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Abstract

The aim of this work is to analyze a convolution quadrature boundary element approach to
simulate wave propagation in porous media. In Laplace domain the model results in an el-
liptic second order partial differential equation. First,boundary value problems of interest
are described and equivalent boundary integral formulations are derived. Unique solvabil-
ity of all discussed boundary value problems and boundary integral equations is discussed,
first in Laplace domain and finally also in time domain. A Galerkin discretization in space
and a convolution quadrature discretization in time is applied. Unique solvability of the
discrete systems and convergence of the approximate solutions are discussed. Finally, the
theoretical results are confirmed by numerical experiments.

Zusammenfassung

Das Ziel dieser Arbeit ist die Analyse eines numerische Näherungsverfahrens zur Simu-
lation von Wellenausbreitung in porösen Medien. Das numerische Näherungsverfahren
basiert dabei auf ein Kombination der Randelementmethode mit der Faltungsquadratur-
methode. Die Wellenausbreitung in porösen Medien wird mit Hilfe eines elliptischen Dif-
ferentialoperators zweiter Ordnung und entsprechenden Randwertproblemen im Laplace–
Bereich beschrieben. Für die betrachteten Randwertproblemewerden äquivalente Ran-
dintegralformulierungen hergeleitet. Die eindeutige Lösbarkeit der Randintegralgleichung
wird sowohl im Laplace–Bereich als auch im Zeitbereich diskutiert. Die Randintegralglei-
chungen werden im Raum durch eine Galerkin Approximation diskretisiert. In der Zeit
wird eine Faltungsquadraturmethode verwendet. Im weiteren wird die eindeutige Lös-
barkeit der diskretisierten Integralgleichungen und die Konvergenz der näherungsweisen
Lösungen diskutiert. Schlussendlich werden die theoretischen Ergebnisse mit Hilfe von
numerischen Beispielen bestätigt.
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1 INTRODUCTION

Wave propagation is a widespread phenomenon within our environment, and porous mate-
rials play an important role in many branches of engineering. A porous medium is a solid
permeated by an interconnected network of pores filled with fluid. The solid as well as
the pores are assumed to be continuous. Natural substances such as rocks, soils, biological
tissues, foams, and ceramics can be considered as porous media. Fluid-saturated porous
media cannot be modelled satisfyingly with the theory of elastodynamics. Based on the
work of Terzaghi, Biot developed a theory to model porous media, see [12, 13]. One of
the significant findings was the identification of three waves, two compressional waves
and a shear wave. For the numerical simulation, several approaches, both finite element
and boundary element, have been developed. An overview on these approaches and on
analytical solutions is given in [47].

In this thesis, a formulation based on the solid displacement and the pore pressure as the
primary unknowns is chosen. The reduction to these unknownsis only possible in Laplace
domain. Boundary integral formulations based on this approach have been developed by
Schanz and Messner [39,40,46].

Boundary element methods are a popular method to solve boundary value problems. A
main advantage of the boundary element method is the reduction of the problem to the
boundary. The boundary element method is especially suitable for exterior boundary value
problems, since only the boundary of the domains has to be discretized and the radiation
condition is already incorporated into the formulation. A comprehensive overview on the
topic is given by McLean [38], as well as Hsiao and Wendland [26], Sauter and Schwab
[45], and Steinbach [52]. Primarily, elliptic partial differential operators are discussed.

An overview on the application of boundary element methods to parabolic and hyperbolic
partial differential equations is given in [17]. Basically two different approaches exist:
Space-time integral equation techniques use the fundamental solution in time domain to
formulate integral equations. Utilizing a Galerkin discretization by ansatz and test func-
tions with respect to time yields a time stepping procedure.A second approach is based on
the Laplace transformation. For fixed frequencies standardboundary element methods for
elliptic problems are applied. The transformation back to the time domain employs spe-
cial methods for the inversion of the Laplace or Fourier transformation. The convolution
quadrature method as developed by Lubich [32, 33] falls intothis category. This method
approximates the convolution by a numerical integration formula, where the integration

1



2 1 Introduction

weights are based on the boundary integral operators in Laplace domain and the underly-
ing multistep method. For poroelasticity this property is essential, since the fundamental
solution in time domain is not explicitly known.

The method was first applied to parabolic boundary integral equations by Lubich and
Schneider [36], where the authors discussed an indirect single layer approach. The analy-
sis is based on an ellipticity estimate of the single layer boundary integral operator outside
a sector of the complex plane with an acute angle to the negative real axis.

For the wave equation a similar approach was studied in [34].In this case the single
layer boundary integral operator is only elliptic in a half-plane. The related estimates
for the single layer integral operator and the hyper-singular operator were developed by
Bamberger and HaDuong [3,4]. The analysis for the wave equation was recently extended
to boundary value problems and transmission problems by Laliena and Sayas [31].

The original convolution quadrature method was developed for multistep methods and
has been extended to Runge-Kutta methods in [6, 35]. In recentpapers, fast numerical
implementations of the convolution quadrature method wereinvestigated [5,7,22,23,30].
An overview over recent theoretical results is given in [8].

The aim of this thesis is to extend the theoretical results for the wave equation to poroe-
lasticity. It turns out that similar estimates as for the wave equation can be shown. In
particular, the theory is applied to the mixed, the Dirichlet and the Neumann boundary
value problem. Stability and convergence of the resulting discrete system are obtained and
confirmed by numerical examples.

Outline

Starting from constitutive equations, Biot’s linear theoryof poroelasticity is derived in
Chapter 2. The resulting system of partial differential equations is transformed to the
Laplace domain, where a simplified system of partial differential equations based on the
primary unknowns, the solid displacement and the pore pressure, is derived. Suitable
boundary conditions are defined resulting in the statement of the mixed boundary value
problem of interest.

In Chapter 3 the analytic preliminaries are introduced. In addition to some basics from
functional analysis, some definitions for a simplified notation are introduced. Moreover,
Sobolev spaces and the Lamé system are discussed briefly. Furthermore the general frame-
work of strong ellipticity is introduced. In the following,Green’s formulae are derived for
the operator of poroelasticity and ellipticity and boundedness of the defined sesquilinear
form is established. With the help of these theoretical results unique solvability of the
mixed boundary value problem is shown. Finally, the conormal derivative of the solution
as well as it’s adjoint are discussed.
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Furthermore, the fundamental solution of poroelasticity as well as some of it’s proper-
ties are introduced in Chapter 4. In the following, boundary integral operators and their
respective mapping properties are discussed. The symmetryrelations within these bound-
ary integral operators are investigated, too. Moreover, weshow ellipticity of the single
layer boundary integral operator and the hyper-singular boundary integral operator. The
ellipticity estimates enable us to establish estimates forall boundary integral operators.
The dependency of all these estimates on the Laplace parameter s is analyzed and stated
explicitly. Moreover, the Steklov–Poincaré as well as the Poincaré–Steklov operator are
introduced. Ellipticity estimates are shown for both integral operators.

With the help of the representation formula boundary integral equations are introduced
in Chapter 5. Boundary integral equations for the mixed, the Dirichlet and the Neumann
boundary value are derived. Unique solvability and estimates for their solutions are pre-
sented. Again, the dependency on the Laplace parameters of all involved constants is
stated explicitly.

Moreover, the Galerkin discretization of boundary integral equations is introduced in Chap-
ter 6. The theoretical framework is developed briefly. Estimates for the Galerkin dis-
cretization of several boundary integral operators are presented. Furthermore, the discrete
boundary integral equations for the mixed, the Dirichlet and the Neumann boundary value
problem are presented. Unique solvability and bounds for the solutions are discussed.
Error estimates for the unknowns on the boundary as well as for the solution within the
domain are given. Additionally, indirect approaches for the Dirichlet and the Neumann
boundary value problem are discussed.

The convolution quadrature method is derived in Chapter 7. Error estimates for the ap-
proximation of operators are stated. A fast method, developed by Sauter and Banjai [7],
for the implementation of the convolution quadrature method is briefly discussed. Finally
a Galerkin discretization in space and a convolution quadrature approximation in time are
discussed.

In Chapter 8, the analysis done in the Laplace domain is used toobtain statements in time
domain. The unique solvability for the continuous system ofboundary integral equations
as well as for the fully discretized system of boundary integral equations is discussed .
Finally, error estimates for the approximate solutions aregiven.

Numerical examples are discussed in Chapter 8. For this we introduce also a simple col-
location approach. In the following sections we compare theGalerkin approach to the
collocation approach, and the theoretical convergence orders gained throughout this work.
First the error in space and afterwards the error in time are discussed for the mixed, the
Dirichlet and the Neumann boundary value problem.

In the last chapter we draw some conclusions and discuss someopen questions.





2 BIOT’S THEORY OF POROUS MATERIALS

In case of fluid infiltrated materials like water saturated soil, oil impregnated rocks or air
filled foam, the elastic as well as the viscoelastic description of the material shows a rather
crude approximation of wave propagation phenomena. Due to an interaction of the solid
skeleton with the fluid in between and furthermore the porosity of the material, a different
theory is necessary.

In 1941, a theory based on the work of Terzaghi was presented by Biot [12]. In the follow-
ing years, this theory was extended several times. A collection of Biot’s papers on porous
materials has been published by Tolstoy [55]. A second theory, the theory of porous media
is based on the application of axioms of continuum mechanics. A historical treatment can
be found in the review article by de Boer [19]. In this work we will concentrate on the
linear Biot theory. A review on linear models, analytic solutions and numerical methods is
given in [47].

2.1 Governing equations

In Biot’s theory, a fully saturated material is assumed, i.e., an elastic skeleton with a sta-
tistical distribution of interconnected pores is considered. IntroducingV f as the volume
of the interconnected pores, andVs as the volume of the solid, the porosity is denoted by
φ =V f /V, whereV =Vs+V f . In [13] the balance of momentum in the solid and in the
fluid are described as follows: Fori = 1,2,3 we have

σs
i j , j +(1−φ) f s

i = (1−φ)ρsü
s
i −ρa

(
üf

i − üs
i

)
− φ2

κ

(
u̇f

i − u̇s
i

)
, (2.1)

σ f
,i +φ f f

i = φρ f ü
f
i +ρa

(
üf

i − üs
i

)
+

φ2

κ

(
u̇f

i − u̇s
i

)
, (2.2)

whereus anduf denote the displacement of the solid and of the fluid respectively. Addi-
tionally, f s

i and f f
i are the volume forces of the solid and of the interstitial fluid, while ρs

andρ f are the respective densities. Moreover, the apparent mass densityρa is introduced
to describe the dynamic interaction between the fluid and theskeleton. Note that the Ein-
stein notation is used throughout this work. Finally,κ denotes the permeability. For an
isotropic and homogeneous elastic solid and for a viscous interstitial fluid the following

5



6 2 Biot’s theory of porous materials

partial stress formulations for the stress tensor of the solid σs
i j and for the stress tensor of

the fluidσ f
i j are obtained fori, j = 1,2,3,

σs
i j = µ(us

i, j +us
j,i)+

(
λ +

Q2

R

)
us

k,kδi j +Quf
k,kδi j , (2.3)

σ f
i j =−φ pδi j = (Qus

k,k+Ruf
k,k)δi j . (2.4)

The elastic behaviour of the solid is governed by the Lamé constantsλ andµ. The con-
stantsQ andRcharacterize the coupling between the solid and the fluid. The total stress is
given as

σi j = σs
i j +σ f

i j = µ(us
i, j +us

j,i)+λus
k,kδi j −α pδi j , (2.5)

where

α = φ
(

1+
Q
R

)
∈ [0,1]

is Biot’s effective stress coefficient.

The balance of the mixture is obtained by adding the two partial balances (2.1) and (2.2),

σi j , j + fi = (1−φ)ρsü
s
i +φρ f ü

f
i , (2.6)

where
fi = (1−φ) f s

i +φ f f
i

is the bulk body force. Inserting the total stress (2.5) intothe balance equation (2.6), and
using the density

ρ := (1−φ)ρs+φρ f

and the specific flux

qi := φ
(

u̇f
i − u̇s

i

)

results in
µus

i, j j +(λ +µ)us
j,i j −α p,i + fi = ρüs

i +ρ f q̇i . (2.7)

By using the specific fluxq and the fluid stress tensorσ f
i j as given in (2.4), from (2.2) we

conclude Darcy’s law

ρ f ü
s
i +

1
φ

(
ρ f +

ρa

φ

)
q̇i +

1
κ

qi + p,i = f f
i . (2.8)

In addition, the variation of fluid volume per unit referencevolumeζ is introduced as

ζ = αus
i,i +

φ2

R
p. (2.9)
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The variation of the fluid contentζ is governed by the mass balance

ζ̇ +qi,i = 0. (2.10)

Inserting (2.9) into (2.10) finally yields

αu̇s
i,i +

φ2

R
ṗ+qi,i = 0. (2.11)

Biot’s model results in the three coupled partial differential equations (2.7), (2.8) and
(2.11), where in addition appropriate initial and boundaryconditions have to be formu-
lated. The system describes seven unknowns, namely the solid displacementus, the fluxq,
and the pore pressurep.

2.2 Theu-p model in the Laplace domain

When assuming vanishing initial conditions, the partial differential equations (2.7), (2.8)
and (2.11) can be reformulated by using the Laplace transformation

f̂ (s) = L{ f (t)}=
∞∫

0

f (t)e−stdt

with the complex Laplace variables∈ C
+. By convention we havef (t) = 0 for t ≤ 0.

The Laplace transformation is a linear transformation and transforms differentiation into
multiplication, resulting in the properties

L{a f(t)+bg(t)}= aL{ f (t)}+bL{g(t)} for all a,b∈ C,

L{ f (n)(t)}= snL{ f (t)} for n∈ N.

The Laplace transformation allows us to eliminate the specific flux from equations (2.7),
(2.8) and (2.11). Without the Laplace transformation this elimination is not possible, since
in addition to the specific flux the time derivative of the specific flux appears as well.

By using the Laplace transformation we obtain from Darcy’s law (2.8)

ρ f s
2ûs

i +
1
φ

(
ρ f +

ρa

φ

)
sq̂i +

1
κ

q̂i + p̂,i = f̂ f
i ,

and therefore

q̂i =
φ2κ

sκ(ρ f φ +ρa)+φ2

(
f̂ f
i − p̂,i −ρ f s

2ûs
i

)
(2.12)
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follows. For the Laplace transform of (2.7) we conclude

µûs
i, j j +(λ +µ)ûs

j,i j −α p̂,i + f̂i = ρs2ûs
i +β

(
f̂ f
i − p̂,i −ρ f s

2ûs
i

)
,

where

β =
ρ f sφ2κ

sκ(ρ f φ +ρa)+φ2 ∈ C. (2.13)

Analogously, the Laplace transform of (2.11) reads

αsûs
i,i +

φ2

R
sp̂+

β
̺ f s

(
f̂ f
i,i − p̂,ii −ρ f s

2ûs
i,i

)
= 0.

Hence we consider the coupled system of partial differential equations

(ρ −βρ f )s
2ûs−µ∆ûs− (λ +µ)graddivûs+(α −β )∇p̂= f̂ −β f̂ f , (2.14)

(α −β )sdiv ûs− β
̺ f s

∆p̂+
φ2s
R

p̂=− β
ρ f s

div f̂ f , (2.15)

where the related partial differential operator can be written as

P :=

(
−µ∆− (λ +µ)graddiv+(ρ −βρ f )s2 (α −β )grad

(α −β )sdiv − β
ρ f s

∆+ φ2s
R

)
. (2.16)

Note that
PE :=−µ∆− (λ +µ)graddiv

is related to the system of linear elasticity.

In addition to the partial differential operator (2.16) we need to formulate appropriate
boundary conditions. We consider a bounded Lipschitz domain Ω ⊂R

3 with the boundary
Γ = ∂Ω, where the exterior normal vectorn is given almost everywhere. For Dirichlet
boundary conditions we prescribe the solid displacementûs and the pore pressurêp on a
part of the boundaryΓD ⊂ Γ. Neumann boundary conditions describe the traction of the
solid displacement̂us and the negative specific flux̂q in normal direction along the bound-
ary on a part of the boundaryΓN ⊂ Γ with Γ = ΓD ∪ΓN andΓD ∩ΓN =∅. The traction is
given as

γu
1ûs = σ ·n (2.17)

with the total stress tensorσ , see (2.5). The negative specific flux in normal direction is
defined as

γ p
1 p=−q̂·n= sβ ûsn+

β
sρ f

∂np (2.18)
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see (2.12). For the function̂U = (ûs, p̂)⊤ the mixed boundary value problem of poroelas-
ticity in the Laplace domain is finally given as

P Û = f in Ω,

Û = gD on ΓD,

γ1Û = gN on ΓN,

(2.19)

with the Neumann trace operatorγ1Û = (γu
1ûs,γ p

1 p̂)⊤.

A rather similar set of equations can be derived by the lineartheory of porous media. The
differences between Biot’s model and the linear theory of porous media are studied in [48].
There it is shown that the theories for the compressible casecontradict each other, due to
problems in matching the respective material constants. From a pure mathematical point of
view however, both partial differential operators share all the same properties. Therefore,
the mathematical theory developed in the subsequent chapters is also applicable to the
linear theory of porous media.





3 VARIATIONAL FORMULATIONS AND BOUNDARY VALUE
PROBLEMS

3.1 Preliminaries

In this section, some preliminaries from functional analysis are given. The main references
are [26, 38, 45, 52]. In particular, we introduce several notations and discuss some basic
properties of the Lamé system, see [38,52].

Definition 3.1. Let X,Y be Hilbert spaces.

• A mapping a(·, ·) : X×Y → C is called a sesquilinear form if for all u1,u2 ∈ X, all
v1,v2 ∈Y and allλ ∈ C

a(u1+λu2,v1) = a(u1,v1)+λa(u2,v1),

a(u1,v1+λv2) = a(u1,v1)+λa(u1,v2).
(3.1)

• A sesquilinear form is bounded (or continuous) if there exists a constant ca2 such that

|a(u,v)| ≤ ca
2‖u‖X ‖v‖Y (3.2)

for all u ∈ X and v∈Y.

• The sesquilinear form a(·, ·) satisfies the inf-sup condition if there exists a constant
γ > 0 such that

sup
v∈Y\{0}

|a(u,v)|
‖v‖Y

≥ γ ‖u‖X for all u ∈ X. (3.3)

• The sesquilinear form a(·, ·) is called X-elliptic if there exists a constant ca
1 > 0 and

a bijective linear operatorΘ : X →Y such that

Re[a(u,Θu)]≥ ca
1‖u‖2

X for all u ∈ X. (3.4)

From the Riesz representation theorem we deduce that a sesquilinear form induces an
operator.

11



12 3 Variational formulations and boundary value problems

Lemma 3.1. [52] For every sesquilinear forma(·, ·) : X ×Y → C there exists a unique
linear and bounded operatorA : X →Y∗ such that

a(u,v) = 〈Au,v〉 for all u∈ X,v∈Y,

where〈·, ·〉 denotes the duality pairing inY ∗×Y. On the other hand, each bounded and
linear operatorA : X →Y∗ induces a sesquilinear form

a(u,v) := 〈Au,v〉 for all u∈ X,v∈Y.

Let X,Y be Hilbert spaces, leta(·, ·) : X ×Y → C be a continuous sesquilinear form and
let l : Y → C be a continuous linear functional. We consider the abstractproblem:

Findu∈ X such that
a(u,v) = l(v) (3.5)

for all v∈Y.

Theorem 3.2. [26,38,45] For everyl ∈Y∗ the abstract problem (3.5) has a unique solution
u∈ X with

‖u‖X ≤ 1
γ
‖l‖Y∗

if and only if the sesquilinear forma(·, ·) satisfies the inf-sup condition (3.3).

Lemma 3.3. (Lax-Milgram) LetX,Y be Hilbert spaces and additionally let the sesquilinear
form a : X×Y →C beX-elliptic. Then the variational problem (3.5) has a unique solution
u∈ X for all l ∈Y∗ with

‖u‖X ≤ 1
ca

1
‖Θ‖X→Y ‖l‖Y∗ .

Proof. TheX-ellipticity estimate (3.4) can be written as

ca
1‖u‖X ≤ |a(u,Θu)|

‖u‖X
.

Furthermore we have
‖Θu‖Y ≤ ‖Θ‖X→Y ‖u‖X

and therefore
ca

1

‖Θ‖X→Y
‖u‖X ≤ |a(u,Θu)|

‖Θu‖Y
≤ sup

v∈Y\{0}

|a(u,v)|
‖v‖Y

.

The inf-sup condition (3.3) is consequently fulfilled and hence equation (3.5) is uniquely
solvable. The estimate for the solution follows directly from Theorem 3.2.
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Most of the analysis of the partial differential equations of poroelasticity will be done in the
Laplace domain. To get estimates in the time domain the dependency on the Laplace pa-
rametershas to be stated explicitly. This analysis is only possible if the Laplace parameter
s is an element of the half-space

C
+
σ := {s∈ C : Re[s]≥ σ > 0}.

This assumption restricts the choice of the time stepping method toA-stable methods, see
Chapter 7 or [34].

We will use the following notation throughout the thesis

σ := min(1,σ).

An important estimate is

max(1,Re[s])σ ≤ Re[s] for all s∈ C
+
σ (3.6)

and similarly
max(1, |s|)σ ≤ |s| for all s∈ C

+
σ . (3.7)

To be able to apply the concept of ellipticity, see (3.4), to the system of poroelasticity, we
need to introduce an appropriate bijective operator as follows.

Definition 3.2. Let X1,X2,X3,X4 be Hilbert spaces overC and let us consider the product
space

X = X1×X2×X3×X4.

The mappingΘa,b : X → X is defined as

Θa,b :=




a
a

a
b


 (3.8)

where a,b∈ C. Furthermore we write

Θa := Θa,1. (3.9)

Sobolev spaces

We will consider the setting of a bounded domainΩ ⊂ R
3 which is assumed to be Lip-

schitz. We denote it’s boundary withΓ = ∂Ω. We will make use of standard results for
Sobolev spaces, see, e. g. , [1,38,45].
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We denote the space of infinitely times differentiable functions with compact support as
D(Ω) := C∞

0 (Ω)⊂C∞(Ω). The Sobolev spaces are denoted byHr(Ω) for r ∈ R, see [38].
For vector valued functions the Sobolev spaces are taken componentwise.

We denote the norm of a Sobolev space by

‖v‖r,Ω := ‖v‖[Hr(Ω)]d for r ≥ 0 andd ∈ N

for an elementv∈ [Hr(Ω)]d. The dual spaces with respect to the inner product

〈 f ,v〉Ω =
∫

Ω

f (x) ·v(x) dx

are denoted by[H̃−r(Ω)]d. The norm forf ∈ H̃−r(Ω) is given by

‖ f‖−r,Ω := sup
06=v∈[Hr(Ω)]d

〈 f ,v〉Ω
‖v‖r,Ω

r > 0.

For a Lipschitz domainΩ the Sobolev spaces on the boundary are denoted byHr(Γ) for
r ∈ (0,1), for the definition we refer to [38]. For an elementu∈ [Hr(Γ)]d we denote the
norm by

‖u‖r,Γ := ‖u‖[Hr(Γ)]d .

For r ∈ (−1,0) the spaceHr(Γ) is defined by duality with respect to the inner product

〈g,v〉Γ =
∫

Γ

g(x) ·v(x) dsx.

The norm is denoted by

‖g‖r,Γ := sup
06=v∈[Hr(Γ)]d

〈g,v〉Γ
‖v‖−r,Γ

r ∈ (−1,0)

For the definition of Sobolev spaces of higher order, a boundary with a higher regularity is
necessary. For Lipschitz domains, Sobolev spaces with higher regularity are defined with
respect to piecewise smooth boundaries, see [45,52].

For an open partΓ0 ⊂ Γ of the boundaryΓ, Sobolev spaces of the orderr ∈ [0,1) are
defined by

Hr(Γ0) := {u= ũ|Γ0 : ũ∈ Hr(Γ)} ,
H̃r(Γ0) := {u= ũ|Γ0 : ũ∈ Hr(Γ) and supp̃u∈ Γ0}

with the norm
‖u‖r,Γ0

:= inf
{
‖ũ‖r,Γ : ũ∈ Hr(Γ) andũ|Γ0 = u

}
.
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The spaces for negative order are defined by duality as

H−r(Γ0) := [H̃r(Γ0)]
∗ for r > 0

H̃−r(Γ0) := [Hr(Γ0)]
∗ for r > 0.

Definition 3.3. The trace operatorγ0 for a function u∈ D(Ω) is defined by

γ0u := u|Γ.

Theorem 3.4. [38] If Ω is a Lipschitz domain and if 1/2< r < 3/2, then the trace operator
γ0 has a unique extension to a bounded linear operator

γ0 : Hr(Ω)→ Hr−1/2(Γ),

and this extension has a continuous right inverse.

For fixeds∈C+
σ an equivalent norm inH1(Ω) is introduced as

9v9|s|,Ω :=
(
‖gradv‖2

0,Ω +‖sv‖2
0,Ω

) 1
2
.

For a vector valuedU ∈ [H1(Ω)]d the norm is taken component wise. Additionally we
introduce the equivalent norm

9U9|̃s|,Ω :=
1
|s| 9ΘsU 9|s|,Ω . (3.10)

In particular forU = (u, p)⊤ with u∈ [H1(Ω)]3 andp∈ H1(Ω) we have

9(u, p)92
|̃s|,Ω = ‖gradu‖2

0,Ω +‖su‖2
0,Ω +

∥∥∥∥
1
s

gradp

∥∥∥∥
2

0,Ω
+‖p‖2

0,Ω .

