

Institut für Elektronik

Elektronische Schaltungstechnik Übung

Hausübung, Einheit 9, Kippstufen

Dominik Zupan

3. Dezember 2021

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Mitkopplung oder Gegenkopplung?	3
2	Bistabile Kippstufe	5
3	Schmitt-Trigger mit mehreren Inputs	6
Referenzen		7
Legal Notice		7

1 Mitkopplung oder Gegenkopplung?

In dieser Aufgabe wollen wir unterschiedliche Operationsverstärkerschaltungen betrachten und untersuchen, ob diese mitgekoppelt (positives Feedback) oder gegengekoppelt (negatives Feedback) sind. Die Schaltungen sind in Abbildung 1 dargestellt. Die Operationsverstärker haben dabei eine unendlich große Spannungsverstärkung A_{DM} und einen rail-to-rail Ausgang (das heißt der Output kann die beiden Versorgungsspannungen erreichen).

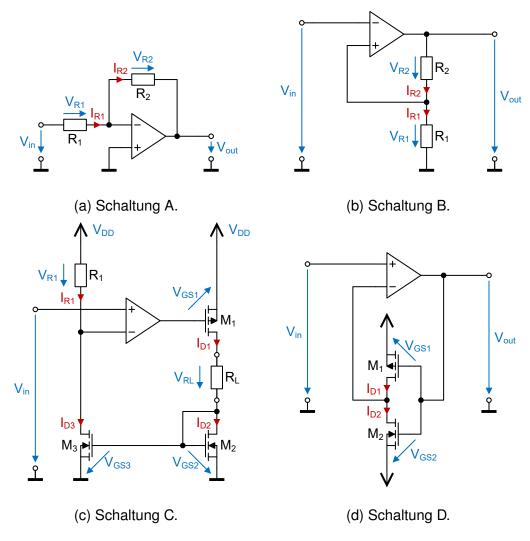


Abbildung 1: Operationsverstärker in Mit- oder Gegenkopplung.

Die folgenden Fragen sollen im Zuge der Analyse dieser Schaltung beantwortet werden:

1. In welchen Schaltungen ist der Operationsverstärker in Mitkopplung und in welchen Schaltungen ist der Operationsverstärker in Gegenkopplung geschaltet? Erkläre wie du zu den jeweiligen Schlüssen kommst.

Hinweis: Wir können folgende Videos [1] und [2, Zeit ab: 7:21] empfehlen.

Mitkopplung oder Gegenkopplung?

2. Bei den Schaltungen A und B legen wir nun ein Sinussignal an. Wie wird das jeweilige Ausgangssignal aussehen (Form, Amplitude, Frequenz)? Eine grobe Skizze/Beschreibung reicht.

2 Bistabile Kippstufe

In diesem Beispiel wollen wir die bistabile Kippstufe in Abbildung 2 betrachten.

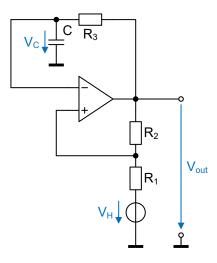


Abbildung 2: Bistabile Kippstufe.

Der Operationsverstärker soll dabei mit $V_{DD}=5\,\mathrm{V}$ und $V_{SS}=-5\,\mathrm{V}$ versorgt werden und hat einen rail-to-rail Output (kann bis zu den Versorgungsspannungen ausgesteuert werden). Die Widerstände sollten mit $R_1=R_2=R_3=1\,\mathrm{k}\Omega$ angenommen werden. Die Kapazität hat einen Wert von $C=1\,\mu\mathrm{F}$. Die Hilfsspannung beträgt $V_H=2.5\,\mathrm{V}$.

