single and double layer poten-
tials

SL(SIWI(X) == [ Gs(x y)w(y) dsy.
r

DL(9(@l(x) = [ [AGi(xY))" @(y) dsy
r
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for x e R3\T, whergG;(x, y) is the fundamental solution of the formally adjoint partial
differential operatorP, see (3.23). The surface potentials and related traced thi
mapping properties, see [38],

ViSL(s): [H YA(M)]* — [HY2(M)]%, yDL(s): [HY*(M)]* — [H2(M))*
and satisfy the jump relations

[SL(S)¥lr =0, [viSL(S)Y]r=—y, [DL(s)@|r=¢, [ynDL(s) ¢ =0. (4.6)

Since the partial differential operat®ris not self—adjoint, the resulting boundary integral
operators are not self—-adjoint. For a complete overvievherptoperties and the different

relations of the boundary integral operators and therei@gdjon such a general situation,

see, e.g., [38]. The boundary integral operators for theiadpperatorP are defined by

S0 = [ GLYX@) dyy forxe BT,
r

BL(9)W)() == [ [nGs(yX))" $(y) dyy forxe RO\
r

The following duality relations are a direct consequencthefdefinition of the boundary
integral operators.

Theorem 4.2. For @1, @ € [H~Y2(I")]* we have

(Y SL(9) @1, @2)r = (@1, 10SL(S) @)

In addition, fory, @2 € [HY/2(I")]* there holds
<(pl7 yat DL(S) Lljl>r = <Ay/]:_t éT_(S) @, 4’1>r )
(@ ¥ DL dn) = (15" SL(S) @1, )
(Y1, 1DL(s) Yr)r <71|i(3)¢1,¢’2>r~

Next we introduce the standard boundary integral operaitoyzarticular the single layer
integral operator
V() == W SL(s) : [H V(M) — [HY2(M))%, (4.7)
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the single layer integral operator of the adjoint problem
V(s) == SL(s): [H V2D — HY2(M))",
the hyper-singular boundary integral operator
D(s) := —y1DL(s) : [HY2(M)]* — [H~Y3()]*, (4.8)
the double layer integral operators

1

K(s) := 5 (yg DL(S)+y; DL(9)) : [HY2(M)]* — [HY2(M))4, (4.9)

K(s) :=

NI NI

(¥ PL(9+¥ DL(9)) : HY3(N)]* = HYAN)Y,  (4.10)

and its adjoint

K(s)* = % (v SL(S)+y; SL(s)) : [HH2(M))* — [HY2(M))“.

Furthermore we conclude the following expressions foritaeds and conormal derivatives
of the single and double layer potentials, i.e.,

0SLE Y =V(SY, Vi SL(S) W =0+ K(9' W,
K DLS)9=%30+KS9,  nDL(9 o= D)9,
0SL(S) Y=V (9" W, VESLO Y= T 5w +K(S',
K OLS9=450+K(S)e,  WDL(9p=-D(9"0

for ¢ € [H1/2(I")]* andg € [HY?(I)]* almost everywhere.

Lemma 4.3. [38] For the boundary integral operators one has the fotigwelations

V(s)D(s) = %I —K(s)%, V()K(s)* =K(s)V(9),
D(s)K(s) =K(s)*D(s), D(s)V(s) = %I — (K(9))2.

Moreover, the traces of the Newton potenbfk) imply the volume integral operators

N(8)o := JoN(S) : [H™H(Q)* = [HY()]%,
N(8); :=1aN(s) : [H™H(Q)* = [H™YZ(M))".
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4.3 On symmetry and ellipticity

Boundary integral operators related to partial differdmguations with complex parame-
ters are not self—adjoint, see for example the boundargrateperators for the Helmholtz
equation in [31]. The single layer integral operator andhyager-singular operator for the
Helmholtz equation are however symmetric.

The original partial differential operator (2.16) for petasticity is not symmetric, we
therefore cannot expect symmetry for those integral opesaOn the other hand, the par-
tial differential operator has a block skew-symmetric stinwe. This structure is preserved
by the boundary integral operators.

Lemma 4.4. For the boundary integral operators of poroelasticity asided in(4.7), (4.8)
and (4.9)there hold the following relations:

V(s)T =AV(s)A L,
K(s)" = AK(s)*A7L,
D(s)" =A"ID(s)A

Proof. The traces of the two single layer integral operator (4.€)aatjoint to each other,
I e.
V(99.4)r = (@V(9w)  forallg.ye H M)

By using Remark 4.2, the single layer potential of the adjorobfem can be written as
SL(s) = ASL(s)A— 1.

When we consider the Dirichlet traces the first relation f@sommediately. For the dou-
ble layer potential we apply Remark 4.2 and Remark 4.3, resgpilti

DL(s) 9= [ [11Gs (xy)] o) dsy
= [ [AATIAGsy A gly) ds,

[AViGs(y, N1 " a(y) ds,

A yiGs(y,X)] " Ag(y) ds,

I

A~IDL(s)A@
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and thus

K(9)9,4)r = (A R(SAg.0) = (9.AK(s) A1) .

Furthermore we have

D(s) = aDL(s) = pA IDL(S)A = A1y DL(s) = A 'D(s)A

and due td(s)* = D(s) the last relation follows immediately. O

Lemma 4.4 can be used to write the single layer integral eapeeand the hyper-singular
operator in the following form.

Corollary 4.5. The single layer boundary integral operator can be written as

(Vi) Va9
V(s) = (_s\l/llz(s)T VZ(S))

with the symmetric operators
Vi(s) (H Y20 — HY#(D)P,
Voo(s): HY2(r) = HYI),
and with the operator

Vio(s) tHTY3(M)  —  [HY3(M)2.

Proof. If we split the single layer boundary integral operator iftor operators

(Vll(s) V12(S)>

V= Vos(s) Voals)

and apply Lemma 4.4, the transposed of the operator is g&ven a

<V11(S) V12(3))T _ <\/—_S (5)) (\/T/S

Vii(s) Va2
V21(S) V22(S) V22(S)

vws) (s

_ < V11(9) -s \/12(s)>
—1/8 \él(S) V22(S) )

)

We end up with the relationg 1(s) =V11(S) ', Va2(S) = Vaa(s) T andVia(s) = —1/s\by(s) "
as stated. O
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Corollary 4.6. The hyper-singular operator can be written as

_( Dau(s) D19
Dls) = (—%Dlz(s)T D22(5)>

with the symmetric operators

Dui(s) :HYAM)]P — [H Y1),
Do(s) : HY2(M)  —  H7YAT),

and with the operator

D1x(s): HY2(r) — [HY?(M)3

Proof. The proof is done in the same way as the proof of Corollary 4.5. ]

Corollary 4.7. The double layer integral operator is given as

with the operators

Kua(s) (HY2(M)? - HYA)P,
Kao(s) | HYA(M)  —  HYAD),
Kio(s): HY2(r)  — [HYA(N)3,
Koi(s): [HY2(M)]® —  HYA(M).

Then the adjoint of the adjoint double layer integral operatan be written as

}Z(S)* _ ( Kll(s)T _SK21(S)T) )

—%K12(3>T K22<S)T

Proof. Repeating the arguments of Corollary 4.5 results in the sttém m

Remark 4.4. Notice that the sum of the sesquilinear for(81)for Q* andQ~ can be
equi-valently written as

Re[aRa\r(u@Su)] = Re[ag+ (U, Osu)] + Re[ag+ (U, OsU)] .
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Theorem 4.8. The single layer integral operator (¢) : [H=Y2(")]* — [HY/2(")]* as de-
fined in(4.7)is [H—l/z(r)]“-elliptic, i e.

Re[(y,0V(9Y)r] 2 |S| HLIJH yor forallyeH VA" (4.11)

Therefore \(s) is invertible with

El
HV 1||[H1/2 )4 [H-1/2(r))4 S O_Qg- (4.12)

Proof. We defineu = SL(s) ¢ which fulfills Pu= 0in R3\ I and thus we have

Re[(y, 0V (s)¥)r] = — Re([u, WO (S)@);]  (Jump conditions (4.6))
=Re aRs\r(u Osu)] (Green’s first formula (3.30))

200 |HU|||2‘R3\r (Theorem 3.9)
8
. 0g
T [ pys (Corollary 3.14)

To prove estimate (4.12) we insept=V (s)~1p € [HY/2(I")]* into the ellipticity estimate
(4.11), which results in

Kl

HV(S)_l(PHfl/zr ~ o8

Re[(y, 0V (9)Y)r]

s . :
‘ | 58 19s@ll/2r V() ¢l ;o  (Duality estimate)

|S| o0 1@lajar IV 0l _ypr - (Estimate (3.31))

]

Proposition 4.9. For ¢ € [H=Y2(I)]*, @ € [HY2(I")]* and se C} the following estimates
hold:

ISI

R [y (4.13)

3/2
[SLSV(S) 0]y oy < %zau(pulm, (419

Sk
v SLO W10 S 32 Il 121 - (4.15)
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Proof. Insertingu = SL(s)  into the ellipticity estimate (Theorem 3.9) yields
0 o H‘ U‘H‘ ‘ R3\r ~ aR3\r(u, esl,l) .

We apply the jump condition (4.6) of the single layer potaintind Green’s first formula
(3.18) and end up with

o[ ullZ o S 100N (S (Wlyor-  (4.16)
With the help of estimate (3.12) we get
[0Sl ar <10ty poyr < 2 vl
and therefore we have 9
5 S
00 Ul g S g IWl-yzar (4.17)
The norm equivalence (3.11) yields
ISI _ I8P
Il S gz 10l gy S gag 19]-a/2r

or estimate (4.13).

To show the estimate (4.14) we start from estimate (4.17)papdly Corollary 3.14 result-
ing in
Vo SL(s It o 12
H L:UH —1/21 N 0_3/2 ||| |||‘s‘ R?’\l— N 0_13/20_ HLAUH /2 -

Finally, to prove estimate (4.14), we reconsider estiméteq)
a®a|| U||||S| gy < W12 1OV (9Wlla2r

and apply Corollary 3.14, the bound®§ (3.31) and introducg =V (s) 1@ e [HY/2(I")]4,
which results in

‘S|3/2
U o ||| u”||5| R3\T N 5/2 |H |||\S\ R3\I ||(p||1/2
The norm equivalence (3.11) yields

) s
HSL(S)V<S) (P“17R3\r:’|u||l,R3\FN 15/2 ||(pH1/2
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Remark 4.5. Due to Remark 4.2 the fundamental solution and thus the opeY4s)
can be symmetrised by applying the opera@ors. Theorem 4.8 shows that the operator
OV (s) is [HY?(I)]*-elliptic.

Real valued block skew-symmetric systems can be transféonaesymmetric and positive
definite system by a Bramble-Pasciak transformation, sép For complex valued block
skew-symmetric systems the theory is however incomplete.

Theorem 4.10.Let s€ C/, then the hyper-singular integral operator() : [HY/2(I")]* —
[H=Y/2(1)]* as defined ir4.8)is [HY/2(I")]*-elliptic, i. e.

7

Re[(D(s)9,©¢)r] 2 | I'd ||<PH1/zr forall p € [HY2(M))*. (4.18)

Therefore Ds) is invertible satisfying

sf?

HD(S)le[Hfl/z(r)}4%[H1/2(r)]4 S -y (4.19)

Proof. We start withu = — DL (s) ¢, which fulfills Pu = 0 in R3\ I', and which can be
estimated in the following way:

Re[(D(s) @, 0s¢)-] = Re[— (y1u, [u])[] (Jump conditions (4.6))
= Re[aks\r(u Ou)] Green'’s first formula (3.18)

> a°a ||| ul||% (Ellipticity (Theorem 3.9))  (4.20)

|sl.R3\F

s
= 2 lluli2

| 2 ISR (Norm equivalence (3.11))

The trace theorem (Theorem 3.4) and the jump condition$ ¢4u6 be applied to estimate

[Ullyravr = Ullrll12r = 1@ll1/2r
which results in the ellipticity estimate (4.18) for the leygsingular operator.

Estimate (4.19) for the norm of the inverse hyper-singulaarator can be calculated by
using (4.20), which results in

%0 Ul . < Re{(D(S)9.050)y]
SIIDSl 1721 [1©s@ll1/2r (Duality estimate)
SIIDSI 121 [1Os[Ullr ll/2,r (Jump conditions (4.6))

S .
S % ID(S)@ll_a/2r U1 ps\r (Thm. 3.4, estimate (3.31))

S .
< S 1Dl yar llull gz, (Norm equivalence (3.11)
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which yields
S
< 2 D0l yar-

The norm equivalence (3.11) and the trace theorem (Theo#ne@nclude the proof. [

Proposition 4.11.Forse C}, g e [HY2(IN)]* andy € [H~Y/2(I")]* the following inequal-
ities hold:

llull g g

| |5/2
IDL(S) @1 ra\r < o192g @ll1/2r (4.21)
IDL(s)D() " *w]l, < I il (4.22)
2
IHDLS) 0l 172 < ('IT'G 19l/2r- (4.23
Proof. Setttingu = DL(s) @ results in
a°a ||l ull§ Srar S |2R3\r (U, Osu) (Theorem 3.9)
= [(yau, [OsU]|r)r | (Green'’s first formula (3.18))
S10s@ll1/or Ivaull —1/2r (Duality, jump conditions (4.6))
|S‘3/2
N 552 (Corollary 3.14, Estimate (3.31))

Finally, with estimate (3.11) we have

s
Hu”l,]R3\r 5 |||u||||§|7R3\r 5 0_19/20_ “(le/ZI_’

which concludes the estimate (4.21).

To show estimate (4.22) we start with

oo || ulli®

Is \]R{?’\r ~ H ( )§0H71/2,r

and introducep = D(s) "1y € [H 1/2(r)]4, which in addition to the trace theorem (Theorem
3.4) and the estimate (3.12) leads to

Is
Ul o 5 o 10l g 19132

Finally, to prove estimate (4.23) we apply Corollary 3.14
| |1/2

S
ML 0l 127 S Sz Ul oy < L

% 10ll1/2r -
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Proposition 4.12.For se CJ, ¢ € [HY2(M)]* andy € [H~Y2(I")]* the following inequal-
ities hold:

o5/2
K0l < 510z [l r

HK(s)cpH < % ll1/2r

, 5°/2
IK(S) WIS Sigrzg 19l-a/2r

corul < L7 1
Koo w] £ S I19-sar-

Proof. The first two estimates for the double layer integral opexki@) andK (s)* follow
immediately from the estimates (4.21) and (4.15). The lastdperators are the adjoint
operators and thus fulfill the same bounds. n

4.4 The Steklov—Poincaré operator

Additionally we introduce the interior and exterior Stekl®oincaré operator'3s),

S (s)=V(s)? (él +K(s)) =D(s) + @ +K(s>*)V(s>1 (%I +K(s)) ,

_S*(s) =V(s) L (%I _ K(s)) _ D(9) + (%I - K(s)*) V(s) L (%I _ K(s))

and its inverse, the Poincaré—Steklov operatofs]

T (s)=D(s) ! (EI - K(s)*) =V(s)+ (%I - K(s)) D(s)~? (EI - K(s)*) :
~TH(s)=D(s)? (%I +K(s)*) —V(s) + (; +K(s)> D(s) ! (%I +K(s)*) :

The Steklov—Poincaré operator is equivalent to the Dietttd Neumann map for homo-
geneous problems. Similarly the Poincaré—Steklov opemquivalent to the Neumann
to Dirichlet map for homogeneous problems. These two opesaire very popular in
domain decomposition methods, see, e. g., [51].
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Proposition 4.13. For the operator $(s) and T (s) we have the ellipticity estimates

Re[(S"(9¢,0s9)] 2 == Hcol\l/zr forall g e [HY2(M))*,

\ \
Re[(Osy, T*(9)¢)(] 2 —,T, Wl or forall geHY2())4,

and the bounds

E

H'Ii(s) ||[H*1/2(F)]4%[H1/2(r)]4 S E, (4.24)
£

Hsi ||[H1/2 M4—H-Y2(r )]45 %0 (4.25)

forallse C{.