From this we conclude the relations

σ2

|s| ‖(u, p)‖1,Ω ≤ σ
|s| 9 (u, p)9|s|,Ω ≤ 9(u, p)9|̃s|,Ω ≤ 1

σ
9 (u, p)9|s|,Ω ≤ |s|

σ2 ‖(u, p)‖1,Ω .

(3.11)
Another useful estimate is

‖ΘsU‖1,Ω ≤ |s|
σ

9U9|̃s|,Ω (3.12)

due to

‖ΘsU‖1,Ω ≤ 1
σ

9ΘsU9|s|,Ω =
|s|
σ

9U 9|̃s|,Ω .
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In the time domain we apply the spaces

Hr
0(0,T,H

k(Ω)) = {u(t, ·) ∈ Hk(Ω)|‖u(t, ·)‖k,Ω ∈ Hr(0,T) andu≡ 0 for t < 0}.

and

Hr
0(0,T,H

k(Γ)) ={u(t, ·) ∈ Hk(Γ)|‖u(t, ·)‖k,Γ ∈ Hr(0,T) andu≡ 0 for t ≤ 0}.

An equivalent norm forHr
0(0,T;Hk(Ω)) is denoted by

‖ f‖r,k,Ω :=




T∫

0

∣∣∣∂ r
t ‖ f (t, ·)‖k,Ω

∣∣∣
2

dt




1
2

, (3.13)

whereas an equivalent norm forv∈ Hr
0(0,T;Hk(Γ)) is denoted by

‖g‖r,k,Γ :=




T∫

0

∣∣∣∂ r
t ‖g(t, ·)‖k,Γ

∣∣∣
2

dt




1
2

.

Definition 3.4. For a,b∈ R and s∈ C we abbreviate estimates of the kind

a≤ c1c2(s)b

as
a. c2(s)b (3.14)

as long as c1 > 0 does not depend on the Laplace parameter s.

The Lamé system

Some well known results for the Lamé system will be stated in this section. For a more
detailed presentation see, e. g. , [38,52]. The operator of linear elasticity is given by

PE =−µ∆− (λ +µ)graddiv.

The operator is considered in a Lipschitz domainΩ ⊂ R
3 with boundaryΓ = ∂Ω, where

the outer normal vectorn is defined almost everywhere. For the operatorPE there holds
Betti’s formula

aE(u,v) = 〈PE u,v〉Ω + 〈TEu,v〉Γ

with the boundary stress operator

TEu := λ divun+2µ∂nu+µn×curlu on Γ, (3.15)
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the sesquilinear form

aE(u,v) =
∫

Ω

[
2µei j (u)ei j (v)+λ divudivv

]
dx,

and the strain tensor

ei j (u) =
1
2

(
∂ jui +∂iu j

)
.

A non-trivial result, Korn’s second inequality, results inellipticity and coercivity esti-
mates.

Theorem 3.5(Korn’s second inequality). Let Ω be a Lipschitz domain, then we have
∫

Ω

ei j (u)ei j (u) dx+‖u‖2
0,Ω & ‖u‖2

1,Ω for all u ∈ [H1(Ω)]3.

Proof. See [38,41].

By adding the[L2(Ω)]3-norm to the sesquilinear formaE(·, ·), we end up with an equivalent
norm in[H1(Ω)]3.

Theorem 3.6. For µ > 0, λ ≥ 0 and s∈ C
+
σ the following estimates hold for all u∈

[H1(Ω)]3

aE(u,u)+‖u‖2
0,Ω & ‖u‖2

1,Ω , (3.16)

aE(u,u)+‖su‖2
0,Ω & σ2 9u92

|s|,Ω . (3.17)

Proof. Inequality (3.16) follows immediately from Korn’s second inequality. Furthermore,
by applying estimates (3.16) and (3.7) we end up with

9u92
|s|,Ω = ‖gradu‖2

0,Ω +‖su‖2
0,Ω

≤ ‖u‖2
1,Ω +‖su‖2

0,Ω

≤ c1aE(u,u)+max(1, |s|2)‖u‖2
0,Ω

≤ c2

[
aE(u,u)+

|s|2
σ2 ‖u‖2

0,Ω

]

≤ c2

σ2

[
aE(u,u)+‖su‖2

0,Ω

]
.
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3.2 Strong ellipticity

Rather general approaches for the analysis of boundary integral equations have been de-
veloped, see, e. g. [26,38,45,52]. We follow the approach asgiven in [38], where strongly
elliptic differential operators are considered.

A general partial differential operatorP of second order is given by

P u=−
3

∑
j=1

3

∑
k=1

∂ j(A jk∂ku)+
3

∑
j=1

A j∂ ju+Au on Ω ⊂ R
3

where the coefficients

A jk =
[
a jk

pq

]
, A j =

[
a j

pq

]
, A=

[
apq
]

1≤ p≤ 3 and 1≤ q≤ 3

are functions fromΩ into C
3×3, the space of complex 3×3 matrices. Notice thatu is in

general vector valued.

Definition 3.5. A second order partial differential operatorP is called uniform strongly
elliptic on Ω if

Re

[
3

∑
j=1

3

∑
k=1

[
A jk(x)ξkη

]∗ ξ jη

]
≥ c|ξ |2 |η |2

for all x ∈ Ω, ξ ∈ R
3, η ∈ C

3 and c> 0.

The operator of poroelasticity (2.16) turns out to be strongly elliptic.

Theorem 3.7.For s∈C+
σ andµ > 0, 2µ +λ > 0, κ > 0, φ > 0, (ρa+φρ f )≥ 0 the partial

differential operatorP as given in(2.16)is strongly elliptic.

Proof. The Fourier transform of the main partP0 is P̂0(ξ ), whereP̂0(ξ ) is the homoge-
neousC4×4-valued quadratic polynomial

P̂0(ξ ) = (2π)2

(
µI3 |ξ1|2+(µ +λ )ξ1ξ ∗

1 0

0 β
sρ f

|ξ2|2

)

with the 3×3 identityI3 andξ = (ξ1,ξ2)
⊤. Thus forη = (η1,η2)

⊤,

η∗P̂0(ξ )η = (2π)2
[

µ |ξ1|2 |η1|2+(µ +λ ) |ξ1 ·η1|2+
β

sρ f
|ξ2|2 |η2|2

]

and thereforeP is strongly elliptic if and only if

µ > 0, 2µ +λ > 0, Re

[
β

sρ f

]
> 0.



3.3 Green’s formula in poroelasticity 19

The last constant is given as

β
sρ f

=
κφ2

φ2+sκ(ρa+φρF)
=

κφ4+sκ2φ2(ρa+φρF)

|φ2+sκ(ρa+φρF)|2
,

and therefore the real part is strictly positive under the given assumptions.

3.3 Green’s formula in poroelasticity

Let Ω be a Lipschitz domain and letn be the outward unit normal vector onΓ= ∂Ω, which
is defined almost everywhere. The componentwise multiplication of the partial differential
equation (2.14) with the complex adjoint of a test functionvi, integration overΩ, applying
integration by parts, and summation gives
∫

Ω

[ f̂i −β f̂ f
i ]vi dx=

∫

Ω

[
(ρ −βρ f )s

2ûs
i −µûs

i, j j − (λ +µ)ûs
j,i j +(α −β )p̂,i

]
vi dx

= aE(ûs,v)+(ρ −βρ f )s
2〈ûs,v〉Ω −α 〈p̂,divv〉Ω −β 〈∇p̂,v〉Ω −〈TE ûs−α p̂n,v〉Γ .

(3.18)

Recall that theL2-inner products are defined as

〈u,v〉Ω =
∫

Ω

u(x) ·v(x) dx,

and
〈 f ,g〉Γ =

∫

Γ

f (x) ·g(x) dsx.

When multiplying the partial differential equation (2.15) with the complex adjoint of a test
functionq we obtain accordingly

−
∫

Ω

β
ρ f s

div f̂ f q dx=
∫

Ω

[
(α −β )sdiv ûs− β

ρ f s
∆p̂+

φ2s
R

p̂

]
q dx

= αs〈div ûs,q〉Ω +βs〈ûs,∇q〉Ω +
β

ρ f s
〈∇p̂,∇q〉Ω +

φ2s
R

〈p̂,q〉Ω

−βs
〈

n⊤û,q
〉

Γ
− β

ρ f s
〈∂np̂,q〉Γ .

(3.19)

Now, by combining (3.18) and (3.19) we conclude Green’s firstformula in poroelastic-
ity,

aΩ((û
s, p̂);(v,q)) =

〈
P
(

ûs

p̂

)
,

(
v
q

)〉

Ω
+

〈
γ1

(
ûs

p̂

)
,

(
v
q

)〉

Γ
(3.20)



20 3 Variational formulations and boundary value problems

with the sesquilinear form

aΩ((û
s, p̂);(v,q)) = aE(ûs,v)+(ρ −βρ f )s

2〈ûs,v〉Ω −α 〈p̂,divv〉Ω −β 〈∇p̂,v〉Ω

+αs〈div ûs,q〉Ω +βs〈ûs,∇q〉Ω +
β

ρ f s
〈∇p̂,∇q〉Ω +

φ2s
R

〈p̂,q〉Ω (3.21)

and with the boundary stress operator

γ1

(
ûs

p̂

)
=

(
TE ûs−α p̂n

βsn⊤ûs+ β
ρ f s

∂np̂

)
=

(
TE −αn

βsn⊤ β
ρ f s

∂n

)(
ûs

p̂

)
. (3.22)

The boundary stress operator (3.22) reflects the dependencyof the elastic stress on the pore
pressure, while the flux of the pore pressure depends on the displacement. The boundary
stress operator can be rewritten by using the stress tensor ,see (2.5), the normal vector and
the negative specific flux, see (2.18).

In order to deduce Green’s second formula for the partial differential equations in poro-
elasticity we need to introduce the formally adjoint partial differential operator as

P̃ =



−µ∆− (λ +µ)graddiv+(ρ −βρ f )s2 −(α −β )sgrad

−(α −β )div − β
ρ f s

∆+
φ2s
R


 , (3.23)

and the related adjoint boundary stress operator

γ̃1 =




TE αsn

−βn⊤
β

ρ f s
∂n


 . (3.24)

Then, Green’s first formula for the adjoint partial differential operator reads

aΩ((û
s, p̂);(v,q)) =

〈(
ûs

p̂

)
, P̃
(

v
q

)〉

Ω
+

〈(
ûs

p̂

)
, γ̃1

(
v
q

)〉

Γ
, (3.25)

and therefore by equalizing (3.20) and (3.25), we conclude Green’s second formula in
poroelasticity,

〈(
ûs

p̂

)
, P̃
(

v
q

)〉

Ω
+

〈(
ûs

p̂

)
, γ̃1

(
v
q

)〉

Γ
=

〈
P
(

ûs

p̂

)
,

(
v
q

)〉

Ω
+

〈
γ1

(
ûs

p̂

)
,

(
v
q

)〉

Γ
.

(3.26)

For readability we introduce functionsU = (ûs, p̂)⊤ andV = (v,q)⊤. Green’s formulae
can therefore be applied to the following setting. We denotean interior domain byΩ− and
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the corresponding exterior domain byΩ+ := R
3\Ω−. Green’s first formulae for both the

interior and exterior problems read as

aΩ±(U,V) = 〈PU,V〉Ω± ∓
〈
γ±1 U,γ±0 V

〉
Γ for all U ∈ [H2(Ω±)]4,V ∈ [H1(Ω±)]4,

(3.27)

aΩ±(U,V) =
〈

U, P̃V
〉

Ω±
∓
〈
γ±0 U, γ̃±1 V

〉
Γ for all U ∈ [H1(Ω±)]4,V ∈ [H2(Ω±)]4.

(3.28)

The radiation condition for the exterior problem is embedded into the Sobolev space
[H1(Ω+)]4. For poroelasticity the physically relevant solutions show exponential decay
as‖x‖ → ∞ and so the Sobolev space[H1(Ω+)]4 can be used for the formulation of the
relevant variational problem.

The jumps of the traces overΓ of the conormal derivatives and the adjoint conormal deriva-
tives are denoted by

[U ]Γ = γ−0 U − γ+0 U, [γ1U ]Γ = γ−1 U − γ+1 U, [γ̃1U ]Γ = γ̃−1 U − γ̃+1 U.

Additionally, if γ+0 U = γ−0 U we denote it simply byγ0U . This notation will be used
accordingly forγ1U andγ̃1U .

Lemma 3.8. Let u∈ [L2(R
3)]4 with u|Ω± ∈ [H1(Ω±)]4. If

Pu± = 0 on Ω±,

then

〈PU,ψ〉Γ =
〈

U, P̃ψ
〉

Γ
=−〈[U ]Γ, γ̃1ψ〉Γ+〈[γ1]Γ,γ0ψ〉Γ for all ψ ∈ [D(R3)]4, (3.29)

and

aΩ+(U |Ω+ ,V)+aΩ−(U |Ω− ,V)=
〈
γ−1 U,γ−0 V

〉
Γ−
〈
γ+1 U,γ+0 V

〉
Γ for all V ∈ [H1(R3\Γ)]4.

(3.30)

3.4 Boundary value problems

With the help of Green’s formulae (3.27) and (3.28) we can analyze related boundary value
problems. Unique solvability is proven by the Lemma of Lax-Milgram (Lemma 3.3),
which requires boundedness and ellipticity of the sesquilinear form (3.21). Furthermore
the dependency of the ellipticity and boundedness constants on the Laplace parameters
will be studied.
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For readability we use the abbreviationsU = (u, p)⊤ andV = (v,q)⊤ and the operatorΘs

as introduced in (3.9). The operatorΘs is bounded by

‖Θs‖X→X ≤ max(1, |s|)≤ |s|
σ
. (3.31)

whereX is defined as in Definition 3.2.

Theorem 3.9.Let the Lamé constantsλ ≥ 0 andµ > 0, the permeabilityκ > 0, the solid
and partial densitiesρs > 0 andρ f > 0, the coupling constants Q> 0 and R> 0 and the
porosityφ ∈ (0,1). Moreover, let s∈ C

+
σ . Then we have

Re[aΩ(U,ΘsU)]& σ5σ 9U92
|̃s|,Ω

for all U ∈ [H1(Ω)]4.

Proof. The real part of the sesquilinear form (3.21) with the test function(su, p) is given
by

Re[aΩ((u, p);(su, p))] = Re[s]aE(u,u)+ |s|2Re
[
s(ρ −βρ f )

]
‖u‖2

0,Ω

+Re
[
(β −β )s〈u,∇p〉Ω

]
+

1
ρ f

Re

[
β
s

]
‖∇p‖2

0,Ω +
φ2

R
Re[s]‖p‖2

0,Ω .

Sinceα is real valued, the corresponding mixed term vanishes.

For Im[β ] = 0 the second mixed part vanishes as well. In this case the remaining parts can
be estimated further. We have

Re
[
s(ρ −βρ f )

]
=

ρφ4Re[s]+K1 |s|2Re[s]+K2Re[s]2+φ4ρ2
f κ Im [s]2

∣∣φ2+sκ(ρa+φρ f )
∣∣2 (3.32)

with

K1 = κ(ρρa+φρ f ρs(1−φ)κ(ρa+φρ f )),

K2 = φ2κρρa+κφ3ρ f ρs(1−φ)+ρφ2κ(ρa+φρ f ).

By using (3.7), the denominator can be estimated by

∣∣φ2+sκ(ρa+φρ f )
∣∣2 . |s|2

σ2 (3.33)

with the notation as introduced in Definition 3.4. Thus we have

|s|2Re
[
s(ρ −βρ f )

]
& σ2Re[s] |s|2 .
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Furthermore we have

1
ρ f

Re

[
β
s

]
=

κφ2(φ2+κ2Re[s] (ρa+φρ f ))∣∣φ2+sκ(ρa+φρ f )
∣∣2 (3.34)

and therefore
1

ρ f
Re

[
β
s

]
&

σ2Re[s]

|s|2
.

Finally we end up with the estimate

aΩ((u, p);(su, p))

& Re[s]aE(u,u)+σ2Re[s] |s|2‖u‖2
0,Ω +

Re[s]σ2

|s|2
‖gradp‖2

0,Ω +Re[s]‖p‖2
0,Ω .

Korn’s second inequality, or more precisely estimate (3.17) yields the desired result. These
estimates complete the proof for the case Im[β ] = 0.

For Im[β ] 6= 0 we can estimate the mixed part further by

Re
[
(β −β )s〈u,∇p〉Ω

]
≥−2|Im [β ]| |s|‖∇p‖0,Ω ‖u‖0,Ω

and we end up with

Re[aΩ((u, p);(su, p))]≥ Re[s]aE(u,u)+ |s|2Re
[
s(ρ −βρ f )

]
‖u‖2

0,Ω +
φ2

R
Re[s]‖p‖2

0,Ω

−2|Im [β ]| |s|‖∇p‖0,Ω ‖u‖0,Ω +
1

ρ f
Re

[
β
s

]
‖∇p‖2

0,Ω

= Re[s]aE(u,u)+

(
|s|2Re

[
s(ρ −βρ f )

]
− 1

ε2 |Im [β ]| |s|
)
‖u‖2

0,Ω

+

(
ε
√

|Im [β ]| |s|‖∇p‖2
0,Ω − 1

ε
√
|Im [β ]| |s|‖u‖2

0,Ω

)2

+

(
1

ρ f
Re

[
β
s

]
− ε2 |Im [β ]| |s|

)
‖∇p‖2

0,Ω +
φ2

R
Re[s]‖p‖2

0,Ω

≥ Re[s]aE(u,u)+

(
|s|2Re

[
s(ρ −βρ f )

]
− 1

ε2 |Im [β ]| |s|
)
‖u‖2

0,Ω

+

(
1

ρ f
Re

[
β
s

]
− ε2 |Im [β ]| |s|

)
‖∇p‖2

0,Ω +
φ2

R
Re[s]‖p‖2

0,Ω

for all ε > 0. Due to Re[s]> 0 it is sufficient to ensure

|s|2Re
[
s(ρ −βρ f )

]
− 1

ε2 |Im [β ]| |s|> 0, (3.35)

1
ρ f

Re

[
β
s

]
− ε2 |Im [β ]| |s|> 0 (3.36)
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for an appropriately chosenε. In particular,ε2 needs to satisfy the inclusion

|Im [β ]| |s|
|s|2Re

[
s(ρ −βρ f )

] < ε2 <
1

ρ f

Re
[

β
s

]

|Im [β ]| |s| . (3.37)

Hence we have to ensure

|Im [β ]|2 < 1
ρ f

Re

[
β
s

]
Re
[
s(ρ −βρ f )

]
.

Indeed, by using

|Im [β ]|2 =
φ8κ2ρ2

f |Im [s]|2

|φ2+sκ(ρa+φρ f )|4

and (3.32), (3.34) we obtain

ρ f |Im [β ]|2

Re
[
s(ρ −βρ f )

]
Re
[

β
s

]

=
φ8κ2ρ2

f |Im [s]|2

[ρφ4Re[s]+K1 |s|2Re[s]+K2Re[s]2+φ4ρ2
f κ Im [s]2]κφ2(φ2+κ2Re[s] (ρa+φρ f ))

<
φ8κ2ρ2

f |Im [s]|2

(K1Re[s]+φ8ρ2
f κ2) |Im [s]|2+φ6ρ2

f κ4 |Im [s]|2Re[s] (ρa+φρ f )

<
φ2

φ2+κ2Re[s] (ρa+φρ f )
< 1.

(3.38)

Thus we can chose

ε2 =
1
2


 |Im [β ] |s||
|s|2Re

[
s(ρ −βρ f )

] + 1
ρ f

Re
[

β
s

]

|Im [s]| |s|


 ,

which obviously fulfills the inclusion (3.37). By using the estimate (3.38),

|Im [β ]|2 |s|2

|s|2Re
[
s(ρ −βρ f )

] < φ2

φ2+κ2Re[s] (ρa+φρ f )

1
ρ f

Re

[
β
s

]
,

we end up with an estimate for the term (3.36)

1
ρ f

Re

[
β
s

]
− ε2 |Im [β ]| |s| ≥ 1

2
1

ρ f
Re

[
β
s

]
− 1

2
1

ρ f

φ2

φ2+κ2Re[s] (ρa+φρ f )
Re

[
β
s

]
.
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This term can be simplified to

1
2

(
1− φ2

φ2+κ2Re[s] (ρa+φρ f )

)
1

ρ f
Re

[
β
s

]

=
1
2

κ2Re[s] (ρa−φρ f )

φ2+κ2Re[s] (ρa+φρ f )

κφ2(φ2+κ2Re[s] (ρa+φρ f ))∣∣φ2+sκ(ρa+φρ f )
∣∣2

=
1
2

κφ2(κ2Re[s] (ρa+φρ f ))∣∣φ2+sκ(ρa+φρ f )
∣∣2 .

We haveκ3φ(ρa+φρ f )> 0 and together with the estimate (3.33) this results in

1
2

κφ2(κ2Re[s] (ρa+φρ f ))∣∣φ2+sκ(ρa+φρ f )
∣∣2 &

Re[s]σ2

|s|2
.

Again, using (3.38), i. e.

ρ f
|Im [β ]|2 |s|2

Re
[

β
s

] >
φ2

φ2+κ2Re[s] (ρa+φρ f )
|s|2Re

[
s(ρ −βρ f )

]

yields an estimate for the term (3.35)

|s|2Re
[
s(ρ −βρ f )

]
− 1

ε2 |Im [β ]| |s|

≥ 1
2

(
1− φ2

φ2+κ2Re[s] (ρa+φρ f )

)
|s|2Re

[
s(ρ −βρ f )

]
.

The right hand side term is given as

|s|2Re
[
s(ρ −βρ f )

](
1− φ2

φ2+κ2Re[s] (ρa+φρ f )

)

=
|s|2(ρφ4Re[s]+K1 |s|2Re[s]+K2Re[s]2+φ4ρ2

f κ Im [s]2)
∣∣φ2+sκ(ρa+φρ f )

∣∣2
κ2Re[s] (ρa+φρ f )

φ2+κ2Re[s] (ρa+φρ f )

with

K1 = κ(ρρa+φρ f ρs(1−φ)κ(ρa+φρ f )),

K2 = φ2κρρa+κφ3ρ f ρs(1−φ)+ρφ2κ(ρa+φρ f ).

Estimate (3.33) and the estimateρφ4Re[s]+K2Re[s]2+φ4ρ2
f κ Im [s]2 > 0 yield

|s|2Re
[
s(ρ −βρ f )

](
1− φ2

φ2+κ2Re[s] (ρa+φρ f )

)
&

K1 |s|2Re[s]2κ2(ρa+φρ f )σ2

(φ2+κ2Re[s] (ρa+φρ f ))
.
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Moreover we haveK1κ2(ρa+φρ f )> 0 and

φ2+κ2Re[s] (ρa+φρ f )≤ max(1,Re[s])(φ2+κ2(ρa+φρ f ).
Re[s]

σ
.

Combining these estimates with estimate (3.33) yields

K1 |s|2Re[s]2κ2(ρa+φρ f )σ2

(φ2+κ2Re[s] (ρa+φρ f ))
& Re[s] |s|2σ3.

Hence we end up with the estimate

aΩ((u, p);(su, p))

& Re[s]aE(u,u)+σ3Re[s] |s|2‖u‖2
0,Ω +

Re[s]σ2

|s|2
‖gradp‖2

0,Ω +Re[s]‖p‖2
0,Ω .

Again, Korn’s second inequality, or more precisely estimate (3.17), yields the desired re-
sult.

Corollary 3.10. The sesquilinear form(3.21)is bounded, i. e.

aΩ(U,V).
1
σ

9V 9|s|,Ω 9U9|̃s|,Ω

for all U ∈ [H1(Ω)]4 and V∈ [H1(Ω)]4.

Proof. The sesquilinear form is given as in (3.21),

aΩ((u, p);(v,q)) = aE(u,v)+(ρ −βρ f )s
2〈u,v〉Ω −α 〈p,divv〉Ω −β 〈∇p,v〉Ω

+αs〈divu,q〉Ω +βs〈u,∇q〉Ω +
β

ρ f s
〈∇p,∇q〉Ω +

φ2s
R

〈p,q〉Ω .

All constants in the sesquilinear form have to be estimated.We have

∣∣ρ −βρ f
∣∣=
∣∣∣∣
φ2+sκ[(1−φ)ρsρ f φ +(1−φ)ρsρa+φρ f ρa]

φ2+sκ(ρa+φρ f )

∣∣∣∣

and with the help of estimate (3.7) we conclude

∣∣ρ −βρ f
∣∣. 1

σ
.

Moreover we have

β =
ρ f sφ2κ

sκ(ρ f φ +ρa)+φ2
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and therefore ∣∣∣∣
β

sρ f

∣∣∣∣.
1
|s| .

Combining all estimates results in

|aΩ((u, p);(v,q))|. ‖∇v‖0,Ω ‖∇u‖0,Ω +
1
σ
‖sv‖0,Ω ‖su‖0,Ω +‖∇v‖0,Ω ‖p‖0,Ω

+‖sv‖0,Ω

∥∥∥∥
1
s

∇p

∥∥∥∥
0,Ω

+‖sq‖0,Ω ‖∇u‖0,Ω +‖∇q‖0,Ω ‖su‖0,Ω

+‖∇q‖0,Ω

∥∥∥∥
1
s

∇p

∥∥∥∥
0,Ω

+‖sq‖0,Ω ‖p‖0,Ω

.
1
σ

9 (v,q)9|s|,Ω

(
9u9|s|,Ω +9

1
s

p9|s|,Ω

)

.
1
σ

9 (v,q)9|s|,Ω 9(u, p)9|̃s|,Ω .

