
SCIENCE

PASSION

TECHNOLOGY

Design Patterns

448.058 (VO), 448.059 (UE)
Michael Krisper

Georg Macher



Plan for Today

▪ 13:00 – 16:00

▪ Introduction to „Design Patterns“

▪ Course Organisation

▪ Survey of Needs, Expectations, and Prerequisites

(Break, 15 minutes)

▪ What is a Design Pattern?

▪ Self-Assessment

Plan for today…



Team

Team

Michael Krisper

michael.krisper@tugraz.at

discord: Michael Krisper#5968

Uncertainty and Risk Propagation

Expert Judgment for Cyber-Security

Georg Macher

georg.macher@tugraz.at

Safety & Security 

in Automotive & Autonomous Driving

ITI - Institute for Technical Informatics

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3


Bachelor / Master Thesis
TOPICS PRESENTATION

Tuesday, October 13, 2020

2:30 – 4:00 PM
Institute of Technical Informatics

Discord: https://discord.gg/rFXPjW3 Discord www.iti.tugraz.at

https://discord.gg/rFXPjW3




The architect Christopher Alexander in 2012
(CC BY SA 4.0) Michaelmehaffy

A Pattern Language, 1977

Founder of Pattern Movement: Christopher Alexander, Architect

https://commons.wikimedia.org/w/index.php?title=User:Michaelmehaffy&action=edit&redlink=1


Ralph Johnson

Erich Gamma

John VlissidesRichard Helm

Grady Booch

Design Patterns, 1994

Kickstarters of Design Patterns for Software Development:

Gang of Four: Johnson, Gamma, Helm, Vlissides



POSA1: Pattern-Oriented Software 

Architecture Volume 1: A system of patterns 

(Buschmann, Meunier, et al., 1996) 

POSA2: Pattern-Oriented Software Architecture 

Volume 2: Patterns for Concurrent and Networked 

Objects (Schmidt et al., 2000) 

POSA3: Pattern-Oriented Software Architecture 

Volume 3: Patterns for Resource Management 

(Kircher and Jain, 2004) 

More Pattern Books…

POSA4: Pattern-Oriented Software Architecture Volume 4: 

Pattern Language for Distributed Computing 

(Buschmann, Henney, and Schmidt, 2007) 



Patterns in this course…



Patterns in this course…

▪ Wrapping: Adapter, Façade, Decorator, Proxy

▪ Creation: Factory Method, Abstract Factory, Builder, Prototype, Singleton, Flyweight

▪ Behaviour: Strategy, Command, State

▪ Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-Server

▪ Collections: Iterator, Visitor, Composite, Null-Object

▪ Communication: Observer, Bridge, Broker, Mediator, Blackboard, Microkernel, 

Client-Dispatcher-Server/Lookup, Messaging & Service-Orientation: Message, 

Message-Endpoint, Message-Translator, Message-Router, MVC

▪ Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, Thread-

Specific Storage, Double-Checked-Locking, Async/Await, Proactor, Reactor

▪ Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching & 

Pooling, Leasing, Garbage Collector

▪ Others: Memento, Counted Pointer, Chain of Responsibility, Interpreter/Abstract 

Syntax Tree



When will you need Design Patterns?

▪ Every time you develop and design software!

Examples:

▪ You are a Software Developer and need to implement specific tasks in your

product.

▪ You are a Senior Software Architect in a company and have to manage 

complex software requirements and design flexible software architectures.

▪ You are a startup founder and want to write software for a product which is

extensible, and flexible.

▪ You are a student and have to solve a software problem for an exercise at the

university.

Learning Goals



Learning Goals

Design Patterns Theory

▪ What is a design pattern? Why do we need them?

▪ What are the core principles behind design patterns?

▪ How to describe design patterns?

▪ What is a pattern language?

Design Patterns in Detail

▪ Know core ideas and application of 
important design patterns! (~50)

Application of Design Patterns

▪ When to use what?

Learning Goals



Learning Goals

▪ You know common design patterns and their core idea (approx. 50 patterns).

▪ You can apply them in software development regardless of the programming 

language or development environment.

▪ You can derive the consequences of design patterns and see the design 

decisions.

▪ You decide if the consequences of a pattern are acceptable or not.

▪ You avoid overengineering and misuse of patterns.

▪ You can make reasonable design decisions by balancing out the forces, 

consequences, and requirements for arbitrary problems and contexts.