Proof. We defineu™ € [H1(Q*)]* as the solution ofPu* = 0inQ*, y;u=g@onT.
Inserting this function into Green’s first formula (3.18glds

Re[(S™(s),0s9) | = Re[(y1u, Osyou)r] = Refag: (U, Osu)] .

The ellipticity estimate in Theorem 3.9 for the sesquilinfaim, estimate (3.11) and the
trace theorem (Theorem 3.4) result in

Re[(S(9).0s0),] 2 0% | H\HQMHZ 191 21

and thus the ellipticity estimate for the Steklov—Poinagpérator is obtained.

Furthermore we have
oo Ul . S [(S5(9)9.050)c | S SS9 /o [Osuil o r
and using the estimate (3.12) we end up with
Il - % oo S5y
The Dirichlet trace on the boundary can be estimated by

'
1911372 < Iulg= < 21l ullg g

Introducingg = T*(s)y € [HY/2(I")]* concludes the proof for estimate (4.24).
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For the ellipticity estimate of the Poincaré—Steklov opaisa T (s), we definev as the
solution of Pv* = 0in Q*, y;"v = @ onT. We have

Re[(,0sT*(9)W)] = Relag:(u.0u)] 2 o°0 [|ull? ;. 2 | g 1921720
and replacingy = S*(s)@results in

159 <

(pH 1/2r~ (S)e| _1/2700
and we obtain the bound for the Pomcare—Stehov operator. n

Remark 4.6. The bounds for the Steklov—Poincaré operatofgs$ and the Poincaré—
Steklov operator ¥(s) as given in Proposition 4.13 give an alternative proof fa thound

of the inverse of the single layer boundary integral operatés) and the hyper-singular
boundary integral operator [¥) since

D(s) 1=T(s)—T(s) and V(s)1=S(s)—S'(s).

To classify the introduced operators we introduce the Yahg space, see [31].

Definition 4.1. Let X and Y be Hilbert spaces and letdf: C§ — £(X,Y) be an analytic
function in s. Ks) is an element ofA(u, X,Y) if

IF(s)| <C(o)|s]* forallseC,
where C: (0,0) — (0,) is an non-decreasing function such that
c
C(o) < e forall o € (0,1].
An overview on the mapping properties and bounds of all dised operators is given in
Table 4.1.
Additionally we introduce the operator
- V(s) — (31 +K(9))
H™(s) = (ll +IZ(S)*> D(s) '
2
Theorem 4.14.The operator H (s) : [HY/2(I)]% x [HY2(1)]* — [HY2(M)]4 x [H~Y/2(M))4
is [H=Y2(")]* x [HY2()]*-elliptic, i. e.
1
Rel(p. 0 (9] +Re | (1,6 (51 +K(9)) o) |
r

+Re [< (%I + IZ(s)*) W, ®s<p>r] +Re[(D(s) @, Os0)( ]

84
oo
> _‘—’ (HWH 1/2r+H(PHl/2r> (4.26)
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F X Y u
SL(s) [HYZM* HY®IHE 2
DL(s) [HYZ()* [Hl(R3\r)]4 5/2
V(s)  [HYAM) [Hl/z( "2
D(s)  [HYAM)*  [HY2(r )]4 2
Ks)  [HYAM)*  [HYAM)* 512
Ks)  HY2M)* HYAM)* 312
V(s~t [HYHM)  [HYA(T )]4 2
D(s)t [H-Y2(M))* [Hl/z( o2
S*(s) [HYAM)*  [HYAT )] 2
T  HYADE WY 2

Table 4.1: The operatdt(s) is an element of the spacé(u, X,Y).

for all ¢ € [H-Y2(M))* and g € [HY/2(")]*. The operator H (s) is therefore invertible
with
El

-1
HH H H1/2 )}4><[H—l/Z(r)}4_>[H—l/2(r)]4><[H1/2(r)}4 < % (427)
Moreover we have the bound
_ El
|[SL(s) —DL(s)]H (S)H[H1/2(F)}4><[H—l/z(r)}4—>[H1(Q)]4 S (4.28)

Proof. u= SL(s) ¢ — DL(s) ¢ fulfills Pu= 0inR3\ . The application of Green'’s first
formula (3.30) results in

"o [l o, S Re|ags,r (u.Osu)

= Re[([yaulr,Os5 u)r] +Re[(v; u,Os[youlr ) -

(4.29)

Due to the jump conditions we haygu|r = ¢ and[you|r = ¢ and furthermore

Gu=viow- (3 Koo

and

y;u=D(s)p+ <%I +K(s)*) W
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resulting in

a*o || Ul o SRE[(W,ON ()]

— Re[<w,@s (%I + K(S)) ¢>J
R (CR

+Re[(D(s)y, p)r].

With the help of the trace theorem (Theorem 3.4), Lemma 3riBthe norm estimate
(3.11) we can estimate the traces by

2
2 2 E 2
Il 12 + 08I o S o 11U (4.30

resulting in the ellipticity estimate (4.26).

Next we consider the operator equation

o= o)

Starting from estimate (4.29)

2

Q4G ||| UH||AS'|’R3\F = Re[<[y1U]r,®SVJU>r} + Re[<y£u’ Os[you]r>r} )

we use the propertygu =g andy; u= g, and use Corollary 3.14 and estimate (3.11)
resulting in

GO Ul o S S 0l g (ol 02 12r)  (43D)

or
0l g S o (gl /o + g2l g2 ) (432
Estimate (3.11) results in (4.28), whereas estimate (4elts in (4.27). O

Proposition 4.15. Let se C;, then the property
H™(5) € A(5/2, [H2(M)]* s [HY2(M))4, [HY2(M)]* x [HYZ(M)]%)

holds.
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Proof. For the operator itself the bound can be easily calculatezksi

IR~ ()] < 2mandH ]

where the operator norms are induced by the natural spaces. n

Remark 4.7. The inverse of the operator Hs) can be stated explicitly by

o= (20 1),

Proof. Using the non-symmetric representation of(%) and S (s) results in

and since
A=— (%I +K(s)) D(s)? (%I _ R’(s)*) V(s

=V(s)+— (%I = K(S)) D(s) (%I - IZ(S)*) ~D(s)* (%' - 'Z(S)*)
=T (s)—T (s)=0

and
B=—-D(s)+ <%I + K(s)*) V(s)~t (%I - K(s))
__ [D(s) + (%I - K(s)*)V(s)—l (; - K(s))} _D(s) (; _ K(s)*)
=S (s)-S (5 =0
we end up with the identity. O

Similarly we introduce the operator

(4.33)

H™(s) = <(_%,V+K*> (%I[;K)>

which shares the same propertiedy(s).
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Corollary 4.16. For se CZ; the operator H (s) is [H~/2(I")]* x [HY/2(I")]*-elliptic, i. e. ,

re| (o) [£]. [30])] 2 %2 (1012 s + ol o)

forall @ € [H~Y2(I") and @ € [HY/2(I")]*. Furthermore the properties

HT(s) € A(5/2,[HY2(M))* x [HY(M)%, [HY2(M))* x [H-Y2(M))),
H(8) ™ € A2, [HY2(M))* > [H-Y3(M)]%, [HY2(M)) > [HY2(M))*)

and
[SL(s) —DL(s)]H*" ()"t € A2, [HY2(N)]* x [HH2(M)[4 [HYR3\ )]%).

hold.

Proof. Repeating the arguments as in the proof of Theorem 4.14 sesuhiese properties.
O



5 BOUNDARY INTEGRAL EQUATIONS

In this chapter we will discuss the application of boundatggral equations to the solu-
tion of boundary value problems in the Laplace domain. Bigfrom a representation
formula we will derive boundary integral equations of theedt approach. Boundary in-
tegral equations resulting from indirect approaches aseudised briefly. In preparation
for the return to time domain, the dependency of the bounudegral equations and it's
solutions on the Laplace paramesawill be presented.

5.1 Representation formula

The fundamental solution given in (4.1) is a solution of thetial differential equation
Psz(Xa y) = |5(y_ X)

with the Dirac distributiond and the identity matrix € R**4. Insertion into Green’s
second formula (3.29) yields the representation formula

u=SL(s)[yaulr —DL(S)[you]r InR3\T (5.1)
for all u € [HY(R3\ I)]* satisfyingPu = 0. Settingu = 0 in Q* and taking the inte-

rior traces results in the well known integral equationates to interior boundary value
problems,

Yo U=V(S)y; u+ (%I — K(s)) Yo U, (5.2)
Y u= (%I + IZ(S)*) Y u+D(s)yp U (5.3)

Reciprocal settingi= 0 in Q™ results in two integral equations for the exterior boundary
value problems,

Yo u= (%I + K(S)) Yo u—V(S)y; u, (5.4)
wu= (31 -K") viu-ou 55)

51



52 5 Boundary integral equations

5.2 Mixed boundary value problem
The interior boundary value problem with mixed boundarydibons is given as

Pu=0 inQ™,
Yo U=0b onlp, (5.6)
Y1 U=0ON only.

With the help of the representation formula (5.1) we candate the solution of the
boundary value problem, if the complete Neumann and Diictiata are known. Thus
we need to find the unknown Dirichlet datwgiu on 'y and the unknown Neumann da-
tum y;uonlp. The approach itself is based on the symmetric formulati$].[ For
deriving bounds for the solution of the boundary integralagpns techniques from [31]
are used.

First we choose appropriate extensigassTHY/2(I)]* andgy € [H~1/2(I")]* of the given
Dirichlet datumgp € [HY/2(I'p)]* and the given Neumann datugg € [H~1/2(I'y)]* such
that

oo=0p onlp, on=0n only.

The boundary integral equations for the interior problegid/i
_ _ 1 _
bu=viyut (31 -K© ) s
1 - .\ _
0= (_EI +K(s) ) Yy u+D(9)y; -
We define the unknowns N
1=y u—Go € [HY*(T\)]*
and _
@ =y u—Gn € [HY2(Mp)*
Insertion leads to the boundary integral equations
1 ~ ~
V(9n-K(9us = (31 +K(S)lo-V(san onro

2 (5.7)

K(s)" @+ D(s)yr = (%I - R(s)*) dn—D(s)dp onl.

The operator
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is [H=Y/2(M)]* x [HY2(1")]* elliptic, see Theorem 4.14. The system of boundary integral
equations (5.7) is therefore uniquely solvable. The opetat (s)~* is bounded by

1 2

IR -2 jairavaryjos pvaqrjexu-veye < €(2:0) 1817,

see Proposition 4.15. The right hand side of (5.7) is bouihged

1 ~ ~
H (5' +K(S)) o —V(s)n < lsi?e(o) (HgD”l/Z,FD + HgNH—l/Z.,FN)

R -

Combining these estimates yields an estimate for the salutidhe boundary integral
equations (5.7)

1/2,1

$18%2¢(0) (Ilgolly/zr + INI_1/2r, )

1/2,1

92
1@l —1jor + l@all1/2r < (o, U)' 3 (HgD’|1/2FD+||gN|| 1/2rN> (5.8)

This bound can be further improved by an approach developg8li]. The boundary
integral equations (5.7) can be equivalently rewritten as

o =V(S@+ (%I — K(s)) Y1+ V(S)Gn + (%I - K(s)) db onlp,
1 -~ 1 - ~ ~
0= (—§I +K(s)*) @ +D(s)yn+ (_EI +K(s)*) dn+D(s)Gp only.

We replace the given Cauchy datum by the functigns= gy € [H-Y3(M)]* and
Yr = 0p € [HY/2(M)])* and can therefore rewrite the boundary integral equati®i73 s

o 2 O1
et (s) |Wt] = [H7 HUO)] ] _ e (5.9)
mix » | ()3 03 .
Lﬂz L»UZ 04

with g1 = gp, 92 = 0,93 = gy andgs = Op.

Theorem 5.1.LetH = [H~Y/2(I")]* x [HY2(M))* x [HY/2(1)]* x [HY?(M)]* and se Cf,
then the property
Heix(S) € A(5/2,H,H")

holds. Moreover, the operator is invertible with

H ()™t € A(5/2,H* H).
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Additionally, the property
[SL(s) —DL(8)] Hyix(s) € A(5/2,H, [H}(Q)]*).
holds.

Proof. The boundedness propetty..(s) € .A(5/2,H,H*) is obtained straight forward by

Hoi() [ S max{ IV ) l-v/2(r ez 1D vy -2y »

(8)"

K(s)l [HY/2(I)]4 = [HY/2(r)]4 »

[H2(T) = H =22 }

The proof of invertibility of the operatoH;.(s) and the bound of the inverse is given
in [31] for the wave equation. We follow this proof closelyeWefine

U= SL(s)(@+ @) — DL(S)(4n + ¢2).
The operator equation (5.9) is equivalent to the followingHdary value problem
Pu=0 inR3\T,
Yo U=01 onlp, (5.10)
Yiu=go only,
with the transmission conditions
vaul|r —gs € [HY3(rp)]4, [youl|r — ga € [HY2(Tn))%
Given a functioru as a solution of (5.10), a solution for equation (5.9) is oled by
(@1, Y1, @, ) = ([vaul|r — s, [Youlr — J4,93,94).
The boundary value problem (5.10) is equivalent to the falhg variational formulation:
Findu € [HY(R3\ IN)]* with (y5 u, [you]r) = (91,94) onTp such that
aga\r(U,V) = (03, ¥ V)1 + (G2, [YovIr)r
forallve Ho = {uc H|(yy u,[ywul|r) =0onlp}.

This variational formulation can be analyzed by repeativegarguments of Theorem 3.12,
resulting in the estimate

Iulllg g < (@) 18l (1102, 90) | gz + 182 (01, 90) /2 )
and so finally by estimating the traces (Theorem 3.4 and GoyoH.14) we end up with

(@, @) |12 + (Y1, Y2) |1/ < c(0) 5%/ (\’(92793)”71/2[ + H(91>94)Hl/2,r> :
]
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5.3 Dirichlet boundary value problem

The Dirichlet problem
Pu=0 inQ™,

YoU=0b onl

can be solved by using the first boundary integral equatiof®.@) to find the unknown
Neumann daturh e [H~1/2(I")]* satisfying

(5.11)

1
V(s)t = (5' + K(s)) op onr. (5.12)
Unique solvability follows from the ellipticity of the sihg layer boundary integral op-
erator (Theorem 4.8). A bound for the unknown Neumann ddtwan be obtained by
composing the bound for the inverse single layer boundaegmal operator and the dou-
ble layer boundary integral operator resulting in

9/2
It 1/ar S c(g,0)1s/”?llgpll1/2r

By using the estimate for the mixed problem (Theorem 5.1) stien@te can be improved
to

5/2
It _y/or < c(g,0)1s*?llgollyzr

The operator

S (s)=V(s)?! (%I + K(s))

is the interior Steklov-Poincaré operator, which was alyediscussed in Section 4.4. The
bound for the Steklov-Poincaré operator results in an ingutdound for the solutionof
the boundary integral equation (5.12)

[t _1/2r S c(a,0) \3\5/2“9D\|1/2,r>
see Proposition 4.13. This bound is obviously the best ohe.sblution
u=SL(s)¢—DL(s)gp

itself can be estimated as
2
[ull1o- < IsI”llgbll1/zr -

see Theorem 5.1.