A useful estimate as stated in [3] is given by the following lemma.

Lemma 3.11.For any functionφ ∈ H1/2(Γ) and s∈ C
+
σ there exists an extension

u∈ H1(Ω) such that

−∆u+su= 0 in Ω,

u= φ on Γ

and
9u9|s|,Ω . max(1, |s|)1/2‖φ‖1/2,Γ .

Let E denote the continuous right inverse of the traceγ0 as stated in Theorem 3.4. For the
extensionEφ of the boundary datumφ an estimate of the kind

9u9|s|,Ω . |s|‖φ‖1/2,Γ

is straight forward. However, Lemma 3.11 defines an extension which has an optimal
bound with respect tos, see [31].

The ellipticity estimate (Theorem 3.9), the boundedness ofthe sesquilinear form (3.21)
(Corollary 3.10) and the extension operator as defined in Lemma 3.11 give us a bound for
the solution of the mixed boundary value problem (2.19).
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Theorem 3.12.The mixed boundary value problem

PU = f in Ω,

γ0U = gD on ΓD,

γ1U = gN on ΓN

has a unique solution U∈ [H1(Ω)]4 satisfying

9U9|̃s|,Ω .
|s|

σσ6

(
‖ f‖−1,Ω +‖gN‖−1/2,ΓN

)
+

|s|3/2

σσ13/2
‖gD‖1/2,ΓD

.

Proof. The respective variational formulation of the boundary value problem is given as:

FindU ∈ [H1(Ω)]4 with γ0U = gD on ΓD such that

aΩ(U,V) = 〈 f ,V〉Ω + 〈gN,γ0V〉ΓN
(3.39)

for all V ∈ [H1
0(Ω,ΓD)]

4.

First we extend the functiongD ∈ [H1/2(ΓD)]
4 to a function ˜gD ∈ [H1/2(Γ)]4 such that

g̃D = gD on ΓD. Furthermore, the extension operator as defined in Lemma 3.11 is used to
define the functionUg ∈ [H1(Ω)]4 such that

Ug|Γ = g̃D

Next we split up the solutionU into U = U0+Ug with U0 ∈ [H1
0(Ω,ΓD)]

4 to be found.
Insertion into (3.39) yields a variational problem:

FindU0 ∈ [H1
0(Ω,ΓD)]

4

aΩ(U0,V) = 〈 f ,V〉Ω + 〈gN,γ0V〉Γ −aΩ(Ug,V)

for all V in [H1
0(Ω,ΓD)]

4.

Utilizing Corollary 3.10 and Theorem 3.9 results in

σ5σ 9U09
2
|̃s|,Ω . Re[aΩ(U0,ΘsU0]

. |〈 f ,U0〉Ω|+
∣∣〈gN,Θsγ0U0〉ΓN

∣∣+
∣∣aΩ(Ug,ΘsU0)

∣∣

.
(
‖ f‖−1,Ω +‖gN‖−1/2,ΓN

)
‖ΘsU0‖1,Ω +

|s|
σ

9U0 9|̃s|,Ω 9Ug 9|̃s|,Ω .

Estimate (3.12) can be applied to‖ΘsU0‖1,Ω resulting in

9U09|̃s|,Ω .
|s|

σ6σ

(
‖ f‖−1,Ω +‖gN‖−1/2,ΓN

+9Ug9|̃s|,Ω

)
.

Applying Lemma 3.11 to estimate the norm of the functionUg results in the given state-
ment.
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It is well known that the conormal derivative, as defined in (3.22), of a solution of a ho-
moegeneous boundary value problem is bounded. An estimate is given in the following
lemma.

Lemma 3.13.Let U ∈ [H1(Ω)]4 such thatPU = 0. Then

‖γ1U‖−1/2,Ω .
|s|1/2

σ3/2
9U 9|̃s|,Ω .

Proof. Applying Green’s first formula and Corollary 3.10 results in

‖γ1U‖−1/2,Γ = sup
06=φ∈[H1/2(Γ)]4

|〈γ1U,φ〉Γ|
‖φ‖1/2,Γ

= sup
06=φ∈[H1/2(Γ)]4

|aΩ(U,Eφ)|
‖φ‖1/2,Γ

. sup
06=φ∈[H1/2(Γ)]4

1
σ 9U 9|̃s|,Ω 9Eφ9|s|,Ω

‖φ‖1/2,Γ
,

whereE is an extension ofφ into [H1(Ω)]4, as described in Lemma 3.11 componentwise.
Thus we have

‖γ1U‖−1/2,Γ .
max(1, |s|)1/2

σ
9U9|̃s|,Ω,

which together with the estimate (3.7) concludes the proof.

The estimate as given in Lemma 3.13 can be extended to the jumpof the conormal deriva-
tive.

Corollary 3.14. Let U ∈ [H1(Ω−∪Ω+)]4 such thatPU = 0 in Ω−∪Ω+. Then

‖[γ1U ]Γ‖−1/2,Γ .
|s|1/2

σ3/2
9U 9|̃s|,R3\Γ .

The adjoint conormal derivative as given in (3.24) fulfills asimilar bound.

Lemma 3.15.Given V∈ [H1(Ω−∪Ω+)]4 such thatP̃V = 0 in Ω−∪Ω+. Then

‖[γ̃1V]Γ‖−1/2,Ω .
|s|1/2

σ5/2
9V 9|s|,Ω .
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Proof. Applying Green’s first formula for the adjoint problem and Corollary 3.10 results
in

‖γ̃1V‖−1/2,Γ = sup
06=φ∈[H1/2(Γ)]4

|〈γ̃1V,φ〉Γ|
‖φ‖1/2,Γ

= sup
06=φ∈[H1/2(Γ)]4

|aΩ(Eφ ,V)|
‖φ‖1/2,Γ

. sup
06=φ∈[H1/2(Γ)]4

1
σ 9Eφ 9|̃s|,Ω 9V9|s|,Ω

‖φ‖1/2,Γ
.

The estimate

9Eφ9|̃s|,Ω ≤ 1
σ

9Eφ9|s|,Ω

and Lemma 3.11 conclude the proof.



4 SURFACE POTENTIALS AND BOUNDARY INTEGRAL
OPERATORS

To describe solutions of the partial differential equations (2.14) and (2.15) we use appro-
priate surface potentials which are based on the use of a related fundamental solution. We
proceed as in [38], see also [26,52].

4.1 Fundamental solution

A fundamental solution of the partial differential operator P as defined in (2.16) is given
by, see, e.g., [46],

Gs(x,y) =

[
UE

i j (x,y) Pi(x,y)
U j(x,y) Pp(x,y)

]
∈ C

4×4, (4.1)

where

UE
i j (x,y) =

1
4πr(ρ −βρ f )s2

[
R1

α2
4 −α2

2

α2
1 −α2

2

e−α1r −R2
α2

4 −α2
1

α2
1 −α2

2

e−α2r +(δi j α2
3 −R3)e

−α3r
]

for i, j = 1,2,3 with

α2
1,2 =

1
2

[
φ2s2ρ f

βR
+

s2(ρ −βρ f )

λ +2µ
+

s2ρ f (α −β )2

β (λ +2µ)

±

√(
φ2s2ρ f

βR
+

s2(ρ −βρ f )

λ +2µ
+

s2ρ f (α −β )2

β (λ +2µ)

)2

−4
s4φ2ρ f (ρ −βρ f )

βR(λ +2µ)

]
(4.2)

and

α2
3 =

s2(ρ −βρ f )

µ
, α2

4 =
s2(ρ −βρ f )

λ +2µ
,

as well as

Rk =
3r,ir, j −δi j

r2 +αk
3r,ir, j −δi j

r
+α2

k r,ir, j , r = |x−y| .

31
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Moreover, there holds

Pj(x,y) =
s(α −β )ρ f r, j

4πrβ (λ +2µ)(α2
1 −α2

2)

[(
α1+

1
r

)
e−α1r −

(
α2+

1
r

)
e−α2r

]
,

U j(x,y) = sPj(x,y),

Pp(x,y) =
sρ f

4πrβ (α2
1 −α2

2)

[
(α2

1 −α2
4)e

−α1r − (α2
2 −α2

4)e
−α2r]

for j = 1, . . . ,3. The parameters represent the three waves occurring in poroelasticity.α1,2

represent the fast and slow compressional waves andα3 the shear wave. If the property

Re[αi ]> 0 for i = 1, . . . ,3. (4.3)

is fulfilled, the fundamental solutionGs(x,y) decays exponentially asr = |x−y| → ∞.

For α3 this property follows from an appropriate choice of all parameters involved.

Lemma 4.1. Let s∈ C
+
σ andφ ∈ (0,1), ρ > 0, ρ f > 0, ρa > 0, ρs > 0 andκ > 0, then

Re[α3]> 0

andα3(s) is an analytic function of s.

Proof. Sinceα3 is defined as a square root of a complex value, we simply take the square
root with the real part greater or equal to zero. This approach fails if the real part is equal
to zero. However if Im

[
α2

3

]
6= 0 we automatically get Re[α3] 6= 0 and thus Re[α3] > 0.

Remember

α2
3 =

s2(ρ −βρ f )

µ
.

We have

ρ −βρF =
c1+sc2

c3+sc4
=

c1c3+sc2c3+sc4c1+ |s|2c2c4

|c3+sc4|2
(4.4)

with

c1 = ρφ2, c2 = κρρa+κφρFρS(1−φ),
c3 = φ2, c4 = κ(ρa+φρF).

Settings= a+bi we have Im[s] = b, Im
[
s2
]
= 2ab and Im

[
s3
]
= b(3a2−b2). Inserting

these definitions results in

Im
[
c1c3s2+s3c2c3+ |s|2sc4c1+ |s|2s2c2c4

]

= b
[
a32c4c2+b2a2c2c4+a2(3c2c3+c4c1)+b2(c4c1−c2c3)+a2c1c3

]

= b
[
b2(c4c1−c2c3+a2c2c4)+a32c4c4a2(3c2c3+c4c1)+a2c1c3

]
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for the enumerator of (4.4). We can further estimate

c4c1−c2c3 =−(κρρa+κφρFρS(1−φ))φ2+ρφ2κ(ρa+φρF)

=−φ2κρρa−φ3κρFρS(1−φ)+ρφ2κρa+φ3ρ f κ(ρS(1−φ)+ρFφ)
= φ4ρ2

Fκ

and sinceci > 0 for i = 1, . . . ,4 anda= Re[s]> 0 we conclude that the imaginary part of
s2(ρ −βρ f ) can only be zero if the imaginary part ofs is zero. If Im[s] = 0, the expression
α2

3 is strictly positive sinceρ −βρ f is strictly positive. Therefore Re[α3] can always be
chosen strictly positive.

For the other two parameters we have to postulate the property (4.3). Additionallyα1 6= α2

has to be satisfied.

Assumption 4.1.We assumeRe[α1]> 0 andRe[α2]> 0. Furthermore we assume

Re

[(
φ2s2ρ f

βR
+

s2(ρ −βρ f )

λ +2µ
+

s2ρ f (α −β )2

β (λ +2µ)

)2

−4
s4φ2ρ f (ρ −βρ f )

βR(λ +2µ)

]
> 0 (4.5)

if

Im

[(
φ2s2ρ f

βR
+

s2(ρ −βρ f )

λ +2µ
+

s2ρ f (α −β )2

β (λ +2µ)

)2

−4
s4φ2ρ f (ρ −βρ f )

βR(λ +2µ)

]
= 0

Remark 4.1. Let s∈C
+
σ andφ ∈ (0,1), ρ > 0, ρ f > 0, ρa > 0, ρs> 0 andκ > 0, then the

fundamental solution as defined in(4.1) is an analytic function with respect to s.

Proof. The square root function
√

s is analytic fors∈ C\{s∈ R|s≤ 0}. Sinceβ 6= 0 for
s∈C

+
σ , assumption (4.5) guarantees thatα1 andα2 are analytic. With the help of the same

argument the proof of Lemma 4.1 guarantees thatα3 andα4 are analytic.

Furthermores2(ρ −βρ f ) 6= 0 for s∈ C
+
σ and due to assumption (4.5)α2

1 6= α2
1 and there-

fore the fundamental solution itself is analytic with respect tos.

The singular behaviour of the fundamental solution as givenin (4.1) is well known. We
have

UE
i j (x,y) =

1
16πµ(1−ν)

{
r,ir, j +(3−5ν)δi j

} 1
r
+O(1), Ui(x,y) =O(1),

Pp(x,y) =
ρ f s

4πβ
1
r
+O(1), Pi(x,y) =O(1).
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It turns out that the singularity of the blockUE
i j (x,y) is the singularity of the fundamental

solution of linear elastostatics, whereasPp(x,y) has the same singularity as the fundamen-
tal solution of the Laplace operator. In the remainder of thefundamental solution (4.1) no
further singularities appear.

We define the operator, see (3.8)

Λ = Θ√
−s, 1√

−s
.

Remark 4.2. UE
i j and Pp are symmetric with respect to x and y, thus UE(x,y) =UE(y,x)

and Pp(x,y) =Pp(y,x), whereas Pi and Uj are skew symmetric and thus Pi(x,y) =−Pi(y,x)
and Uj(x,y) = −U j(y,x). Finally, the transposed of the fundamental solution can beex-
pressed as

Gs(y,x)
⊤ = ΛGs(x,y)Λ−1.

Remark 4.3. By using the operatorΛ one can rewrite the conormal derivative of the
adjoint problem as

γ̃1 = Λγ1Λ−1.

4.2 Boundary integral operators

By using the fundamental solutionGs(x,y) we introduce the Newton potential

(N(s) f )(x) :=
∫

Ω

Gs(x,y) f (y) dy for x∈ R
3.

Since the underlying partial differential operatorP as given in (2.16) is a strongly elliptic
operator with constant coefficients, see (3.7), we conclude, see, e.g. [26,38],

N(s) : [Hr−1(R3)]4 → [Hr+1(R3)]4 for all s∈ C, r ∈ R.

In addition to the Newton potentialN(s) we introduce the single and double layer poten-
tials

SL(s)[ψ](x) :=
∫

Γ

Gs(x,y)ψ(y) dsy,

DL(s)[φ ](x) :=
∫

Γ

[γ̃1G∗
s(x,y)]

∗φ(y) dsy
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for x ∈ R
3 \Γ, whereG∗

s(x,y) is the fundamental solution of the formally adjoint partial
differential operator̃P , see (3.23). The surface potentials and related traces fulfill the
mapping properties, see [38],

SL(s) : [H−1/2(Γ)]4 → [H1(Ω)]4, DL(s) : [H1/2(Γ)]4 → [H1(Ω)]4,

γ0SL(s) : [H−1/2(Γ)]4 → [H1/2(Γ)]4, γ0DL(s) : [H1/2(Γ)]4 → [H1/2(Γ)]4,

γ1SL(s) : [H−1/2(Γ)]4 → [H−1/2(Γ)]4, γ1DL(s) : [H1/2(Γ)]4 → [H−1/2(Γ)]4

and satisfy the jump relations

[SL(s)ψ]|Γ = 0, [γ1SL(s)ψ]|Γ =−ψ, [DL(s)φ ]|Γ = φ , [γ1DL(s)φ ]|Γ = 0. (4.6)

Since the partial differential operatorP is not self–adjoint, the resulting boundary integral
operators are not self–adjoint. For a complete overview on the properties and the different
relations of the boundary integral operators and there adjoints in such a general situation,
see, e.g., [38]. The boundary integral operators for the adjoint operator̃P are defined by

S̃L(s)[φ ](x) :=
∫

Γ

G∗
s(y,x)φ(y) dyy for x∈ R

3\Γ,

D̃L(s)[ψ](x) :=
∫

Γ

[γ1Gs(y,x)]
∗ψ(y) dyy for x∈ R

3\Γ.

The following duality relations are a direct consequence ofthe definition of the boundary
integral operators.

Theorem 4.2.For φ1,φ2 ∈ [H−1/2(Γ)]4 we have

〈γ0SL(s)φ1,φ2〉Γ =
〈

φ1,γ0 S̃L(s)φ2

〉
Γ
.

In addition, forψ1,ψ2 ∈ [H1/2(Γ)]4 there holds

〈
φ1,γ±0 DL(s)ψ1

〉
Γ =

〈
γ̃±1 S̃L(s)φ1,ψ1

〉
Γ
,

〈
φ1,γ±0 D̃L(s)ψ1

〉
Γ
=
〈
γ±1 SL(s)φ1,ψ1

〉
Γ ,

〈ψ1,γ1DL(s)ψ2〉Γ =
〈

γ̃1 D̃L(s)ψ1,ψ2

〉
Γ
.

Next we introduce the standard boundary integral operators, in particular the single layer
integral operator

V(s) := γ0SL(s) : [H−1/2(Γ)]4 → [H1/2(Γ)]4, (4.7)
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the single layer integral operator of the adjoint problem

Ṽ(s) := γ0 S̃L(s) : [H−1/2(Γ)]4 → [H1/2(Γ)]4,

the hyper-singular boundary integral operator

D(s) :=−γ1DL(s) : [H1/2(Γ)]4 → [H−1/2(Γ)]4, (4.8)

the double layer integral operators

K(s) :=
1
2

(
γ+0 DL(s)+γ−0 DL(s)

)
: [H1/2(Γ)]4 → [H1/2(Γ)]4, (4.9)

K̃(s) :=
1
2

(
γ+0 D̃L(s)+γ−0 D̃L(s)

)
: [H1/2(Γ)]4 → [H1/2(Γ)]4, (4.10)

and its adjoint

K̃(s)∗ :=
1
2

(
γ+1 SL(s)+γ−1 SL(s)

)
: [H−1/2(Γ)]4 → [H−1/2(Γ)]4.

Furthermore we conclude the following expressions for the traces and conormal derivatives
of the single and double layer potentials, i.e.,

γ0SL(s)ψ =V(s)ψ, γ±1 SL(s)ψ =∓1
2

ψ + K̃(s)∗ψ,

γ±0 DL(s)φ =±1
2

φ +K(s)φ , γ1DL(s)φ =−D(s)φ ,

γ0 S̃L(s)ψ =V(s)∗ψ, γ̃±1 S̃L(s)ψ =∓1
2

ψ + K̃(s)∗ψ,

γ±0 D̃L(s)φ =±1
2

φ + K̃(s)φ , γ1 D̃L(s)φ =−D(s)∗φ ,

for ψ ∈ [H−1/2(Γ)]4 andφ ∈ [H1/2(Γ)]4 almost everywhere.

Lemma 4.3. [38] For the boundary integral operators one has the following relations

V(s)D(s) =
1
4

I −K(s)2, V(s)K̃(s)∗ = K(s)V(s),

D(s)K(s) = K̃(s)∗D(s), D(s)V(s) =
1
4

I − (K̃(s)∗)2.

Moreover, the traces of the Newton potentialN(s) imply the volume integral operators

N(s)0 := γ0N(s) : [H−1(Ω)]4 → [H1/2(Γ)]4,

N(s)1 := γ1N(s) : [H−1(Ω)]4 → [H−1/2(Γ)]4.
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4.3 On symmetry and ellipticity

Boundary integral operators related to partial differential equations with complex parame-
ters are not self–adjoint, see for example the boundary integral operators for the Helmholtz
equation in [31]. The single layer integral operator and thehyper-singular operator for the
Helmholtz equation are however symmetric.

The original partial differential operator (2.16) for poroelasticity is not symmetric, we
therefore cannot expect symmetry for those integral operators. On the other hand, the par-
tial differential operator has a block skew-symmetric structure. This structure is preserved
by the boundary integral operators.

Lemma 4.4.For the boundary integral operators of poroelasticity as defined in(4.7), (4.8)
and (4.9) there hold the following relations:

V(s)⊤ = ΛV(s)Λ−1,

K(s)⊤ = ΛK̃(s)∗Λ−1,

D(s)⊤ = Λ−1D(s)Λ.

Proof. The traces of the two single layer integral operator (4.7) are adjoint to each other,
i. e.

〈V(s)φ ,ψ〉Γ =
〈

φ ,Ṽ(s)ψ
〉

Γ
for all φ ,ψ ∈ [H−1/2(Γ)]4.

By using Remark 4.2, the single layer potential of the adjoint problem can be written as

S̃L(s) = ΛSL(s)Λ−1.

When we consider the Dirichlet traces the first relation follows immediately. For the dou-
ble layer potential we apply Remark 4.2 and Remark 4.3, resulting in

DL(s)φ =
∫

Γ

[
γ̃1Gs

⊤
(x,y)

]∗
φ(y) dsy

=
∫

Γ

[
Λγ1Λ−1ΛGs(y,x)Λ−1]⊤φ(y) dsy

=
∫

Γ

[
Λγ1Gs(y,x)Λ−1]⊤φ(y) dsy

=
∫

Γ

Λ−1 [γ1Gs(y,x)]
⊤Λφ(y) dsy

= Λ−1D̃L(s)Λφ
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and thus

〈K(s)φ ,ψ〉Γ =
〈

Λ−1K̃(s)Λφ ,ψ
〉

Γ
=
〈

φ ,ΛK̃(s)
∗
Λ−1ψ

〉
Γ
.

Furthermore we have

D(s) = γ1DL(s) = γ1Λ−1D̃L(s)Λ = Λ−1γ̃1 D̃L(s) = Λ−1D̃(s)Λ

and due toD(s)∗ = D̃(s) the last relation follows immediately.

Lemma 4.4 can be used to write the single layer integral operator and the hyper-singular
operator in the following form.

Corollary 4.5. The single layer boundary integral operator can be written as

V(s) =

(
V11(s) V12(s)

−sV12(s)⊤ V22(s)

)

with the symmetric operators

V11(s) :[H−1/2(Γ)]3 → [H1/2(Γ)]3,

V22(s) : H−1/2(Γ) → H1/2(Γ),

and with the operator

V12(s) : H−1/2(Γ) → [H1/2(Γ)]3.

Proof. If we split the single layer boundary integral operator intofour operators

V(s) =

(
V11(s) V12(s)
V21(s) V22(s)

)

and apply Lemma 4.4, the transposed of the operator is given as

(
V11(s) V12(s)
V21(s) V22(s)

)⊤
=

(√
−s √

−1/s

)(
V11(s) V12(s)
V21(s) V22(s)

)(√
−1/s √

−s

)

=

(
V11(s) −s V12(s)

−1/s V21(s) V22(s)

)
.

We end up with the relationsV11(s) =V11(s)⊤,V22(s) =V22(s)⊤ andV12(s) =−1/sV21(s)⊤

as stated.
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Corollary 4.6. The hyper-singular operator can be written as

D(s) =

(
D11(s) D12(s)

−1
sD12(s)⊤ D22(s)

)

with the symmetric operators

D11(s) :[H1/2(Γ)]3 → [H−1/2(Γ)]3,

D22(s) : H1/2(Γ) → H−1/2(Γ),

and with the operator

D12(s) : H1/2(Γ) → [H−1/2(Γ)]3.

Proof. The proof is done in the same way as the proof of Corollary 4.5.

Corollary 4.7. The double layer integral operator is given as

K(s) =

(
K11(s) K12(s)
K21(s) K22(s)

)

with the operators

K11(s) :[H1/2(Γ)]3 → [H1/2(Γ)]3,

K22(s) : H1/2(Γ) → H1/2(Γ),

K12(s) : H1/2(Γ) → [H1/2(Γ)]3,

K21(s) : [H1/2(Γ)]3 → H1/2(Γ).

Then the adjoint of the adjoint double layer integral operator can be written as

K̃(s)∗ =

(
K11(s)⊤ −sK21(s)⊤

−1
sK12(s)⊤ K22(s)⊤

)
.

Proof. Repeating the arguments of Corollary 4.5 results in the statement.

Remark 4.4. Notice that the sum of the sesquilinear forms(3.21)for Ω+ andΩ− can be
equi-valently written as

Re
[
aR3\Γ(u,Θsu)

]
= Re[aΩ+(u,Θsu)]+Re[aΩ+(u,Θsu)] .
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Theorem 4.8. The single layer integral operator V(s) : [H−1/2(Γ)]4 → [H1/2(Γ)]4 as de-
fined in(4.7) is [H−1/2(Γ)]4-elliptic, i. e.

Re[〈ψ,ΘsV(s)ψ〉Γ]&
σσ8

|s| ‖ψ‖2
−1/2,Γ for all ψ ∈ [H−1/2(Γ)]4. (4.11)

Therefore V(s) is invertible with

∥∥V(s)−1
∥∥
[H1/2(Γ)]4→[H−1/2(Γ)]4 .

|s|2
σσ9 . (4.12)

Proof. We defineu= SL(s)ψ which fulfills P u= 0 inR
3\Γ and thus we have

Re[〈ψ,ΘsV(s)ψ〉Γ] =−Re[〈[γ1u],γ0ΘsV(s)ψ〉Γ] (Jump conditions (4.6))

= Re
[
aR3\Γ(u,Θsu)

]
(Green’s first formula (3.30))

& σσ5 9u92
|̃s|,R3\Γ

(Theorem 3.9)

&
σσ8

|s| ‖ψ‖2
−1/2,Γ . (Corollary 3.14)

To prove estimate (4.12) we insertψ =V(s)−1φ ∈ [H1/2(Γ)]4 into the ellipticity estimate
(4.11), which results in

∥∥V(s)−1φ
∥∥2
−1/2,Γ .

|s|
σσ8 Re[〈ψ,ΘsV(s)ψ〉Γ]

.
|s|

σσ8 ‖Θsφ‖1/2,Γ
∥∥V(s)−1φ

∥∥
−1/2,Γ (Duality estimate)

.
|s|2
σσ9 ‖φ‖1/2,Γ

∥∥V(s)−1φ
∥∥
−1/2,Γ . (Estimate (3.31))

Proposition 4.9. For ψ ∈ [H−1/2(Γ)]4, φ ∈ [H1/2(Γ)]4 and s∈C
+
σ the following estimates

hold:

‖SL(s)ψ‖1,R3\Γ .
|s|2
σ8σ

‖ψ‖−1/2,Γ , (4.13)

∥∥SL(s)V(s)−1φ
∥∥

1,R3\Γ .
|s|3/2

σ15/2σ
‖φ‖1/2,Γ , (4.14)

∥∥γ±1 SL(s)ψ
∥∥
−1/2,Γ .

|s|3/2

σ13/2σ
‖ψ‖−1/2,Γ . (4.15)
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Proof. Insertingu= SL(s)ψ into the ellipticity estimate (Theorem 3.9) yields

σ5σ 9u92
|̃s|,R3\Γ

.
∣∣∣aR3\Γ(u,Θsu)

∣∣∣ .

