

Institut für Elektronik

Elektronische Schaltungstechnik Übung

2. Teiklausur - Probeklausur!

mame.			
Matr.Nr			

Januar 2022

1 Negativer Widerstand

Auf der Suche nach interessanten Operationsverstärkerschaltungen sind wir auf [1, Schaltung 10] gestoßen. Dort wird behauptet, dass man mit der Schaltung in Abbildung 1 einen "negativen Widerstand" bauen kann. Der Eingangsstrom solle sich zur Eingangsspannung wie in Equation 1 verhalten.

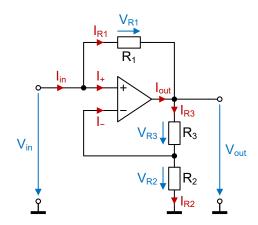


Abbildung 1: Negativer Widerstand.

$$V_{in} = -R_1 \cdot I_{in} \tag{1}$$

Um nachzuvollziehen ob das Ganze überhaupt funktioniert nehmen wir an, dass unser Operationsverstärker folgende (ideale) Eigenschaften besitzt:

- Unendlich hohe Differenzverstärkung $A_{DM} \rightarrow \infty$,
- keine Offsetspannung $V_{offset} = 0 \text{ V}$,
- keine Biasströme $I_+ = I_- = 0 \text{ A}$,
- der Ausgangsstrom I_{out} kann unendlich groß werden,
- unendlich große Ausgangsaussteuergrenzen.

Außerdem vereinfachen wir uns die Schaltung, indem wir $R_2 = R_3 = R$ setzen.

Beantworte die folgenden Fragen im Zuge der Analyse dieser Schaltung:

1a (5 Punkte): Ist der Operationsverstärker in Mit- (positive feedback) oder Gegenkopplung (negative feedback) geschalten? Begründe wie du zu deiner Schlussfolgerung gekommen bist.

1b (8 Punkte): Leite den Zusammenhang zwischen V_{in} und I_{in} aus Equation 1 her.

1c (12 Punkte): Berechne alle Ströme und Spannungen der Schaltung bei einer Eingangsspannung von $V_{in} = 1 \text{ V}$. Dazu nehmen wir an, dass

 $R_2=R_3=R=1\,\mathrm{k}\Omega$ und $R_1=1\,\mathrm{k}\Omega$ betragen. Zur Orientierung sind im Folgenden alle gesuchten Größen aufgelistet:

\Box V_{in}	\Box V_{R2}	\Box I_{out}	\Box I_{R1}
\Box V_{out}	\Box V_{R3}	\Box I_{+}	\Box I_{R2}
\Box V_{R1}	\Box I_{in}	□ <i>I</i> _	\Box I_{R3}

1d (5 Punkte): Nehmen wir nun an, dass der Operationsverstärker eine gewisse Offsetspannung V_{offset} (Vorzeichen unbekannt) hat. Wie sieht dann die Abhängigkeit des Eingangsstromes von der Eingangsspannung I_{in} (V_{in}) aus?

2 Astabile Kippstufe

In dieser Teilaufgabe wollen wir eine astabile Kippstufe wie in Abbildung 2 betrachten.

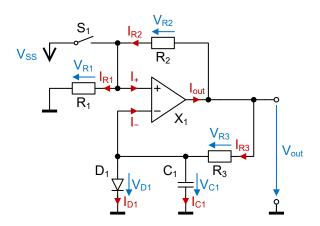


Abbildung 2: Astabile Kippstufe.

Der Operationsverstärker soll als ideal angenommen werden und soll dabei mit $V_{DD}=5\,\mathrm{V}$ und $V_{SS}=-5\,\mathrm{V}$ versorgt werden und hat einen rail-to-rail Output (kann bis zu den Versorgungsspannungen ausgesteuert werden). Die Widerstände sollen mit $R_1=R_2=R_3=1\,\mathrm{k}\Omega$ angenommen werden. Die Kapazität hat einen Wert von $C=1\,\mathrm{\mu}F$. Die Diode verhält sich ideal und hat in Vorwärtsrichtung einen Spannungsabfall von $V_D=0.7\,\mathrm{V}$.