Another popular approach to solve the interior Dirichletibdary value problem is an in-
direct single layer approach. Using the ansatz SL(s) ¢ results in the boundary integral
equation

V(s)p=gp onr.
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Unique solvability as well as the estimate

@)l 12 S c(@.0) sy /or

is obtained by the ellipticity estimate (Theorem 4.8). Atireate for the solutioru is
given by estimate (4.14), resulting in

3/2
lull o < c(g,0)18¥?llgplly/or -

5.4 Neumann boundary value problem

The interior Neumann boundary value problem is given by

Pu=0 inQ™,
_ (5.13)
Y, U=0ON onl.
The equation for the unknown Dirichlet datune TH/2(I"))* is given by
1 -
D(s)li= (EI — K(s)*) gnv onr. (5.14)

The ellipticity of the hyper-singular operator guaranteagjue solvability. An estimate
for the solutionue [HY/2(I")]* of the boundary integral equation is given by Proposition
4.13

~ 2
[0l]1/2r S c(o, ) [s”llonll —1/2r -
The solutionu = SL(s) gy — DL(s) (G can be estimated by
2
Ul o- S c(o,a)[sl”llonll—1/2r
see Theorem 5.1.

An indirect double layer approaah= — DL (s) ¢ would result in the boundary integral
equation
D(s)¢y =gy onr.

Again, ellipticity of the hyper-singular operator guarees$ unique solvability angy €
[HY/2(I")]* can be estimated by

2
[Wll1j2r Sclo,a)[sIlgn]l —1/2r -
see Theorem 4.10. The solutiartan be estimated by
2
Ul o~ < cla, o) s llonl_1/2r -

see estimate (4.22).



6 GALERKIN DISCRETIZATION OF BOUNDARY INTEGRAL
EQUATIONS

In this chapter we will discuss the discretization of bougdategral equations introduced
in Chapter 5. For the Galerkin discretizations unique saligglwill be proven. The
boundary integral equations will be discussed in Laplacemalo only. In preparation
for the return to time domain, the dependency of the bounuofaegral equations and it's
solutions onto the Laplace paramesawill be presented. More precisely, estimates as in
Remark 7.1 will be shown for the solutions of the discretizedrdary integral equations.
Similar estimates are given for the approximate solutiosgde the domain, both in the
corresponding norm and for a pointwise evaluation. Finaligilar estimates are given
for the error estimates in the energy norm of the approxirsatetions of all boundary
integral equations.

6.1 Galerkin discretization

To discretize boundary integral equations, first a vanetidormulation has to be set up,
which is furthermore discretized by restricting test andadn functions to finite dimen-
sional subspaces. The theoretical background for the Kdaleiscretization is well estab-
lished, for more information we refer to [45, 52].

Let X be a Hilbert space, for an operatdr X — X* and a given right hand sidee X*
we consider the following variational formulation:

Findu € X such that
(AuV) = (f,V) (6.1)

forallve X.

By introducing a finite dimensional subspagecC X a Galerkin approximationy, € X, of
the solutionu is defined by:

Find u,, € X, such that
(Aln, Vi) = (f,Vh) (6.2)

for all v, € X.

57
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Restricting the test spaceXg C X in the variational formulation (6.1) and subtracting the
equation from equation (6.2) leads to the Galerkin orthadjgn

(A(up—u),vy) =0 forallv, € X (6.3)

Stability of the Galerkin scheme (6.2) requires unique &oilty in addition to a uniform
bound

lun|lx < Cllullx forallue X

with a positive constar@ > 0 independent of andu.

Stability together with the approximation property

inf |lu—wv 0 forh—=0
Jnt [lu—vhllx — -

leads to convergence for arbitrary right hand sides.

We introduce an operator notation for the Galerkin diszegton by utilizing Lemma 3.1.
We define the operatd¥, : X, — X by

{(AnUn, V) = (Aln, Vi) for all uy € Xq, v € X

Lemma 6.1(Cea’s Lemma) Let the discrete operator & X, — X; be invertible, u the
solution of the variational formulatio(6.1), u, the solution of the variational formulation
(6.2). Then the following estimate holds

lu—unllx < (1+ || ALY

e A ) it fJu=vally
Proof. See [45,52]. n

If the right hand sidd € X* is given asf = Bgwith g € Y and a bounded linear operator
B:Y — X*, we introduce a finite dimensional subspage” Y and approximatg € Y by
a functiongy, € Y;, resulting in the disturbed variational formulation:

Find Ui, € X, such that
(Aln, Vh) = (Boh, Vh) (6.4)

for all vy € X

The approximation property of the disturbed variationahfalation (6.4) is given by the
following lemma.
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Lemma 6.2(Strang-Lemma)Let the operator A: X, — X be invertible and let B: Y, —
X be a bounded linear operator. Furthermore, let u be the sotubf the variational
formulation(6.1), u, the solution of the variational formulatiof®.2) and (i, the solution
of the variational formulatior{6.4). The following error estimate holds:

~ -1 .
=Gl < (2 A5, 1Al - ) . [lu=vhlx

+ (A

e, Bl 19— il

Proof. Subtraction of the variational formulations (6.2) and Jéeéds to
(A(Un —Tn), V) = (B(g—Gn), V) for all vy € Xn.
SinceAy, is invertible we immediately get the estimate
lu—illx < [[An*]

Combining this estimate with Lemma 6.1 in addition to thengi@ inequality concludes
the proof. n

e Bl 19— Gnlly -

The operatoA usually denotes some boundary integral operator and thrsapate dis-
cretization spaces on the boundary have to be introduced.

First, we introduce a sequence of boundary discretizafigns- UL}‘:J@ with N disjoint
plane triangles, which are assumed to be regular in the sgrSarlet [15]. The local
mesh size is defined by

hy = / ds,

Ui
and the global mesh size is definedlpy: max_1 _nh,. LetM be the number of nodes
on the boundary witiMp andMy denoting the nodes on the Dirichlet boundary and
the Neumann boundaryy, respectively. LikewiséNp denotes the number of boundary
elements on the Dirichlet boundaly, andNy the number of boundary elements on the
Neumann boundarlyy.

1/2

Define the discrete subspaces

§20) = spar{y; *}% < [HY2(o)),
Sry) = sparfPHME ATyl

with piecewise constant basis functiogis 19 and piecewise linear continuous basis func-
tions ¢>*. For convenience we introduce the space

SN = SN VAV
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This function space is used to discretize the solid dispheceu® and the pore pressure
p, whereas the piecewise constant functions are used tetdiethe unknown Neumann
traces. Additionally, the given Neumann and Dirichlet datthbe approximated by cal-
culatingL, projections into discrete spaces. Tiheprojectionh, : X — X, is defined by

(Fu, V) = (U, Vo) for all v, € X
We denote thé., projection into the spacﬁﬁ’l(r) by
PO HY2(M))4 = 5,10, (6.5)

For the approximation of the unknown Neumann datum we amfditly introduce the
space

S, M(Mo) = spar{y " HAP ¢ [A-Y2(rp))*

with piecewise linear but discontinuous basis functi¢ﬁ§’1, and the appropriate projec-
tion operator

PAL HY2(M)A - 5 (). (6.6)

The projection operatoIPr?’1 is used to approximate the unknown Dirichlet datum and

the projection operatdiah_l’1 is used to approximate the unknown Neumann datum. The
choice of these projection operators results in an optimalergence order of all involved
unknowns, in particular for the point evaluation of the $iolu in the interior.

For the discrete spac§,§1’0(r) andi’l(r) the following approximation properties hold.
Lemma 6.3. The following approximation properties hold:

inf [t —tll__qr < chPt|ufl - witha € [0,1] and € [0,1],
thGS;’ /

inf [t —tnl|_q,r <ch’™|ullgr witha €[0,2]andB € [0,2],
thES;’ /

inf [Ju—un||_qr < chP e |l withar €[0,2] and € [0,2]
uhesy /

when assuming & ng(r) andte HSW(F).

Proof. See [45,52]. ]
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6.2 Bounds for discrete operators

In Section 4.2, the explicit behavior of the boundednessteaants of different integral oper-
ators on the Laplace paramesdras been discussed. Bounds for the discrete operators are
needed as well. For an exact Galerkin discretization of @naipr the bound obviously re-
mains the same. We introduce discrete subspggegH ~Y/2(I")]* andY,  [HY2(M)]%.

Corollary 6.4. Let A be an element od(u, X,Y*), then the Galerkin discretization,As
an element ofA(u, Xy, Yy).

The Corollary 6.4 gives us a bound for the Galerkin discrébneof the boundary integral
operatorsV (s), K(s), K(s)* andD(s). We denote the Galerkin discretizations of these
operators by (s), Kn(s), Kn(s)* andDp(s) respectively. An overview of the bounds is
given in Table 6.1.

However, most of the time we do not have an exact discrebizaif an operator. For ex-
ample, the inverse of the discrete single layer integratatpeVi(s)~ is not the Galerkin
discretization of the inverse single layer integral oparé? (s)~1),,. Therefore, estimates
for inverse operators cannot be transferred directly. Hewethe bound of the inverse
discrete single layer integral operator and the inverserelis hyper-singular operator are
direct results of the ellipticity estimates as given in Titego 4.8 and Theorem 4.10. The
ellipticity estimates also hold for the discrete operatmd allow us to formulate the fol-
lowing Corollary.

Corollary 6.5. The inverse of the Galerkin discretization of the hypegslar operator
Dn(s)~! and the inverse of the Galerkin discretization of the sinayer integral operator
Vh(s) 1 fulfill the following estimates:

2
< 18"
X=X~ gg9’

s

V()™

|Dn(s)~*

Proof. The bound fo,(s)~1 is a direct consequence of the ellipticity estimate as given
in Theorem 4.8:

8
Re[(y,0sV (s)Y)r] > C\{% @2 1)pr  forall g e [HY2(M)*
For gy € Xy C [HY/2(I")]* we have

8
Re[{Wh, OV (8) Y] > c¥% lghlI2 1o for all gh e X
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Introducingh = Vih(S) "¢, results in

(S S g Rel (. OuVi(S) U
S . .
| | ||®s%H1/2r||Vh “@|_y,r  (Duality estimate)

S .
| | 000 lmllazr [IVh(S) " an|| g or (Estimate (3.31))

concluding the estimate fof,(s) 1

As in the proof of Theorem 4.10 we define= — DL (s) @, for which we have the estimate
0°0 || UllZ 4o - S 1(Dn(S)9h Oshr) |

which can be further estimated by

feadeg] U|||‘ srayr < 1Dn(s) (Duality estimate)

< IDW(S) |27 [Odullrllyjor  (Jump conditions (4.6))

<Ol yor Ul or (T, 3.4, estimate (3.31)
_

1PN -ajzr lullg o (Norm equivalence (3.11)

The norm equivalence (3.11) and the trace theorem (Theohec@nclude the proof:
| |2

@lle2r S NUIrllj2r S s o2 Ml ra\r = Gag IP(S) hll-1/27 -

Replacingg, = Dn(s) 1y, results in the desired estimate. [
Additionally, the estimates (4.22) and (4.14) can be trametl to the Galerkin discretiza-
tion of the single layer integral operator and the hypegsiar operator.

Corollary 6.6. The following estimates hold for ath, € X;: andyr, € Y}

’S|
%ng W R i 015/20 [@hll1/or

|SL(S) Vh(s) - 6.7)

||DL(S) ( Lth]_Q uo+ /\J H‘,UhH -1/2,T - (68)



6.3 A discrete Steklov—Poincaré operator 63

Proof. Settingu = SL(s) gy with gy, € X, € [H1/2(I")]* results in

feadedll uH||2§| woyr S (W, OV () )| (Green’s first formula (3.30))
< 1 Wh, OsVi(S) Yn) | (Galerkin discretization)
s . .
< gnl yor KO Uhlyr . (Duality estimate)

Corollary 3.14 and introducing, = Vi (S) g, yield
’3/2

5 2 E
(o) ’H U|H|g|7R3\|— 5 W H' u ‘”‘g‘Rs\r ||q)f1”1/2

and thus estimate (6.7).

To derive the estimate (6.8) we set DL (s) ¢, with ¢, € Y;, € [HY2(I")]* and obtain

feadedll uH|‘2'~S‘7R3\r < [(D(S) th, Osth)r | (Green’s first formula (3.30))
= [(Dn(S) ¢h, Osth)r | (Galerkin discretization)
|S|3/2

S 5572 [hll1/2r IDn(S)@nl|_1/2r - (Duality estimate)

Introducingyy, = Dy (S) @, and using the estimate (3.12) result in the desired estiméate

6.3 A discrete Steklov—Poincaré operator

Bounds for the discrete versions of the Steklov—Poincaréatpeand the Poincaré—Steklov
operator are still missing. These operators consist of eamation of different boundary
integral operators. Two different representations by lauy integral operators were in-
troduced in Section 4.4. On the continuous level the differepresentations are equiva-
lent to each other. In general, the equivalence is lost diteretisation.

In this section, we will discuss the symmetric approximaiid the Steklov—Poincaré op-
erator. A bound for the non-symmetric approximation is arbypct of the analysis of the
mixed problem in Section 6.4.

The Dirichlet datum of the interior Neumann boundary valuebem
Pu=0 inQ~
yau=g onl

can be obtained by solving
S (su=g onrl. (6.9)
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The Steklov—Poincaré operator can be expressed as
— 1 17 (@) * -1 1
S (s)=D(s)+ §I+K(s) V(s) §I+K(s) .

By introducingt € [H~%2(I")]* as a solution of the operator equation

V(s)t = (%I +K(s)) u onfl,

the boundary integral equation (6.9) can be rewritten as

o) (g ) O-()

Properties of the operatét™ (s) were discussed in Theorem 4.14.

Introducing the discrete subspacésc [H=Y2(M))* andY;, c [HY2(I)]* the Galerkin
discretization of the operatét—(s) is given by

<Hh(s) [i;:] , D"ﬂ >r = <H(s) [i;:] , D"ﬂ >r for all Xn, Vi, € Xn, Yn, Wh € Yh

resulting in the discrete equations

o ()= () o) (8)=(0)

Proposition 6.7. The operator H (s) fulfills the following property
Hy (s) € A(5/2, X0 % Yh, Xpy % Yp).
Additionally, the operator H(s) is invertible with
Hy (9)71 € A2, X0 % Vi, Xn X Yh).
Finally, we have the property

[SL(s) —DL(s)]Hy (5)7t € A2, %% x Vi, [HYR3\ M)]%).