Learning Goals



Course Organisation



Organisation: „Digital First“

▪ TeachCenter: https://tc.tugraz.at/main/course/view.php?id=2199

▪ Lectures will be held in BigBlueButton

▪ Communication via eMail

Design Patterns, VO (approx. 110 students)

▪ Wednesdays, 13:00 - 16:00 (Attendance not required)
▪ 13:00 – 14:00 Video Self-Lecture and Discussions

▪ 14:00 – 14:15 Break

▪ 14:15 – 16:00 Live Programming and Discussions

▪ Pattern videos and slides will be supplied

▪ Edited live recordings will be supplied

▪ Exam: 27.01.2021 (in https://exam.tugraz.at/moodle/course/view.php?id=69)

Organisation

https://tc.tugraz.at/main/course/view.php?id=2199
https://exam.tugraz.at/moodle/course/view.php?id=69


Schedule Design Patterns VO

Date from to Content

07.10.2020 13:00 16:00 Introduction, Organisation

14.10.2020 13:00 16:00 Theory, Principles, and Guidelines

21.10.2020 13:00 16:00 Adapter, Facade, Decorator, Proxy

28.10.2020 13:00 16:00 Layers, Broker, Pipes & Filters, Master/Slave, Client/Server

04.11.2020 13:00 16:00 Factory Method, Abstract Factory, Builder, Singleton, Prototype, Memento, State, Flyweight

11.11.2020 13:00 16:00 Iterator, Visitor, Strategy, Command, Composite, Template Method, Map/Reduce, Fluent Interface

18.11.2020 13:00 16:00 Mediator, Bridge, Blackboard, Microkernel, Broker, Messages (Message, Endpoint, Translator, Router)

25.11.2020 13:00 16:00
Locks (Mutex,Semaphor, Condition Variable), Scoped Locking, Double Checked Locking, Monitor, 
Future/Asynchronous Completion Token, Active Object, Thread Specific Storage

02.12.2020 13:00 16:00
Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching, Pooling, Leasing, Garbage Collector, Scoped 
Resource, Active Record

09.12.2020 13:00 16:00 Chain of Responsibility, Counted Pointer/Smart Pointer/Unique Pointer, Interpreter/Abstract Syntax Tree

16.12.2020 13:00 16:00 Forwarder/Receiver, Proactor, Reactor, Async/Await, Coroutines

13.01.2021 13:00 16:00 Model-View-Controller, Model-View-Viewmodel, Model-View-Presenter, Presentation-Abstraction-Control

20.01.2021 13:00 16:00 Summary

27.01.2021 13:00 16:00 Exam



17

Introduction

What is a Design Pattern?

      

      

          

       

                 
       

          

      

       

                         

                



What is a pattern?

“A proven solution for a (recurring) problem.”

A solution idea, scheme, or template.

Patterns are a universal principle:

• Economics (Etzioni, 1964)

• Social Interaction (Newell,Simon, 1972)

• Architecture (Alexander et. al., 1975)

• Software (General awareness from 1990’s on)

18



Purpose of Design Patterns

• Easier knowledge transfer

• Efficient problem solving by reusing existing ideas

“Don’t reinvent the wheel”

• Establishes a common vocabulary, terminology, or language

• Increases usefulness of an idea by generalizing the solution

19



Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes-And-Filters, Broker, Model-View-Controller, Microkernel, 
Async-Await

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming languages or 
environments

• Examples: Counted Pointer, Scoped Locking, Variadic Macros

20



Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem hurt in this context? 

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences (Rationale, Resulting Context):
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

21



22

Pattern House

Context

Problem Solution

Forces Consequences

Known Uses

Name



Alexandrian Pattern Format23

Context

Problem and 

Forces

Solution and 

Consequences

Related Patterns, 

Epilogue

Name

Picture



How Design Patterns emerge?

Design Patterns are found - not invented!

They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
➔ At least three Known-Uses, Real Projects!

2. Write down the core idea and experiences
➔ Name, Context, Problem, Forces, Solution, Consequences, Known Uses

3. Discuss with others (often & repeatedly)

4. Improve Pattern (and repeat discussions)

5. Publish! (Conferences, Books, Blogs)

6. Continue to improve, apply and discuss pattern

24



Pattern Languages

… are coherent systems of patterns.

Consisting of:

• Patterns

• Relations

• Principles (Guidelines for design and evolution):

• How to create / implement

• Beneficial combination of patterns

• How to change/evolve

Daily Life Examples: Cooking, Sports, Crafts, Sailing, Architecture, Programming

25

Goal: What is a pattern language?



GOF Pattern Language26

Goal: Create a pattern language



Self-Assessment (9 Questions – 10 minutes)

1. When is the exam?

2. What is a design pattern?

3. Why are design patterns useful?

4. How can a design pattern be described? (Pattern format)

5. What are the essential parts of a design pattern?

6. Design patterns are invented.     YES   or     NO?

7. What is a idiom and why is it different to an architectural design pattern?

8. What is a pattern language?

9. Can you name some real-life design pattern?

27


