Ty

SCIENCE

PASSION
TECHNOLOGY

Design Patterns
448.058 (VO), 448.059 (UE)

Michael Krisper
Georg Macher

TU

Plan for today... Grazm

Plan for Today

= 13:00-16:00

= [ntroduction to ,Design Patterns”
= Course Organisation
= Survey of Needs, Expectations, and Prerequisites

(Break, 15 minutes)

= What is a Design Pattern?
= Self-Assessment

TU

Grazm

Mlchael Krlsper Georg Macher

michael.krisper@tugraz.at georg.macher@tugraz.at
discord: Michael Krisper#5968
Uncertainty and Risk Propagation Safety & Security
Expert Judgment for Cyber-Security in Automotive & Autonomous Driving

I T I Tl - Institute for Technical Informatics

Ty

Grazm

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3

Tuesday, October 13 2020
2:30-4:00 PM

Institute of Technical Informatics
Discord: https://discord.gg/rEXP|W3

o

E n
» Discord

Dy 0 sy B 00000 T

» Www.iti.tugraz.at

T S T

https://discord.gg/rFXPjW3

Ty

Prof. Marcel Baunach
Networked

/ k’ Eén}g(:gg]zd Dr. Georg Macher
Embedded
Automotive

Systems Industrial

Informatics

Prof. Eugen Brenner

TU

Founder of Pattern Movement: Christopher Alexander, Architect Grazm

A Pattern Language

Towns -Buildings - Construction

Christopher Alexander

Sara Ishikawa - Murray Silverstein
WITH

Max Jacobson - Ingrid Fiksdahl-King
The architect Christopher Alexander in 2012 Shlomo Angel

(CC BY SA 4.0) Michaelmehaffy
A Pattern Language, 1977

https://commons.wikimedia.org/w/index.php?title=User:Michaelmehaffy&action=edit&redlink=1

Kickstarters of Design Patterns for Software Development:
Gang of Four: Johnson, Gamma, Helm, Vlissides

TU

Grazm

Il‘r |
= 14
; T“‘cr:‘ | ;
: h\w ion B

Erich Gamma

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

S31¥3S ONILNWOD TYNOISSIHO¥d AFT1SIM-NOSIAAY b

e |,

Grady Booch

More Pattern Books...

TU

Grazm

POSAL: Pattern-Oriented Software
Architecture Volume 1: A system of patterns
(Buschmann, Meunier, et al., 1996)

POSAZ2: Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked PATTERN-ORIENTED
Objects (Schmidt et al., 2000) S jRCHITECTURE

POSAS: Pattern-Oriented Software Architecture
Volume 3: Patterns for Resource Management
(Kircher and Jain, 2004)

POSAA4: Pattern-Oriented Software Architecture Volume 4:

Pattern Language for Distributed Computing
(Buschmann, Henney, and Schmidt, 2007)

" | PATTERN-ORIENTED
. SOFTWARE
" | ARCHITECTURE

s A System of Patterns

aaaaaaaaaaaa

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE

TU

Patterns in this course... Grazm

an oo

] [
=

=1 p—r - : e
oo =S [

=

— T —
5

(o]

rar v cnrmete

[———

Bl it e
+Umbnid rare, sge) B B s sy

||
[bl +

1 =
=

R

m——

9

e

e —

TU

Patterns in this course... Grazm

Wrapping: Adapter, Facade, Decorator, Proxy

Creation: Factory Method, Abstract Factory, Builder, Prototype, Singleton, Flyweight
Behaviour: Strategy, Command, State

Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-Server
Collections: Iterator, Visitor, Composite, Null-Object

Communication: Observer, Bridge, Broker, Mediator, Blackboard, Microkernel,
Client-Dispatcher-Server/Lookup, Messaging & Service-Orientation: Message,
Message-Endpoint, Message-Translator, Message-Router, MVC

Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, Thread-
Specific Storage, Double-Checked-Locking, Async/Await, Proactor, Reactor

Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching &
Pooling, Leasing, Garbage Collector

Others: Memento, Counted Pointer, Chain of Responsibility, Interpreter/Abstract
Syntax Tree

Learning Goals -Eg.