Proof. Repeating the arguments of Theorem 4.14 results in thesepiep O
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Hence we have unique solvability of the following operatguation

Ho (9) M _ M (6.10)

Uh 02

with g; € Xy andgy € Y,. Forg; = 0 we obtain the Galerkin discretisation of equation
(6.9). By eliminatingt, we can define a discrete approximation of the Steklov—Poénca
operator by

S (S) = Dn(s) + (%Mh + Kh(s)*) Vi(s) (%Mh n Kh(s)> ,

On the other hand, fay, = 0 we can eliminate, resulting in a symmetric approximation
of the Poincaré-Steklov operator

T8 =Vh(5)+ ( 3 +Ki() ) Dn(s) G0+ Ko(s)” )

as introduced in Section 4.4.
Corollary 6.8. The following properties hold:

(S (9)] e AR X Xn),
[Th(s)]il € A(ZaYI’T7Yh)'

Starting from the operatdd ™ (s) as introduced in (4.33) we can define a symmetric ap-
proximation of the exterior Steklov—Poincaré operatp(s} and of the interior Poincaré—
Steklov operator $(s) in a similar way.

F(s) X Y u
Vh(s) X X2
Dh(S) Yh Yﬁk 2
Kn(S) Xo Y 52
Kn(s)* Yo X 312
Va9 X X 2
Dn(9™t YV Y 2
TEEI L X X 2
S5t Yr Y 2

Table 6.1: The operatdt(s) is an element of the spacé(u, X,Y).

The estimates for these operators are given in Table 6.1ditiaal to bounds for already
discussed operators.
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6.4 Mixed boundary value problem

The interior boundary value problem with mixed boundaryditons (5.6) is given as
Pu=0 inQ™,
Yo U=0b onlp, (6.11)
Y, U= 0N only.

The boundary integral equations which are related to thednboundary value problem
(6.11) are deduced in (5.7) and are given as

V(9p- KW= (314K ) do-V(oa onro
(6.12)

R(79+D(80 = (31 ~K(S" ) au-D(E% onr,

Htie |2 = ga} gt [go] .
O 9= %] -Hro|®
We test the boundary integral equations (6.12) with fumstiay, &) e [H-Y2(I'y)]* x

[HY/2('p)]*. This results in the variational formulation:
Find (@, ) € [HY2(r\)]* x [HY2(Ip)]* such that

o] [2]) = (18] ol )

forall (n,&) e [H-Y2(Iy)]* x [HY2(p)]*.

or equivalently as

The given Dirichlet datungp is projected in the discrete spa@l(r) by using thel,
projectionPO’l, see (6.5). The given Neumann datgmis approximated by using the

projection Ph_l’l, see (6.6). The corresponding Galerkin variational foatiah has the
form:

Find (gh, gn) € S, 2°(Mn) x () such that

(wio @] [2]) = ([Fo]-[2]), - (wo | | [2])

0 . (6.13)
for all (n, &) € S, "*(Mp) x H(Tn)-
Due to the ellipticity of the operatdt ™ (s), see Corollary 4.16, the variational formulation

(6.13) is uniquely solvable. Strang’s lemma (Lemma 6.2) thedapproximation property
(Lemma 6.3) gives us the following corollary.
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Corollary 6.9. Let@ € [H5,(M)]4, ¢ € H3,(M)]*, g € [Hiw(Tn)]*and o € [H3,(Tp)]%,
then the following error estimate holds

10— hll_1/or + 1¥ = Wnllyor
< c(0) Is*02 (@l + [9lzr + lonllyr, + oo

ZFD)'

With the help of the inverse inequality an error estimatenli,-norm for the error ofp
can be deduced,
ZrD>’

see [52]. The dependancy on the paramstisrthe same as for the natural norm. The
Aubin—Nitsche trick gives us an error estimate in thenorm of the error ofy

10— @llor < (@) [s*h (Il9llyr + Wil + llonlzr, + lloo

1= hllor < &N (Il + I Wlzr +lonlry +lo0]2r )

see [52]. The constani(s) depends on estimates of the operads) : [H1(M)]* —
[Lo(M)]* and it's inverse and estimates for the opera€és)* : [H1(M)]* — [H~1(M)]*.
The explicit behaviour of these estimates onto the paransdias not been investigated
yet and, therefore, the explicit behaviour of the errormaate onto the parametsis not
known.

The solutionu of the interior mixed boundary value problem (5.6) is apprated by
evaluating the representation formula (5.1)

U = SL(s) (cph + P,;lvlg'N) _DL(s) (wh + P€’1§N> .

The error in a poink € Q can be estimated by the following lemma.

Lemma 6.10. Let@ € [H3,(7)]% @ € [H3,(N)]*, on € [Hiw(Tn)]* and & € [H3,(Tp)]%,
then for xe Q the following error estimate holds

U0) = th ()] < c(0 s (11l + 1@z + lonllry + I90ll2r ) -

Proof. In [52] the proof is given for ah, approximation of the Neumann datum by using
piecewise constant discontinuous basis functions. Toexethe order of convergence is
restricted to two. By reiterating the proof using the pies@ninear discontinuous basis

functions as approximation the order can be increasedée thithout further assumptions

onto the given Neumann datugg. n

The solution of the variational formulation (6.13) is obwsty bounded. An improved
bound, corresponding ®is obtained by reiterating the arguments from [31].
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Theorem 6.11.For se C{ the solution of the variational formulatiof6.13)is bounded
by
@l _1/2r + 1hlly/2r < c(0) ERE <||9N||71/2,rN + ||9D||1/2,FD> :

1,1~

Moreover, 4 = SL(S)(¢h+ P, ~"gn) — DL(S)(Yh + Pﬁ’lgp) is bounded by

lunllz.o < &(0) 182 (lon | -1/zry + 190ll1/2r ) -

Proof. For the wave equation the corresponding bound is derive8lih We follow this
proof closely. The proof is essentially an extension of ttepof Theorem 5.1 to discrete
operators.

We start by definining the function
Un = SL(S)(¢h+ R, "Gn) — DL(S) (Yh+ Py 'Gd).

Then the variational formulation (6.13) is equivalent te thllowing boundary value prob-
lem

Pn=0 inR3\T,
(Yo Un,1)p = <P|$’1§D,n>r forall n € §;+%(p) (6.14)
(Vi un,v)r =0 forallv € §71(FN)
with the transmission conditions
yaunlIr =Py N € §70MD), Dyounlr =P Go € ().

We denote the annihilator of a function spacbky X°. The boundary value problem (6.14)
is on the other hand equivalent to the following variaticieainulation:

Find up € [HY(R3\ )] with (Y5 Un, Vi) = <P,?’1§D,vh>r for all vy € S, °(Mp) and
([youn]r,Wh) = <Pﬁ’1§D,wh>r for all w, € [éﬂl(r,\])]o such that

a3\ (Un,V) = <Ph‘ Y198, vo V>r (6.15)

forallve [HY(R3\ M)]*with y ve [S;LO(I_D)} ) and[yov]|r € ().

The solution of this variational formulation can be estiethby repeating the arguments
in the proof of Theorem 3.12. Finally the boundedness of tiageption operators results
in

1/2
llunll g g < (@) 18l (lonll 12 + 152 llg0 12 ) -
Using estimates for traces, see Theorem 3.4 and Corollady &€ obtain

1ol _1/2r +¥all1/2r < cla) 5%/ (”gN”—l/Z,FN + ’|9DH1/2,FD> :
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Pointwise evaluation

To obtain a convergence estimate for the pointwise errdnéntitne domain, we need to
have a bound for the point evaluation in the Laplace domdnesé& estimates are obtained
by estimating the fundamental solution.

For this, an additional assumption on the material dataesleé. \We assume

c(o
laf —a3| > % (6.16)

whereas andas are given in (4.2) and correspond to the fast and slow corsjanesvave.
Assumption (6.16) is fulfilled by all materials considereithin this work.

Lemma 6.12. The point evaluation of the single layer potentialXat Q~ is a bounded
linear functional with the absolute value bounded as

ISL(s) @(X)| < c(g, dist(x,T"))[s].

The point evaluation of the double layer potentiakat Q~ is a bounded linear functional
with the absolute value bounded as

IDL(9) ()| < c(a, dist(%, ")) [s|?.

Proof. The single layer potential can be estimated by

ISL(s) @(%)| = /Gs(KY)fp(Y) dsy| < [[Gs(%,) |1 1@l 1 -
r

As long asxe Q~, the fundamental solutios(X,-) is an element oC*(Q*) and of
[H1(Q™)]% The trace theorem (Theorem 3.4) can therefore be appligégiatus

ISL(S) @(X)] < [|Gs(% )| 1.0+ 10l 1 -
With assumption (6.16) the different parts of the fundarakslution can be estimated by

U] < c(a)e 7, P| <clg)e @Y,
Uil <c(a)[sle” ", |PP| <c(g)[s|e” ",
with a = max(Re[a1],Re[a2],Re[as]). Due to assumption (4.3y > c(o) > 0 which

results in
1Gs(%,)lo.q+ < c(0,Q7)]s].
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Sinceay 2.3 < c(0) |5 all derivatives and thus thgl1(Q*)]#-norm of the fundamental
solution can be estimated by

IGs(%, ) 1.0+ < c(0,Q7)[8°.

For the double layer potential we have

IDL(S) ¢ (x)| = /[VlGé(i,y)]*w(y) dsy| < [VAGs R W) _1j2r 1WIl1 -
r

The adjoint of the fundamental solution is the fundamerghitgn of the adjoint problem.
Therefore the fundamental solution fulfills the propeR;(X,-) = 0in QT forxe Q™.
Lemma 3.15 results in

INGsE Y121 S Gs(ZY) g0+ -

By following the same estimates as above, we can show theedesstimate. ]

6.5 Dirichlet boundary value problem

The Dirichlet problem (5.11)
Pu=0 inQ~,
— (6.17)
You=0p onl

can be by solved by starting from the boundary integral equngb.12), which results in
in the following variational formulation:

Findt, € Sgl’o(l') such that

(V(S)th, Tn) = < (%I + K(s)) P>'gp, rh> (6.18)

r
forall T, € s;l’o(r).
Equation (6.18) can be rewritten in operator notation as

Vh(S)th = <}Mh —+ Kh(S)> Pﬁ’lgD. (6.19)

2
Unique solvability of equation (6.19) follows from the eliicity of the single layer poten-
tial (Theorem 4.8). A bound for this nonsymmetric realiaatof the Dirichlet to Neumann
map can be obtained by refining the result for the mixed boyndsue problem in The-
orem 6.11.



6.5 Dirichlet boundary value problem 71

Lemma 6.13. The following property holds:

Wi (M) ) € A (290§, 20)

Proof. Following the proof of Theorem 5.1 we first introduce
up = SL(s) @ — DL(s) Pﬁ’lgo
and by estimating the variational formulation (6.15) weaitot
llunllg gor < c(0) I8 l1g0l1)2r (6.20)
Estimating the jump of the conormal derivative, Corollary43.results in

[@hll_1/2r <c(O) 57 l9pll1/2,r

and thus the desired estimate follow. ]

For @ € [H3,(M)]*andgp € [H3,(T)]* Strang’s Lemma 6.2 resullts in the error estimate

9/2

=0l _y/zr < c(0)h¥2 (15 9lly +15%2 9ol ) (6.21)

An estimate for thé.»>-norm can be obtained by the use of the inverse inequality,

I —@lor <c(o)h(Is*l1@llyr + s llgoll, ) (6.22)
see [52].
The solution inside the domain is given by the represemdtonula
up = SL(s) @ — DL(s) Pﬁ’lgo
When assuming € [H%2(Q)]* and dist%, ") > 0 we have the error estimate

U(®) — un(R)| < o(a Ishn® (11l + ooz ) (6.23)

foranyXe Q, see [52].
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Indirect single layer approach

Another popular approach is an indirect single layer apgroaUsing the ansata =
SL(s) @, results in the variational formulation:

Find ¢, € S, -°(I") such that
(Vn(S)@h, M) = (db, M)

for all np, € S, °().
Unigue solvability as well as the estimate
[l _1/2r < c(0) 5% 190 ]l1/2r

is obtained by using the ellipticity estimate (Theorem 4 8 estimate for the solution
inside the domain is given by Corollary 6.6 which results in

- 2
[Gll1.0 < c(@) s llgblly /2 -

An estimate for the pointwise evaluation inside the doms&given by combining Theorem
4.8 and Lemma 6.12, resulting in the estimate

G(%)| < c(0) I81* lgoll_y/2r

for X € Q.

6.6 Neumann boundary value problem

According to Section 5.4 the Neumann problem (5.13)

Pu=0 inQ™,
_ (6.24)
Y, U=0On onl
results in the following variational formulation:
Find g, € ﬁ’l(r) such that

OO = ( (51K ) § avw)

r

for all v, € ﬁ’l(r),
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or equivalently
1 ~ _
Dh(s)¢h = (QMJ - Kh(s)*) P Ygn. (6.25)

The ellipticity of the hyper-singular operator guarantaagjue solvability. A bound for
this nonsymmetric realization of the Neumann to Dirichleéiator is given in the follow-
ing lemma.

Lemma 6.14. The following property holds:

Dh(s) ™1 (%Mg - Kh(s)*) e A(2, %, Yh).

Proof. Following the proof of Theorem 5.1 we first introduce
Un = SL(S)R, “gn — DL(s)
and by estimating the equivalent variational formulatioaoetbtain
Ilunllg za,r < S(@)18 lgn 27 (6.26)

Notice that the estimate is better, corresponding than the corresponding estimate for
the Dirichlet problem (6.20). Combining the estimate (6.&&h the trace theorem, The-
orem 3.4, and estimate (3.11) results in the estimate

nllyor < (@) ISP llON]I_y/ar -

Due to the slightly worse estimate for the jump of the Direthrace we end up with a
similar estimate as for the pure Dirichlet boundary valusopem. O

When assumingy € [H3,(7)]* andgy € [H3,(7)]* Strang’s lemma (Lemma 6.2) results
in the error estimate

= Wl < c(@)02 (|5 [l + 1572 lonllsr ) (6.27)
With the help of the Aubin-Nitsche trick an error estimatetfoe Lo-norm is given as

ln—Wlor < (0,9 (| @llzr + lonllr ) (6.28)

see [52].

The solution inside the domain is approximated by

Un = SL(s) P, "*gn — DL(s) .



74 6 Galerkin discretization of boundary integral equations

When assuming € [H%?(Q)]* and dist%, ) > 0 we have the error estimate

u(R) ~ un(®)| < (0, s (llan - + 191 ) (6.29)

for anyxXe Q.

In [52], the estimate is done for a piecewise constant diszeous approximation of the
known Neumann datum, resulting in a lower convergence rateam By repeating the

arguments when using an approximation of piecewise linisaodtinuous basis functions
of the known Neumann datugy the stated error estimate can be shown.

Indirect double layer approach

An indirect double layer approaech=— DL(s) Y, with ¢, € ﬁ’l(r) results in the varia-
tional formulation:

Find g, € Sﬂ’l(r) such that
(Dn(S)Wh; V) = (9N, Vn)r

for all v, € ﬁ#l(r).