Die folgenden Fragen sollen im Zuge der Analyse dieser Schaltung beantwortet werden:

- 1. Berechne die Schaltschwellen V_{up} und V_{down} des eingebauten Schmitt-Triggers.
- 2. Berechne die Kondensatorspannung $v_C(t)$ bis sie V_{down} erreicht, nachdem die Kippstufe bei V_{up} gekippt ist.
- 3. Zu welchem Zeitpunkt erreicht die Kondensatorspannung $v_C(t)$ die Schaltschwelle V_{down} ?
- 4. Berechne die Kondensatorspannung $v_C(t)$ bis sie V_{up} erreicht, nachdem die Kippstufe bei V_{down} gekippt ist.
 - Tipp: Nimm eine neue Zeitachse an, um die Berechnung leichter zu machen.
- 5. Zu welchem Zeitpunkt erreicht die Kondensatorspannung $v_{C}(t)$ die Schaltschwelle V_{up} ?
- 6. Skizziere die Verläufe der Kondensatorspannung $v_C(t)$ und der Ausgangsspannung $v_{out}(t)$. Dabei sollten zumindest V_{DD} , V_{SS} , V_{up} und V_{down} eingezeichnet sein.
- 7. Wie groß ist die Periodendauer und die Frequenz der Schaltung?

3 Schmitt-Trigger mit mehreren Inputs

In dieser Aufgabenstellung wollen wir einen Schmitt-Trigger mit mehreren Inputs wie in Abbildung 3 betrachten und uns herleiten bei welchen Spannungsleveln unser Operationsverstärker in den jeweils anderen Zustand kippt.

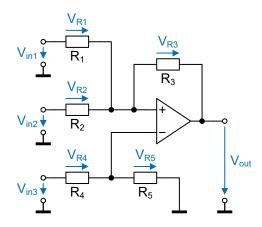


Abbildung 3: Schmitt-Trigger mit mehreren Eingangsspannungen.

Die Widerstände seien mit $R_1 = R_2 = R_3 = R_5 = 1 \text{ k}\Omega$ und $R_4 = 2 \text{ k}\Omega$. Der Operationsverstärker wird mit $V_{DD} = 5 \text{ V}$ und $V_{SS} = -5 \text{ V}$ versorgt und soll wiederum als ideal mit rail-to-rail Ausgang betrachtet werden.

Die folgenden Fragen sollen im Zuge der Analyse dieser Schaltung beantwortet werden:

- 1. Nehmen wir an der Operationsverstärker gibt V_{DD} aus. Welche Bedingung müssen die Eingangsspannungen V_{in1} und V_{in2} erfüllen, damit der Schmitt-Trigger in die andere Seite kippt. Gib diese Bedingung in der Form $f(V_{in1}, V_{in2}) < g(V_{in3}, V_{DD}, V_{SS})$ an. Welcher konkreten Spannung würde die Funktion $g(V_{in3}, V_{DD}, V_{SS})$ entsprechen, wenn $V_{in3} = 1 \text{ V}$ wäre?
- 2. Nehmen wir an der Operationsverstärker gibt V_{SS} aus. Welche Bedingung müssen die Eingangsspannungen V_{in1} und V_{in2} erfüllen, damit der Schmitt-Trigger in die andere Seite kippt. Gib diese Bedingung in der Form $f(V_{in1}, V_{in2}) > g(V_{in3}, V_{DD}, V_{SS})$ an. Welcher konkreten Spannung würde die Funktion $g(V_{in3}, V_{DD}, V_{SS})$ entsprechen, wenn $V_{in3} = 1 \text{ V}$ wäre?

Referenzen

- [1] IFE TU Graz Patrick Schrey. Negative Feedback OpAmps (Part 1). URL: https://www.youtube.com/watch?v=sE77LZ6yt-U.
- [2] IFE TU Graz Patrick Schrey. *Positive Feedback OpAmps*. URL: https://www.youtube.com/watch?v=9FgX73SuTmQ.

Legal Notice

This document is licensed under a Creative Commons Attribution 4.0 International License. This includes all pictures with the exception of the title page and all logos.