Beantworte die folgenden Fragen im Zuge der Analyse dieser Schaltung:

- 2a (2 Punkte): Ist der Operationsverstärker (mit R₁ und R₂, ohne RC-Netwerk) in Mit-(positive feedback) oder Gegenkopplung (negative feedback) geschalten? Begründe wie du zu deiner Schlussfolgerung gekommen bist.
- **2b** (**4 Punkte**): Welcher der Zustände $V_{out} = 5 \text{ V}$ oder $V_{out} = -5 \text{ V}$ ist der stabile Zustand bzw. Arbeitspunkt, welchen die Schaltung bei offenem Schalter nicht mehr verlassen kann? Begründe deine Entscheidung.
- **2c (10 Punkte):** Berechne den DC Arbeitspunkt, für den stabilen Arbeitspunkt. Zur Orientierung: Wir suchen folgende Größen:

\Box V_{out}	$\Box V_{C1}$	□ <i>I</i> _	$\Box I_{D1}$
\Box V_{R1}	$\Box V_{D1}$	\Box I_{R1}	$\Box I_{C1}$
\Box V_{R2}	\Box I_{out}	\Box I_{R2}	
\Box V_{R3}	\Box I_{+}	\Box I_{R3}	

2d (3 Punkte): Zum Zeitpunkt $t_0 = 0$ s wird der Schalter für eine gewisse kurze Zeit t_c , geschlossen. Wie groß sind die Spannungen kurz nach dem Schließen

des Schalters, nachdem der Operationsverstärker bereits auf das neue Eingangssignal reagiert hat, aber noch vor dem Umladen des Kondensators? Zur Orientierung: Wir suchen folgende Größen:

\Box V_{out}	\Box V_{R2}	$\Box V_{C1}$
$\Box V_{R1}$	\Box V_{R3}	$\Box V_{D1}$

- **2e** (**4 Punkte**): Wie wird sich der Kondensator umladen? Bitte sowohl qualitativ als Text, als auch quantitativ mit einer Formel $v_c(t)$ beschreiben.
- **2f (2 Punkte):** Welche Bedingung(en) müssen erfüllt sein, dass dieser Umladevorgang in diese Richtung stoppt? Es darf angenommen werden, dass die Zeit t_c wesentlich kleiner als die Umladezeit t_1 ist.
- **2g (4 Punkte):** Berechne die Umladezeit t_1 .
- **2h (4 Punkte):** Nachdem der Operationsverstärker wieder gekippt ist: Berechne die Zeit t_2 , welche der Kondensator benötigt, um wieder zum Anfangspunkt, also dem stabilen Arbeitspunkt zurückzukehren.
- **2i (5 Punkte):** Skizziere die Verläufe der Kondensatorspannung $v_{C,1}(t)$ und der Ausgangsspannung $v_{out}(t)$, vor und nach dem kurzen Umschalten, des Schalters S_1 . Dabei sollten zumindest V_{DD} , V_{SS} und die relevanten Umladegrenzen des Kondensators eingezeichnet sein.
- **2j (2 Punkte):** Wie könnte solch ein idealer Schalter mit elektronischen Bauteilen realisiert werden?

3 Synthese einer Operationsverstärkerschaltung

In dieser Aufgabe wollen wir die folgende mathematische Funktion mit Hilfe einer Schaltung realisieren.

$$y = 4 \cdot x_1 - 2 \cdot x_2 - 3 \cdot x_3 - 5 \cdot x_4 \tag{2}$$

Dabei sollen die Eingangsgrößen x_1 , x_2 , x_3 , x_4 und die Ausgangsgröße Spannungen darstellen. Es stehen dir für die Realisierung folgende Bauteile zur Verfügung:

- Ein (1) idealer Operationsverstärker,
- beliebig viele Dioden,
- beliebig viele Transistoren,
- beliebig viele Widerstände ab 1 kΩ,
- beliebig viele Kapazitäten bis zu 10 μF,
- beliebig viele Induktivitäten bis 100 nH.

Bearbeite folgende Aufgaben:

- 3a (16 Punkte) Realisiere die gegebene mathematische Funktion, indem du eine passende Schaltung mit den gegebenen Kriterien findest und entsprechend dimensionierst.
- 3b (7 Punkte) Ist die auch Funktion $y = 11 \cdot x_1 2 \cdot x_2 3 \cdot x_3 5 \cdot x_4$ mit den oben genannten Kriterien realisierbar? Begründe warum (nicht)?
- 3c (7 Punkte) Ist die auch Funktion $y = 12 \cdot x_1 2 \cdot x_2 3 \cdot x_3 5 \cdot x_4$ mit den oben genannten Kriterien realisierbar? Begründe warum (nicht)?

Referenzen

[1] Arrows Electronics Jean Jacques Meneu. *Top 10 Fundamental Op Amp Circuits*. URL: https://www.arrow.com/en/research-and-events/articles/fundamentals-of-op-amp-circuits.

Legal Notice

This document is licensed under a Creative Commons Attribution 4.0 International License. This includes all pictures with the exception of the title page and all logos.