Again ellipticity of the hyper-singular operator guaraegeunique solvability. Theorem
4.10 and Corollary 6.6 yield the following estimates

hllyjor S c(@)Isi®llon]l 1/2r (6.30)

and
|

2
1,0 Sc(o)ls| H9n||71/2,r~

An estimate for the pointwise evaluation inside the domsgiven by combining estimate
(6.30) and Lemma 6.12, resulting in the estimate

G(%)| S o(0) sl*llon ]l _1/2r

for X € Q.
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Convolution quadrature is an approximation method for cartian integrals. It was de-
veloped by Christian Lubich in [32, 33] and applied to the wageation in [34]. In the
following chapter, the method will be derived and importaggults will be stated.

7.1 The Convolution Quadrature Method (CQM)

Let F(s) be an analytic function in the half-plane Re> pg such that the Laplace inver-
sion formula

f(t):zim_ / F (s)ds

p+iR

exists for allp > po. f(t) is a continuous and exponentially bounded function which
vanishes fort < 0. To emphasize the dependency on the funckg¢s) we denote the

convolution as
t

F(a)g(t) := / f(t—1)g(7) dt. (7.2)

0

The notation (7.1) emphasizes the dependancy of the cdiolnto the analytic function
F(s) in the Laplace domain. A justification for the notation confresn the fact that for
F(s) = swe haved:g = ¢’ and from the composition rule

F()G(a)g = (F-G)(d)g.

Parseval’s formula gives us the following result:
Remark 7.1. Assume that Fs) is bounded by
IF(s)] <Cls|"
for all Re[s] > o > 0. The operator extends by density to a bounded linear operato

F(d):Hy "(0,T) = H(0,T) (7.2)

75
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for all r € R. Insertion of the Laplace inversion formula into the comnmn integral and
applying Fubini’s theorem results in

Zm/ / (s)e ds gt — 1) dr

0 p+iR
1 t
_ = ST i
= o / F(s)/e gt—1)dr ds.
p+R 0 .

::;&’S>
The functiony(t,s) is the solution of the ordinary differential equation

y(t) =syt)+g(t), y(0)=0.
This ordinary differential equation can be discretizedhgsa multistep method. We con-
sider a constant time step grid with= nAt. A general linear multistep method is given

by
k

k

djyn—j =t 3 Bj(syh-j+9((n—j)At)).

& &

We multiply the sums witk€" and sum oven. We manipulate the resulting sum in the

following way
Z)Zoajyn JE Zoajfj Z)Yn an I,

The right hand side can be rewritten accordingly. Setying 0 andg, =0 forn < 0 and
introducingy(&) = S n>oYné" andg(&) = S >0 9(NAt) results in
k

y(&) 'S ajél =h(sy(&) +9(& Bi&l.
2,9 Zu

Introducing the quotient of the generating polynomials

>K oaé!
o0é)==—"F——
(&) S oBE
we obtain (&
g
yié) =
(9

By utilizing Cauchy’s integral formula we get an approximatuf F (&) as the n-th coef-
ficient of a series expansion of

2 / _ ds=F (%) 9(¢)-

p+IR At
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Using the series expansion

BEY _ 2 o
AC XA 73)

an approximation is defined by
n
(F (o) ) )= 3 anoyaty) (7.4)
]:

The convergence order of the underlying multistep methodsferred to the convolution
guadrature under the following assumptions, see [34]. IH@&at multistep method has to
be A-stable, i. e., R®(&)] > 0 for |§] < 1 andd(&) is not allowed to have poles on the
unit circle. Due to A-stability we are restricted to muliptmethods of order 2. We will
use the backwards difference formula of order one (BDF1) drwider 2 (BDF2) in this
work. Both fulfill the stated assumptions. The generatingpainials are given as

3

Boora(€) = 526 +2€% and depra(€) =1-&.

Theorem 7.1.Let F(s) € A(u, X,Y). The generating polynomial of the multistep method
d(&) has no poles along the unit circle afe[6(&)] > 0 for || < 1. For g € H;(0,T)

with r > %+max(u,0), andfB = min ((r — u)p%"l,n p) we have

|F@)gtt) - F(ag)||, < CatPlog(at) gl or) forO<t<T
and
N o\ 1/2
(h_;Hwa‘)g(iAt)—F<a>g<iAt>)]Y> < 2t |glhyr o)

If the first two terms in the definition ¢ are strictly greater than p, theog(At) term in
the first error estimate can be omitted.

Proof. See [34]. ]

7.2 A decoupled system

Several methods have been presented to speed up the evalafthe approximation

(7.4), defined by a convolution quadrature approach. Riffeapproaches are given in,
e. 9., [22,23,25,30]. The approach presented in this chagte developed in [7]. The

method was further extended in [5].
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The weights in the series expansion (7.3) can be calculatéuebCauchy integral

o (a2

as proposed in [32]. Choosing the contour as a circle arounarthin withé = A €2™ and
approximating the resulting integral with the trapezoidéé in the pointaxy, = k/(N+ 1)
results in the approximate weights

) A Sk i it 75
= N+1, .

N+1 = At (7.5)
Starting from the definition of the convolution quadratupp@ximation

(F () 9) (t) == jiwh_ jolt))

and using the approximate weights (7.5) we extend the sulh g settingwf\ =0 for
] < 0. We end up with a new approximation

(F (até}t\> g> (th) = i}ﬁ%\_jg(tj). (7.6)
i=

(5N+1)

. i 2
Introducingén1 = dnr ands;j = the new operator can be written as

N
s«)fk” Al EKig;
j; J

—N+j N

(F () ) = 3 Ay 3 Fem g - 3 0

with gj = g(t;j).
The weighted discrete Laplace transform is given by

—n

N . .
La(gk:= Y A& Mg;.
&

(F(a%)g) t) =t

and applying the weighted inverse Laplace transformatierend up with the set of de-
coupled equations

Starting from the equation

F(s)Lat(Qk = Lac(h) fork=0,...,N

The error of the additional approximation can be boundedbyfallowing lemma.
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Lemma 7.2. Let the multistep method be either the BDF2 or the BDF1. LeeNotk the
number of time step§,< A <land Fe A(u,X,Y), then

At At AN+1 1
|F@&)a-Fa, <ozt lglluo

with C dependingon T.

Proof. In [7], the proof was done for the inverse single layer posrind the backward
difference formula of order 2. The extension to the geneaasaéds straight forward. [

Remark 7.2. The discrete operator fulfills the composition rule, thus \a&eeh
F (dté)t\ )G(dté)t\) = (FG) (dté)t\ )-

Proof. See [7]. m

7.3 Galerkin discretization in space and convolution quadrature in
time

In the previous sections the convolution quadrature mettasl discussed. This method
can be used to discretize convolution integrals arisinghfllundary integral equations.
The necessary properties for all boundary integral opesiave been established in Chap-
ter 4, the properties have been transferred to their Galetisicretizations in Chapter 6
and, finally, all necessary properties for several bound#ggral formulations and their
Galerkin discretizations have been established in Chapg@d3Chapter 6. All boundary
integral equations will be discretized in time by the commn quadrature and in space
by the Galerkin method. The necessary theory is establishéluis chapter. We will
first discuss an abstract setting and finally apply this thémdifferent boundary integral
formulations.

Let X be a Hilbert space and the operator
A:X = X* e A(u, X, X*). (7.7)

We start with the operator equation A
Al=f
for 6= Lue X and f = £f € X* in Laplace domain and the corresponding Galerkin
approximation A A
Anlh = fp,
as defined in (6.2).
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Let the operatoAy, be invertible with the property

ALt € AV X5, X). (7.8)
The Laplace inversion formula yields
An(G)un = fn

with un = £10, and f,, = £ 1 f,,. Applying a time discretization as defined in (7.6) results
in the fully discretized system

An(93%5) i = Fi. (7.9)
With the help of the composition rule, see Remark 7.2, thisggn can be rewritten as

5 = A
We have the mapping propert)ﬁl :H™Y(0,T; X)) — H"(0,T; X,) and thus forf, €
H™V(0,T;X) we end up withrup € H"(0,T; X,). The error of the Galerkin approximation
is bounded, see Lemma 6.1,

U= Unllr01:x) < CVPEQI(h U= Vhllprenv o) (7.10)
whereu is the solution of the equation
A(G)u=f. (7.11)
The error in space and time is estimated in the following lemm

Lemma 7.3. Let the multistep method be either BDF1 or BDF2 and p its ortlet u be
the solution of equatioii7.11) and let li" be the solution of equatiofv.9). We assume
conditions(7.7) and (7.8) fulfilled, f € HY*P+1(0,T,X) and0 < A < 1. Introducinga =
1/2+ u+v+eandf = v+ p+ 1+ ¢ results in the following error estimate

Huﬁ (t;) — u(ti)HX < C[vr!g(h U= Vhl[Hao1:x)

"’AtprHHB(QT;x*)
N+1 .
+ WN Hf”HV(O,T;X*)}

foralli =1,...,N, with c dependingon T.

Proof. The error can be split up as

Juto) o = A7) =A@
<[|AHa - AT
+ At A
+ At - A @)
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and thus combining estimate (7.10), Theorem 7.1 and Lemghwgiélds the result. [

Remark 7.3. Let the assumptions of Lemma 7.3 be valid and furthermonenasa™ ~
AP Fora =1/2+4+ p+v+egandB = v+ p+ 1+ ¢ the following error estimate holds

|uht) —uw)| <c (V;g;h Ju=Vhlla 0% +Atpr|qup<o,T;X*>) .






8 TIME DOMAIN

In this chapter different boundary value problems will becdissed in time domain. Parse-
val's formula allows us to transfer the results from Lapldoain to time domain. We will
prove unique solvability for all discussed problems, folateithe boundary integral equa-
tions, prove unigue solvability for the continuous intdgrguations and for their Galerkin
discretizations. Finally, by application of Lemma 7.3 andrfek 7.3, error estimates for
the error of the space and time discretization can be given.

8.1 The mixed boundary value problem

The mixed problem in time domain is given as

Pi(x,t) =0 forxe Q~, te(0,T),

¥ G(X,t) = Gp(x,t) forxelp, te(0,T),

pra(xt) =gn(xt)  forxely, te(0,T), (8.1)
4(x,0)=0 forxe Q,
0'(x,0)=0 forx e Q.

Ford(x,t) € H}(0,T; [H1(Q)]*) unique solvability is a direct consequence of unique solv-
ability in Laplace domain, see Corollary 3.12. Remark 7.1 gjwe the following bound
for the solution:

lallro < c (180l 430+ 1Nl 1 1ry)-
The notation of the norm was introduced in (3.13).

The system of integral equations in time domain is given by

V(@)p-K@)P =~ (31@)+K(@)) Go-V(@)d  onlox(0T),
()9 +D(@)w =  51(@) K @)) su-D(@)do onTyx (0.T)

with the unknown Neumann datum € H§(0,T,[H-Y2(I'p)]*), the unknown Dirich-
let datum{ € H§(0,T,[HY?(Ty)]*) , the extension of the given Dirichlet datugp &

He /20, T, [HY2(I'p)]4) to G € Hy ">/2(0, T, [H¥(I")]4) and the extension of the given
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Neumann datungy’ € H, (0, T, [H=Y2(Tn)]%) to Gy € Hy (0, T, [H=Y2(I")]#) for any
t€ (0, T)andr € R.

The system of boundary integral equations is again unigeayable due to Theorem 4.14
and the solution is bounded by

1l + 180 .6 < C (10Nl a3 ry 160350,

for all r € R. The discrete decoupled system at time stgpsnAt, n=1,... N+ 1is
given by

Va(9E) 4" — Kn(013) ﬁt—(;mhw )+ Kn(9f} >) Py "6b — Va(9C0)R, "'an  onTo,

)@ +Dn(95) Wt = <;Mh 95) - Kh(th)t\)> P, i — Dn(0%)PP'Gp  onTw.
(8.2)
Unique solvability can be proven due to Theorem 4.14 and dh&position rule, Remark
7.2. The Galerkin spaces will be chosen as stated in Secdor"hen assuming(t, ) €
[H%2(Q)]*, Remark 7.3 combined with Corollary 6.9, Theorem 5.1 and Térao8.11
results in the following error estimate for the discretauioh at the time stefy, = nAt

| wit) - 4t o)

ir ‘|‘H(Ptn %At (tn)

1rN

< ch?¥/? {||W||11/2+e 1r H@ll124e, 2r} + cAtP [||9N||7+p+5 iret ||9D||7+p+5 I
(8 3)

For a reduced order in space or time a reduced order of cagwveegcan be deduced.

8.2 Dirichlet boundary value problem

The Dirichlet problem in time domain is given by

Pi(x,t) =0 forxeQ™, te(0,T),

¥ U(x,t) = Gp(x,t) forxel, te(0,T), (8.4)
4(x,0)=0 forxe Q,
ad(x,00=0 forx e Q.

Forue H§(0,T; [H1(Q)]*) unique solvability is a direct consequence of unique sdlitgb
in Laplace domain, see Corollary 3.12. The correspondinghtdary integral equation is
given by

V@)= (5@ K@) o
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with the unknown Neumann datugne Hj(0, T,[H~Y/2(T")]*). Unique solvability is guar-
anteed by Theorem 4.8 with the estimate

”ll’Hr,f%,F < CH@DHHZ%I

which is obtained with the help of Lemma 6.13. Choosing digcsabspaces as in Section
6.5 we end up with the discrete equation at the timedtepanAt

1 N
(a8} = (GM0E))-+ (083 ) P,
which is unique solvable with the estimate

1Pl —1r <cllbolli 2

When assumings € H3™(0, T, [H(")]*) anddp € Hg

estimate (6.21) and Lemma 6.13, thus obtaining

/244 (0, T, [H2,(T)]*) we can apply

| @t - 9 )

3/2 ~ ~
- <C [h / (||¢’||9/2+:»:,1,r+ ||9D||5+s,2,r> JrAtp||9D||3+|o+,,;7%,r] :

_1
29

(8.5)
8.3 Neumann problem
The Neumann problem in time domain is given by
Pi(x,t) =0 forxe Q~, te(0,T),
¥p U(x,t) = Gn(x,t) forxel, te(0,T), (8.6)
G(x,0) =0 forxe Q, '
0(x,00=0 forx e Q.

The corresponding boundary integral equation in time darisagiven by
- 1 _ R
D)% = 5(@) K@) B, o

with the unknown Dirichlet datunp € H" (0, T, [HY/2(I")]4). Theorem 4.10 guarantees
unique solvability with the estimate

10 3 <cldnl o yr
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which is a direct consequence of Lemma 6.14. We choose the digrete subspaces as
in Section 6.6 and end up with a full discretized system

. 1 ., 11,
D4 )i = (SO K@) ) By o

for the timesteps, = nAt. The discrete system is uniquely solvable with the follayvin
estimate for the solution.