“ When will you need Design Patterns?

Every time you develop and design software!

Examples:

You are a Software Developer and need to implement specific tasks in your
product.

You are a Senior Software Architect in a company and have to manage
complex software requirements and design flexible software architectures.

You are a startup founder and want to write software for a product which is
extensible, and flexible.

You are a student and have to solve a software problem for an exercise at the
university.

TU

Learning Goals Grazs

Learning Goals

Design Patterns Theory

= What is a design pattern? Why do we need them?

= What are the core principles behind design patterns?
= How to describe design patterns?

= What is a pattern language?

Design Patterns in Detalil

= Know core ideas and application of
Important design patterns! (~50)

Application of Design Patterns
= When to use what?

TU

Learning Goals Grazs

Learning Goals

= You know common design patterns and their core idea (approx. 50 patterns).

= You can apply them in software development regardless of the programming
language or development environment.

= You can derive the consequences of design patterns and see the design
decisions.

* You decide if the consequences of a pattern are acceptable or not.
= You avoid overengineering and misuse of patterns.

* You can make reasonable design decisions by balancing out the forces,
consequences, and requirements for arbitrary problems and contexts.

Course Organisation

Organisation -Eg.

“ Organisation: ,Digital First®

= TeachCenter: https://tc.tugraz.at/main/course/view.php?id=2199
= Lectures will be held in BigBlueButton
= Communication via eMaill

Design Patterns, VO (approx. 110 students)

= Wednesdays, 13:00 - 16:00 (Attendance not required)
= 13:00 — 14:00 Video Self-Lecture and Discussions
= 14:00 — 14:15 Break
= 14:15 - 16:00 Live Programming and Discussions

= Pattern videos and slides will be supplied
= Edited live recordings will be supplied

= Exam: 27.01.2021 (in https://exam.tugraz.at/moodle/course/view.php?id=69)

https://tc.tugraz.at/main/course/view.php?id=2199
https://exam.tugraz.at/moodle/course/view.php?id=69

Schedule Design Patterns VO

TU

Grazm

Date

07.10.2020
14.10.2020
21.10.2020
28.10.2020

04.11.2020

11.11.2020

18.11.2020

25.11.2020

02.12.2020

09.12.2020
16.12.2020
13.01.2021
20.01.2021

27.01.2021

from

13:00
13:00
13:00
13:00

13:00

13:00

13:00

13:00

13:00

13:00
13:00
13:00
13:00

13:00

to Content

16:00 Introduction, Organisation

16:00 Theory, Principles, and Guidelines

16:00 Adapter, Facade, Decorator, Proxy

16:00 Layers, Broker, Pipes & Filters, Master/Slave, Client/Server

16:00 Factory Method, Abstract Factory, Builder, Singleton, Prototype, Memento, State, Flyweight
16:00 Iterator, Visitor, Strategy, Command, Composite, Template Method, Map/Reduce, Fluent Interface

16:00 Mediator, Bridge, Blackboard, Microkernel, Broker, Messages (Message, Endpoint, Translator, Router)

Locks (Mutex,Semaphor, Condition Variable), Scoped Locking, Double Checked Locking, Monitor,

16:00 Future/Asynchronous Completion Token, Active Object, Thread Specific Storage

Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching, Pooling, Leasing, Garbage Collector, Scoped
Resource, Active Record

16:00
16:00 Chain of Responsibility, Counted Pointer/Smart Pointer/Unique Pointer, Interpreter/Abstract Syntax Tree
16:00 Forwarder/Receiver, Proactor, Reactor, Async/Await, Coroutines

16:00 Model-View-Controller, Model-View-Viewmodel, Model-View-Presenter, Presentation-Abstraction-Control

16:00 Summary

16:00 Exam

TU

Introduction Grazm

What is a Design Pattern?

Target

s »
target ¥’
+ Request()

target.Request() Adaptee

P adaptee + SnecificReauest()

Sinkstopper Wurfleinenknoten

Halber Schiag Kurze Trompete Slipstek Rovingstek

Rundtérn mit halben Schidgen Einfacher Schlaufenknoten Palstek Hondaknoten

TU

Grazm

What Is a pattern?

