
SCIENCE

PASSION

TECHNOLOGY

Design Patterns

Part 3: Structural Patterns

Adapter, Facade, Decorator,

Proxy

Adapter
Wrap around a class to make it compatible to another interface.

Adapter
2

Adapter

Context: Working with multiple different frameworks or

libraries.

Problem: How to make incompatible classes work together?

Forces:

• Existing class interface does not match the one you need.

• You want to reuse the functionality (not just copy it).

• Source code of used class may not be available (copying or

changing it is not possible)

• Class may be sealed (inheritance is not possible)

Solution:

• Create an Adapter class which wraps around the Adaptee.

Variant: Class Adapter (inherits from Adaptee)

Variant: Object Adapter (contains Adaptee member)

• Implement the desired new interface using the methods of the

Adaptee as underlying basis.

Consequences: (Class Adapter)

+ Allows to use override mechanisms (e.g. protected methods,

V-table, access to protected members).

+ No additional indirection.

~ Inheritance approach (all methods of adaptee are inherited

automatically, only changes have to be implemented)

- Won't work when we want to adapt a class and all its

subclasses (liskov substitution!), because it is on a different

branch of subclasses.

Consequences: (Object Adapter)

+ Works with base Adaptees and all subclasses (allows liskov

substitution).

+ Adapter hides underlying type of Adaptee (breaks inheritance

hierarchy, composition over inheritance!).

~ Explicit implementation approach (no methods inherited

automatically; all needed methods have to be implemented

explicitly)

- Adds additional layer of indirection.

3
Adapter

4
Adapter

Adapter

Wrap around a class to make it compatible to another interface.

Façade
Provider a higher-level interface to a system.

Façade
5

Façade

Context: Working with a complex structure having many

functions, maybe even with different programming paradigms

(e.g. object-oriented vs. structured).

Problem:

• How to make it easier to use a complex system of functions,

or to use functions of different programming paradigms in a

more intuitive way?

Forces:

• Different programming paradigms from different platforms.

• Developers are used to their own environments and

conventions.

• Developing heterogenous paradigms makes programs more

difficult to maintain.

• Changing the source is seldom possible.

• Details should be hidden away / abstracted away.

Solution:

• Implement a simpler, more high-level interface to be

used by the client.

• Hide the complexities (implementation details) of the

larger system.

• Encapsulate non-OO API data & functions within

concise, robust, portable, maintainable, cohesive OO

class interface.

Consequences:

+ Provides concise, cohesive and robust higher-level

object-oriented programming interfaces.

+ Easier usability and maintainability.

+ Code is more robust, easier to learn and maintain.

- May diminish functionality and lose benefits of

underlying paradigm

- Performance degradation by adding an additional layer

of abstraction

6
Façade

Façade

7
Façade

Decorator
Extend the functionality of an object, while maintaining the same interface.

Decorator
8

Decorator
Context: Functional extension of objects.

Problem: How to add or extend functionalities without

changing the objects.

Forces:

• We want to add responsibilities to individual objects

dynamically and transparently, without affecting other

objects.

• We want to reuse functionality.

• We want to assemble functionalities.

• We want to be able to withdraw responsibilities.

• The extension by subclassing is impractical:

• large number of independent possible extensions.

• hidden class definition or otherwise unavailable for

subclassing

Solution:

• Define a Decorator which forwards requests to its

Component object.

• The decorator may optionally perform additional

operations before and after forwarding the request.

Consequences:

+ More flexibility by adding responsibilities

+ Flexibility responsibilities can be added and removed

also at runtime

+ Decorators also make it easy to add a property twice

+ Avoids feature-laden classes high up in the hierarchy

+ Avoids the class explosion issue

- Decorator and its component are not identically

- Can be hard to learn and debug (lots of little objects

only different in the way of their interconnection)

9
Decorator

Decorator - Example

Decorator
10

Decorator

Decorator
11

Proxy
Provide a placeholder for another object to control it.

Proxy
12

Proxy

Context: Need for versatile references to objects.

Problem: How to handle objects which are not directly

accessible?

Forces:

• Objects could be in different address space (remote

proxy).

• An expensive object needs to be created on demand

(virtual proxy).

• The access to the original object must be supervised

(access rights! – protection proxy).

• A smart reference is needed as a replacement for a

bare pointer that performs additional actions when an

object is accessed.

Solution:

• Maintain a reference that lets the proxy access

the real subject and provide interface identical

to Subject

• Control access to the real subject (may also

include creating and deleting) and act like the real

subject.

Consequences:

+ Introduces a level of indirection when accessing an

object (separation of housekeeping and

functionality)

+ Remote Proxy decouples client and server

+ Virtual Proxy can perform hidden optimizations

+ Caching Proxy could reuse subjects

+ Security Proxy can control access

- Overkill via sophisticated strategies

- Less efficiency due to indirection

13
Proxy

Proxy

Proxy
14

Summary

▪ SOLID Principles:
Single Responsibility, Open-Closed, Liskov-Substitution, Interface Segregation, Dependency Inversion

▪ Principles of Good Programming:
Decomposition, Abstraction, Decoupling, Simplicity & Usability

Patterns:

▪ Iterator: get next item until collection is exhausted.

▪ Adapter: wrap around object to implement another interface.

▪ Facade: Provide a higher-level interface to the customers.

▪ Decorator: wrap around an object to give it more functionality with same interface.

▪ Proxy: wrap around an object with same interface, as a transparent placeholder.

15