Il r < clionllizo g

Assumingg € Hy/**#(0,T,[HL,(Q)]*) anddy € Hy > ™ P22 (0 T [H2,(1)]*) and
using estimate (6.27) and Lemma 6.14, we end up with the estonate

| &t — G 1)

32 (112 . DllA
%,FSCh/ <H(PH%+S7H+||9N||4,1,r>+CAt ||9N||g+p+g,%,r- (8.7)



9 NUMERICAL EXAMPLES

In this chapter, the convergence results from the Chaptee &amfirmed with the help

of numerical examples. In addition to the presented apbrogcstudy a collocation ap-
proach, which is derived in Section 9.2. The error of the sgiscretization is discussed
first, followed by a discussion of the error in time.

9.1 On the implementation

The discussed algorithms were implemented in the softwarary HyENA [27]. The
integral operators were realized by the Duffy transfororgtisee [20]. The double layer
potential, adjoint double layer potential and the hypegslar operator where regularized
through partial integration, see [39, 40].

To reduce computational and storage complexity fast meatiinade been utilized. The
first fast methods, which were developed, are the Fast Mudipethod, see [42] and
references therein, and the Panel-Clustering method [24{hd HYENA library theH-
Matrices [11, 21, 44] are utilized, to be more precise thepligda Cross Approximation
(ACA) [10] as implemented in the AHMED library [9] is used.

The different parameters differ greatly in the order of magle, see e. g., Table 9.1 for
Berea sandstone. A direct discretization leads to systemamsiwith condition numbers
higher than 18°. Direct solvers still succeed, at least most of the time, rehg iterative
solvers, as they are used in our code, simply fail. A variat@iasformation from [28] is
applied, which results in reasonable conditioned matridgdditionally preconditioners
are applied. The single layer potential is preconditioneat artificial multilevel precon-
ditioner [50] and the hyper-singular operator is precdadeéd by an operator of inverse
order [53].

9.2 A collocation approach

The collocation approach is still very popular especiallgngineering applications. Start-
ing from an operator equation
Au=f

87
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with A: X — X* and f € X* we can restricti, to X;,. Instead of using test functions we
require the equation to be fulfilled in collocation poims j < J resulting in the discrete
system

ACun(xj) = f(x;) foralljed.

For a basisp,i € J, of the spacé, the matrix has the entries

AT = (A (%) i,jed

On general Lipschitz domains the solvability of the equaaod thus the stability of the
numerical scheme is still an open question. Stability iy &mlown for special cases, for a
more detailed discussion see, €. g., [2,18,43].

For the mixed boundary value problem

Pu=0 inQ™,
YoU=0p onlp, (9.1)
Y U=0nN onln.

we start with the first integral equation, see [38],
0=V(s)yau— (ol +K(s)) you (9.2)

where
o =lm [ [AGixy) ds,.

£—0
yeQ:ly—x|=¢

The termo degenerates to/2 onC? surfaces, see [38], however on corners and edges this
simple relation is not true. Thus the jump teonis equal to ¥2 almost everywhere.

We choose appropriate extensi@ase [H/2(I")]* andgy € [H~Y/2(I")]* for the Dirichlet
and Neumann daigp € [H¥/?(I'p)]* andgy € [H~/3(I"'y)]* such thafip = gp onlp and
On = On onTy. We define the unknowns

f = yau— gy andu'= yu—gp.
Insertion into the first integral equation (9.2) results in
V(s)f — (gl +K(s))i= (al +K(s))dp — V(s)n. (9.3)

As for the Galerkin approach we choose lowest order ansatzifinsty, € S;l’o(l'D) and

Up € ﬁ’l(rN) to approximate the unknown functions. Equation (9.3) ismiszed using
the collocation approach. To end up with a quadratic systecollocation points are
chosen in the following way. Ohp we choose the centre of the triangles = 1,...,Np

and forly we choose the points of the mesh itsgif j = 1,...,Mn. We denote the
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number of elements on the Dirichlet boundary wNB and the number of elements on
the Neumann boundary witRy respectively. The number of nodes on the Dirichlet and
Neumann boundary are denoted My and My. In the same way as for the Galerkin
approach the Dirichlet datgp is approximated bPﬁ’lQD and the Neumann datg, is

approximated by3 1’1§N.
We end up with the linear system of equations

VS KSo(s) m _ {%ISD+K8D<s> —vNCD<s>] [Pﬁﬂlqol
(s)| |u

VEn(S) onn+ KRy KSn(s) ~Viin(9) P{l’lgN

with the system matrices

VSo9)]i = (VoW ) (x)  fori =1,...,Np,
VSuS)lik= (V)W (%) fork=1,...,Myandi=1,...,Np,
KSo(9)]ki = (K9P (%) fori =1,...,Npandk=1,...,My,
KenOl= (KW (%) fork=1,....My,
( )

fork=1,...,Myn

Mk = V()Y " ()  fork=1,...,Myand/=1,...,Ny,
ME(S)]a = V(9 "H(4)  fori =1,...,Np andl=1,...,Ny,
[KSo(9)]ji = (K9 (x) fori =1,...,Np andj=1,...,Mp,

[loplij = (L,Ujo’l)(xi) fori =1,....Np andj=1,...,Mp,
Kpn(9)]jk = (K s)L,UJ-O’l)(xk) fork=1,....Myandj=1,...,Mp.

A formula for the evaluation of the jump term(x) is given in [37]. On the right hand
side the jump term is evaluated in the centre of the trianghess the jump term is simply
1/2.

The final system of linear equations is given in Laplace domaiconvolution quadrature
approach, see Chapter 7, is used obtain a solution in timeidoma

9.3 Laplace domain

We start by examining different problems for a fixed Laplaaeametess in Laplace do-
main. The resulting error represents the error in spacea feed frequencg an analytical
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solution is well known, namely the fundamental solut®(, -) fixed in a pointc R3\ Q.
Actually each column of the fundamental solution is a solutf the problem. We chose
the last column. The unit cul® = (—0.5,0.5)3 is chosen as the domaf2. As material
we chose Berea sandstone as given in Table 9.1, see [29].

A Nme]p Nm?] o pkg/m] @[] a [Nm] o prkg/m?]  R[N/m? K [m*/ng]
rock 4-10° 6-10° 2458 019 0778 1000  4885.10° 1.9.10°10

Table 9.1: Material properties of Berea sandstone.

Starting from an initial mesh consisting of 12 trianglessheface of the cube is uniformly
refined. We chose the poirtequal t0(0.3,0.13,1.5). The solution is evaluated on 413
nodes residing on a second cupe0.3750.375)2 inside the domair. The error is
observed for the unknowns of the solid and the fluid separai¢le solid displacement
and the pore pressugeis examined on the boundaFyand pointwise in the domaif2.
Furthermore, we study the Neumann trace split up into thetitrat = yj'u and the flux
g= —yf p, see (2.17) and (2.18), respectively.

9.3.1 Dirichlet boundary value problem

In this chapter,, we discuss the Dirichlet problem (5.11¢Tlaplace parameter is fixed at
s= 2+ 1i. We compare the results of the Galerkin approach given i9}6.

1
Vh(S)gh = (EMh + Kh) Py?’lgo

with the collocation approach discussed in Section 9.2
1 0
V0 = (31548 ) Fio.

In case of the Dirichlet problem the original boundary imgg@quations are the same, only
the space discretization is different. We compare theivelap(I")-error on the boundary

of the unknown Neumann datg and q‘f For the Galerkin approach the theory implies
a convergence rate of one, see (6.22). The Neumann gr&&split up into the traction

t = (@, @, @) and the fluxg= —@. We split up the discrete Neumann traces accordingly.
We denote the relativieo-error by

|t =tnllor _lla—=anllor
[tlor allor

The results are stated in Table 9.2.
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| Collocation | Galerkin
#DOF | g eoc e eoc | q eoc e eoc
48 4.75e-01 6.73e-01 4.78e-01 6.67e-01

192 2.50e-01 0.92 3.41le-01 0.98.55e-01 0.91 3.55e-01 0.91
768 1.18e-01 1.08 1.46e-01 1.221.21e-01 1.08 1.55e-01 1.20
3072 | 5.73e-02 1.05 6.39e-02 1.2(6.80e-02 1.06 6.66e-02 1.21
12288 | 2.81e-02 1.03 2.89e-02 1.14£.83e-02 1.04 2.97e-02 1.16

Table 9.2: Comparison of the relatig(I")-errors for the Neumann trace.

The collocation approach produces slightly lower erroentthe Galerkin approach, the
difference however is almost negligible. The convergenckers match quite well with
the theoretical bounds. Furthermore, we compare the diopis point evaluation of the
unknown function

U = SL(s) gh— DL(s) P> gp

inside the domain. We split the error into the solid disphaeatu = (Ul,Uz,U:g)T and the
pore pressur@ = U,.

The pointwise error is defined as

VS (%) — Un(%)12 VS ) —tn(%)
pa, = ) pa =
3 Ju(%)[? Silt)P

wherei = 1,...,413 are the different evaluation nodes. The error for the poessureg
and the fluxg are defined in the same way. Equation (6.23) implies an optioreergence
order of three for the Galerkin approach. The results atedia Table 9.3.

) (9.4)

| Collocation | Galerkin
#DOF | pey eoc pe, eoc | pe eoc pe, eoc
48 6.79e-02 1.14e-01 6.44e-02 1.13e-01

192 1.65e-02 2.05 2.03e-02
768 2.49e-03 2.73 1.86e-03
3072 | 5.11e-04 2.28 4.23e-04
12288| 1.19e-04 2.10 1.02e-04

9.36e-02 2.25 1.90e-02 2.58
51.04e-03 3.70 8.67e-04 4.45
3B.00e-05 3.70 6.82e-05 3.67
B.10e-06 3.30 7.34e-06 3.22

NN W

Table 9.3: Comparison of the relati¢g-errors for the point evaluation.

The convergence rate for the Galerkin approach startsrratgle but seems to retreat to
three. The convergence rate of the collocation approachewother hand tends towards
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two. The errors for the Galerkin approach are thereforefsogmtly better. To achieve the
desired convergence rate for the Galerkin approach it i®rtapt to project the incoming
Dirichlet datagp into the discrete subspaél. Replacing thid_»-projection by an inter-

polation into the spacﬁg’l results convergence orders as stated in Tables 9.4 and 9.5.

| Collocation | Galerkin
#DOF | g eoc e eoc | g eoc e eoc
48 5.61e-01 7.48e-01 5.64e-01 7.45e-01
192 2.76e-01 1.02 4.05e-01 0.82.77e-01 1.03 4.06e-01 0.88
768 1.28e-01 1.12 1.78e-01 1.181L.27e-01 1.12 1.78e-01 1.19
3072 | 5.99e-02 1.09 7.51e-02 1.246.99e-02 1.09 7.50e-02 1.24
12288| 2.88e-02 1.05 3.24e-02 1.212.88e-02 1.06 3.24e-02 1.21

Table 9.4.L,(I")-errors of the Galerkin approach with interpolation of tlieeg Dirichlet

data.

ThelL(IN)-error as presented in Table 9.4 increases slightly, thaatig however not as

significant.
| Collocation | Galerkin

#DOF | pe, eoc pe eoc | pe, eoc pe eoc
48 1.96e-01 1.81e-01 1.81e-01 1.71e-01

192 5.03e-02 1.96 4.36e-02 2.0%4.55e-02 2.00 4.01e-02 2.09
768 1.26e-02 1.99 1.05e-02 2.051.10e-02 2.05 9.15e-03 2.13
3072 | 3.15e-03 2.00 2.63e-03 2.0®.71e-03 2.02 2.26e-03 2.02
12288| 7.85e-04 2.00 6.58e-04 2.06.73e-04 2.01 5.61e-04 2.01

Table 9.5:/»-errors of the Galerkin approach with interpolation of tiveeg Dirichlet data.

From the errors in Table 9.5 we deduce that the pointwise émgveases for both ap-
proaches. The impact on the Galerkin approach however ig ignificant, since the

convergence rate for the Galerkin approach is reduced to fivus effect was already
studied in [52].

9.3.2 Neumann boundary value problem

In this section, the Neumann problem in Laplace domain (5sl8iscussed. The Laplace
parameter is fixed a8 = 100+ 200. The Galerkin approach for the Neumann problem
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(6.28)

1+ -\
Dhih = <§Mg - Kh) R Mo

is compared with the collocation approach from Section 9.2

1 .
(th - th) Ys =VR, Mon.

In addition to different spatial discretizations, diffateooundary integral equations are
compared. The unknown function is split up into the solicptiisement = (Y1, Yo, Ys3)

and the pore pressume= (4. Estimate (6.28) implies a convergence rate of two of the
Galerkin approach. The error is given as

[[u—unl[or lP— Pnllor
= ep: _
1ullo.r Ipllor

The errors are presented in Table 9.6.

| Collocation | Galerkin
#DOF | & eoc e, eoc | ey eoc e, eoc
32 4.32e+01 1.01e+01 2.55e-01 3.90e+00

104 1.34e+01 1.68 2.35e+00 2.1®.21e-02 1.47 1.72e+00 1.18
392 3.40e+00 1.98 7.51e-01 1.691.99e-02 2.21 4.04e-01 2.09
1544 | 9.01e-01 192 2.18e-01 1.781.26e-03 2.22 6.35e-02 2.67
6152 | 2.41e-01 1.90 5.74e-02 1.938.73e-04 2.13 1.06e-02 2.58

Table 9.6: Comparison of the relatilzg-errors for the Dirichlet trace.

The convergence rate of the Galerkin approach for the s@platement is in good agree-
ment with the theory. The convergence rate of the pore pressiunigher than expected.
The collocation approach results in significant largerrsirthe convergence rate however
seems to tend towards two as well. Additionally the errorgtie point evaluation inside
the domain are given in Table 9.7.

Estimate (6.29) predicts an optimal convergence rate ektfor the Galerkin approach.
The convergence rate is indeed achieved. The error for thecaton approach is again
much higher and the convergence rate seems to be restacied.t

Remark 9.1. To achieve the presented convergence rates for the Galapgroach in Ta-
ble 9.7 the accuracy for the evaluation of the matrix entfa@the hyper-singular operator
had to be increased quite significantly.
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| Collocation | Galerkin
#DOF | pey eoc pe eoc | pe eoc pep eoc
32 3.54e+01 3.61e+01 8.74e-02 7.51e+00

104 1.12e+01 1.65 4.85e+00 2.9®.89e-02 1.60 2.91e+00 1.37
392 291e+00 1.95 9.75e-01 2.312.73e-03 3.40 3.15e-01 3.21
1544 | 7.78e-01 1.91 2.33e-01 2.0&2.17e-04 3.65 2.36e-02 3.74
6152 | 2.08e-01 1.91 5.79e-02 2.012.30e-05 3.24 1.40e-03 4.07

Table 9.7: Comparison of the relati¢g-errors for the point evaluation.

To obtain a convergence rate of three for the Galerkin amgbr,adhe given Neumann data
has to be projected into the discrete subs@,fcle'L of linear discontinuous basis functions.

Projecting the given Neumann data into the discrete subﬁf&@ of constant basis func-
tions results in a lower convergence rate in the intericg,[S€]. The resulting errors for
the collocation and the Galerkin approach are presentedbie®.8 and Table 9.9.

| Collocation | Galerkin
#DOF | e eoc ep eoc | e eoc g eoc
32 1.60e+02 4.11e+01 1.35e+02 2.36e+01

104 3.88e+01 2.04 8.86e+00
392 9.01e+00 2.11 2.86e+00
1544 | 2.15e+00 2.06 8.20e-01
6152 | 5.31e-01 2.02 2.11e-01

r.82e+01 2.26 9.62e+00 1.30
F.19e+00 1.97 3.23e+00 1.58
(.81e+00 1.99 9.52e-01 1.76
64.55e-01 2.00 2.56e-01 1.89

o

Table 9.8: Thd_(I")-errors for the Galerkin discretization with the given tigfand side
P .