“A proven solution for a (recurring) problem.”

A solution idea, scheme, or template.

Patterns are a universal principle:

* Economics (Etzioni, 1964)

« Social Interaction (Newell,Simon, 1972)

* Architecture (Alexander et. al., 1975)

« Software (General awareness from 1990’s on)

TU

Grazm

Purpose of Design Patterns

« Easier knowledge transfer

« Efficient problem solving by reusing existing ideas
“Don’t reinvent the wheel”

« Establishes a common vocabulary, terminology, or language

* Increases usefulness of an idea by generalizing the solution

TU

Grazm

Types of Design Patterns

Architectural Patterns
 Fundamental structural patterns
 Stencils for whole architectures

 Examples: Layers, Pipes-And-Filters, Broker, Model-View-Controller, Microkernel,
Async-Awalit

Design Patterns
« Solution templates for more isolated problems
« Examples: Composite, Adapter, Proxy, Factory

ldioms

* Fine-Grained Patterns for problems in specific programming languages or
environments

« Examples: Counted Pointer, Scoped Locking, Variadic Macros

TU

Grazm

Pattern format

 Name: A catchy name for the pattern
* Context: The situation where the problem occurs
 Problem: General Problem Description

. Requirements and Constraints - Why does the problem hurt in this context?

e Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour, Actionable Steps

Consequences (Rationale, Resulting Context):
 What are the benefits and drawbacks? Pro and Contra?
 What are the liabilities, limitations and tradeoffs?
 How are the forces resolved?

Known-Uses: Real Life Examples

Pattern House ﬂ-!rg.

Name

Context

Problem Solution

Forces consequences

Known Uses

Grazm

Alexandrian Pattern Format

that
least a
various coO

iquares. .

Picture

452

Therefore:

Build bus
life. Build
hoods, work commumucs, parts town.

92 BUS STOP

Tawo bus stops.

nt t nters fpublic
Solution and -

bar, tree places, specul roadcrossmgs, publlc hathrooms,

Christopher Alexander
Sara Ishikawa - MM4

M ooobson RS RIS

Shlomo Angel

TU

Grazm

How Design Patterns emerge”?

Design Patterns are found - not invented!
They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
=>» At least three Known-Uses, Real Projects!

2. Write down the core idea and experiences
= Name, Context, Problem, Forces, Solution, Consequences, Known Uses

Discuss with others (often & repeatedly)
Improve Pattern (and repeat discussions)
Publish! (Conferences, Books, Blogs)
Continue to improve, apply and discuss pattern

R

Goal: What is a pattern language?

TU

Grazm

Pattern Languages

... are coherent systems of patterns.

Consisting of:
« Patterns
« Relations

* Principles (Guidelines for design and evolution):
 How to create / implement
« Beneficial combination of patterns
 How to change/evolve

Dally Life Examples: Cooking, Sports, Crafts, Sailing, Architecture, Programming

Goal: Create a pattern language -Erla!.

GOF Pattern Language

Builder

avoiding Eridge
craafing hy=ataresis
coamposiles
ddlirig conTieossd
?gmﬂsmm'r_fg-ﬂ_; sl = Command

[gt

falal

Decorator

[hily it]
the chain

chRanging skin
WErSUE GUIS
aSaaiirg
sharing cperations | chain of Respansibitity |
straleques
sharing
fewrminal
= T | medgiator |
stales 1 r
ST d;ml'ﬁ'x
RErEncy
-k oA Observer
clelinig State
algorithm’s

si8ms
\M——| Template Method F——lf cftert :fsas\
Prototype
/—~——| Factory Method |

implarnasnt usieg

TU

Grazm

Self-Assessment (9 Questions — 10 minutes)

© 0 N o O b~ W NN E

When is the exam?

What Is a design pattern?

Why are design patterns useful?

How can a design pattern be described? (Pattern format)

What are the essential parts of a design pattern?

Design patterns are invented.

What is a idiom and why is it different to an architectural design pattern?

What Iis a pattern language?

Can you name some real-life design pattern?

YES or

NO?

