
SCIENCE

PASSION

TECHNOLOGY

Design Patterns

448.058 (VO

Team

Team

Michael Krisper

michael.krisper@tugraz.at

Uncertainty and Risk Propagation

Expert Judgment for Cyber-Security

Georg Macher

georg.macher@tugraz.at

Safety & Security

in Automotive & Autonomous Driving

ITI - Institute for Technical Informatics

2

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3

When will you need Design Patterns?

▪ Every time you develop and design software!

Examples:

▪ You are a Software Developer and need to implement specific tasks in your

product.

▪ You are a Senior Software Architect in a company and have to manage

complex software requirements and design flexible software architectures.

▪ You are a startup founder and want to write software for a product which is

extensible, and flexible.

▪ You are a student and have to solve a software problem for an exercise at the

university.

Learning Goals

3

Learning Goals

Design Patterns Theory

▪ What is a design pattern? Why do we need them?

▪ What are the core principles behind design patterns?

▪ How to describe design patterns?

▪ What is a pattern language?

Design Patterns in Detail

▪ Know core ideas and application of
important design patterns! (~50)

Application of Design Patterns

▪ When to use what?

Learning Goals

4

Learning Goals

▪ You know common design patterns and their core idea (approx. 50 patterns).

▪ You can apply them in software development regardless of the programming

language or development environment.

▪ You can derive the consequences of design patterns and see the design

decisions.

▪ You decide if the consequences of a pattern are acceptable or not.

▪ You avoid overengineering and misuse of patterns.

▪ You can make reasonable design decisions by balancing out the forces,

consequences, and requirements for arbitrary problems and contexts.

Learning Goals

5

Course Schedule6

7

Introduction

What is a Design Pattern?

What is a pattern?

“A proven solution for a (recurring) problem.”

A solution idea, scheme, or template.

Patterns are a universal principle:

• Economics (Etzioni, 1964)

• Social Interaction (Newell,Simon, 1972)

• Architecture (Alexander et. al., 1975)

• Software (General awareness from 1990’s on)

8

Purpose of Design Patterns

• Easier knowledge transfer

• Efficient problem solving by reusing existing ideas

“Don’t reinvent the wheel”

• Establishes a common vocabulary, terminology, or language

• Increases usefulness of an idea by generalizing the solution

9

Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes-And-Filters, Broker, Model-View-Controller, Microkernel,
Async-Await

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming languages or
environments

• Examples: Counted Pointer, Scoped Locking, Variadic Macros

10

Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem hurt in this context?

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences (Rationale, Resulting Context):
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

11

12

Pattern House

Context

Problem Solution

Forces Consequences

Known Uses

Name

Alexandrian Pattern Format13

Context

Problem and

Forces

Solution and

Consequences

Related Patterns,

Epilogue

Name

Picture

How Design Patterns emerge?

Design Patterns are found - not invented!

They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
➔ At least three Known-Uses, Real Projects!

2. Write down the core idea and experiences
➔ Name, Context, Problem, Forces, Solution, Consequences, Known Uses

3. Discuss with others (often & repeatedly)

4. Improve Pattern (and repeat discussions)

5. Publish! (Conferences, Books, Blogs)

6. Continue to improve, apply and discuss pattern

14

Pattern Languages

… are coherent systems of patterns.

Consisting of:

• Patterns

• Relations

• Principles (Guidelines for design and evolution):

• How to create / implement

• Beneficial combination of patterns

• How to change/evolve

Daily Life Examples: Cooking, Sports, Crafts, Sailing, Architecture, Programming

15

Goal: What is a pattern language?

SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and
only one, reason to change.

• Open Closed: You should be able to extend a class’s
behavior, without modifying it.

• Liskov Substitution: Derived classes must be
substitutable for their base classes.

• Interface Segregation: Make fine grained
interfaces that are client specific.

• Dependency Inversion: Depend on abstractions,
not on concrete implementations.

16

Principles of Good Programming

• Decomposition
make a problem manageable
decompose it into sub-problems

• Abstraction
wrap around a problem
abstract away the details

• Decoupling
reduce dependencies, late binding
shift binding time to “later”

• Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive

17

Decomposition

• Split up a problem until it gets manageable

• Divide and Conquer

• Separation of Concerns

• Orthogonality (Separation of Concepts)

• Single responsibility

• Curly’s Law (do just one thing and stick to that)

18

[Movie: City Slickers (1991)]

Problem

Subproblem

Solution to
Subproblem

Solution

Solution to
subproblem

Subproblem

Divide Divide

ConquerConquer

CombineCombine

Abstraction

• Hide implementation details

• Wrap another layer around a problem.

• Liskov substitution
Substitute Parent-Classes by Sub-Classes

• Fundamental theorem of software engineering:
"We can solve any problem by introducing an extra level of indirection.“

(David Wheeler)

19

Decoupling

• Minimise coupling / Maximize cohesion

• Separation of Concerns

• Shift Binding time to “later”

• Composition over inheritance

• Inversion of control
• Hollywood principle:

“Don’t call us, we call you!”

• Open close - encapsulate what changes

• Embrace change

• Law of Demeter: Only use “direct” dependencies

20

Usability & Simplicity

• YAGNI – You ain’t gonna need it!

• DRY – Don’t repeat yourself!

• Principle of least astonishment
• Don’t make me think
• Easy to use right, hard to use wrong

• Code for the Maintainer

• Command / Query Separation

• Interface segregation

• Ockham’s razor
• Do the simplest thing possible
• KISS – Keep it simple, stupid!

• Avoid premature optimization (Knuth, 1974)

21

WISSEN

TECHNIK

LEIDENSCHAFT

List of Design Patterns

Iterator - Problem & Forces

How can we access all elements of arbitrary collections in the same way?