We apply the jump condition (4.6) of the single layer potential and Green’s first formula
(3.18) and end up with

σ5σ 9u92
|̃s|,R3\Γ

. |〈ψ,ΘsV(s)ψ〉Γ|. ‖ψ‖−1/2,Γ ‖ΘsV(s)ψ‖1/2,Γ . (4.16)

With the help of estimate (3.12) we get

‖ΘsV(s)ψ‖1/2,Γ ≤ ‖Θsu‖1,R3\Γ ≤ |s|
σ

9u9|̃s|,Ω

and therefore we have

σ5σ 9u9|̃s|,R3\Γ .
|s|
σ

‖ψ‖−1/2,Γ . (4.17)

The norm equivalence (3.11) yields

‖u‖1,R3\Γ .
|s|
σ2 9u9|̃s|,R3\Γ .

|s|2
σ8σ

‖ψ‖−1/2,Γ

or estimate (4.13).

To show the estimate (4.14) we start from estimate (4.17) andapply Corollary 3.14 result-
ing in

∥∥γ±1 SL(s)ψ
∥∥
−1/2,Γ .

|s|1/2

σ3/2
9u9|̃s|,R3\Γ .

|s|3/2

σ13/2σ
‖ψ‖−1/2,Γ .

Finally, to prove estimate (4.14), we reconsider estimate (4.16)

σ5σ 9u92
|̃s|,R3\Γ

. ‖ψ‖−1/2,Γ ‖ΘsV(s)ψ‖1/2,Γ

and apply Corollary 3.14, the bound ofΘs (3.31) and introduceψ =V(s)−1φ ∈ [H1/2(Γ)]4,
which results in

σ5σ 9u92
|̃s|,R3\Γ

.
|s|3/2

σ5/2
9u9|̃s|,R3\Γ ‖φ‖1/2 .

The norm equivalence (3.11) yields

∥∥SL(s)V(s)−1φ
∥∥

1,R3\Γ = ‖u‖1,R3\Γ .
|s|3/2

σ15/2σ
‖φ‖1/2 .
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Remark 4.5. Due to Remark 4.2 the fundamental solution and thus the operator V(s)
can be symmetrised by applying the operatorΘ−s. Theorem 4.8 shows that the operator
ΘsV(s) is [H1/2(Γ)]4-elliptic.

Real valued block skew-symmetric systems can be transformedto a symmetric and positive
definite system by a Bramble-Pasciak transformation, see [14]. For complex valued block
skew-symmetric systems the theory is however incomplete.

Theorem 4.10.Let s∈C+
σ , then the hyper-singular integral operator D(s) : [H1/2(Γ)]4 →

[H−1/2(Γ)]4 as defined in(4.8) is [H1/2(Γ)]4-elliptic, i. e.

Re[〈D(s)φ ,Θφ〉Γ]&
σ7σ
|s|2

‖φ‖2
1/2,Γ for all φ ∈ [H1/2(Γ)]4. (4.18)

Therefore D(s) is invertible satisfying

∥∥D(s)−1
∥∥
[H−1/2(Γ)]4→[H1/2(Γ)]4 .

|s|2
σ8σ

. (4.19)

Proof. We start withu = −DL(s)φ , which fulfills P u = 0 in R
3 \Γ, and which can be

estimated in the following way:

Re[〈D(s)φ ,Θsφ〉Γ] = Re[−〈γ1u, [u]〉Γ] (Jump conditions (4.6))

= Re
[
aR3\Γ(u,Θu)

]
Green’s first formula (3.18)

& σ5σ 9u92
|̃s|,R3\Γ

(Ellipticity (Theorem 3.9))

&
σ7σ
|s|2

9u92
|̃s|,R3\Γ

. (Norm equivalence (3.11))

(4.20)

The trace theorem (Theorem 3.4) and the jump conditions (4.6) can be applied to estimate

‖u‖1,R3\Γ ≥ ‖[u]|Γ‖1/2,Γ = ‖φ‖1/2,Γ ,

which results in the ellipticity estimate (4.18) for the hyper-singular operator.

Estimate (4.19) for the norm of the inverse hyper-singular operator can be calculated by
using (4.20), which results in

σ5σ 9u92
|̃s|,R3\Γ

. Re[〈D(s)φ ,Θsφ〉Γ]

. ‖D(s)φ‖−1/2,Γ ‖Θsφ‖1/2,Γ (Duality estimate)

. ‖D(s)φ‖−1/2,Γ ‖Θs[u]|Γ‖1/2,Γ (Jump conditions (4.6))

.
|s|
σ

‖D(s)φ‖−1/2,Γ ‖u‖1,R3\Γ (Thm. 3.4, estimate (3.31))

.
|s|
σ

‖D(s)φ‖−1/2,Γ 9u9|̃s|,R3\Γ (Norm equivalence (3.11))
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which yields

9u9|̃s|,R3\Γ .
|s|

σ6σ
‖D(s)φ‖−1/2,Γ .

The norm equivalence (3.11) and the trace theorem (Theorem 3.4) conclude the proof.

Proposition 4.11.For s∈C+
σ , φ ∈ [H1/2(Γ)]4 andψ ∈ [H−1/2(Γ)]4 the following inequal-

ities hold:

‖DL(s)φ‖1,R3\Γ .
|s|5/2

σ19/2σ
‖φ‖1/2,Γ , (4.21)

∥∥DL(s)D(s)−1ψ
∥∥

1,R3\Γ .
|s|2
σ6σ

‖ψ‖−1/2,Γ , (4.22)

‖γ1DL(s)φ‖−1/2,Γ .
|s|2
σ8σ

‖φ‖1/2,Γ . (4.23)

Proof. Setttingu= DL(s)φ results in

σ5σ 9u92
|̃s|,R3\Γ

.
∣∣∣aR3\Γ(u,Θsu)

∣∣∣ (Theorem 3.9)

= |〈γ1u, [Θsu]|Γ〉Γ| (Green’s first formula (3.18))

. ‖Θsφ‖1/2,Γ ‖γ1u‖−1/2,Γ (Duality, jump conditions (4.6))

.
|s|3/2

σ5/2
‖φ‖1/2,Γ 9u9|̃s|,R3\Γ . (Corollary 3.14, Estimate (3.31))

Finally, with estimate (3.11) we have

‖u‖1,R3\Γ . 9u9|̃s|,R3\Γ .
|s|3/2

σ19/2σ
‖φ‖1/2,Γ ,

which concludes the estimate (4.21).

To show estimate (4.22) we start with

σ5σ 9u92
|̃s|,R3\Γ

. ‖Θsφ‖1/2,Γ ‖γ1u‖−1/2,Γ = ‖Θsφ‖1/2,Γ ‖D(s)φ‖−1/2,Γ

and introduceφ =D(s)−1ψ ∈ [H1/2(Γ)]4, which in addition to the trace theorem (Theorem
3.4) and the estimate (3.12) leads to

σ5σ 9u92
|̃s|,R3\Γ

.
|s|
σ

9u9|̃s|,R3\Γ ‖ψ‖−1/2,Γ .

Finally, to prove estimate (4.23) we apply Corollary 3.14

‖γ1DL(s)φ‖−1/2,Γ .
|s|1/2

σ3/2
9u9|̃s|,R3\Γ .

|s|2
σ9σ

‖φ‖1/2,Γ .
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Proposition 4.12.For s∈C+
σ , φ ∈ [H1/2(Γ)]4 andψ ∈ [H−1/2(Γ)]4 the following inequal-

ities hold:

‖K(s)φ‖. |s|5/2

σ19/2σ
‖φ‖1/2,Γ ,

∥∥∥K̃(s)φ
∥∥∥. |s|3/2

σ13/2σ
‖φ‖1/2,Γ ,

‖K(s)∗ψ‖. |s|5/2

σ19/2σ
‖ψ‖−1/2,Γ ,

∥∥∥K̃(s)∗ψ
∥∥∥. |s|3/2

σ13/2σ
‖ψ‖−1/2,Γ .

Proof. The first two estimates for the double layer integral operatosK(s) andK̃(s)∗ follow
immediately from the estimates (4.21) and (4.15). The last two operators are the adjoint
operators and thus fulfill the same bounds.

4.4 The Steklov–Poincaré operator

Additionally we introduce the interior and exterior Steklov–Poincaré operator S±(s),

S−(s) =V(s)−1
(

1
2

I +K(s)

)
= D(s)+

(
1
2

I + K̃(s)∗
)

V(s)−1
(

1
2

I +K(s)

)
,

−S+(s) =V(s)−1
(

1
2

I −K(s)

)
= D(s)+

(
1
2

I − K̃(s)∗
)

V(s)−1
(

1
2

I −K(s)

)

and its inverse, the Poincaré–Steklov operator T±(s)

T−(s) = D(s)−1
(

1
2

I − K̃(s)∗
)
=V(s)+

(
1
2

I −K(s)

)
D(s)−1

(
1
2

I − K̃(s)∗
)
,

−T+(s) = D(s)−1
(

1
2

I + K̃(s)∗
)
=V(s)+

(
1
2

I +K(s)

)
D(s)−1

(
1
2

I + K̃(s)∗
)
.

The Steklov–Poincaré operator is equivalent to the Dirichlet to Neumann map for homo-
geneous problems. Similarly the Poincaré–Steklov operator is equivalent to the Neumann
to Dirichlet map for homogeneous problems. These two operators are very popular in
domain decomposition methods, see, e. g. , [51].
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Proposition 4.13.For the operator S±(s) and T±(s) we have the ellipticity estimates

Re
[〈

S±(s)φ ,Θsφ
〉

Γ
]
&

σ9σ
|s|2

‖φ‖2
1/2,Γ for all φ ∈ [H1/2(Γ)]4,

Re
[〈

Θsψ,T±(s)ψ
〉

Γ
]
&

σ8σ
|s| ‖ψ‖2

1/2,Γ for all ψ ∈ [H−1/2(Γ)]4,

and the bounds

∥∥T±(s)
∥∥
[H−1/2(Γ)]4→[H1/2(Γ)]4 .

|s|2
σ8σ

, (4.24)

∥∥S±(s)
∥∥
[H1/2(Γ)]4→[H−1/2(Γ)]4 .

|s|2
σ9σ

(4.25)

for all s∈ C
+
σ .

Proof. We defineu± ∈ [H1(Ω±)]4 as the solution ofP u± = 0 in Ω±, γ±0 u = φ on Γ.
Inserting this function into Green’s first formula (3.18) yields

Re
[〈

S±(s)φ ,Θsφ
〉

Γ
]
= Re[〈γ1u,Θsγ0u〉Γ] = Re[aΩ±(u,Θsu)] .

The ellipticity estimate in Theorem 3.9 for the sesquilinear form, estimate (3.11) and the
trace theorem (Theorem 3.4) result in

Re
[〈

S±(s)φ ,Θsφ
〉

Γ
]
& σ5σ 9u92

|̃s|,Ω± &
σ9σ
|s|2

‖φ‖2
1/2,Γ

and thus the ellipticity estimate for the Steklov–Poincaréoperator is obtained.

Furthermore we have

σ5σ 9u92
|̃s|,Ω± .

∣∣〈S±(s)φ ,Θsφ
〉

Γ

∣∣.
∥∥S±(s)φ

∥∥
−1/2,Γ ‖Θsu‖1,R3\Γ

and using the estimate (3.12) we end up with

9u9|̃s|,Ω± .
|s|

σ6σ
∥∥S±(s)φ

∥∥
−1/2,Γ .

The Dirichlet trace on the boundary can be estimated by

‖φ‖1/2,Γ ≤ ‖u‖1,Ω± ≤ |s|
σ2 9u9|̃s|,Ω± .

Introducingφ = T±(s)ψ ∈ [H1/2(Γ)]4 concludes the proof for estimate (4.24).
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For the ellipticity estimate of the Poincaré–Steklov operators T±(s), we definev as the
solution ofP v± = 0 in Ω±,γ±1 v= ψ on Γ. We have

Re
[〈

ψ,ΘsT
±(s)ψ

〉
Γ
]
= Re[aΩ±(u,Θsu)]& σ5σ 9u92

|̃s|,Ω± &
σ8σ
|s| ‖ψ‖2

−1/2,Γ

and replacingψ = S±(s)φ results in

∥∥S±(s)φ
∥∥2
−1/2,Γ .

|s|2
σ9σ

‖φ‖1/2,Γ
∥∥S±(s)φ

∥∥
−1/2,Γ ,

and we obtain the bound for the Poincaré–Steklov operator.

Remark 4.6. The bounds for the Steklov–Poincaré operators S±(s) and the Poincaré–
Steklov operator T±(s) as given in Proposition 4.13 give an alternative proof for the bound
of the inverse of the single layer boundary integral operator V (s) and the hyper-singular
boundary integral operator D(s) since

D(s)−1 = T−(s)−T+(s) and V(s)−1 = S−(s)−S+(s).

To classify the introduced operators we introduce the following space, see [31].

Definition 4.1. Let X and Y be Hilbert spaces and let F(s) : C+
σ →L(X,Y) be an analytic

function in s. F(s) is an element ofA(µ,X,Y) if

|F(s)| ≤C(σ) |s|µ for all s∈ C+

where C: (0,∞)→ (0,∞) is an non-decreasing function such that

C(σ)≤ c
σm for all σ ∈ (0,1].

An overview on the mapping properties and bounds of all discussed operators is given in
Table 4.1.

Additionally we introduce the operator

H−(s) =

(
V(s) −

(1
2I +K(s)

)
(

1
2I + K̃(s)∗

)
D(s)

)
.

Theorem 4.14.The operator H−(s) : [H−1/2(Γ)]4× [H1/2(Γ)]4→ [H1/2(Γ)]4× [H−1/2(Γ)]4
is [H−1/2(Γ)]4× [H1/2(Γ)]4-elliptic, i. e.

Re[〈ψ,ΘsV(s)ψ〉Γ]+Re

[〈
ψ,−Θs

(
1
2

I +K(s)

)
φ
〉

Γ

]

+Re

[〈(
1
2

I + K̃(s)∗
)

ψ,Θsφ
〉

Γ

]
+Re[〈D(s)φ ,Θsφ〉Γ]

≥ σ8σ
|s|2

(
‖ψ‖2

−1/2,Γ +‖φ‖2
1/2,Γ

)
(4.26)
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F X Y µ

SL(s) [H−1/2(Γ)]4 [H1(R3)]4 2
DL(s) [H1/2(Γ)]4 [H1(R3\Γ)]4 5/2
V(s) [H−1/2(Γ)]4 [H1/2(Γ)]4 2
D(s) [H1/2(Γ)]4 [H−1/2(Γ)]4 2
K(s) [H1/2(Γ)]4 [H1/2(Γ)]4 5/2
K̃(s) [H−1/2(Γ)]4 [H−1/2(Γ)]4 3/2
V(s)−1 [H1/2(Γ)]4 [H−1/2(Γ)]4 2
D(s)−1 [H−1/2(Γ)]4 [H1/2(Γ)]4 2
S±(s) [H1/2(Γ)]4 [H−1/2(Γ)]4 2
T±(s) [H−1/2(Γ)]4 [H1/2(Γ)]4 2

Table 4.1: The operatorF(s) is an element of the spaceA(µ,X,Y).

for all ψ ∈ [H−1/2(Γ)]4 and φ ∈ [H1/2(Γ)]4. The operator H−(s) is therefore invertible
with

∥∥H−(s)−1
∥∥
[H1/2(Γ)]4×[H−1/2(Γ)]4→[H−1/2(Γ)]4×[H1/2(Γ)]4 ≤

|s|2
σ7σ

. (4.27)

Moreover we have the bound

∥∥[SL(s) −DL(s)
]
H−(s)

∥∥
[H1/2(Γ)]4×[H−1/2(Γ)]4→[H1(Ω)]4

≤ |s|2
σ7σ

. (4.28)

Proof. u= SL(s)ψ −DL(s)φ fulfills P u= 0 in R
3 \Γ. The application of Green’s first

formula (3.30) results in

σ4σ 9u92
|̃s|,R3\Γ

. Re
[
aR3\Γ(u,Θsu)

]

= Re
[〈
[γ1u]Γ,Θsγ+0 u

〉
Γ
]
+Re

[〈
γ−1 u,Θs[γ0u]Γ

〉
Γ
]
.

(4.29)

Due to the jump conditions we have[γ1u]Γ = ψ and[γ0u]Γ = φ and furthermore

γ+0 u=V(s)ψ −
(

1
2

I +K(s)

)
φ

and

γ−1 u= D(s)φ +

(
1
2

I + K̃(s)∗
)

ψ
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resulting in

σ4σ 9u92
|̃s|,R3\Γ

.Re[〈ψ,ΘsV(s)ψ〉Γ]

−Re

[〈
ψ,Θs

(
1
2

I +K(s)

)
φ
〉

Γ

]

+Re

[〈(
1
2

I + K̃(s)∗
)

ψ,Θsφ
〉

Γ

]

+Re[〈D(s)ψ,φ〉Γ] .

With the help of the trace theorem (Theorem 3.4), Lemma 3.13 and the norm estimate
(3.11) we can estimate the traces by

‖[γ1u]|Γ‖2
−1/2,Γ +‖[γ0u]|Γ‖2

1/2,Γ .
|s|2
σ4 9u92

|̃s|,R3\Γ
(4.30)

resulting in the ellipticity estimate (4.26).

Next we consider the operator equation

H−(s)

[
ψ
φ

]
=

[
g1

g2

]
.

Starting from estimate (4.29)

σ4σ 9u92
|̃s|,R3\Γ

= Re
[〈
[γ1u]Γ,Θsγ+0 u

〉
Γ
]
+Re

[〈
γ−1 u,Θs[γ0u]Γ

〉
Γ
]
,

we use the propertyγ+0 u = g1 andγ−1 u = g2 and use Corollary 3.14 and estimate (3.11)
resulting in

σ4σ 9u92
|̃s|,R3\Γ

.
|s|
σ

9u9|̃s|,R3\Γ

(
‖g1‖1/2,Γ +‖g2‖−1/2,Γ

)
(4.31)

or

9u9|̃s|,R3\Γ .
|s|

σ5σ

(
‖g1‖1/2,Γ +‖g2‖−1/2,Γ

)
. (4.32)

Estimate (3.11) results in (4.28), whereas estimate (4.30)results in (4.27).

Proposition 4.15.Let s∈C+
σ , then the property

H−(s) ∈ A(5/2, [H−1/2(Γ)]4× [H1/2(Γ)]4, [H−1/2(Γ)]4× [H1/2(Γ)]4)

holds.
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Proof. For the operator itself the bound can be easily calculated since
∥∥H−(s)

∥∥≤ 2max
i, j

∥∥Hi j
∥∥ ,

where the operator norms are induced by the natural spaces.

Remark 4.7. The inverse of the operator H−(s) can be stated explicitly by

H−(s)−1 =

(
−S+(s) I
−I T−(s)

)
.

Proof. Using the non-symmetric representation of T−(s) and S+(s) results in

H−(s)(H−(s))−1

=

(
V(s) −1

2I +K(s)
1
2I + K̃(s)∗ D(s)

)(V(s)−1
(1

2I −K(s)
)

I

−I D(s)−1
(

1
2I − K̃(s)∗

)
)

=

(
I A
B I

)

and since

A =−
(

1
2

I +K(s)

)
D(s)−1

(
1
2

I − K̃(s)∗
)
+V(s)

=V(s)+−
(

1
2

I −K(s)

)
D(s)−1

(
1
2

I − K̃(s)∗
)
−D(s)−1

(
1
2

I − K̃(s)∗
)

= T−(s)−T−(s) = 0

and

B =−D(s)+

(
1
2

I + K̃(s)∗
)

V(s)−1
(

1
2

I −K(s)

)

=−
[
D(s)+

(
1
2

I − K̃(s)∗
)

V(s)−1
(

1
2

I −K(s)

)]
−D(s)−1

(
1
2

I − K̃(s)∗
)

= S−(s)−S−(s) = 0

we end up with the identity.

Similarly we introduce the operator

H+(s) =

(
V

(1
2I −K

)
(
−1

2I + K̃∗
)

D

)
(4.33)

which shares the same properties asH−(s).
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Corollary 4.16. For s∈C
+
σ the operator H+(s) is [H−1/2(Γ)]4× [H1/2(Γ)]4-elliptic, i. e. ,

Re

[〈
H+(s)

[
ψ
φ

]
,

[
Θsψ
Θsφ

]〉]
&

σ8σ
|s|2

(
‖ψ‖2

−1/2,Γ +‖φ‖2
1/2,Γ

)

for all ψ ∈ [H−1/2(Γ) andφ ∈ [H1/2(Γ)]4. Furthermore the properties

H+(s) ∈ A(5/2, [H−1/2(Γ)]4× [H1/2(Γ)]4, [H1/2(Γ)]4× [H−1/2(Γ)]4),

H+(s)−1 ∈ A(2, [H1/2(Γ)]4× [H−1/2(Γ)]4, [H−1/2(Γ)]4× [H1/2(Γ)]4)

and

[
SL(s) −DL(s)

]
H+(s)−1 ∈ A(2, [H1/2(Γ)]4× [H−1/2(Γ)]4, [H1(R3\Γ)]4).

hold.

Proof. Repeating the arguments as in the proof of Theorem 4.14 results in these properties.



5 BOUNDARY INTEGRAL EQUATIONS

In this chapter we will discuss the application of boundary integral equations to the solu-
tion of boundary value problems in the Laplace domain. Starting from a representation
formula we will derive boundary integral equations of the direct approach. Boundary in-
tegral equations resulting from indirect approaches are discussed briefly. In preparation
for the return to time domain, the dependency of the boundaryintegral equations and it’s
solutions on the Laplace parameters will be presented.

5.1 Representation formula

The fundamental solution given in (4.1) is a solution of the partial differential equation

PyGs(x,y) = Iδ (y−x)

with the Dirac distributionδ and the identity matrixI ∈ R
4×4. Insertion into Green’s

second formula (3.29) yields the representation formula

u= SL(s)[γ1u]Γ −DL(s)[γ0u]Γ in R
3\Γ (5.1)

for all u ∈ [H1(R3 \ Γ)]4 satisfyingP u = 0. Settingu ≡ 0 in Ω+ and taking the inte-
rior traces results in the well known integral equations related to interior boundary value
problems,

γ−0 u=V(s)γ−1 u+

(
1
2

I −K(s)

)
γ−0 u, (5.2)

γ−1 u=

(
1
2

I + K̃(s)∗
)

γ−1 u+D(s)γ−0 u. (5.3)

Reciprocal settingu≡ 0 in Ω− results in two integral equations for the exterior boundary
value problems,

γ+0 u=

(
1
2

I +K(s)

)
γ+0 u−V(s)γ+1 u, (5.4)

γ+1 u=

(
1
2

I − K̃(s)∗
)

γ+1 u−D(s)γ+0 u. (5.5)

51
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5.2 Mixed boundary value problem

The interior boundary value problem with mixed boundary conditions is given as

P u= 0 in Ω−,

γ−0 u= gD on ΓD,

γ−1 u= gN on ΓN.

(5.6)

With the help of the representation formula (5.1) we can calculate the solution of the
boundary value problem, if the complete Neumann and Dirichlet data are known. Thus
we need to find the unknown Dirichlet datumγ−0 u on ΓN and the unknown Neumann da-
tum γ−1 u on ΓD. The approach itself is based on the symmetric formulation [49]. For
deriving bounds for the solution of the boundary integral equations techniques from [31]
are used.

First we choose appropriate extensions ˜gD ∈ [H1/2(Γ)]4 andg̃N ∈ [H−1/2(Γ)]4 of the given
Dirichlet datumgD ∈ [H1/2(ΓD)]

4 and the given Neumann datumgN ∈ [H−1/2(ΓN)]
4 such

that
gD = g̃D on ΓD, gN = g̃N on ΓN.

The boundary integral equations for the interior problem yield

γ−0 u=V(s)γ−1 u+

(
1
2

I −K(s)

)
γ−1 u,

0=

(
−1

2
I + K̃(s)∗

)
γ−1 u+D(s)γ−0 .

We define the unknowns
ψ1 = γ−0 u− g̃D ∈ [H̃1/2(ΓN)]

4

and
φ1 = γ−1 u− g̃N ∈ [H̃−1/2(ΓD)]

4.

Insertion leads to the boundary integral equations

V(s)φ1−K(s)ψ1 =

(
1
2

I +K(s)

)
g̃D −V(s)g̃N on ΓD,

K̃(s)∗φ1+D(s)ψ1 =

(
1
2

I − K̃(s)∗
)

g̃N −D(s)g̃D on ΓN.