Comparing the errors presented in Table 9.8 with the erromsngin Table 9.6 shows
that both approaches suffer severely by this change. Edpettie error of the Galerkin
approach increases significantly. Again the error for the poessure is slightly better in
the collocation approach, whereas the solid displacenesntts in a slightly smaller error
when calculated with the Galerkin approach.

The point evaluation for both approaches is now restriabe@l tonvergence rate of two,
see Table 9.9. The error of the pore pressure is even sligbther for the collocation
approach, however the error of the solid displacementlisbgjhtly higher. The errors for
the collocation approach did increase slightly, the impag however small in comparison
to the Galerkin approach.
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| Collocation | Galerkin
#DOF | pey eoc pe eoc | pe eoc pep eoc
32 1.31e+02 3.98e+02 1.11e+02 3.27e+02

104 3.18e+01 2.04 1.10e+01 5.182.31e+01 2.26 1.42e+01 4.53
392 7.38e+00 2.11 3.48e+00 1.66.89e+00 1.97 4.03e+00 1.82
1544 | 1.77e+00 2.06 8.80e-01 1.981.48e+00 1.99 9.40e-01 2.10
6152 | 4.37e-01 2.02 2.09e-01 2.08B.72e-01 2.00 2.28e-01 2.04

Table 9.9: Tq%éz-errors for the Galerkin discretization with the given tigland side
Ph_ ""ON-

9.3.3 Mixed boundary value problem

In this section, the numerical results for the mixed problarhaplace domain are stud-
ied. The Laplace parameter is fixedsat 20+ 15. We compare the Galerkin approach
discussed in Section 6.4 and the collocation approach seclin Section 9.2.

#DOF | e eoc € eoc | g eoc e eoc

24 2.26e-01 4.25e-01 5.02e-01 4.59e-01

100 8.04e-02 1.49 1.70e-01 2.82e-01 0.83 2.48e-01 0.89
420 1.56e-02 2.37 3.93e-02 11.47e-01 0.94 1.34e-01 0.88
1732 | 3.30e-03 2.24 8.65e-03 87.40e-02 0.99 6.84e-02 0.98
7044 | 7.55e-04 2.13 1.96e-03 48B.71e-02 1.00 3.43e-02 0.99

NN

Table 9.101 »-error of the Cauchy data on the boundary for the Galerkincgugr.

The results for the Galerkin approach are stated in Tablgé 9he convergence rates are
in good agreement with the theory. The errors for the cotlonaapproach, as given in

Table 9.11, behave in a similar way. In general, the erroth®fGalerkin approach are

slightly smaller or equal to the errors of the collocatiopayach.

Additionally, the error of the point evaluation is given ialdle 9.12. The error behaves
in a similar way as for the Dirichlet and the Neumann probléife have a convergence
rate of two for the collocation approach and a convergenieeafthree for the Galerkin
approach. This results in a smaller error for the Galerkpragach.
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#DOF | e eoc e eoc | g eoc e eoc

24 5.66e-01 5.26e-01 5.03e-01 4.64e-01

100 1.49e-01 1.92 1.95e-01 P.83e-01 0.83 2.47e-01 0.91
420 4.21e-02 1.83 5.28e-02 9.47e-01 0.95 1.34e-01 0.88
1732 | 1.19e-02 1.83 1.35e-02 77.40e-02 0.99 6.84e-02 0.98
7044 | 3.27e-03 1.86 3.40e-03 B.71e-02 1.00 3.43e-02 0.99

= e

Table 9.111 »-error of the Cauchy data on the boundary for the collocatppr@ach.

| Collocation | Galerkin
#DOF | pe, eoc pe eoc | pey eoc pep eoc
24 4.16e-01 3.04e-01 1.03e-01 1.90e-01

100 9.89e-02 2.07 6.82e-02 2.164.09e-02 1.33 4.58e-02 2.05
420 291e-02 1.77 1.34e-02 2.333.47e-03 3.56 3.68e-03 3.64
1732 | 8.47e-03 1.78 3.43e-03 1.974.28e-04 3.02 2.67e-04 3.79
7044 | 2.36e-03 1.85 8.57e-04 2.006.09e-05 2.81 2.80e-05 3.25

Table 9.127,-error of the point evaluation for the mixed problem.
9.4 Time domain

In this chapter we discuss numerical results for the comrerg of solutions in time do-
main. To the best of our knowledge no pure analytical safuitiotime domain is known.
We therefore start with a fixed discretization in space afideenly in time. The finest
level is taken as a reference solution. The error and thesponding convergence rates
reflect the error in time. As domai@ we chose the cubg-0.5,0.5)3. The surface of the
cube is discretized with 12 elements. No further refinemerngpace are necessary.

9.4.1 Dirichlet boundary value problem

The Dirichlet datum is given as
u(t,x) = 10 e 5(130873-@x -3 anqp(t, x) = 0

witha=(1,2,1)". The solid displacement represents an incoming wave. At fieto the
solid displacement is not equal to zero, the maximal valuires zero is however smaller
than 2°°. The wave travels at a speed of 130817& The length of the time interval is
chosen ag = 4-3. Starting with 64 time steps we calculate up to 2048 timesstdjne



9.4 Time domain 97

finest level is chosen as a reference solution. In Table @r$8the number of time steps
denoted b is given, followed by the pointwise errors and, finally, tmeoe of the traction
and the flux on the boundary. The relative pointwise erroefinéd as

o VTGt @) 5[y ey

3 uc%, ) V2 [t )|

wherei =1,...,413is an index for the different evaluation nodes @ndl, ..., N an index
for the different time steps. On the boundary the error ferfthx is given as

(9.5)

,1/2 \/Z] ((A—dref)(t})), (A—ref)( >r
\/ZJ<V0ref ), Oref(t )>2

with the reference solutioges. The error for the traction is defined in the same way and

denoted bye, Y2 The single layer potentid is evaluated for a fixed = 1 and thus the
error is equivalent to thiH ~1/2(I")]*-norm. Both approaches are discretized in time using
a BDF2 scheme, which results in an optimal convergence ofdero

(9.6)

N pet, eoc pet eoc | g 1/2
128 | 2.36e-02 1.65 1.39e-01 $.90e-02 1.74 1.57e-01 1.71
256 | 6.13e-03 1.95 3.64e-02 2.60e-02 1.93 4.13e-02 1.92
512 | 1.52e-03 2.01 9.06e-03 (6.46e-03 2.01 1.03e-02 2.01
1024 | 3.62e-04 2.07 2.16e-03 71.54e-03 2.07 2.45e-03 2.07
2048 | 7.24e-05 2.32 4.32e-04 2.08e-04 2.32 4.90e-04 2.32

—1/2

eocC eocC

MNP

Table 9.13: Dirichlet problem - Collocation approach - BDF2.

Both the collocation approach, see errors presented in Bab& as well as the Galerkin
approach, see errors presented in Table 9.14, convergawidhvergence rate of two.

N pet, eoc pet eoc q_l/z eoc eal/z
128 2.70e-02 1.65 1.25e-01 1.68 1.04e-01 1.63 1.37e-01 1.74
256 7.10e-03 1.93 3.24e-02 195 2.68e-02 1.95 3.56e-02 1.95
512 1.77e-03 2.00 8.04e-03 2.01 6.66e-03 2.01 8.86e-03 2.01
1024 4.24e-04 2.07 1.92e-03 2.07 1.59e-03 2.07 2.11e-0F 2.0
2048 8.48e-05 2.32 3.83e-04 2.32 3.17e-04 2.32 4.23e-02 2.3

eoc

Table 9.14: Dirichlet problem - Galerkin approach - BDF2.
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For the Galerkin approach the numerical results confirmtiaeretical convergence rates.
Theoretically the scheme is stable for any time step. HomNg was not observed in our
numerical examples. Both approaches tend to become ungttidenatrix entries are not
computed with enough accuracy. By increasing the Gaussypemtare able to calculate
rather a long time, especially for the Galerkin approache @bllocation approach tends
to be more sensitive. For this Dirichlet problem 4096 timepstare not stable with the
collocation approach, refining once in space however reguli stable scheme again.

Remark 9.2. So far all errors in space have been given in the natural spasmce the
error estimates in time are given in the natural spaces. €hmEsms are most of the time
more difficult to evaluate and, therefore, an error estimatthe Ly(I"') norm is desirable.
For an error estimate in the4(I") norm an estimate

<c(a) s/

1
‘ vt (éMh + Kh>
[HL(M)]4—[La(7))*

is necessary. The errors of the solution of both the Galeakith the collocation approach

in the Lp(I") norm are presented in Table 9.15. The convergence rate stgytigt such a
bound exists.

\ Collocation \ Galerkin

N a eoc e eoc & eoc e eoc

128 1.24e-01 1.74 1.59e-01 1.71 1.16e-01 1.68 1.38e-01 1.74
256 3.21e-02 1.94 4.19e-02 193 3.00e-02 1.95 3.58e-02 1.94
512 7.97e-03 2.01 1.04e-02 2.01 7.45e-03 2.01 8.90e-03 2.01
1024 1.90e-03 2.07 2.49e-03 2.07 1.78e-03 2.07 2.12e-0F 2.0
2048 3.80e-04 2.32 4.98e-04 2.32 3.56e-04 2.32 4.25e-0£ 2.3

Table 9.15: Dirichlet problemky(I") error - BDF2.

9.4.2 Neumann boundary value problem

For the Neumann problem we prescribe the given Neumann data a
t(t,x) = 1075(10t — (a,x) — 3) (a, n) e 5(130873—{@x-3)? 5nqq(t, x) = 0

with a= (1,2,1) " andn as the normal vector. The length of the interval is againraie
T = 473, We compare the pointwise errors in the interior defined b#)(9The error on
the boundary was measured by the norm

e VTP ben(1). (1 ter)1)f
\/Zj <Duref(tj)auref(tj)>ﬁ

) (9.7)
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with the reference solutione¢. The error of the pore pressure is measured in the same

norm and denoted bg}',/ 2. The hyper-singular operator was evaluatedsfer 1 and thus
the norm is equivalent to thé/2(I")-norm.

N pet, eoc pet eoc ¢'? eoc e’ eoc

256 1.16e-01 1.66 1.59e-01 1.63 1.39e-01 1.67 7.14e-02 1.81
512 3.08e-02 1.91 4.24e-02 1.90 3.70e-02 191 1.85e-02 1.95
1024 7.74e-03 1.99 1.07e-02 1.99 9.31e-03 1.99 4.61e-0D 2.0
2048 1.85e-03 2.07 2.56e-03 2.06 2.22e-03 2.07 1.10e-03% 2.0
4096 3.70e-04 2.32 5.11e-04 2.32 4.45e-04 2.32 2.21e-082 2.3

Table 9.16: Neumann problem - Collocation approach - BDF2.

The errors presented in Tables 9.16 and 9.17 indicate teatdhocation as well as the
Galerkin approach yield the desired convergence ratesiépoint evaluation in the inte-
rior as well as the given norm on the boundary.

N pet, eoc pety eoc ql/z eoc e%,/z eoc

256 6.72e-03 192 2.30e-02 193 1.82e-02 1.92 2.67e-02 1.93
512 1.70e-03 1.98 5.81e-03 1.99 4.61e-03 1.98 6.74e-03 1.99
1024 4.22e-04 2.01 1.44e-03 2.01 1.14e-03 2.01 1.67e-03 2.0
2028 1.01e-04 2.07 3.43e-04 2.07 2.73e-04 2.07 3.98e-047 2.0
4096 2.01e-05 2.32 7.07e-05 2.28 5.46e-05 2.32 7.97e-02 2.3

Table 9.17: Neumann problem - Galerkin approach - BDF2.

The error for the Galerkin approach is significantly smaitem the error for the colloca-
tion approach.

9.4.3 Mixed boundary value problem

For the mixed problem the Dirichlet bounddry is chosen as the facge = —0.5 and the
Neumann boundary d§y =TI \ 'p. On the Dirichlet boundary the wave

u(t,x) = 10 e 5(130873-(@x) -3 anqp(t, x) = 0
Is prescribed. On the Neumann boundary the incoming wave

t(t,x) = 1078(10t — (a,x) — 3) (a, n) e 5(130873—(@x-3)2 gnqq(t, x) = 0



100 9 Numerical examples

is prescribed. Agaia= (1,2,1)" andn is the normal vector.

The errors for the collocation approach, see Chapter 9.2stated in Table 9.18. The
errors are given in &1/2(I'y) norm, see (9.7), for the solid displacemerdnd the pore
pressurep and aH*l/Z(FD) norm, see (9.6), for the tractidrand the fluxg.

N a/? eoc e%,/z eoc g 2 eoc egl/z eoc

256 3.51e-02 1.85 4.35e-02 1.87 3.01e-02 1.85 4.91e-02 1.81
512 9.01e-03 1.96 1.11e-02 197 7.71e-03 1.96 1.27e-02 1.95
1024 2.24e-03 2.01 2.76e-03 2.01 1.92e-03 2.00 3.18e-0D 2.0
2028 5.36e-04 2.07 6.58e-04 2.07 4.61le-04 2.06 7.61le-04% 2.0
4096 1.07e-04 2.32 1.32e-04 2.32 9.68e-05 2.25 1.52e-0&£ 2.3

Table 9.18: Mixed Problem - Collocation approach - BDF2.

The errors for the Galerkin approach (8.2) are presentedhbie.19. The errors converge
with the expected convergence rate of two.

1/2

N af/ 2 eoc €p /2 o L/2

€0C € eocC

256 6.87e-03 1.96 8.18e-03 1.96 8.25e-03 1.94 1.15e-02 1.96
512 1.73e-03 1.99 2.05e-03 199 2.08e-03 1.99 2.89e-03 1.99
1024 4.28e-04 2.01 5.09e-04 2.01 5.16e-04 2.01 7.16e-04 2.0
2028 1.02e-04 2.07 1.21e-04 2.07 1.23e-04 2.07 1.71e-0&4 2.0
4096 2.04e-05 2.32 2.43e-05 2.32 2.48e-05 2.31 3.42e-02 2.3

~1
eoc g

Table 9.19: Mixed Problem - Galerkin approach - BDF2.

Comparing the errors of the Galerkin and the collocation g, the errors for the
Galerkin approach are in general significantly better byosthone order of magnitude.

Moreover, the error of the point evaluation inside the dondais presented in Table 9.20.
The relative error is defined in (9.5).

Again the errors for the Galerkin approach are significabditer.

In comparison the errors for the BDF1 multistep methodsairigj the Galerkin approach
are presented in Table 9.21. The reference solution whichusead to calculated the error
was calculated with 8192 time steps with the BDF2 multistepho: Thus the reference

solution should be far more exact. Indeed no increase indheetgence number in the
last level is observed.

