SCIENCE
PASSION
TECHNOLOGY

Design Patterns
Part 3: Structural Patterns

Adapter, Facade, Decorator,
Prox

Adapter

TU

Grazm

Adapter

Wrap around a class to make it compatible to another interface.

Client

target

Target

=¥

4
1

target.Request()

+ Request()

/\

adaptee

Adaptee

Adapter

+ Request())

>

+ SpecificRequest()

)- ---- adaptee.SpecificRequest()

Adapter

TU

Grazm

Adapter

Context: Working with multiple different frameworks or
libraries.

Problem: How to make incompatible classes work together?

Existing class interface does not match the one you need.

You want to reuse the functionality (not just copy it).

Source code of used class may not be available (copying or
changing it is not possible)

Class may be sealed (inheritance is not possible)

Solution:

» Create an Adapter class which wraps around the Adaptee.
Variant: Class Adapter (inherits from Adaptee)
Variant: Object Adapter (contains Adaptee member)

» Implement the desired new interface using the methods of the
Adaptee as underlying basis.

Consequences: (Class Adapter)

+ Allows to use override mechanisms (e.g. protected methods,
V-table, access to protected members).

+ No additional indirection.
Inheritance approach (all methods of adaptee are inherited
automatically, only changes have to be implemented)

- Won't work when we want to adapt a class and all its
subclasses (liskov substitution!), because it is on a different
branch of subclasses.

Consequences: (Object Adapter)

+ Works with base Adaptees and all subclasses (allows liskov
substitution).

+ Adapter hides underlying type of Adaptee (breaks inheritance
hierarchy, composition over inheritance!).
Explicit implementation approach (no methods inherited
automatically; all needed methods have to be implemented
explicitly)

- Adds additional layer of indirection.

Adapter -Emuz.

Adapter
Wrap around a class to make it compatible to another interface.

4 Ny
\ .‘:‘._‘~;$ i
} -’/'.':‘; Rt
{ (Pp= el
(g]
The Client is implemented !J.,f"* o |
aganst the target interface. i

Mapfer

ce
9‘““‘.“
tof The Adapter implements the
target interface and holds an
instance of the Adaptee.

Facade

TU

Grazm

Facade

Provider a higher-level interface to a system.

Client

v

Subsystem

Facade

s

T

n Facade

TU

Grazm

Facade

Context: Working with a complex structure having many
functions, maybe even with different programming paradigms
(e.g. object-oriented vs. structured).

Problem:

How to make it easier to use a complex system of functions,
or to use functions of different programming paradigms in a
more intuitive way?

Different programming paradigms from different platforms.

Developers are used to their own environments and
conventions.

Developing heterogenous paradigms makes programs more
difficult to maintain.

Changing the source is seldom possible.
Details should be hidden away / abstracted away.

Solution:

* Implement a simpler, more high-level interface to be
used by the client.

* Hide the complexities (implementation details) of the
larger system.

* Encapsulate non-OO API data & functions within
concise, robust, portable, maintainable, cohesive OO
class interface.

Consequences:

+ Provides concise, cohesive and robust higher-level
object-oriented programming interfaces.

+ Easier usability and maintainability.
+ Code is more robust, easier to learn and maintain.

- May diminish functionality and lose benefits of
underlying paradigm

- Performance degradation by adding an additional layer
of abstraction

TU

Grazm

. Decorator

TU

Grazm

Decorator

Extend the functionality of an object, while maintaining the same interface.

Component

+ Operation()

ZF ZF component
ConcreteComponent Decorator
+ Operation() + Operation() (I). component.Operation()

T

ConcreteDecorator1

T

+ addedState: *

ConcreteDecorator2

+ Operation()

+ Operation()

+ AddedBehaviour()

O------ Decorator.Operation();
AddedBehaviour();

. Decorator

TU

Grazm

Decorator

Context: Functional extension of objects.

Problem: How to add or extend functionalities without
changing the objects.

« We want to add responsibilities to individual objects
dynamically and transparently, without affecting other
objects.

« We want to reuse functionality.
« We want to assemble functionalities.
* We want to be able to withdraw responsibilities.

* The extension by subclassing is impractical:
« large number of independent possible extensions.

 hidden class definition or otherwise unavailable for
subclassing

Solution:

» Define a Decorator which forwards requests to its
Component object.

» The decorator may optionally perform additional
operations before and after forwarding the request.

Consequences:

+ More flexibility by adding responsibilities

+ Flexibility responsibilities can be added and removed
also at runtime

+ Decorators also make it easy to add a property twice

+ Avoids feature-laden classes high up in the hierarchy

+ Avoids the class explosion issue

- Decorator and its component are not identically

- Can be hard to learn and debug (lots of little objects
only different in the way of their interconnection)

e Decorator

TU

Grazm

Decorator - Example

aBorderDecorator

ascrollDecoralor -

aTextView -

Save applalee ekl Bersf|
lem uging abpcis w rooel sy
aipac] ol lhar lunchansib Bl

i R dEsign snpcaash wekl ba
prizhifire by apanEis

Far prargls, nesl dosursant gi-
s menl ulares Fesr BEl Brmsi-
Iy el sk faciiese i somes
aalarl, Homessss, 1y rasarakly
e mha o psreg chijusts
mpresanl aash chamcks anl
graphical suman| K e desums|
Oareg 34 el proaess Taaibly
al lha lres] Bl s
apphsaaan, Tl and grapkes
k] b imalag urilcs iy wib

al | E

Decorator

Decorator

TU

Grazm

Proxy

Provide a placeholder for another object to control it.

Client — P

Subject

+ Request()

JAN

ConcreteSubject (g

JAN

subject]

Proxy

+ Request()

+ Request() ¢

D---subject.Request()

TU

Grazm

Proxy

Context: Need for versatile references to objects.

Problem: How to handle objects which are not directly
accessible?

* Objects could be in different address space (remote
Proxy).

« An expensive object needs to be created on demand
(virtual proxy).

 The access to the original object must be supervised
(access rights! — protection proxy).

« A smart reference is needed as a replacement for a
bare pointer that performs additional actions when an
object is accessed.

Solution:

« Maintain a reference that lets the proxy access
the real subject and provide interface identical
to Subject

« Control access to the real subject (may also
Include creating and deleting) and act like the real
subject.

Consequences:

+ Introduces a level of indirection when accessing an
object (separation of housekeeping and
functionality)

+ Remote Proxy decouples client and server

+ Virtual Proxy can perform hidden optimizations
+ Caching Proxy could reuse subjects

+ Security Proxy can control access

- Overkill via sophisticated strategies

- Less efficiency due to indirection

Proxy

You

Proxy Server

Internet

TU

Grazm

Summary

SOLID Principles:

Single Responsibility, Open-Closed, Liskov-Substitution, Interface Segregation, Dependency Inversion

Principles of Good Programming:

Decomposition, Abstraction, Decoupling, Simplicity & Usability

Patterns:

Iterator: get next item until collection is exhausted.

Adapter: wrap around object to implement another interface.

Facade: Provide a higher-level interface to the customers.

Decorator: wrap around an object to give it more functionality with same interface.
Proxy: wrap around an object with same interface, as a transparent placeholder.