(5.7)

The operator

H+(s) =

(
V(s) −K(s)
K̃(s)∗ D(s)

)
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is [H−1/2(Γ)]4× [H1/2(Γ)]4 elliptic, see Theorem 4.14. The system of boundary integral
equations (5.7) is therefore uniquely solvable. The operator H+(s)−1 is bounded by

∥∥H+(s)−1
∥∥
[H−1/2(Γ)]4×[H1/2(Γ)]4→[H1/2(Γ)]4×[H−1/2(Γ)]4 . c(σ ,σ) |s|2 ,

see Proposition 4.15. The right hand side of (5.7) is boundedby
∥∥∥∥
(

1
2

I +K(s)

)
g̃D −V(s)g̃N

∥∥∥∥
1/2,Γ

. |s|2c(σ)
(
‖gD‖1/2,ΓD

+‖gN‖−1/2,ΓN

)

and
∥∥∥∥
(

1
2

I − K̃(s)∗
)

g̃N −D(s)g̃D

∥∥∥∥
1/2,Γ

. |s|5/2c(σ)
(
‖gD‖1/2,ΓD

+‖gN‖−1/2,ΓN

)
.

Combining these estimates yields an estimate for the solution of the boundary integral
equations (5.7)

‖ψ1‖−1/2,Γ +‖φ1‖1/2,Γ . c(σ ,σ)
|s|9/2

σ2

(
‖gD‖1/2,ΓD

+‖gN‖−1/2,ΓN

)
. (5.8)

This bound can be further improved by an approach developed in [31]. The boundary
integral equations (5.7) can be equivalently rewritten as

g̃D =V(s)φ1+

(
1
2

I −K(s)

)
ψ1+V(s)g̃N +

(
1
2

I −K(s)

)
g̃D on ΓD,

0=

(
−1

2
I + K̃(s)∗

)
φ1+D(s)ψ1+

(
−1

2
I + K̃(s)∗

)
g̃N +D(s)g̃D on ΓN.

We replace the given Cauchy datum by the functionsφ2 = g̃N ∈ [H−1/2(Γ)]4 and
ψ2 = g̃D ∈ [H1/2(Γ)]4 and can therefore rewrite the boundary integral equations (5.7) as

H+
mix(s)




φ1

ψ1

φ2

ψ2


=

[
H+(s) H+(s)

I

]



φ1

ψ1

φ2

ψ2


=




g1

g2

g3

g4


 (5.9)

with g1 = g̃D, g2 = 0, g3 = g̃N andg4 = g̃D.

Theorem 5.1.LetH = [H−1/2(Γ)]4× [H1/2(Γ)]4× [H−1/2(Γ)]4× [H1/2(Γ)]4 and s∈C
+
σ ,

then the property
H+

mix(s) ∈ A(5/2,H,H∗)

holds. Moreover, the operator is invertible with

H+
mix(s)

−1 ∈ A(5/2,H∗,H).
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Additionally, the property
[
SL(s) −DL(s)

]
H+

mix(s)
−1 ∈ A(5/2,H∗, [H1(Ω)]4).

holds.

Proof. The boundedness propertyH+
mix(s)∈A(5/2,H,H∗) is obtained straight forward by

∥∥H+
mix(s)

∥∥
H→H∗ . max

{
‖V(s)‖[H−1/2(Γ)]4→[H1/2(Γ)]4 ,‖D(s)‖[H1/2(Γ)]4→[H−1/2(Γ)]4 ,

‖K(s)‖[H1/2(Γ)]4→[H1/2(Γ)]4 ,
∥∥∥K̃(s)∗

∥∥∥
[H−1/2(Γ)]4→[H−1/2(Γ)]4

}
.

The proof of invertibility of the operatorH+
mix(s) and the bound of the inverse is given

in [31] for the wave equation. We follow this proof closely. We define

u= SL(s)(φ1+φ2)−DL(s)(ψ1+ψ2).

The operator equation (5.9) is equivalent to the following boundary value problem

P u= 0 inR
3\Γ,

γ−0 u= g1 on ΓD,

γ+1 u= g2 on ΓN,

(5.10)

with the transmission conditions

[γ1u]|Γ −g3 ∈ [H̃−1/2(ΓD)]
4, [γ0u]|Γ −g4 ∈ [H̃1/2(ΓN)]

4.

Given a functionu as a solution of (5.10), a solution for equation (5.9) is obtained by

(φ1,ψ1,φ2,ψ) = ([γ1u]|Γ −g3, [γ0u]Γ −g4,g3,g4).

The boundary value problem (5.10) is equivalent to the following variational formulation:

Findu∈ [H1(R3\Γ)]4 with
(
γ−0 u, [γ0u]Γ

)
= (g1,g4) on ΓD such that

aR3\Γ(u,v) =
〈
g3,γ−0 v

〉
Γ + 〈g2, [γ0v]Γ〉Γ

for all v∈ H0 = {u∈ H|(γ−0 u, [γ0u]|Γ) = 0 onΓD}.

This variational formulation can be analyzed by repeating the arguments of Theorem 3.12,
resulting in the estimate

9u9|̃s|,R3\Γ ≤ c(σ) |s|
(
‖(g2,g3)‖−1/2,Γ + |s|1/2‖(g1,g4)‖1/2,Γ

)
,

and so finally by estimating the traces (Theorem 3.4 and Corollary 3.14) we end up with

‖(φ1,φ2)‖−1/2,Γ +‖(ψ1,ψ2)‖1/2,Γ ≤ c(σ) |s|5/2
(
‖(g2,g3)‖−1/2,Γ +‖(g1,g4)‖1/2,Γ

)
.
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5.3 Dirichlet boundary value problem

The Dirichlet problem
P u= 0 in Ω−,

γ−0 u= gD on Γ
(5.11)

can be solved by using the first boundary integral equation of(5.2) to find the unknown
Neumann datumt ∈ [H−1/2(Γ)]4 satisfying

V(s)t =

(
1
2

I +K(s)

)
gD on Γ. (5.12)

Unique solvability follows from the ellipticity of the single layer boundary integral op-
erator (Theorem 4.8). A bound for the unknown Neumann datumt can be obtained by
composing the bound for the inverse single layer boundary integral operator and the dou-
ble layer boundary integral operator resulting in

‖t‖−1/2,Γ . c(σ ,σ) |s|9/2‖gD‖1/2,Γ .

By using the estimate for the mixed problem (Theorem 5.1) the estimate can be improved
to

‖t‖−1/2,Γ . c(σ ,σ) |s|5/2‖gD‖1/2,Γ .

The operator

S−(s) =V(s)−1
(

1
2

I +K(s)

)

is the interior Steklov-Poincaré operator, which was already discussed in Section 4.4. The
bound for the Steklov-Poincaré operator results in an improved bound for the solutiont of
the boundary integral equation (5.12)

‖t‖−1/2,Γ . c(σ ,σ) |s|5/2‖gD‖1/2,Γ ,

see Proposition 4.13. This bound is obviously the best one. The solution

u= SL(s)φ −DL(s)gD

itself can be estimated as
‖u‖1,Ω− . |s|2‖gD‖1/2,Γ ,

see Theorem 5.1.

Another popular approach to solve the interior Dirichlet boundary value problem is an in-
direct single layer approach. Using the ansatzu= SL(s)φ results in the boundary integral
equation

V(s)φ = gD on Γ.
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Unique solvability as well as the estimate

‖φ‖−1/2,Γ . c(σ ,σ) |s|2‖gD‖1/2,Γ

is obtained by the ellipticity estimate (Theorem 4.8). An estimate for the solutionu is
given by estimate (4.14), resulting in

‖u‖1,Ω− . c(σ ,σ) |s|3/2‖gD‖1/2,Γ .

5.4 Neumann boundary value problem

The interior Neumann boundary value problem is given by

P u= 0 in Ω−,

γ−1 u= gN on Γ.
(5.13)

The equation for the unknown Dirichlet datum ˜u∈ [H1/2(Γ)]4 is given by

D(s)ũ=

(
1
2

I − K̃(s)∗
)

gN on Γ. (5.14)

The ellipticity of the hyper-singular operator guaranteesunique solvability. An estimate
for the solution ˜u∈ [H1/2(Γ)]4 of the boundary integral equation is given by Proposition
4.13

‖ũ‖1/2,Γ . c(σ ,σ) |s|2‖gN‖−1/2,Γ .

The solutionu= SL(s)gN −DL(s) ũ can be estimated by

‖u‖1,Ω− . c(σ ,σ) |s|2‖gN‖−1/2,Γ ,

see Theorem 5.1.

An indirect double layer approachu = −DL(s)ψ would result in the boundary integral
equation

D(s)ψ = gN on Γ.

Again, ellipticity of the hyper-singular operator guarantees unique solvability andψ ∈
[H1/2(Γ)]4 can be estimated by

‖ψ‖1/2,Γ . c(σ ,σ) |s|2‖gN‖−1/2,Γ ,

see Theorem 4.10. The solutionu can be estimated by

‖u‖1,Ω− . c(σ ,σ) |s|2‖gN‖−1/2,Γ .

see estimate (4.22).



6 GALERKIN DISCRETIZATION OF BOUNDARY INTEGRAL
EQUATIONS

In this chapter we will discuss the discretization of boundary integral equations introduced
in Chapter 5. For the Galerkin discretizations unique solvability will be proven. The
boundary integral equations will be discussed in Laplace domain only. In preparation
for the return to time domain, the dependency of the boundaryintegral equations and it’s
solutions onto the Laplace parameters will be presented. More precisely, estimates as in
Remark 7.1 will be shown for the solutions of the discretized boundary integral equations.
Similar estimates are given for the approximate solutions inside the domain, both in the
corresponding norm and for a pointwise evaluation. Finally, similar estimates are given
for the error estimates in the energy norm of the approximatesolutions of all boundary
integral equations.

6.1 Galerkin discretization

To discretize boundary integral equations, first a variational formulation has to be set up,
which is furthermore discretized by restricting test and ansatz functions to finite dimen-
sional subspaces. The theoretical background for the Galerkin discretization is well estab-
lished, for more information we refer to [45,52].

Let X be a Hilbert space, for an operatorA : X → X∗ and a given right hand sidef ∈ X∗

we consider the following variational formulation:

Find u∈ X such that
〈Au,v〉= 〈 f ,v〉 (6.1)

for all v∈ X.

By introducing a finite dimensional subspaceXh ⊂ X a Galerkin approximationuh ∈ Xh of
the solutionu is defined by:

Find uh ∈ Xh such that
〈Auh,vh〉= 〈 f ,vh〉 (6.2)

for all vh ∈ Xh.

57
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Restricting the test space toXh ⊂ X in the variational formulation (6.1) and subtracting the
equation from equation (6.2) leads to the Galerkin orthogonality

〈A(uh−u),vh〉= 0 for all vh ∈ Xh. (6.3)

Stability of the Galerkin scheme (6.2) requires unique solvability in addition to a uniform
bound

‖uh‖X ≤C‖u‖X for all u∈ X

with a positive constantC> 0 independent ofh andu.

Stability together with the approximation property

inf
vh∈Xh

‖u−vh‖X → 0 for h � 0

leads to convergence for arbitrary right hand sides.

We introduce an operator notation for the Galerkin discretization by utilizing Lemma 3.1.
We define the operatorAh : Xh → X∗

h by

〈Ahuh,vh〉 := 〈Auh,vh〉 for all uh ∈ Xh,vh ∈ Xh.

Lemma 6.1 (Cea’s Lemma). Let the discrete operator Ah : Xh → X∗
h be invertible, u the

solution of the variational formulation(6.1), uh the solution of the variational formulation
(6.2). Then the following estimate holds

‖u−uh‖X ≤ (1+
∥∥A−1

h

∥∥
X∗

h→Xh
‖A‖X→X∗) inf

vh∈Xh
‖u−vh‖X .

Proof. See [45,52].

If the right hand sidef ∈ X∗ is given asf = Bg with g∈Y and a bounded linear operator
B : Y → X∗, we introduce a finite dimensional subspaceYh ⊂Y and approximateg∈Y by
a functiongh ∈Yh resulting in the disturbed variational formulation:

Find ũh ∈ Xh such that
〈Aũh,vh〉= 〈Bgh,vh〉 (6.4)

for all vh ∈ Xh.

The approximation property of the disturbed variational formulation (6.4) is given by the
following lemma.



6.1 Galerkin discretization 59

Lemma 6.2(Strang-Lemma). Let the operator Ah : Xh →X∗
h be invertible and let Bh :Yh →

X∗
h be a bounded linear operator. Furthermore, let u be the solution of the variational

formulation(6.1), uh the solution of the variational formulation(6.2) andũh the solution
of the variational formulation(6.4). The following error estimate holds:

‖u− ũh‖X ≤
(

1+
∥∥A−1

h

∥∥
X∗

h→Xh
‖A‖X→X∗

)
inf

vh∈Xh
‖u−vh‖X

+
∥∥A−1

h

∥∥
X∗

h→Xh
‖B‖Yh→X∗

h
‖g−gh‖Y .

Proof. Subtraction of the variational formulations (6.2) and (6.4) leads to

〈A(uh− ũh),vh〉= 〈B(g−gh),vh〉 for all vh ∈ Xh.

SinceAh is invertible we immediately get the estimate

‖u− ũh‖X ≤
∥∥A−1

h

∥∥
X∗

h→Xh
‖B‖Yh→X∗

h
‖g−gh‖Y .

Combining this estimate with Lemma 6.1 in addition to the triangle inequality concludes
the proof.

The operatorA usually denotes some boundary integral operator and thus appropriate dis-
cretization spaces on the boundary have to be introduced.

First, we introduce a sequence of boundary discretizationsΓN = ∪N
ℓ=1τℓ with N disjoint

plane triangles, which are assumed to be regular in the senseof Ciarlet [15]. The local
mesh size is defined by

hℓ :=



∫

τℓ

dsx




1/2

and the global mesh size is defined byh= maxℓ=1,...,N hℓ. Let M be the number of nodes
on the boundary withMD andMN denoting the nodes on the Dirichlet boundaryΓD and
the Neumann boundaryΓN, respectively. LikewiseND denotes the number of boundary
elements on the Dirichlet boundaryΓD andNN the number of boundary elements on the
Neumann boundaryΓN.

Define the discrete subspaces

S−1,0
h (ΓD) = span{ψ−1,0

i }4ND
i=1 ⊂ [H−1/2(ΓD)]

4,

S0,1
h (ΓN) = span{ψ0,1

i }4MN
i=1 ⊂ [H̃1/2(ΓN)]

4

with piecewise constant basis functionsψ−1,0
i and piecewise linear continuous basis func-

tionsψ0,1
i . For convenience we introduce the space

S̃0,1
h (ΓN) = S0,1

h (ΓN)∩ [H̃1/2(ΓN)]
4.
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This function space is used to discretize the solid displacementus and the pore pressure
p, whereas the piecewise constant functions are used to discretize the unknown Neumann
traces. Additionally, the given Neumann and Dirichlet datawill be approximated by cal-
culatingL2 projections into discrete spaces. TheL2 projectionPh : X → Xh is defined by

〈Phu,vh〉Γ = 〈u,vh〉Γ for all vh ∈ Xh.

We denote theL2 projection into the spaceS0,1
h (Γ) by

P0,1
h : [H−1/2(Γ)]4 → S−1,0

h (Γ). (6.5)

For the approximation of the unknown Neumann datum we additionally introduce the
space

S−1,1
h (ΓD) = span{ψ−1,1

i }12ND
i=1 ⊂ [H̃−1/2(ΓD)]

4

with piecewise linear but discontinuous basis functionsψ−1,1
i , and the appropriate projec-

tion operator

P−1,1
h : [H−1/2(Γ)]4 → S−1,1

h (Γ). (6.6)

The projection operatorP0,1
h is used to approximate the unknown Dirichlet datum and

the projection operatorP−1,1
h is used to approximate the unknown Neumann datum. The

choice of these projection operators results in an optimal convergence order of all involved
unknowns, in particular for the point evaluation of the solution in the interior.

For the discrete spacesS−1,0
h (Γ) andS0,1

h (Γ) the following approximation properties hold.

Lemma 6.3. The following approximation properties hold:

inf
th∈S−1,0

h

‖t − th‖−α ,Γ ≤ chβ+α ‖u‖β ,Γ with α ∈ [0,1] andβ ∈ [0,1],

inf
th∈S−1,1

h

‖t − th‖−α ,Γ ≤ chβ+α ‖u‖β ,Γ with α ∈ [0,2] andβ ∈ [0,2],

inf
uh∈S0,1

h

‖u−uh‖−α ,Γ ≤ chβ+α ‖u‖β ,Γ with α ∈ [0,2] andβ ∈ [0,2]

when assuming u∈ Hβ
pw(Γ) and t∈ Hβ

pw(Γ).

Proof. See [45,52].
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6.2 Bounds for discrete operators

In Section 4.2, the explicit behavior of the boundedness constants of different integral oper-
ators on the Laplace parametershas been discussed. Bounds for the discrete operators are
needed as well. For an exact Galerkin discretization of an operator the bound obviously re-
mains the same. We introduce discrete subspacesXh⊂ [H−1/2(Γ)]4 andYh⊂ [H1/2(Γ)]4.

Corollary 6.4. Let A be an element ofA(µ,X,Y∗), then the Galerkin discretization Ah is
an element ofA(µ,Xh,Y∗

h ).

The Corollary 6.4 gives us a bound for the Galerkin discretization of the boundary integral
operatorsV(s), K(s), K̃(s)∗ and D(s). We denote the Galerkin discretizations of these
operators byVh(s), Kh(s), K̃h(s)∗ andDh(s) respectively. An overview of the bounds is
given in Table 6.1.

However, most of the time we do not have an exact discretization of an operator. For ex-
ample, the inverse of the discrete single layer integral operatorVh(s)−1 is not the Galerkin
discretization of the inverse single layer integral operator (V(s)−1)h. Therefore, estimates
for inverse operators cannot be transferred directly. However, the bound of the inverse
discrete single layer integral operator and the inverse discrete hyper-singular operator are
direct results of the ellipticity estimates as given in Theorem 4.8 and Theorem 4.10. The
ellipticity estimates also hold for the discrete operatorsand allow us to formulate the fol-
lowing Corollary.

Corollary 6.5. The inverse of the Galerkin discretization of the hyper-singular operator
Dh(s)−1 and the inverse of the Galerkin discretization of the singlelayer integral operator
Vh(s)−1 fulfill the following estimates:

∥∥Vh(s)
−1
∥∥

X∗
h→Xh

.
|s|2
σσ9 ,

∥∥Dh(s)
−1
∥∥

Y∗
h →Yh

.
|s|2
σσ8 .

Proof. The bound forVh(s)−1 is a direct consequence of the ellipticity estimate as given
in Theorem 4.8:

Re[〈ψ,ΘsV(s)ψ〉Γ]≥ cV
1

σσ8

|s| ‖ψ‖2
−1/2,Γ for all ψ ∈ [H−1/2(Γ)]4.

For ψh ∈ Xh ⊂ [H−1/2(Γ)]4 we have

Re[〈ψh,ΘsV(s)ψh〉Γ]≥ cV
1

σσ8

|s| ‖ψh‖2
−1/2,Γ for all ψh ∈ Xh.
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Introducingψh =Vh(s)−1φh results in

∥∥Vh(s)
−1φh

∥∥2
−1/2,Γ .

|s|
σσ8 Re[〈ψh,ΘsVh(s)ψh〉Γ]

.
|s|

σσ8 ‖Θsφh‖1/2,Γ
∥∥Vh(s)

−1φh
∥∥
−1/2,Γ (Duality estimate)

.
|s|2
σσ9 ‖φh‖1/2,Γ

∥∥Vh(s)
−1φh

∥∥
−1/2,Γ (Estimate (3.31))

concluding the estimate forVh(s)−1.

As in the proof of Theorem 4.10 we defineu=−DL(s)φh for which we have the estimate

σ5σ 9u92
|̃s|,R3\Γ

. |〈Dh(s)φh,Θsφh〉Γ|

which can be further estimated by

σ5σ 9u92
|̃s|,R3\Γ

. ‖Dh(s)φh‖−1/2,Γ ‖Θsφh‖1/2,Γ (Duality estimate)

. ‖Dh(s)φh‖−1/2,Γ ‖Θs[u]|Γ‖1/2,Γ (Jump conditions (4.6))

.
|s|
σ

‖Dh(s)φh‖−1/2,Γ ‖u‖1,Ω−∪Ω+ (Thm. 3.4, estimate (3.31))

.
|s|
σ

‖Dh(s)φh‖−1/2,Γ 9u9|̃s|,R3\Γ (Norm equivalence (3.11)).

The norm equivalence (3.11) and the trace theorem (Theorem 3.4) conclude the proof:

‖φh‖1/2,Γ . ‖[u]|Γ‖1/2,Γ .
|s|
σ2 9u9|̃s|,R3\Γ .

|s|2
σ8σ

‖Dh(s)φh‖−1/2,Γ .

Replacingφh = Dh(s)−1ψh results in the desired estimate.

Additionally, the estimates (4.22) and (4.14) can be transferred to the Galerkin discretiza-
tion of the single layer integral operator and the hyper-singular operator.

Corollary 6.6. The following estimates hold for allφh ∈ X∗
h andψh ∈Y∗

h :

∥∥SL(s)Vh(s)
−1φh

∥∥
1,Ω−∪Ω+ .

|s|3/2

σ15/2σ
‖φh‖1/2,Γ , (6.7)

∥∥DL(s)Dh(s)
−1ψh

∥∥
1,Ω−∪Ω+ .

|s|2
σ6σ

‖ψh‖−1/2,Γ . (6.8)
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Proof. Settingu= SL(s)ψh with ψh ∈ Xh ⊂ [H−1/2(Γ)]4 results in

σ5σ 9u92
|̃s|,R3\Γ

. |〈ψh,ΘsV(s)ψh〉Γ| (Green’s first formula (3.30))

. |〈ψh,ΘsVh(s)ψh〉Γ| (Galerkin discretization)

.
|s|
σ

‖ψh‖−1/2,Γ ‖Vh(s)ψh‖1/2,Γ . (Duality estimate)

Corollary 3.14 and introducingφh =Vh(s)ψh yield

σ5σ 9u92
|̃s|,R3\Γ

.
|s|3/2

σ3/2
9u9|̃s|,R3\Γ ‖φh‖1/2

and thus estimate (6.7).

To derive the estimate (6.8) we setv= DL(s)φh with φh ∈Yh ⊂ [H1/2(Γ)]4 and obtain

σ5σ 9u92
|̃s|,R3\Γ

. |〈D(s)φh,Θsφh〉Γ| (Green’s first formula (3.30))

= |〈Dh(s)φh,Θsφh〉Γ| (Galerkin discretization)

.
|s|3/2

σ5/2
‖φh‖1/2,Γ ‖Dh(s)φh‖−1/2,Γ . (Duality estimate)

Introducingψh = Dh(s)φh and using the estimate (3.12) result in the desired estimate.

6.3 A discrete Steklov–Poincaré operator

Bounds for the discrete versions of the Steklov–Poincaré operator and the Poincaré–Steklov
operator are still missing. These operators consist of a combination of different boundary
integral operators. Two different representations by boundary integral operators were in-
troduced in Section 4.4. On the continuous level the different representations are equiva-
lent to each other. In general, the equivalence is lost afterdiscretisation.

In this section, we will discuss the symmetric approximation of the Steklov–Poincaré op-
erator. A bound for the non-symmetric approximation is a byproduct of the analysis of the
mixed problem in Section 6.4.

The Dirichlet datum of the interior Neumann boundary value problem

P u= 0 in Ω−

γ1u= g on Γ

can be obtained by solving
S−(s)u= g on Γ. (6.9)
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The Steklov–Poincaré operator can be expressed as

S−(s) = D(s)+

(
1
2

I + K̃(s)∗
)

V(s)−1
(

1
2

I +K(s)

)
.

By introducingt ∈ [H−1/2(Γ)]4 as a solution of the operator equation

V(s)t =

(
1
2

I +K(s)

)
u on Γ,

the boundary integral equation (6.9) can be rewritten as

H−(s)

(
t
u

)
=

(
V(s) −

(1
2I +K(s)

)
(

1
2I + K̃(s)∗

)
D(s)

)(
t
u

)
=

(
0
g

)
.

Properties of the operatorH−(s) were discussed in Theorem 4.14.

Introducing the discrete subspacesXh ⊂ [H−1/2(Γ)]4 andYh ⊂ [H1/2(Γ)]4 the Galerkin
discretization of the operatorH−(s) is given by

〈
H−

h (s)

[
xh

yh

]
,

[
vh

wh

]〉

Γ
=

〈
H−(s)

[
xh

yh

]
,

[
vh

wh

]〉

Γ
for all xh,vh ∈ Xh,yh,wh ∈Yh

resulting in the discrete equations

H−
h (s)

(
th
uh

)
=

(
Vh(s) −

(1
2Mh+Kh(s)

)
(

1
2Mh+ K̃h(s)∗

)
Dh(s)

)(
th
uh

)
=

(
0
gh

)
.

Proposition 6.7. The operator H−h (s) fulfills the following property

H−
h (s) ∈ A(5/2,Xh×Yh,X

∗
h ×Y∗

h ).

Additionally, the operator H−h (s) is invertible with

H−
h (s)−1 ∈ A(2,X∗

h ×Y∗
h ,Xh×Yh).

Finally, we have the property

[
SL(s) −DL(s)

]
H−

h (s)−1 ∈ A(2,X∗
h ×Y∗

h , [H
1(R3\Γ)]4).