As expected the convergence number tends towards one amdrdns are significantly
worse than the errors presented in Table 9.19 for the BDFZsteptmethod.
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N pet, eoc pety eoc pet eoc pet eoc
\ Collocation \ Galerkin

256 1.64e-02 1.84 4.38e-02 1.83 4.38e-03 1.96 9.17e-03 1.94
512 4.20e-03 1.96 1.13e-02 1.95 1.10e-03 1.99 2.31e-03 1.99
1024 1.05e-03 2.00 2.82e-03 2.00 2.72e-04 2.01 5.73e-04 2.0
2028 2.50e-04 2.07 6.75e-04 2.07 6.49e-05 2.07 1.37e-04& 2.0
4096 5.01e-05 2.32 1.35e-04 2.32 1.30e-05 2.32 2.75e-04l 2.3

Table 9.20: Mixed Problem - Point evaluation - BDF2.

N a2 eoc e%,/ 2 eoc eg 1/2 eoc

256 1.10e-01 0.87 1.19e-01 0.85 1.33e-01 0.83 1.32e-01 0.81
512 5.78e-02 0.93 6.30e-02 0.92 7.12e-02 0.91 7.13e-02 0.89
1024 2.96e-02 0.97 3.24e-02 0.96 3.69e-02 0.95 3.71e-024 0.9
2028 1.50e-02 0.98 1.65e-02 0.98 1.88e-02 0.97 1.89e-0Z 0.9
4096 7.53e-03 0.99 8.29e-03 0.99 9.46e-03 0.99 9.56e-0® 0.9

eoc efl/ 2

Table 9.21: Mixed Problem - Galerkin approach - BDF1.






10 CONCLUSIONS AND OUTLOOK

We have derived a boundary element approach for poroetgstiée started from a system
of partial differential equations in Laplace domain, andw the symmetric formulation.

By applying an inverse Laplace transformation this set oilauy integral equations was
transferred into time domain. Furthermore, the set of bannohtegral equations was dis-
cretized by a Galerkin approximation in space and a conslwtuadrature approximation
in time. Unique solvability, stability and convergence loé¢ tfully discretized system was
shown. The convergence order coincide with the convergerter's obtained by numeri-
cal examples.

A few open points remain: Error estimates for the convolutjpadrature methods were
derived in the energy norms. An extension to a set of normesgable. Especially, error
estimates for thé&,(I")-norm are more practical. To show such an error estimatehtor t
boundary integral equation related to the Dirichlet boupdalue problem an estimate for
the operator

V(s)~t (%I +K(s)> CHY(M)* = [La(m)]* (10.1)
is needed. It is well known that the operator (10.1) is bodndewever the explicit de-
pendency onto the Laplace parametes not yet known. The bound can be calculated by
techniques utilized in [38]. If such a bound also holds fa tiiscrete operator is still an
open question.

To obtain reasonable results with the Galerkin method fentixed boundary value prob-
lem the accuracy of the computation of matrix entries issgdémanding. The partially in-
tegrated kernel of the hyper—singular operator is rathemptex, combined with the Duffy

transformation, see [20], which utilizes a Gauss produgr@gch, the requirements on
the computation time are so far quite high. For example dpédhintegration formulae,

see [16, 54], could decrease the computation time.

103






REFERENCES

[1] R. A. Adams and J. J. F. Fourniegobolev spacesolume 140 ofPure and Applied
Mathematics (Amsterdam)Elsevier/Academic Press, Amsterdam, second edition,
2003.

[2] K. E. Atkinson. The numerical solution of integral equations of the secoimdl, k
volume 4 ofCambridge Monographs on Applied and Computational Mathergati
Cambridge University Press, Cambridge, 1997.

[3] A. Bamberger and T. Ha Duong. Formulation variationnepace-temps pour le
calcul par potentiel retarde de la diffraction d’'une ondeustique. 1.Math. Methods
Appl. Sci, 8(3):405-435, 1986.

[4] A. Bamberger and T. Ha Duong. Formulation variationngltaur le calcul de la
diffraction d’'une onde acoustique par une surface rigidath. Methods Appl. Sci.
8(4):598-608, 1986.

[5] L. Banjai. Multistep and multistage convolution quadnrat for the wave equation:
algorithms and experimentSIAM J. Sci. Comput32(5):2964-2994, 2010.

[6] L. Banjai, C. Lubich, and J. M. Melenk. Runge-Kutta convalat quadrature for
operators arising in wave propagatiddumer. Math,.119(1):1-20, 2011.

[7] L. Banjai and S. Sauter. Rapid solution of the wave equatiambounded domains.
SIAM J. Numer. Anal47(1):227-249, 2008/09.

[8] L. Banjai and M. Schanz. Wave propagation problems tceatéh convolution
guadrature and bem. accepted, 2011.

[9] M. Bebendorf. Another software library on hierarchicahtmces for elliptic differ-
ential equations (AHMED). http://bebendorf.ins.uni-bae/AHMED.html. online
accessed 4.1.2012.

[10] M. Bebendorf. Approximation of boundary element matscNumerische Mathe-
matik 86:565-589, 2000.

[11] M. Bebendorf.Hierarchical matricesvolume 63 ofLecture Notes in Computational
Science and Engineerin®pringer-Verlag, Berlin, 2008. A means to efficiently solve
elliptic boundary value problems.

[12] M. A. Biot. General theory of three-dimensional condation. J. Appl. Phys.
12(2):155-164, 1941.

105



106 References

[13] M. A. Biot. Theory of elasticity and consolidation for @afgous anisotropic solidJ.
Appl. Phys.26:182-185, 1955.

[14] J. H. Bramble and J. E. Pasciak. A preconditioning teghaifor indefinite sys-
tems resulting from mixed approximations of elliptic preis. Math. Comput.
50(181):1-17, 1988.

[15] P. G. Ciarlet.The finite element method for elliptic problenaslume 40 ofClassics
in Applied Mathematics Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002.

[16] R. Cools and P. Rabinowitz. Monomial cubature rules sirfgtedud”: a compilation.
J. Comput. Appl. Math48(3):309-326, 1993.

[17] M. Costabel. Developments in boundary element methodsrhe-dependent prob-
lems. InProblems and methods in mathematical physics (Chemnit3),1@8lume
134 of Teubner-Texte Mathpages 17-32. Teubner, Stuttgart, 1994.

[18] M. Costabel, F. Penzel, and R. Schneider. Error analyfse lmoundary element
collocation method for a screen problemRY. Math. Comp, 58(198):575-586,
1992.

[19] R. de Boer. Theory of porous media: Highlights in histalidevelopment and current
state.Applied Mechanics Reviews5(2):B32-B33, 2002.

[20] M. G. Duffy. Quadrature over a pyramid or cube of integia with a singularity at a
vertex.SIAM J. Num. Anal.19(6):1260-1262, 1982.

[21] W. Hackbusch. A Sparse Matrix Arithmetic Based&rMatrices. Part I: Introduc-
tion to H-Matrices.Computing 62:89-108, 1999.

[22] W. Hackbusch, W. Kress, and S. A. Sauter. Sparse cotiwsolguadrature for time
domain boundary integral formulations of the wave equabgrcutoff and panel-
clustering. InBoundary element analysigsolume 29 ofLect. Notes Appl. Comput.
Mech, pages 113-134. Springer, Berlin, 2007.

[23] W. Hackbusch, W. Kress, and S. A. Sauter. Sparse cotwalguadrature for time
domain boundary integral formulations of the wave equatidA J. Numer. Anal.
29(1):158-179, 2009.

[24] W. Hackbusch and Z. P. Nowak. On the fast matrix multiglion in the boundary
element method by panel clusterifgumer. Math.54(4):463-491, 1989.

[25] E. Hairer, C. Lubich, and M. Schlichte. Fast numericaligon of nonlinear Volterra
convolution equationsSIAM J. Sci. Statist. Compu6(3):532-541, 1985.

[26] G. C. Hsiao and W. L. WendlandBBoundary integral equationyolume 164 ofAp-
plied Mathematical ScienceSpringer-Verlag, Berlin, 2008.



References 107

[27] B. Kager, M. Messner, M. Messner, T. Traub, P. Urthaleix]d &ammerstorfer F.
Hyperbolic and Elliptic Numerical Analysis (HYENA). htifportal.tugraz.at/portal
/page/portal/Files/i2610/files/Forschung/SoftwardZNyA/html/index.html. online
accessed 4.1.2012.

[28] L. Kielhorn. Modellierung von Wellenausbreitung inndsen Boden: Dimension-
slose Variablen fir eine Randelementformulierung. Mastlesis, Technische Uni-
versitat Braunschweig, Institut fir Angewandte MechandQ42

[29] Y. Kim and H. Kingsbury. Dynamic characterization ofrpelastic materials€Exper-
imental Mechanicsl9:252—-258, 1979.

[30] W. Kress and S. Sauter. Numerical treatment of retabdeshdary integral equations
by sparse panel clusterintMA J. Numer. Ana).28(1):162-185, 2008.

[31] A. R. Laliena and F.-J. Sayas. Theoretical aspects ofipdication of convolution
quadrature to scattering of acoustic wavidsmer. Math.112(4):637-678, 2009.

[32] C. Lubich. Convolution quadrature and discretized openal calculus. I.Numer.
Math., 52(2):129-145, 1988.

[33] C. Lubich. Convolution quadrature and discretized op@nal calculus. 1l. Numer.
Math., 52(4):413-425, 1988.

[34] C. Lubich. On the multistep time discretization of liméaitial-boundary value prob-
lems and their boundary integral equatioNsimer. Math,.67(3):365-389, 1994.

[35] C. Lubich and A. Ostermann. Runge-Kutta methods for parakequations and
convolution quadraturéMath. Comp,.60(201):105-131, 1993.

[36] C. Lubich and R. Schneider. Time discretization of palahmundary integral equa-
tions. Numer. Math,.63(4):455-481, 1992.

[37] V. Mantic. A new formula for theC-matrix in the Somigliana identityd. Elasticity
33(3):191-201, 1993.

[38] W. McLean. Strongly elliptic systems and boundary integral equatioc@ambridge
University Press, Cambridge, 2000.

[39] M. Messner and M. Schanz. A regularized collocationrmtary element method for
linear poroelasticityComputational Mechani¢g7:669-680, 2011.

[40] M. Messner and M. Schanz. A symmetric Galerkin bounddeynent method for 3d
linear poroelasticity. accepted, 2011.

[41] J. A. Nitsche. On Korn’s second inequalitRAIRO Anal. Numér.15(3):237-248,
1981.



108 References

[42] G.Of, O. Steinbach, and P. Urthaler. Fast evaluatiorobfme potentials in boundary
element methodsSIAM J. Sci. Compuyt32(2):585—-602, 2010.

[43] S. Prossdorf and R. Schneider. A spline collocation wetfor multidimensional
strongly elliptic pseudodifferential operators of order@ Integral Equations Oper-
ator Theory 14(3):399-435, 1991.

[44] S. Rjasanow and O. Steinbacf.he fast solution of boundary integral equations
Mathematical and Analytical Techniques with Applicatisa&ngineering. Springer,
New York, 2007.

[45] S. A. Sauter and C. SchwalBoundary element methgdgolume 39 ofSpringer
Series in Computational Mathematic$Springer-Verlag, Berlin, 2011. Translated
and expanded from the 2004 German original.

[46] M. Schanz.Wave propagation in viscoelastic and poroelastic contirdidoundary
element approachLecture Notes in Applied Mechanics 2. Berlin: Springer, 2001

[47] M. Schanz. Poroelastodynamics: Linear Models, AnedytSolutions, and Numeri-
cal Methods Applied Mechanics Reviews2(3), 2009.

[48] M. Schanz and S. Diebels. A comparative study of bidtory and the linear theory
of porous media for wave propagation problem&cta Mechanical61:213-235,
2003.

[49] O. Steinbach. Fast solution techniques for the symmbtiundary element method
in linear elasticity. Comput. Methods Appl. Mech. Engr§57(3-4):185-191, 1998.
Seventh Conference on Numerical Methods and Computationahdhécs in Sci-
ence and Engineering (NMCM 96) (Miskolc).

[50] O. Steinbach. Artificial multilevel boundary elemeneponditioners.Proc. Appl.
Math. Mech 3:539-542, 2003.

[51] O. SteinbachStability estimates for hybrid coupled domain decomparsithethods
volume 1809 ot ecture Notes in MathematicSpringer-Verlag, Berlin, 2003.

[52] O. Steinbach.Numerical approximation methods for elliptic boundary \&jrob-
lems Springer, New York, 2008. Finite and boundary elementan3iated from the
2003 German original.

[53] O. Steinbach and W. L. Wendland. The construction ofs@fficient precondition-
ers in the boundary element methoddv. Comput. Math.9(1-2):191-216, 1998.
Numerical treatment of boundary integral equations.

[54] A. H. Stroud. Approximate calculation of multiple integralsPrentice-Hall Inc.,
Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Autdim Computation.

[55] I. Tolstoy. Acoustics J. Appl. Phys.12(2):155-164, 1941.



Monographic Series TU Graz

Computation in Engineering and Science

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Steffen Alvermann

Effective Viscoelastic Behaviour
of Cellular Auxetic Materials
2008

ISBN 978-3-902465-92-4

Sendy Fransiscus Tantono

The Mechanical Behaviour of a Soilbag
under Vertical Compression

2008

ISBN 978-3-902465-97-9

Thomas Ruberg

Non-conforming FEM/BEM Coupling in Time Domain
2008
ISBN 978-3-902465-98-6

Dimitrios E. Kiousis

Biomechanical and Computational Modeling of
Atherosclerotic Arteries

2008

ISBN 978-3-85125-023-7

Lars Kielhorn

A Time-Domain Symmetric Galerkin BEM
for Viscoelastodynamics

2009

ISBN 978-3-85125-042-8

Gerhard Unger

Analysis of Boundary Element Methods
for Laplacian Eigenvalue Problems
2009

ISBN 978-3-85125-081-7



Monographic Series TU Graz

Computation in Engineering and Science

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Gerhard Sommer

Mechanical Properties of Healthy and Diseased
Human Arteries

2010

ISBN 978-3-85125-111-1

Mathias Nenning

Infinite Elements for

Elasto- and Poroelastodynamics
2010

ISBN 978-3-85125-130-2

Thanh Xuan Phan

Boundary Element Methods for
Boundary Control Problems
2011

ISBN 978-3-85125-149-4

Loris Nagler

Simulation of Sound Transmission through
Poroelastic Plate-like Structures

2011

ISBN 978-3-85125-153-1

Markus Windisch

Boundary Element Tearing and Interconnecting
Methods for Acoustic and Electromagnetic
Scattering

2011

ISBN: 978-3-85125-152-4



Monographic Series TU Graz

Computation in Engineering and Science

Vol. 12

Vol. 13

Vol. 14

Christian Walchshofer

Analysis of the Dynamics at the Base of a Lifted
Strongly Buoyant Jet Flame Using Direct Numerical
Simulation

2011

ISBN 978-3-85125-185-2

Matthias Messner

Fast Boundary Element Methods in Acoustics
2012
ISBN 978-3-85125-202-6

Peter Urthaler

Analysis of Boundary Element Methods for Wave
Propagation in Porous Media

2012

ISBN 978-3-85125-216-3