Proof. Repeating the arguments of Theorem 4.14 results in these properties.
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Hence we have unique solvability of the following operator equation

H−
h (s)

[
th
uh

]
=

[
g1

g2

]
(6.10)

with g1 ∈ X∗
h andg2 ∈ Y∗

h . For g1 = 0 we obtain the Galerkin discretisation of equation
(6.9). By eliminatingth we can define a discrete approximation of the Steklov–Poincaré
operator by

S−
h (s) = Dh(s)+

(
1
2

Mh+ K̃h(s)
∗
)

Vh(s)
−1
(

1
2

Mh+Kh(s)

)
.

On the other hand, forg2 = 0 we can eliminateuh resulting in a symmetric approximation
of the Poincaré–Steklov operator

Th(s) =Vh(s)+

(
1
2

Mh+Kh(s)

)
Dh(s)

−1
(

1
2

Mh+ K̃h(s)
∗
)

as introduced in Section 4.4.

Corollary 6.8. The following properties hold:

[
S−h (s)

]−1 ∈ A(2,X∗
h ,Xh),

[Th(s)]
−1 ∈ A(2,Y∗

h ,Yh).

Starting from the operatorH+(s) as introduced in (4.33) we can define a symmetric ap-
proximation of the exterior Steklov–Poincaré operator S+

h (s) and of the interior Poincaré–
Steklov operator S−h (s) in a similar way.

F(s) X Y µ

Vh(s) Xh X∗
h 2

Dh(s) Yh Y∗
h 2

Kh(s) Xh Y∗
h 5/2

K̃h(s)∗ Yh X∗
h 3/2

Vh(s)−1 X∗
h Xh 2

Dh(s)−1 Y∗
h Yh 2

[T±(s)]−1 X∗
h Xh 2

[S±(s)]−1 Y∗
h Yh 2

Table 6.1: The operatorF(s) is an element of the spaceA(µ,X,Y).

The estimates for these operators are given in Table 6.1 in addition to bounds for already
discussed operators.
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6.4 Mixed boundary value problem

The interior boundary value problem with mixed boundary conditions (5.6) is given as

P u= 0 in Ω−,

γ−0 u= gD on ΓD,

γ−1 u= gN on ΓN.

(6.11)

The boundary integral equations which are related to the mixed boundary value problem
(6.11) are deduced in (5.7) and are given as

V(s)φ −K(s)ψ =

(
1
2

I +K(s)

)
g̃D −V(s)g̃N on ΓD,

K̃(s)∗φ +D(s)ψ =

(
1
2

I − K̃(s)∗
)

g̃N −D(s)g̃D on ΓN,

(6.12)

or equivalently as

H+(s)

[
φ
ψ

]
=

[
gD

0

]
−H+(s)

[
gD

gN

]
.

We test the boundary integral equations (6.12) with functions (η ,ξ ) ∈ [H̃−1/2(ΓN)]
4 ×

[H̃1/2(ΓD)]
4. This results in the variational formulation:

Find (φ ,ψ) ∈ [H̃−1/2(ΓN)]
4× [H̃1/2(ΓD)]

4 such that
〈

H+(s)

[
φ
ψ

]
,

[
η
ξ

]〉
=

〈[
gD

0

]
−H+(s)

[
gD

gN

]
,

[
η
ξ

]〉

for all (η ,ξ ) ∈ [H̃−1/2(ΓN)]
4× [H̃1/2(ΓD)]

4.

The given Dirichlet datum̃gD is projected in the discrete spaceS0,1
h (Γ) by using theL2

projectionP0,1
h , see (6.5). The given Neumann datumg̃N is approximated by using theL2

projectionP−1,1
h , see (6.6). The corresponding Galerkin variational formulation has the

form:

Find (φh,ψh) ∈ S−1,0
h (ΓN)× S̃0,1

h (Γ) such that
〈

H+(s)

[
φh

ψh

]
,

[
ηh

ξh

]〉

Γ
=

〈[
P0,1

h g̃D

0

]
,

[
ηh

ξh

]〉

Γ
−
〈

H+(s)

[
P0,1

h g̃D

P−1,1
h g̃N

]
,

[
ηh

ξh

]〉

Γ
(6.13)

for all (ηh,ξh) ∈ S−1,0
h (ΓD)× S̃0,1

h (ΓN).

Due to the ellipticity of the operatorH+(s), see Corollary 4.16, the variational formulation
(6.13) is uniquely solvable. Strang’s lemma (Lemma 6.2) andthe approximation property
(Lemma 6.3) gives us the following corollary.
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Corollary 6.9. Letφ ∈ [H1
pw(Γ)]4, ψ ∈ [H2

pw(Γ)]4 , gN ∈ [H1
pw(ΓN)]

4 and gD ∈ [H2
pw(ΓD)]

4,
then the following error estimate holds

‖φ −φh‖−1/2,Γ +‖ψ −ψh‖1/2,Γ

≤ c(σ) |s|9/2h3/2
(
‖φ‖1,Γ +‖ψ‖2,Γ +‖gN‖1,ΓN

+‖gD‖2,ΓD

)
.

With the help of the inverse inequality an error estimate in theL2-norm for the error ofφ
can be deduced,

‖φ −φh‖0,Γ ≤ c(σ) |s|9/2h
(
‖φ‖1,Γ +‖ψ‖2,Γ +‖gN‖1,ΓN

+‖gD‖2,ΓD

)
,

see [52]. The dependancy on the parameters is the same as for the natural norm. The
Aubin–Nitsche trick gives us an error estimate in theL2-norm of the error ofψ

‖ψ −ψh‖0,Γ ≤ c(s)h2
(
‖φ‖1,Γ +‖ψ‖2,Γ +‖gN‖1,ΓN

+‖gD‖2,ΓD

)

see [52]. The constantc(s) depends on estimates of the operatorD(s) : [H1(Γ)]4 →
[L2(Γ)]4 and it’s inverse and estimates for the operatorK̃(s)∗ : [H−1(Γ)]4 → [H−1(Γ)]4.
The explicit behaviour of these estimates onto the parameter s has not been investigated
yet and, therefore, the explicit behaviour of the error estimate onto the parameters is not
known.

The solutionu of the interior mixed boundary value problem (5.6) is approximated by
evaluating the representation formula (5.1)

uh = SL(s)
(

φh+P−1,1
h g̃N

)
−DL(s)

(
ψh+P0,1

h g̃N

)
.

The error in a pointx∈ Ω can be estimated by the following lemma.

Lemma 6.10.Letφ ∈ [H1
pw(Γ)]4, ψ ∈ [H2

pw(Γ)]4 , gN ∈ [H1
pw(ΓN)]

4 and gD ∈ [H2
pw(ΓD)]

4,
then for x∈ Ω the following error estimate holds

|u(x)−uh(x)| ≤ c(σ , |s|)h3
(
‖φ‖1,Γ +‖ψ‖2,Γ +‖gN‖1,ΓN

+‖gD‖2,ΓD

)
.

Proof. In [52] the proof is given for anL2 approximation of the Neumann datum by using
piecewise constant discontinuous basis functions. Therefore, the order of convergence is
restricted to two. By reiterating the proof using the piecewise linear discontinuous basis
functions as approximation the order can be increased to three without further assumptions
onto the given Neumann datumgN.

The solution of the variational formulation (6.13) is obviously bounded. An improved
bound, corresponding tos is obtained by reiterating the arguments from [31].
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Theorem 6.11.For s∈ C
+
σ the solution of the variational formulation(6.13) is bounded

by

‖φh‖−1/2,Γ +‖ψh‖1/2,Γ ≤ c(σ) |s|5/2
(
‖gN‖−1/2,ΓN

+‖gD‖1/2,ΓD

)
.

Moreover, uh = SL(s)(φh+P−1,1
h g̃N)−DL(s)(ψh+P0,1

h g̃D) is bounded by

‖uh‖1,Ω ≤ c(σ) |s|5/2
(
‖gN‖−1/2,ΓN

+‖gD‖1/2,ΓD

)
.

Proof. For the wave equation the corresponding bound is derived in [31]. We follow this
proof closely. The proof is essentially an extension of the proof of Theorem 5.1 to discrete
operators.

We start by definining the function

uh = SL(s)(φh+P−1,1
h g̃N)−DL(s)(ψh+P0,1

h g̃D).

Then the variational formulation (6.13) is equivalent to the following boundary value prob-
lem

P uh = 0 inR
3\Γ,

〈
γ−0 uh,η

〉
Γ =

〈
P0,1

h g̃D,η
〉

Γ
for all η ∈ S−1,0

h (ΓD)
〈
γ+1 uh,ν

〉
Γ = 0 for all ν ∈ S0,1

h (ΓN)

(6.14)

with the transmission conditions

[γ1uh]|Γ −P−1,1
h g̃N ∈ S−1,0

h (ΓD), [γ0uh]|Γ −P0,1
h g̃D ∈ S̃0,1

h (ΓN).

We denote the annihilator of a function spaceX by X◦. The boundary value problem (6.14)
is on the other hand equivalent to the following variationalformulation:

Find uh ∈ [H1(R3 \Γ)] with
〈
γ−0 uh,vh

〉
Γ =

〈
P0,1

h g̃D,vh

〉
Γ

for all vh ∈ S−1,0
h (ΓD) and

〈[γ0uh]Γ,wh〉Γ =
〈

P0,1
h g̃D,wh

〉
Γ

for all wh ∈
[
S̃0,1

h (ΓN)
]◦

such that

aR3\Γ(uh,v) =
〈

P−1,1
h g̃N,γ−0 v

〉
Γ

(6.15)

for all v∈ [H1(R3\Γ)]4 with γ−v∈
[
S−1,0

h (ΓD)
]◦

and[γ0v]|Γ ∈ S̃0,1
h (ΓN).

The solution of this variational formulation can be estimated by repeating the arguments
in the proof of Theorem 3.12. Finally the boundedness of the projection operators results
in

9uh9|̃s|,R3\Γ ≤ c(σ) |s|
(
‖gN‖−1/2,ΓN

+ |s|1/2‖gD‖1/2,ΓD

)
.

Using estimates for traces, see Theorem 3.4 and Corollary 3.14, we obtain

‖φ‖−1/2,Γ +‖ψ1‖1/2,Γ ≤ c(σ) |s|5/2
(
‖gN‖−1/2,ΓN

+‖gD‖1/2,ΓD

)
.
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Pointwise evaluation

To obtain a convergence estimate for the pointwise error in the time domain, we need to
have a bound for the point evaluation in the Laplace domain. These estimates are obtained
by estimating the fundamental solution.

For this, an additional assumption on the material data is needed. We assume

∣∣α2
1 −α2

2

∣∣≥ c(σ)

|s|2
(6.16)

whereα1 andα2 are given in (4.2) and correspond to the fast and slow compression wave.
Assumption (6.16) is fulfilled by all materials considered within this work.

Lemma 6.12. The point evaluation of the single layer potential atx̃ ∈ Ω− is a bounded
linear functional with the absolute value bounded as

|SL(s)φ(x̃)| ≤ c(σ ,dist(x̃,Γ)) |s|2 .

The point evaluation of the double layer potential atx̃∈ Ω− is a bounded linear functional
with the absolute value bounded as

|DL(s)φ(x̃)| ≤ c(σ ,dist(x̃,Γ)) |s|2 .

Proof. The single layer potential can be estimated by

|SL(s)φ(x̃)|=

∣∣∣∣∣∣

∫

Γ

Gs(x̃,y)φ(y) dsy

∣∣∣∣∣∣
≤ ‖Gs(x̃, ·)‖ 1

2 ,Γ
‖φ‖− 1

2 ,Γ
.

As long as ˜x ∈ Ω−, the fundamental solutionGs(x̃, ·) is an element ofC∞(Ω+) and of
[H1(Ω−)]4. The trace theorem (Theorem 3.4) can therefore be applied and yields

|SL(s)φ(x̃)| ≤ ‖Gs(x̃, ·)‖1,Ω+ ‖φ‖− 1
2 ,Γ

.

With assumption (6.16) the different parts of the fundamental solution can be estimated by

∣∣UE
i j

∣∣≤ c(σ)e−α |x̃−y|,
∣∣Pj
∣∣≤ c(σ)e−α |x̃−y|,

|Ui | ≤ c(σ) |s|e−α |x̃−y|, |Pp| ≤ c(σ) |s|e−α |x̃−y|,

with α = max(Re[α1] ,Re[α2] ,Re[α3]). Due to assumption (4.3)α ≥ c(σ) > 0 which
results in

‖Gs(x̃, ·)‖0,Ω+ ≤ c(σ ,Ω+) |s| .
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Sinceα{1,2,3} < c(σ) |s| all derivatives and thus the[H1(Ω+)]4-norm of the fundamental
solution can be estimated by

‖Gs(x̃, ·)‖1,Ω+ ≤ c(σ ,Ω+) |s|2 .

For the double layer potential we have

|DL(s)ψ(x)|=

∣∣∣∣∣∣

∫

Γ

[γ̃1G∗
s(x̃,y)]

∗ψ(y) dsy

∣∣∣∣∣∣
≤ ‖γ̃1G∗

s(x̃,y)‖−1/2,Γ ‖ψ‖ 1
2 ,Γ

.

The adjoint of the fundamental solution is the fundamental solution of the adjoint problem.
Therefore the fundamental solution fulfills the propertyP̃G∗

s(x̃, ·) = 0 in Ω+ for x ∈ Ω−.
Lemma 3.15 results in

‖γ̃1G∗
s(x̃,y)‖−1/2,Γ . 9G∗

s(x̃,y)9|s|,Ω+ .

By following the same estimates as above, we can show the desired estimate.

6.5 Dirichlet boundary value problem

The Dirichlet problem (5.11)

P u= 0 in Ω−,

γ−0 u= gD on Γ
(6.17)

can be by solved by starting from the boundary integral equation (5.12), which results in
in the following variational formulation:

Find th ∈ S−1,0
h (Γ) such that

〈V(s)th,τh〉Γ =

〈(
1
2

I +K(s)

)
P0,1

h gD,τh

〉

Γ
(6.18)

for all τh ∈ S−1,0
h (Γ).

Equation (6.18) can be rewritten in operator notation as

Vh(s)th =

(
1
2

Mh+Kh(s)

)
P0,1

h gD. (6.19)

Unique solvability of equation (6.19) follows from the ellipticity of the single layer poten-
tial (Theorem 4.8). A bound for this nonsymmetric realization of the Dirichlet to Neumann
map can be obtained by refining the result for the mixed boundary value problem in The-
orem 6.11.
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Lemma 6.13.The following property holds:

Vh(s)
−1
(

1
2

Mh+Kh(s)

)
∈ A

(
2,S0,1

h (Γ),S−1,0
h (Γ)

)
.

Proof. Following the proof of Theorem 5.1 we first introduce

uh = SL(s)φh−DL(s)P0,1
h gD

and by estimating the variational formulation (6.15) we obtain

9uh9|̃s|,R3\Γ ≤ c(σ) |s|3/2‖gD‖1/2,Γ . (6.20)

Estimating the jump of the conormal derivative, Corollary 3.14, results in

‖φh‖−1/2,Γ ≤ c(σ) |s|2‖gD‖1/2,Γ ,

and thus the desired estimate follow.

For φ ∈ [H1
pw(Γ)]4 andgD ∈ [H2

pw(Γ)]4 Strang’s Lemma 6.2 results in the error estimate

‖φh−φ‖−1/2,Γ ≤ c(σ)h3/2
(
|s|4‖φ‖1,Γ + |s|9/2‖gD‖2,Γ

)
. (6.21)

An estimate for theL2-norm can be obtained by the use of the inverse inequality,

‖φh−φ‖0,Γ ≤ c(σ)h
(
|s|4‖φ‖1,Γ + |s|9/2‖gD‖2,Γ

)
, (6.22)

see [52].

The solution inside the domain is given by the representation formula

uh = SL(s)φh−DL(s)P0,1
h gD

When assumingu∈ [H5/2(Ω)]4 and dist(x̃,Γ)> 0 we have the error estimate

|u(x̃)−uh(x̃)| ≤ c(σ , |s|)h3
(
‖φ‖1,Γ +‖gD‖2,Γ

)
(6.23)

for any x̃∈ Ω, see [52].
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Indirect single layer approach

Another popular approach is an indirect single layer approach. Using the ansatz ˜u =
SL(s)φh results in the variational formulation:

Find φh ∈ S−1,0
h (Γ) such that

〈Vh(s)φh,ηh〉Γ = 〈gD,ηh〉Γ

for all ηh ∈ S−1,0
h (Γ).

Unique solvability as well as the estimate

‖φh‖−1/2,Γ ≤ c(σ) |s|2‖gD‖1/2,Γ

is obtained by using the ellipticity estimate (Theorem 4.8). An estimate for the solution
inside the domain is given by Corollary 6.6 which results in

‖ũ‖1,Ω ≤ c(σ) |s|2‖gD‖1/2,Γ .

An estimate for the pointwise evaluation inside the domain is given by combining Theorem
4.8 and Lemma 6.12, resulting in the estimate

|ũ(x̃)|. c(σ) |s|4‖gD‖−1/2,Γ

for x̃∈ Ω.

6.6 Neumann boundary value problem

According to Section 5.4 the Neumann problem (5.13)

P u= 0 in Ω−,

γ−1 u= gN on Γ
(6.24)

results in the following variational formulation:

Find ψh ∈ S0,1
h (Γ) such that

〈D(s)ψh,νh〉Γ =

〈(
1
2

I − K̃(s)∗
)

S−1,1
h gN,νh

〉

Γ

for all νh ∈ S0,1
h (Γ),



6.6 Neumann boundary value problem 73

or equivalently

Dh(s)ψh =

(
1
2

MT
h − K̃h(s)

∗
)

P−1,1
h gN. (6.25)

The ellipticity of the hyper-singular operator guaranteesunique solvability. A bound for
this nonsymmetric realization of the Neumann to Dirichlet operator is given in the follow-
ing lemma.

Lemma 6.14.The following property holds:

Dh(s)
−1
(

1
2

MT
h − K̃h(s)

∗
)
∈ A(2,Xh,Yh).

Proof. Following the proof of Theorem 5.1 we first introduce

uh = SL(s)P−1,1
h gN −DL(s)ψh

and by estimating the equivalent variational formulation we obtain

9uh9|̃s|,R3\Γ ≤ c(σ) |s|‖gN‖1/2,Γ . (6.26)

Notice that the estimate is better, corresponding tos, than the corresponding estimate for
the Dirichlet problem (6.20). Combining the estimate (6.26)with the trace theorem, The-
orem 3.4, and estimate (3.11) results in the estimate

‖ψh‖1/2,Γ ≤ c(σ) |s|2‖gN‖−1/2,Γ .

Due to the slightly worse estimate for the jump of the Dirichlet trace we end up with a
similar estimate as for the pure Dirichlet boundary value problem.

When assumingψ ∈ [H2
pw(Γ)]4 andgN ∈ [H1

pw(Γ)]4 Strang’s lemma (Lemma 6.2) results
in the error estimate

‖ψh−ψ‖1/2,Γ ≤ c(σ)h3/2
(
|s|4‖ψ‖2,Γ + |s|7/2‖gN‖1,Γ

)
. (6.27)

With the help of the Aubin-Nitsche trick an error estimate for theL2-norm is given as

‖ψh−ψ‖0,Γ ≤ c(σ ,s)h2
(
‖ψ‖2,Γ +‖gN‖1,Γ

)
, (6.28)

see [52].

The solution inside the domain is approximated by

uh = SL(s)P−1,1
h gN −DL(s)ψ.
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When assumingu∈ [H5/2(Ω)]4 and dist(x̃,Γ)> 0 we have the error estimate

|u(x̃)−uh(x̃)| ≤ c(σ , |s|)h3
(
‖gN‖1,Γ +‖ψ‖2,Γ

)
(6.29)

for any x̃∈ Ω.

In [52], the estimate is done for a piecewise constant discontinuous approximation of the
known Neumann datum, resulting in a lower convergence rate of two. By repeating the
arguments when using an approximation of piecewise linear discontinuous basis functions
of the known Neumann datumgN the stated error estimate can be shown.

Indirect double layer approach

An indirect double layer approach ˜u= −DL(s)ψh with ψh ∈ S0,1
h (Γ) results in the varia-

tional formulation:

Find ψh ∈ S0,1
h (Γ) such that

〈Dh(s)ψh,νh〉Γ = 〈gN,νh〉Γ

for all νh ∈ S0,1
h (Γ).

Again ellipticity of the hyper-singular operator guarantees unique solvability. Theorem
4.10 and Corollary 6.6 yield the following estimates

‖ψh‖1/2,Γ . c(σ) |s|2‖gN‖−1/2,Γ (6.30)

and
‖ũ‖1,Ω . c(σ) |s|2‖gn‖−1/2,Γ .

An estimate for the pointwise evaluation inside the domain is given by combining estimate
(6.30) and Lemma 6.12, resulting in the estimate

|ũ(x̃)|. c(σ) |s|4‖gN‖−1/2,Γ

for x̃∈ Ω.
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Convolution quadrature is an approximation method for convolution integrals. It was de-
veloped by Christian Lubich in [32, 33] and applied to the waveequation in [34]. In the
following chapter, the method will be derived and importantresults will be stated.

7.1 The Convolution Quadrature Method (CQM)

Let F(s) be an analytic function in the half-plane Re[s] > ρ0 such that the Laplace inver-
sion formula

f (t) =
1

2π i

∫

ρ+iR

estF(s)ds

exists for allρ > ρ0. f (t) is a continuous and exponentially bounded function which
vanishes fort < 0. To emphasize the dependency on the functionF(s) we denote the
convolution as

F(∂t)g(t) :=

t∫

0

f (t − τ)g(τ) dτ. (7.1)

The notation (7.1) emphasizes the dependancy of the convolution onto the analytic function
F(s) in the Laplace domain. A justification for the notation comesfrom the fact that for
F(s) = swe have∂tg= g′ and from the composition rule

F(∂t)G(∂t)g= (F ·G)(∂t)g.

Parseval’s formula gives us the following result:

Remark 7.1. Assume that F(s) is bounded by

|F(s)| ≤C|s|µ

for all Re[s]≥ σ > 0. The operator extends by density to a bounded linear operator

F(∂t) : Hr+µ
0 (0,T)→ Hr

0(0,T) (7.2)

75
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for all r ∈ R. Insertion of the Laplace inversion formula into the convolution integral and
applying Fubini’s theorem results in

F(∂t)g(t) =
1

2π i

t∫

0

∫

ρ+iR

F(s)esτ ds g(t − τ) dτ

=
1

2π i

∫

ρ+iR

F(s)

t∫

0

esτg(t − τ) dτ

︸ ︷︷ ︸
=:y(t,s)

ds.

The functiony(t,s) is the solution of the ordinary differential equation

y′(t) = sy(t)+g(t), y(0) = 0.

This ordinary differential equation can be discretized using a multistep method. We con-
sider a constant time step grid withtn = n∆t. A general linear multistep method is given
by

k

∑
j=0

α jyn− j = ∆t
k

∑
j=0

β j(syn− j +g((n− j)∆t)).

We multiply the sums withξ n and sum overn. We manipulate the resulting sum in the
following way

∞

∑
n=0

k

∑
j=0

α jyn− jξ n =
k

∑
j=0

α jξ j
∞

∑
n=0

yn− jξ n− j .

The right hand side can be rewritten accordingly. Settingyn = 0 andgn = 0 for n< 0 and
introducingy(ξ ) = ∑n≥0ynξ n andg(ξ ) = ∑n≥0g(n∆t) results in

y(ξ )
k

∑
j=0

α jξ j = h(sy(ξ )+g(ξ ))
k

∑
j=0

β jξ j .

Introducing the quotient of the generating polynomials

δ (ξ ) =
∑k

j=0α jξ j

∑k
j=0β jξ j

we obtain

y(ξ ) =
g(ξ )(

δ (ξ )
∆t −s

) .

By utilizing Cauchy’s integral formula we get an approximation of F(∂t) as the n-th coef-
ficient of a series expansion of

1
2π i

∫

ρ+iR

F(s)
δ (ξ )

∆t −s
g(ξ ) ds= F

(
δ (ξ )

∆t

)
g(ξ ).
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Using the series expansion

F

(
δ (ξ )

∆t

)
=

∞

∑
n=0

ωnξ n, |ξ |< 1 (7.3)

an approximation is defined by

(
F
(

∂ ∆t
t

)
g∆t
)
(tn) :=

n

∑
j=0

ωn− jg(t j). (7.4)

The convergence order of the underlying multistep method istransferred to the convolution
quadrature under the following assumptions, see [34]. The linear multistep method has to
be A-stable, i. e. , Re[δ (ξ )] > 0 for |ξ | < 1 andδ (ξ ) is not allowed to have poles on the
unit circle. Due to A-stability we are restricted to multistep methods of order 2. We will
use the backwards difference formula of order one (BDF1) and of order 2 (BDF2) in this
work. Both fulfill the stated assumptions. The generating polynomials are given as

δBDF2(ξ ) =
3
2
−2ξ +

1
2

ξ 2 and δBDF1(ξ ) = 1−ξ .

Theorem 7.1.Let F(s) ∈ A(µ,X,Y). The generating polynomial of the multistep method
δ (ξ ) has no poles along the unit circle andRe[δ (ξ )] > 0 for |ξ | < 1. For g ∈ Hr

0(0,T)

with r > 1
2 +max(µ,0), andβ = min

(
(r −µ) p

p+1, r, p
)

we have

∥∥∥F(∂ ∆t
t )g(t)−F(∂t)g(t)

∥∥∥
Y
≤C∆tβ log(∆t)‖g‖Hr (0,T) for 0≤ t ≤ T

and (
h

N

∑
i=0

∥∥∥F(∂ ∆t
t )g(i∆t)−F(∂t)g(i∆t)

∥∥∥
2

Y

)1/2

≤C∆tβ ‖g‖Hr (0,T) .

If the first two terms in the definition ofβ are strictly greater than p, thelog(∆t) term in
the first error estimate can be omitted.

Proof. See [34].

7.2 A decoupled system

Several methods have been presented to speed up the evaluation of the approximation
(7.4), defined by a convolution quadrature approach. Different approaches are given in,
e. g. , [22, 23, 25, 30]. The approach presented in this chapter was developed in [7]. The
method was further extended in [5].
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The weights in the series expansion (7.3) can be calculated by the Cauchy integral

ωk =
1

2π i

∮

C

F

(
δ (ξ )

∆t

)
ξ−k−1 ds

as proposed in [32]. Choosing the contour as a circle around the origin withξ = λei2πα and
approximating the resulting integral with the trapezoidalrule in the pointsαk = k/(N+1)
results in the approximate weights

ωλ
k =

λ−i

N+1

N

∑
j=0

F

(
e−i 2π j

N+1

∆t

)
ei 2π jk

N+1 . (7.5)

Starting from the definition of the convolution quadrature approximation

(
F
(

∂ ∆t
t

)
g
)
(tn) :=

n

∑
j=0

ωn− jg(t j)

and using the approximate weights (7.5) we extend the sum toN by settingωλ
j = 0 for

j < 0. We end up with a new approximation

(
F
(

∂ ∆t
t,λ

)
g
)
(tn) :=

N

∑
j=0

ωλ
n− jg(t j). (7.6)

IntroducingξN+1 = ei 2π
N+1 andsj =

δ (ξ− j
N+1)

∆t the new operator can be written as

(
F
(

∂ ∆t
t,λ

)
g
)
(tn) =

N

∑
j=0

λ−n+ j

N+1

N

∑
k=0

F(sk)ξ k(n− j)g j =
N

∑
k=0

λ−n

N+1
F(sk)ξ kn

N

∑
j=0

λ jξ−k jg j

with g j = g(t j).

The weighted discrete Laplace transform is given by

L∆t(g)k :=
N

∑
j=0

λ jξ−k jg j .

Starting from the equation (
F
(

∂ ∆t
t,λ

)
g
)
(tn) = hn

and applying the weighted inverse Laplace transformation we end up with the set of de-
coupled equations

F(sk)L∆t(g)k = L∆t(h)k for k= 0, . . . ,N.

The error of the additional approximation can be bounded by the following lemma.
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Lemma 7.2. Let the multistep method be either the BDF2 or the BDF1. Let N denote the
number of time steps,0< λ < 1 and F∈ A(µ,X,Y), then

∥∥∥F(∂ ∆t
t,λ )g−F(∂ ∆t

t )g
∥∥∥

Y
≤C

λ N+1

1−λ N+1∆t−1‖g‖Hµ (0,T)

with C depending on T.

Proof. In [7], the proof was done for the inverse single layer potential and the backward
difference formula of order 2. The extension to the general case is straight forward.

Remark 7.2. The discrete operator fulfills the composition rule, thus we have

F(∂ ∆t
t,λ )G(∂ ∆t

t,λ ) = (FG)(∂ ∆t
t,λ ).

Proof. See [7].

7.3 Galerkin discretization in space and convolution quadrature in
time

In the previous sections the convolution quadrature methodwas discussed. This method
can be used to discretize convolution integrals arising from boundary integral equations.
The necessary properties for all boundary integral operators have been established in Chap-
ter 4, the properties have been transferred to their Galerkin discretizations in Chapter 6
and, finally, all necessary properties for several boundaryintegral formulations and their
Galerkin discretizations have been established in Chapter 5and Chapter 6. All boundary
integral equations will be discretized in time by the convolution quadrature and in space
by the Galerkin method. The necessary theory is establishedin this chapter. We will
first discuss an abstract setting and finally apply this theory to different boundary integral
formulations.

Let X be a Hilbert space and the operator

Â : X → X∗ ∈ A(µ,X,X∗). (7.7)

We start with the operator equation
Âû= f̂

for û = Lu ∈ X and f̂ = L f ∈ X∗ in Laplace domain and the corresponding Galerkin
approximation

Âhûh = f̂h,

as defined in (6.2).
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Let the operatorAh be invertible with the property

Â−1
h ∈ A(ν ,X∗

h ,Xh). (7.8)

The Laplace inversion formula yields

Ah(∂t)uh = fh

with uh =L−1ûh and fh =L−1 f̂h. Applying a time discretization as defined in (7.6) results
in the fully discretized system

Ah(∂ ∆t
t,λ )u

λ
h = fh. (7.9)

With the help of the composition rule, see Remark 7.2, this equation can be rewritten as

uλ
h = A−1

h (∂ ∆t
t,λ ) fh.

We have the mapping propertyA−1
h : Hr+ν(0,T;X∗

h ) → Hr(0,T;Xh) and thus for fh ∈
Hr+ν(0,T;X∗

h ) we end up withuh ∈ Hr(0,T;Xh). The error of the Galerkin approximation
is bounded, see Lemma 6.1,

‖u−uh‖Hr(0,T;X) ≤ c inf
vh∈Xh

‖u−vh‖Hr+µ+ν (0,T;X) , (7.10)

whereu is the solution of the equation

A(∂t)u= f . (7.11)

The error in space and time is estimated in the following lemma.

Lemma 7.3. Let the multistep method be either BDF1 or BDF2 and p its order. Let u be
the solution of equation(7.11) and let uλh be the solution of equation(7.9). We assume
conditions(7.7)and (7.8) fulfilled, f ∈ Hν+p+1(0,T,X) and0< λ < 1. Introducingα =
1/2+µ +ν + ε andβ = ν + p+1+ ε results in the following error estimate

∥∥∥uλ
h (ti)−u(ti)

∥∥∥
X
≤ c
[

inf
vh∈Xh

‖u−vh‖Hα (0,T;X)

+∆t p‖ f‖Hβ (0,T;X∗)

+
λ N+1

1−λ N+1∆t−1‖ f‖Hν (0,T;X∗)

]

for all i = 1, . . . ,N, with c depending on T.

Proof. The error can be split up as∥∥∥u(tn)−uλ
h,n

∥∥∥
X
=
∥∥∥A−1(∂t) f −A−1

h (∂ ∆t
t,λ ) f

∥∥∥
X

≤
∥∥A−1(∂t) f −A−1

h (∂t) f
∥∥

X

+
∥∥∥A−1

h (∂t) f −A−1
h (∂ ∆t

t ) f
∥∥∥

X

+
∥∥∥A−1

h (∂ ∆t
t ) f −A−1

h (∂ ∆t
t,λ ) f

∥∥∥
X
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and thus combining estimate (7.10), Theorem 7.1 and Lemma 7.2 yields the result.

Remark 7.3. Let the assumptions of Lemma 7.3 be valid and furthermore assumeλ N ∼
∆t p+1. For α = 1/2+µ +ν + ε andβ = ν + p+1+ ε the following error estimate holds

∥∥∥uλ
h (ti)−u(ti)

∥∥∥
X
≤ c

(
inf

vh∈Xh
‖u−vh‖Hα (0,T;X)+∆t p‖ f‖Hβ (0,T;X∗)

)
.





8 TIME DOMAIN

In this chapter different boundary value problems will be discussed in time domain. Parse-
val’s formula allows us to transfer the results from Laplacedomain to time domain. We will
prove unique solvability for all discussed problems, formulate the boundary integral equa-
tions, prove unique solvability for the continuous integral equations and for their Galerkin
discretizations. Finally, by application of Lemma 7.3 and Remark 7.3, error estimates for
the error of the space and time discretization can be given.

8.1 The mixed boundary value problem

The mixed problem in time domain is given as

P̂û(x, t) = 0 for x∈ Ω−, t ∈ (0,T),

γ−0 û(x, t) = ĝD(x, t) for x∈ ΓD, t ∈ (0,T),

γ̂−1 û(x, t) = ĝN(x, t) for x∈ ΓN, t ∈ (0,T),

û(x,0) = 0 for x∈ Ω,

û′(x,0) = 0 for x∈ Ω.

(8.1)

For û(x, t) ∈ Hr
0(0,T; [H1(Ω)]4) unique solvability is a direct consequence of unique solv-

ability in Laplace domain, see Corollary 3.12. Remark 7.1 gives us the following bound
for the solution:

‖û‖r,1,Ω ≤ c
(
‖ĝD‖r+ 3

2 ,
1
2 ,ΓD

+‖ĝN‖r+1,− 1
2 ,ΓN

)
.

The notation of the norm was introduced in (3.13).

The system of integral equations in time domain is given by

V(∂t)φ̂ −K(∂t)ψ̂ =

(
1
2

I(∂t)+K(∂t)

)
g̃D −V(∂t)g̃N on ΓD × (0,T),

K̃∗(∂t)φ +D(∂t)ψ =

(
1
2

I(∂t)− K̃∗(∂t)

)
g̃N −D(∂t)g̃D on ΓN × (0,T)

with the unknown Neumann datum̂φ ∈ Hr
0(0,T, [H̃

−1/2(ΓD)]
4), the unknown Dirich-

let datumψ̂ ∈ Hr
0(0,T, [H̃

1/2(ΓN)]
4) , the extension of the given Dirichlet datum ˆgD ∈

Hr+3/2
0 (0,T, [H1/2(ΓD)]

4) to g̃D ∈ Hr+3/2
0 (0,T, [H1/2(Γ)]4) and the extension of the given

83
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Neumann datum ˆgN ∈ Hr+1
0 (0,T, [H−1/2(ΓN)]

4) to g̃N ∈ Hr+1
0 (0,T, [H−1/2(Γ)]4) for any

t ∈ (0,T) andr ∈ R.

The system of boundary integral equations is again uniquelysolvable due to Theorem 4.14
and the solution is bounded by

∥∥φ̂
∥∥

r,− 1
2 ,ΓN

+‖ψ̂‖r, 1
2 ,ΓD

≤C
(
‖ĝN‖r+1,− 1

2 ,ΓN
+‖ĝD‖r+ 3

2 ,
1
2 ,ΓD

)

for all r ∈ R. The discrete decoupled system at time stepstn = n∆t, n = 1, . . . ,N+ 1 is
given by

Vh(∂ ∆t
t,λ )φ̂

∆t
h −Kh(∂ ∆t

t,λ )ψ̂
∆t
h =

(
1
2

Mh(∂ ∆t
t,λ )+Kh(∂ ∆t

t,λ )

)
P0,1

h g̃D −Vh(∂ ∆t
t,λ )P

−1,1
h g̃N on ΓD,

K̃∗
h(∂

∆t
t,λ )φ

∆t
h +Dh(∂ ∆t

t,λ )ψ
∆t
h =

(
1
2

M⊤
h (∂ ∆t

t,λ )− K̃∗
h(∂

∆t
t,λ )

)
P−1,1

h g̃N −Dh(∂ ∆t
t,λ )P

0,1
h g̃D on ΓN.

(8.2)
Unique solvability can be proven due to Theorem 4.14 and the composition rule, Remark
7.2. The Galerkin spaces will be chosen as stated in Section 6.4. When assumingu(t, ·) ∈
[H5/2(Ω)]4, Remark 7.3 combined with Corollary 6.9, Theorem 5.1 and Theorem 6.11
results in the following error estimate for the discrete solution at the time steptn = n∆t

∥∥∥ψ(tn)−ψ∆t
h (tn)

∥∥∥
− 1

2 ,ΓD

+
∥∥∥φ(tn)−φ ∆t

h (tn)
∥∥∥

1
2 ,ΓN

≤ ch3/2
[
‖ψ‖11/2+ε,1,Γ +‖φ‖11/2+ε,2,Γ

]
+c∆t p

[
‖ĝN‖ 7

2+p+ε,− 1
2 ,ΓN

+‖ĝD‖ 7
2+p+ε, 1

2 ,ΓD

]
.

(8.3)

For a reduced order in space or time a reduced order of convergence can be deduced.

8.2 Dirichlet boundary value problem

The Dirichlet problem in time domain is given by

P̂û(x, t) = 0 for x∈ Ω−, t ∈ (0,T),

γ−0 û(x, t) = ĝD(x, t) for x∈ Γ, t ∈ (0,T),

û(x,0) = 0 for x∈ Ω,

û′(x,0) = 0 for x∈ Ω.

(8.4)

Foru∈ Hr
0(0,T; [H1(Ω)]4) unique solvability is a direct consequence of unique solvability

in Laplace domain, see Corollary 3.12. The corresponding boundary integral equation is
given by

V(∂t)ψ̂ =

(
1
2

I(∂t)+K(∂t)

)
ĝD
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with the unknown Neumann datumψ ∈ Hr
0(0,T, [H

−1/2(Γ)]4). Unique solvability is guar-
anteed by Theorem 4.8 with the estimate

‖ψ̂‖r,− 1
2 ,Γ

≤ c‖ĝD‖r+2, 1
2 ,Γ

which is obtained with the help of Lemma 6.13. Choosing discrete subspaces as in Section
6.5 we end up with the discrete equation at the timestepstn = n∆t

Vh(∂ ∆t
t,λ )ψ̂h =

(
1
2

Mh(∂ ∆t
t,λ )+Kh(∂ ∆t

t,λ )

)
P0,1

h ĝD,

which is unique solvable with the estimate

‖ψ̂h‖r,− 1
2 ,Γ

≤ c‖ĝD‖r+2, 1
2 ,Γ

.

When assuminĝψ ∈ H5+ε
0 (0,T, [H1(Γ)]4) andĝD ∈ H9/2+ε

0 (0,T, [H2
pw(Γ)]4) we can apply

estimate (6.21) and Lemma 6.13, thus obtaining

∥∥∥ψ̂(tn)− ψ̂∆t
h (tn)

∥∥∥
− 1

2 ,Γ
≤ c
[
h3/2

(
‖ψ̂‖9/2+ε,1,Γ +‖ĝD‖5+ε,2,Γ

)
+∆t p‖ĝD‖3+p+ε, 1

2 ,Γ

]
.

(8.5)

8.3 Neumann problem

The Neumann problem in time domain is given by

P̂û(x, t) = 0 for x∈ Ω−, t ∈ (0,T),

γ−0 û(x, t) = ĝN(x, t) for x∈ Γ, t ∈ (0,T),

û(x,0) = 0 for x∈ Ω,

û′(x,0) = 0 for x∈ Ω.

(8.6)

The corresponding boundary integral equation in time domain is given by

D(∂t)φ̂ =

(
1
2

I(∂t)− K̃∗(∂t)

)
P−1,1

h ĝN

with the unknown Dirichlet datum̂φ ∈ Hr(0,T, [H1/2(Γ)]4). Theorem 4.10 guarantees
unique solvability with the estimate

∥∥φ̂
∥∥

r, 1
2 ,Γ

≤ c‖ĝN‖r+2,− 1
2 ,Γ

,
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which is a direct consequence of Lemma 6.14. We choose the same discrete subspaces as
in Section 6.6 and end up with a full discretized system

Dh(∂ ∆t
t,λ )φ̂h =

(
1
2

MT
h (∂

∆t
t,λ )− K̃∗

h(∂
∆t
t,λ )

)
P−1,1

h ĝN

for the timestepstn = n∆t. The discrete system is uniquely solvable with the following
estimate for the solution. ∥∥φ̂h

∥∥
r, 1

2 ,Γ
≤ c‖ĝN‖r+2,− 1

2 ,Γ

Assumingφ̂ ∈ H9/2+ε
0 (0,T, [H1

pw(Ω)]4) and ĝN ∈ H5/2+max(p,3/2)+ε
0 (0,T, [H2

pw(Γ)]4) and
using estimate (6.27) and Lemma 6.14, we end up with the errorestimate
∥∥∥φ̂(tn)− φ̂ ∆t

h (tn)
∥∥∥

1
2 ,Γ

≤ ch3/2
(∥∥φ̂

∥∥
9
2+ε,1,Γ +‖ĝN‖4,1,Γ

)
+c∆t p‖ĝN‖ 5

2+p+ε, 1
2 ,Γ

. (8.7)



9 NUMERICAL EXAMPLES

In this chapter, the convergence results from the Chapter 8 are confirmed with the help
of numerical examples. In addition to the presented approach we study a collocation ap-
proach, which is derived in Section 9.2. The error of the space discretization is discussed
first, followed by a discussion of the error in time.

9.1 On the implementation

The discussed algorithms were implemented in the software library HyENA [27]. The
integral operators were realized by the Duffy transformation, see [20]. The double layer
potential, adjoint double layer potential and the hyper-singular operator where regularized
through partial integration, see [39,40].

To reduce computational and storage complexity fast methods have been utilized. The
first fast methods, which were developed, are the Fast Multipole Method, see [42] and
references therein, and the Panel-Clustering method [24]. In the HyENA library theH-
Matrices [11, 21, 44] are utilized, to be more precise the Adaptive Cross Approximation
(ACA) [10] as implemented in the AHMED library [9] is used.

The different parameters differ greatly in the order of magnitude, see e. g. , Table 9.1 for
Berea sandstone. A direct discretization leads to system matrices with condition numbers
higher than 1020. Direct solvers still succeed, at least most of the time, whereas iterative
solvers, as they are used in our code, simply fail. A variabletransformation from [28] is
applied, which results in reasonable conditioned matrices. Additionally preconditioners
are applied. The single layer potential is preconditioner by an artificial multilevel precon-
ditioner [50] and the hyper-singular operator is preconditioned by an operator of inverse
order [53].

9.2 A collocation approach

The collocation approach is still very popular especially in engineering applications. Start-
ing from an operator equation

Au= f

87
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with A : X → X∗ and f ∈ X∗ we can restrictuh to Xh. Instead of using test functions we
require the equation to be fulfilled in collocation pointsx j , j ∈ J resulting in the discrete
system

ACuh(x j) = f (x j) for all j ∈ J.

For a basisφi , i ∈ J, of the spaceXh the matrix has the entries

AC
i j = (Aφi)(x j) i, j ∈ J

On general Lipschitz domains the solvability of the equation and thus the stability of the
numerical scheme is still an open question. Stability is only known for special cases, for a
more detailed discussion see, e. g. , [2,18,43].

For the mixed boundary value problem

P u= 0 in Ω−,

γ−0 u= gD on ΓD,

γ−1 u= gN on ΓN.

(9.1)

we start with the first integral equation, see [38],

0=V(s)γ1u− (σ I +K(s))γ0u (9.2)

where
σ(x) = lim

ε→0

∫

y∈Ω:|y−x|=ε

[γ̃1G∗
s(x,y)]

∗ dsy.

The termσ degenerates to 1/2 onC2 surfaces, see [38], however on corners and edges this
simple relation is not true. Thus the jump termσ is equal to 1/2 almost everywhere.

We choose appropriate extensionsg̃D ∈ [H1/2(Γ)]4 andg̃N ∈ [H−1/2(Γ)]4 for the Dirichlet
and Neumann datagD ∈ [H1/2(ΓD)]

4 andgN ∈ [H−1/2(ΓN)]
4 such that̃gD = gD onΓD and

g̃N = gN on ΓN. We define the unknowns

t̃ = γ1u− g̃N andũ= γ0u− g̃D.

Insertion into the first integral equation (9.2) results in

V(s)t̃ − (σ I +K(s))ũ= (σ I +K(s))g̃D −V(s)g̃N. (9.3)

As for the Galerkin approach we choose lowest order ansatz functions̃th ∈ S−1,0
h (ΓD) and

ũh ∈ S0,1
h (ΓN) to approximate the unknown functions. Equation (9.3) is discretized using

the collocation approach. To end up with a quadratic system the collocation points are
chosen in the following way. OnΓD we choose the centre of the trianglesxi, i = 1, . . . ,ND

and for ΓN we choose the points of the mesh itselfy j , j = 1, . . . ,MN. We denote the
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number of elements on the Dirichlet boundary withND and the number of elements on
the Neumann boundary withNN respectively. The number of nodes on the Dirichlet and
Neumann boundary are denoted byMD and MN. In the same way as for the Galerkin
approach the Dirichlet datãgD is approximated byP0,1

h g̃D and the Neumann datãgN is

approximated byP−1,1
h g̃N.

We end up with the linear system of equations

[
VC

DD(s) KC
ND(s)

VC
DN(s) σNN+KC

NN(s)

][
t̃
ũ

]
=

[
1
2IC

DD +KC
DD(s) −VC

ND(s)
KC

DN(s) −VC
NN(s)

][
P0,1

h g̃D

P−1,1
h g̃N

]

with the system matrices

[VC
DD(s)]ii = (V(s)ψ−1,0

i )(xi) for i = 1, . . . ,ND,

[VC
DN(s)]ik = (V(s)ψ−1,0

i )(xk) for k= 1, . . . ,MN andi = 1, . . . ,ND,

[KC
ND(s)]ki = (K(s)ψ0,1

k )(xi) for i = 1, . . . ,ND andk= 1, . . . ,MN,

[KC
NN(s)]kk = (K(s)ψ0,1

k )(xk) for k= 1, . . . ,MN,

[σNN]kk = (σψ0,1
k )(xk) for k= 1, . . . ,MN

and the matrices for the right hand side

[VC
NN(s)]ℓk = (V(s)ψ−1,1

ℓ )(xk) for k= 1, . . . ,MN andℓ= 1, . . . ,NN,

[VC
ND(s)]ℓi = (V(s)ψ−1,1

ℓ )(xi) for i = 1, . . . ,ND andℓ= 1, . . . ,NN,

[KC
DD(s)] ji = (K(s)ψ0,1

j )(xi) for i = 1, . . . ,ND and j = 1, . . . ,MD,

[IDD]i j = (ψ0,1
j )(xi) for i = 1, . . . ,ND and j = 1, . . . ,MD,

[KC
DN(s)] jk = (K(s)ψ0,1

j )(xk) for k= 1, . . . ,MN and j = 1, . . . ,MD.

A formula for the evaluation of the jump termσ(x) is given in [37]. On the right hand
side the jump term is evaluated in the centre of the triangles, thus the jump term is simply
1/2.

The final system of linear equations is given in Laplace domain. A convolution quadrature
approach, see Chapter 7, is used obtain a solution in time domain.

9.3 Laplace domain

We start by examining different problems for a fixed Laplace parameters in Laplace do-
main. The resulting error represents the error in space. Fora fixed frequencysan analytical
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solution is well known, namely the fundamental solutionG(x̃, ·) fixed in a point ˜x∈R
3\Ω.

Actually each column of the fundamental solution is a solution of the problem. We chose
the last column. The unit cubeΩ = (−0.5,0.5)3 is chosen as the domainΩ. As material
we chose Berea sandstone as given in Table 9.1, see [29].

λ [N/m2] µ [N/m2] ρ [kg/m3] φ [−] α [N/m2] ρ f [kg/m2] R [N/m2] κ [m4/Ns]

rock 4·109 6·109 2458 0.19 0.778 1000 4.885·108 1.9·10−10

Table 9.1: Material properties of Berea sandstone.

Starting from an initial mesh consisting of 12 triangles thesurface of the cube is uniformly
refined. We chose the point ˜x equal to(0.3,0.13,1.5). The solution is evaluated on 413
nodes residing on a second cube(−0.375,0.375)3 inside the domainΩ. The error is
observed for the unknowns of the solid and the fluid separately. The solid displacementu
and the pore pressurep is examined on the boundaryΓ and pointwise in the domainΩ.
Furthermore, we study the Neumann trace split up into the traction t = γu

1u and the flux
q=−γ p

1 p, see (2.17) and (2.18), respectively.

9.3.1 Dirichlet boundary value problem

In this chapter„, we discuss the Dirichlet problem (5.11) The Laplace parameter is fixed at
s= 2+1i. We compare the results of the Galerkin approach given in (6.19)

Vh(s)φh =

(
1
2

Mh+Kh

)
P0,1

h gD

with the collocation approach discussed in Section 9.2

VC
h (s)φC

h =

(
1
2

IC
h +KC

h

)
P0,1

h gD.

In case of the Dirichlet problem the original boundary integral equations are the same, only
the space discretization is different. We compare the relative L2(Γ)-error on the boundary
of the unknown Neumann dataφh andφC

h . For the Galerkin approach the theory implies
a convergence rate of one, see (6.22). The Neumann traceφ is split up into the traction
t = (φ1,φ2,φ3) and the fluxq=−φ4. We split up the discrete Neumann traces accordingly.
We denote the relativeL2-error by

et =
‖t − th‖0,Γ
‖t‖0,Γ

, eq =
‖q−qh‖0,Γ
‖q‖0,Γ

.

The results are stated in Table 9.2.
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Collocation Galerkin

#DOF et eoc eq eoc et eoc eq eoc

48 4.75e-01 6.73e-01 4.78e-01 6.67e-01
192 2.50e-01 0.92 3.41e-01 0.982.55e-01 0.91 3.55e-01 0.91
768 1.18e-01 1.08 1.46e-01 1.221.21e-01 1.08 1.55e-01 1.20
3072 5.73e-02 1.05 6.39e-02 1.205.80e-02 1.06 6.66e-02 1.21
12288 2.81e-02 1.03 2.89e-02 1.142.83e-02 1.04 2.97e-02 1.16

Table 9.2: Comparison of the relativeL2(Γ)-errors for the Neumann trace.

The collocation approach produces slightly lower errors than the Galerkin approach, the
difference however is almost negligible. The convergence orders match quite well with
the theoretical bounds. Furthermore, we compare the errorsfor a point evaluation of the
unknown function

U = SL(s)φh−DL(s)P0,1
h gD

inside the domain. We split the error into the solid displacementu= (U1,U2,U3)
⊤ and the

pore pressurep=U4.

The pointwise error is defined as

peu =

√
∑i |u(x̃i)−uh(x̃i)|2√

∑i |u(x̃i)|2
, pet =

√
∑i |t(x̃i)− th(x̃i)|2√

∑i |t(x̃i)|2
, (9.4)

wherei = 1, . . . ,413 are the different evaluation nodes. The error for the pore pressurep
and the fluxq are defined in the same way. Equation (6.23) implies an optimal convergence
order of three for the Galerkin approach. The results are stated in Table 9.3.

Collocation Galerkin

#DOF peu eoc pep eoc peu eoc pep eoc

48 6.79e-02 1.14e-01 6.44e-02 1.13e-01
192 1.65e-02 2.05 2.03e-02 2.491.36e-02 2.25 1.90e-02 2.58
768 2.49e-03 2.73 1.86e-03 3.451.04e-03 3.70 8.67e-04 4.45
3072 5.11e-04 2.28 4.23e-04 2.138.00e-05 3.70 6.82e-05 3.67
12288 1.19e-04 2.10 1.02e-04 2.058.10e-06 3.30 7.34e-06 3.22

Table 9.3: Comparison of the relativeℓ2-errors for the point evaluation.

The convergence rate for the Galerkin approach starts rather high but seems to retreat to
three. The convergence rate of the collocation approach on the other hand tends towards
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two. The errors for the Galerkin approach are therefore significantly better. To achieve the
desired convergence rate for the Galerkin approach it is important to project the incoming
Dirichlet datagD into the discrete subspaceS0,1

h . Replacing thisL2-projection by an inter-

polation into the spaceS0,1
h results convergence orders as stated in Tables 9.4 and 9.5.

Collocation Galerkin

#DOF et eoc eq eoc et eoc eq eoc

48 5.61e-01 7.48e-01 5.64e-01 7.45e-01
192 2.76e-01 1.02 4.05e-01 0.892.77e-01 1.03 4.06e-01 0.88
768 1.28e-01 1.12 1.78e-01 1.181.27e-01 1.12 1.78e-01 1.19
3072 5.99e-02 1.09 7.51e-02 1.245.99e-02 1.09 7.50e-02 1.24
12288 2.88e-02 1.05 3.24e-02 1.212.88e-02 1.06 3.24e-02 1.21

Table 9.4:L2(Γ)-errors of the Galerkin approach with interpolation of the given Dirichlet
data.

TheL2(Γ)-error as presented in Table 9.4 increases slightly, the impact is however not as
significant.

Collocation Galerkin

#DOF peu eoc pep eoc peu eoc pep eoc

48 1.96e-01 1.81e-01 1.81e-01 1.71e-01
192 5.03e-02 1.96 4.36e-02 2.054.55e-02 2.00 4.01e-02 2.09
768 1.26e-02 1.99 1.05e-02 2.051.10e-02 2.05 9.15e-03 2.13
3072 3.15e-03 2.00 2.63e-03 2.002.71e-03 2.02 2.26e-03 2.02
12288 7.85e-04 2.00 6.58e-04 2.006.73e-04 2.01 5.61e-04 2.01

Table 9.5:ℓ2-errors of the Galerkin approach with interpolation of the given Dirichlet data.

From the errors in Table 9.5 we deduce that the pointwise error increases for both ap-
proaches. The impact on the Galerkin approach however is more significant, since the
convergence rate for the Galerkin approach is reduced to two. This effect was already
studied in [52].

9.3.2 Neumann boundary value problem

In this section, the Neumann problem in Laplace domain (5.13) is discussed. The Laplace
parameter is fixed ats= 100+ 200i. The Galerkin approach for the Neumann problem
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(6.28)

Dhψh =

(
1
2

MT
h − K̃∗

h

)
P−1,1

h gN

is compared with the collocation approach from Section 9.2

(
1
2

σh+KC
h

)
ψC

h =VP−1,1
h gN.

In addition to different spatial discretizations, different boundary integral equations are
compared. The unknown function is split up into the solid displacementu= (ψ1,ψ2,ψ3)
and the pore pressurep = ψ4. Estimate (6.28) implies a convergence rate of two of the
Galerkin approach. The error is given as

eu =
‖u−uh‖0,Γ
‖u‖0,Γ

, ep =
‖p− ph‖0,Γ

‖p‖0,Γ
.

The errors are presented in Table 9.6.

Collocation Galerkin

#DOF eu eoc ep eoc eu eoc ep eoc

32 4.32e+01 1.01e+01 2.55e-01 3.90e+00
104 1.34e+01 1.68 2.35e+00 2.109.21e-02 1.47 1.72e+00 1.18
392 3.40e+00 1.98 7.51e-01 1.651.99e-02 2.21 4.04e-01 2.09
1544 9.01e-01 1.92 2.18e-01 1.784.26e-03 2.22 6.35e-02 2.67
6152 2.41e-01 1.90 5.74e-02 1.939.73e-04 2.13 1.06e-02 2.58

Table 9.6: Comparison of the relativeL2-errors for the Dirichlet trace.

The convergence rate of the Galerkin approach for the solid displacement is in good agree-
ment with the theory. The convergence rate of the pore pressure is higher than expected.
The collocation approach results in significant larger errors, the convergence rate however
seems to tend towards two as well. Additionally the errors for the point evaluation inside
the domain are given in Table 9.7.

Estimate (6.29) predicts an optimal convergence rate of three for the Galerkin approach.
The convergence rate is indeed achieved. The error for the collocation approach is again
much higher and the convergence rate seems to be restricted to two.

Remark 9.1. To achieve the presented convergence rates for the Galerkinapproach in Ta-
ble 9.7 the accuracy for the evaluation of the matrix entriesfor the hyper-singular operator
had to be increased quite significantly.
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Collocation Galerkin

#DOF peu eoc pep eoc peu eoc pep eoc

32 3.54e+01 3.61e+01 8.74e-02 7.51e+00
104 1.12e+01 1.65 4.85e+00 2.902.89e-02 1.60 2.91e+00 1.37
392 2.91e+00 1.95 9.75e-01 2.312.73e-03 3.40 3.15e-01 3.21
1544 7.78e-01 1.91 2.33e-01 2.062.17e-04 3.65 2.36e-02 3.74
6152 2.08e-01 1.91 5.79e-02 2.012.30e-05 3.24 1.40e-03 4.07

Table 9.7: Comparison of the relativeℓ2-errors for the point evaluation.

To obtain a convergence rate of three for the Galerkin approach, the given Neumann data
has to be projected into the discrete subspaceS−1,1

h of linear discontinuous basis functions.

Projecting the given Neumann data into the discrete subspaceS−1,0
h of constant basis func-

tions results in a lower convergence rate in the interior, see [52]. The resulting errors for
the collocation and the Galerkin approach are presented in Table 9.8 and Table 9.9.

Collocation Galerkin

#DOF eu eoc ep eoc eu eoc ep eoc

32 1.60e+02 4.11e+01 1.35e+02 2.36e+01
104 3.88e+01 2.04 8.86e+00 2.212.82e+01 2.26 9.62e+00 1.30
392 9.01e+00 2.11 2.86e+00 1.637.19e+00 1.97 3.23e+00 1.58
1544 2.15e+00 2.06 8.20e-01 1.801.81e+00 1.99 9.52e-01 1.76
6152 5.31e-01 2.02 2.11e-01 1.964.55e-01 2.00 2.56e-01 1.89

Table 9.8: TheL2(Γ)-errors for the Galerkin discretization with the given right hand side
P−1,0

h gN.

Comparing the errors presented in Table 9.8 with the errors given in Table 9.6 shows
that both approaches suffer severely by this change. Especially the error of the Galerkin
approach increases significantly. Again the error for the pore pressure is slightly better in
the collocation approach, whereas the solid displacement results in a slightly smaller error
when calculated with the Galerkin approach.

The point evaluation for both approaches is now restricted to a convergence rate of two,
see Table 9.9. The error of the pore pressure is even slightlybetter for the collocation
approach, however the error of the solid displacement is still slightly higher. The errors for
the collocation approach did increase slightly, the impactwas however small in comparison
to the Galerkin approach.
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Collocation Galerkin

#DOF peu eoc pep eoc peu eoc pep eoc

32 1.31e+02 3.98e+02 1.11e+02 3.27e+02
104 3.18e+01 2.04 1.10e+01 5.182.31e+01 2.26 1.42e+01 4.53
392 7.38e+00 2.11 3.48e+00 1.665.89e+00 1.97 4.03e+00 1.82
1544 1.77e+00 2.06 8.80e-01 1.981.48e+00 1.99 9.40e-01 2.10
6152 4.37e-01 2.02 2.09e-01 2.073.72e-01 2.00 2.28e-01 2.04

Table 9.9: Theℓ2-errors for the Galerkin discretization with the given right hand side
P−1,0

h gN.

9.3.3 Mixed boundary value problem

In this section, the numerical results for the mixed problemin Laplace domain are stud-
ied. The Laplace parameter is fixed ats= 20+15i. We compare the Galerkin approach
discussed in Section 6.4 and the collocation approach discussed in Section 9.2.

#DOF eu eoc ep eoc et eoc eq eoc

24 2.26e-01 4.25e-01 5.02e-01 4.59e-01
100 8.04e-02 1.49 1.70e-01 1.322.82e-01 0.83 2.48e-01 0.89
420 1.56e-02 2.37 3.93e-02 2.111.47e-01 0.94 1.34e-01 0.88
1732 3.30e-03 2.24 8.65e-03 2.187.40e-02 0.99 6.84e-02 0.98
7044 7.55e-04 2.13 1.96e-03 2.143.71e-02 1.00 3.43e-02 0.99

Table 9.10:L2-error of the Cauchy data on the boundary for the Galerkin approach.

The results for the Galerkin approach are stated in Table 9.10. The convergence rates are
in good agreement with the theory. The errors for the collocation approach, as given in
Table 9.11, behave in a similar way. In general, the errors ofthe Galerkin approach are
slightly smaller or equal to the errors of the collocation approach.

Additionally, the error of the point evaluation is given in Table 9.12. The error behaves
in a similar way as for the Dirichlet and the Neumann problem.We have a convergence
rate of two for the collocation approach and a convergence rate of three for the Galerkin
approach. This results in a smaller error for the Galerkin approach.
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#DOF eu eoc ep eoc et eoc eq eoc

24 5.66e-01 5.26e-01 5.03e-01 4.64e-01
100 1.49e-01 1.92 1.95e-01 1.432.83e-01 0.83 2.47e-01 0.91
420 4.21e-02 1.83 5.28e-02 1.891.47e-01 0.95 1.34e-01 0.88
1732 1.19e-02 1.83 1.35e-02 1.977.40e-02 0.99 6.84e-02 0.98
7044 3.27e-03 1.86 3.40e-03 1.993.71e-02 1.00 3.43e-02 0.99

Table 9.11:L2-error of the Cauchy data on the boundary for the collocation approach.

Collocation Galerkin

#DOF peu eoc pep eoc peu eoc pep eoc

24 4.16e-01 3.04e-01 1.03e-01 1.90e-01
100 9.89e-02 2.07 6.82e-02 2.164.09e-02 1.33 4.58e-02 2.05
420 2.91e-02 1.77 1.34e-02 2.353.47e-03 3.56 3.68e-03 3.64
1732 8.47e-03 1.78 3.43e-03 1.974.28e-04 3.02 2.67e-04 3.79
7044 2.36e-03 1.85 8.57e-04 2.006.09e-05 2.81 2.80e-05 3.25

Table 9.12:ℓ2-error of the point evaluation for the mixed problem.

9.4 Time domain

In this chapter we discuss numerical results for the convergence of solutions in time do-
main. To the best of our knowledge no pure analytical solution in time domain is known.
We therefore start with a fixed discretization in space and refine only in time. The finest
level is taken as a reference solution. The error and the corresponding convergence rates
reflect the error in time. As domainΩ we chose the cube(−0.5,0.5)3. The surface of the
cube is discretized with 12 elements. No further refinementsin space are necessary.

9.4.1 Dirichlet boundary value problem

The Dirichlet datum is given as

u(t,x) = 10−6e−5(1308.73t−〈a,x〉−3)2 andp(t,x) = 0

with a= (1,2,1)⊤. The solid displacement represents an incoming wave. At time zero the
solid displacement is not equal to zero, the maximal value attime zero is however smaller
than 2−9. The wave travels at a speed of 1308.73m/s. The length of the time interval is
chosen asT = 4−3. Starting with 64 time steps we calculate up to 2048 time steps. The



9.4 Time domain 97

finest level is chosen as a reference solution. In Table 9.13,first the number of time steps
denoted byN is given, followed by the pointwise errors and, finally, the error of the traction
and the flux on the boundary. The relative pointwise error is defined as

petu =

√
∑i, j

∣∣u(x̃i , t j)−uh(x̃i , t j)
∣∣2

√
∑i, j

∣∣u(x̃i , t j)
∣∣2

, pett =

√
∑i, j

∣∣t(x̃i , t j)− th(x̃i , t j)
∣∣2

√
∑i, j

∣∣t(x̃i , t j)
∣∣2

(9.5)

wherei = 1, . . . ,413 is an index for the different evaluation nodes andj = 1, . . . ,N an index
for the different time steps. On the boundary the error for the flux is given as

e−1/2
q =

√
∑ j
〈
V((q−qre f)(t j)),(q−qre f)(t j)

〉2
Γ√

∑ j
〈
Vqre f(t j),qre f(t j)

〉2
Γ

, (9.6)

with the reference solutionqre f . The error for the traction is defined in the same way and

denoted bye−1/2
t . The single layer potentialV is evaluated for a fixeds= 1 and thus the

error is equivalent to the[H−1/2(Γ)]4-norm. Both approaches are discretized in time using
a BDF2 scheme, which results in an optimal convergence order of two.

N petu eoc petp eoc e−1/2
t eoc e−1/2

q eoc

128 2.36e-02 1.65 1.39e-01 1.759.90e-02 1.74 1.57e-01 1.71
256 6.13e-03 1.95 3.64e-02 1.932.60e-02 1.93 4.13e-02 1.92
512 1.52e-03 2.01 9.06e-03 2.006.46e-03 2.01 1.03e-02 2.01
1024 3.62e-04 2.07 2.16e-03 2.071.54e-03 2.07 2.45e-03 2.07
2048 7.24e-05 2.32 4.32e-04 2.323.08e-04 2.32 4.90e-04 2.32

Table 9.13: Dirichlet problem - Collocation approach - BDF2.

Both the collocation approach, see errors presented in Table9.13, as well as the Galerkin
approach, see errors presented in Table 9.14, converge witha convergence rate of two.

N petu eoc petp eoc e−1/2
t eoc e−1/2

q eoc

128 2.70e-02 1.65 1.25e-01 1.68 1.04e-01 1.63 1.37e-01 1.74
256 7.10e-03 1.93 3.24e-02 1.95 2.68e-02 1.95 3.56e-02 1.95
512 1.77e-03 2.00 8.04e-03 2.01 6.66e-03 2.01 8.86e-03 2.01
1024 4.24e-04 2.07 1.92e-03 2.07 1.59e-03 2.07 2.11e-03 2.07
2048 8.48e-05 2.32 3.83e-04 2.32 3.17e-04 2.32 4.23e-04 2.32

Table 9.14: Dirichlet problem - Galerkin approach - BDF2.
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For the Galerkin approach the numerical results confirm the theoretical convergence rates.
Theoretically the scheme is stable for any time step. However this was not observed in our
numerical examples. Both approaches tend to become unstableif the matrix entries are not
computed with enough accuracy. By increasing the Gauss points we are able to calculate
rather a long time, especially for the Galerkin approach. The collocation approach tends
to be more sensitive. For this Dirichlet problem 4096 time steps are not stable with the
collocation approach, refining once in space however results in a stable scheme again.

Remark 9.2. So far all errors in space have been given in the natural spaces, since the
error estimates in time are given in the natural spaces. These norms are most of the time
more difficult to evaluate and, therefore, an error estimatein the L2(Γ) norm is desirable.
For an error estimate in the L2(Γ) norm an estimate

∥∥∥∥V
−1
h

(
1
2

Mh+Kh

)∥∥∥∥
[H1(Γ)]4→[L2(Γ)]4

≤ c(σ) |s|µ

is necessary. The errors of the solution of both the Galerkinand the collocation approach
in the L2(Γ) norm are presented in Table 9.15. The convergence rate suggests that such a
bound exists.

Collocation Galerkin

N et eoc eq eoc et eoc eq eoc

128 1.24e-01 1.74 1.59e-01 1.71 1.16e-01 1.68 1.38e-01 1.74
256 3.21e-02 1.94 4.19e-02 1.93 3.00e-02 1.95 3.58e-02 1.94
512 7.97e-03 2.01 1.04e-02 2.01 7.45e-03 2.01 8.90e-03 2.01
1024 1.90e-03 2.07 2.49e-03 2.07 1.78e-03 2.07 2.12e-03 2.07
2048 3.80e-04 2.32 4.98e-04 2.32 3.56e-04 2.32 4.25e-04 2.32

Table 9.15: Dirichlet problem -L2(Γ) error - BDF2.

9.4.2 Neumann boundary value problem

For the Neumann problem we prescribe the given Neumann data as

t(t,x) = 10−6(10t −〈a,x〉−3)〈a,n〉e−5(1308.73t−〈a,x〉−3)2 andq(t,x) = 0

with a= (1,2,1)⊤ andn as the normal vector. The length of the interval is again taken as
T = 4−3. We compare the pointwise errors in the interior defined by (9.4). The error on
the boundary was measured by the norm

e1/2
u =

√
∑ j
〈
D((u−ure f)(t j)),(u−ure f)(t j)

〉2
Γ√

∑ j
〈
Dure f(t j),ure f(t j)

〉2
Γ

, (9.7)
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with the reference solutionure f . The error of the pore pressure is measured in the same

norm and denoted bye1/2
p . The hyper-singular operator was evaluated fors= 1 and thus

the norm is equivalent to theH1/2(Γ)-norm.

N petu eoc petp eoc e1/2
t eoc e1/2

q eoc

256 1.16e-01 1.66 1.59e-01 1.63 1.39e-01 1.67 7.14e-02 1.81
512 3.08e-02 1.91 4.24e-02 1.90 3.70e-02 1.91 1.85e-02 1.95
1024 7.74e-03 1.99 1.07e-02 1.99 9.31e-03 1.99 4.61e-03 2.00
2048 1.85e-03 2.07 2.56e-03 2.06 2.22e-03 2.07 1.10e-03 2.06
4096 3.70e-04 2.32 5.11e-04 2.32 4.45e-04 2.32 2.21e-04 2.32

Table 9.16: Neumann problem - Collocation approach - BDF2.

The errors presented in Tables 9.16 and 9.17 indicate that the collocation as well as the
Galerkin approach yield the desired convergence rates for the point evaluation in the inte-
rior as well as the given norm on the boundary.

N petu eoc petp eoc e1/2
t eoc e1/2

q eoc

256 6.72e-03 1.92 2.30e-02 1.93 1.82e-02 1.92 2.67e-02 1.93
512 1.70e-03 1.98 5.81e-03 1.99 4.61e-03 1.98 6.74e-03 1.99
1024 4.22e-04 2.01 1.44e-03 2.01 1.14e-03 2.01 1.67e-03 2.01
2028 1.01e-04 2.07 3.43e-04 2.07 2.73e-04 2.07 3.98e-04 2.07
4096 2.01e-05 2.32 7.07e-05 2.28 5.46e-05 2.32 7.97e-05 2.32

Table 9.17: Neumann problem - Galerkin approach - BDF2.

The error for the Galerkin approach is significantly smallerthan the error for the colloca-
tion approach.

9.4.3 Mixed boundary value problem

For the mixed problem the Dirichlet boundaryΓD is chosen as the facex1 =−0.5 and the
Neumann boundary asΓN = Γ\ΓD. On the Dirichlet boundary the wave

u(t,x) = 10−6e−5(1308.73t−〈a,x〉−3)2 andp(t,x) = 0

is prescribed. On the Neumann boundary the incoming wave

t(t,x) = 10−6(10t −〈a,x〉−3)〈a,n〉e−5(1308.73t−〈a,x〉−3)2 andq(t,x) = 0
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is prescribed. Againa= (1,2,1)⊤ andn is the normal vector.

The errors for the collocation approach, see Chapter 9.2, arestated in Table 9.18. The
errors are given in aH1/2(ΓN) norm, see (9.7), for the solid displacementu and the pore
pressurep and aH−1/2(ΓD) norm, see (9.6), for the tractiont and the fluxq.

N e1/2
u eoc e1/2

p eoc e−1/2
t eoc e−1/2

q eoc

256 3.51e-02 1.85 4.35e-02 1.87 3.01e-02 1.85 4.91e-02 1.81
512 9.01e-03 1.96 1.11e-02 1.97 7.71e-03 1.96 1.27e-02 1.95
1024 2.24e-03 2.01 2.76e-03 2.01 1.92e-03 2.00 3.18e-03 2.00
2028 5.36e-04 2.07 6.58e-04 2.07 4.61e-04 2.06 7.61e-04 2.06
4096 1.07e-04 2.32 1.32e-04 2.32 9.68e-05 2.25 1.52e-04 2.32

Table 9.18: Mixed Problem - Collocation approach - BDF2.

The errors for the Galerkin approach (8.2) are presented in Table 9.19. The errors converge
with the expected convergence rate of two.

N e1/2
u eoc e1/2

p eoc e−1/2
t eoc e−1/2

q eoc

256 6.87e-03 1.96 8.18e-03 1.96 8.25e-03 1.94 1.15e-02 1.96
512 1.73e-03 1.99 2.05e-03 1.99 2.08e-03 1.99 2.89e-03 1.99
1024 4.28e-04 2.01 5.09e-04 2.01 5.16e-04 2.01 7.16e-04 2.01
2028 1.02e-04 2.07 1.21e-04 2.07 1.23e-04 2.07 1.71e-04 2.07
4096 2.04e-05 2.32 2.43e-05 2.32 2.48e-05 2.31 3.42e-05 2.32

Table 9.19: Mixed Problem - Galerkin approach - BDF2.

Comparing the errors of the Galerkin and the collocation approach, the errors for the
Galerkin approach are in general significantly better by almost one order of magnitude.

Moreover, the error of the point evaluation inside the domain Ω is presented in Table 9.20.
The relative error is defined in (9.5).

Again the errors for the Galerkin approach are significantlybetter.

In comparison the errors for the BDF1 multistep methods utilizing the Galerkin approach
are presented in Table 9.21. The reference solution which was used to calculated the error
was calculated with 8192 time steps with the BDF2 multistep method. Thus the reference
solution should be far more exact. Indeed no increase in the convergence number in the
last level is observed.

As expected the convergence number tends towards one and theerrors are significantly
worse than the errors presented in Table 9.19 for the BDF2 multistep method.
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N petu eoc petp eoc pett eoc petq eoc

Collocation Galerkin

256 1.64e-02 1.84 4.38e-02 1.83 4.38e-03 1.96 9.17e-03 1.94
512 4.20e-03 1.96 1.13e-02 1.95 1.10e-03 1.99 2.31e-03 1.99
1024 1.05e-03 2.00 2.82e-03 2.00 2.72e-04 2.01 5.73e-04 2.01
2028 2.50e-04 2.07 6.75e-04 2.07 6.49e-05 2.07 1.37e-04 2.07
4096 5.01e-05 2.32 1.35e-04 2.32 1.30e-05 2.32 2.75e-05 2.31

Table 9.20: Mixed Problem - Point evaluation - BDF2.

N e1/2
u eoc e1/2

p eoc e−1/2
t eoc e−1/2

q eoc

256 1.10e-01 0.87 1.19e-01 0.85 1.33e-01 0.83 1.32e-01 0.81
512 5.78e-02 0.93 6.30e-02 0.92 7.12e-02 0.91 7.13e-02 0.89
1024 2.96e-02 0.97 3.24e-02 0.96 3.69e-02 0.95 3.71e-02 0.94
2028 1.50e-02 0.98 1.65e-02 0.98 1.88e-02 0.97 1.89e-02 0.97
4096 7.53e-03 0.99 8.29e-03 0.99 9.46e-03 0.99 9.56e-03 0.99

Table 9.21: Mixed Problem - Galerkin approach - BDF1.





10 CONCLUSIONS AND OUTLOOK

We have derived a boundary element approach for poroelasticity. We started from a system
of partial differential equations in Laplace domain, and derived the symmetric formulation.
By applying an inverse Laplace transformation this set of boundary integral equations was
transferred into time domain. Furthermore, the set of boundary integral equations was dis-
cretized by a Galerkin approximation in space and a convolution quadrature approximation
in time. Unique solvability, stability and convergence of the fully discretized system was
shown. The convergence order coincide with the convergenceorders obtained by numeri-
cal examples.

A few open points remain: Error estimates for the convolution quadrature methods were
derived in the energy norms. An extension to a set of norms is desirable. Especially, error
estimates for theL2(Γ)-norm are more practical. To show such an error estimate for the
boundary integral equation related to the Dirichlet boundary value problem an estimate for
the operator

V(s)−1
(

1
2

I +K(s)

)
: [H1(Γ)]4 → [L2(Γ)]4 (10.1)

is needed. It is well known that the operator (10.1) is bounded, however the explicit de-
pendency onto the Laplace parameters is not yet known. The bound can be calculated by
techniques utilized in [38]. If such a bound also holds for the discrete operator is still an
open question.

To obtain reasonable results with the Galerkin method for the mixed boundary value prob-
lem the accuracy of the computation of matrix entries is quite demanding. The partially in-
tegrated kernel of the hyper–singular operator is rather complex, combined with the Duffy
transformation, see [20], which utilizes a Gauss product approach, the requirements on
the computation time are so far quite high. For example optimized integration formulae,
see [16,54], could decrease the computation time.
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