→ There are many different types of data structures
Trees, Arrays, Lists, Sets, Queues, Dictionaries, Generators, …

→ We want to use a uniform way to access all of them
Get the next element! Are we finished yet?

→ We want to define the order dynamically.
from start to end, in reverse order, depth-first, breadth-first, first-in-last-out

23

Iterator - Solution

1. Define an Iterator-interface for

the following functionalities:

• Get Next Item!

• Are we done?

2. Implement a concrete iterator for

each needed type of collection

Core Idea: Get the next element until a collection is exhausted.

24

Iterator - Consequences

+Every collection can be accessed in a uniform way.

+Multiple iterations are possible at the same time.

+Traversal algorithm can vary

- Lower efficiency

- Robustness is not guaranteed (insertions, deletions)

- “Hides” underlying data structure

25

Iterator - Known Uses

• Many programming languages use iterators for looping over collections

(C++, C#, Java, Python, …)

• Foreach-Loop also uses Iterator (implicitly)

• Enumerators & Generators are also variants of iterators

26

vector<int> ar = { 1, 2, 3, 4, 5 };

vector<int>::iterator ptr;

for (ptr = ar.begin(); ptr < ar.end(); ptr++)

cout << *ptr << std::endl;

int myint[] = {1, 2, 3, 4, 5};
for (int i : myint)
std::cout << i << std::endl;

C++ uses “end”-pointer

to test the end of

iteration

foreach uses

implicit iteration

Iterator - Known Uses

Python uses Exception instead of “IsDone()” or “End”:

27

class Counter:

def __init__(self, limit):

self.current = 0

self.limit = limit

def __iter__(self):

return self

def __next__(self):

if self.current > self.limit:

raise StopIteration

else:

self.current += 1

return self.current-1

for c in Counter(2):

print c

it = Counter(2)

print(next(it))

print(next(it))

print(next(it))

print(next(it))

Definition: Usage:

Python uses StopIteration-

Exception to signify the

end of iteration

Adapter
Wrap around a class to make it compatible to another interface.

Adapter

28

Adapter

Context: Working with multiple different frameworks or

libraries.

Problem: How to make incompatible classes work together?

Forces:

• Existing class interface does not match the one you need.

• You want to reuse the functionality (not just copy it).

• Source code of used class may not be available (copying or

changing it is not possible)

• Class may be sealed (inheritance is not possible)

Solution:

• Create an Adapter class which wraps around the Adaptee.

Variant: Class Adapter (inherits from Adaptee)

Variant: Object Adapter (contains Adaptee member)

• Implement the desired new interface using the methods of the

Adaptee as underlying basis.

Consequences: (Class Adapter)

+ Allows to use override mechanisms (e.g. protected methods,

V-table, access to protected members).

+ No additional indirection.

~ Inheritance approach (all methods of adaptee are inherited

automatically, only changes have to be implemented)

- Won't work when we want to adapt a class and all its

subclasses (liskov substitution!), because it is on a different

branch of subclasses.

Consequences: (Object Adapter)

+ Works with base Adaptees and all subclasses (allows liskov

substitution).

+ Adapter hides underlying type of Adaptee (breaks inheritance

hierarchy, composition over inheritance!).

~ Explicit implementation approach (no methods inherited

automatically; all needed methods have to be implemented

explicitly)

- Adds additional layer of indirection.

29

Adapter

Object Adapter vs. Class Adapter

Adapter

30

public class ObjectAdapter : ITargetInterface
{

public Adaptee Adaptee;
public void Operation()
{

Adaptee.MyAction();
}

}

public class ClassAdapter : Adaptee, ITargetInterface
{

public void Operation()
{

MyAction();
}

}

class Client
{

public static void Execute(ITargetInterface target)
{

target.Operation();
}

}

private static Adaptee adaptee = new Adaptee();

static void Main(string[] args)
{

ITargetInterface target = new ObjectAdapter(adaptee);
Client.Execute(target);

ITargetInterface target2 = (ClassAdapter)adaptee;
Client.Execute(target2);

}

Façade
Provider a higher-level interface to a system.

Façade

31

Façade

Context: Working with a complex structure having many

functions, maybe even with different programming paradigms

(e.g. object-oriented vs. structured).

Problem:

• How to make it easier to use a complex system of functions,

or to use functions of different programming paradigms in a

more intuitive way?

Forces:

• Different programming paradigms from different platforms.

• Developers are used to their own environments and

conventions.

• Developing heterogenous paradigms makes programs more

difficult to maintain.

• Changing the source is seldom possible.

• Details should be hidden away / abstracted away.

Solution:

• Implement a simpler, more high-level interface to be

used by the client.

• Hide the complexities (implementation details) of the

larger system.

• Encapsulate non-OO API data & functions within

concise, robust, portable, maintainable, cohesive OO

class interface.

Consequences:

+ Provides concise, cohesive and robust higher-level

object-oriented programming interfaces.

+ Easier usability and maintainability.

+ Code is more robust, easier to learn and maintain.

- May diminish functionality and lose benefits of

underlying paradigm

- Performance degradation by adding an additional layer

of abstraction

32

Façade

Decorator
Extend the functionality of an object, while maintaining the same interface.

Decorator

33

Decorator
Context: Functional extension of objects.

Problem: How to add or extend functionalities without

changing the objects.

Forces:

• We want to add responsibilities to individual objects

dynamically and transparently, without affecting other

objects.

• We want to reuse functionality.

• We want to assemble functionalities.

• We want to be able to withdraw responsibilities.

• The extension by subclassing is impractical:

• large number of independent possible extensions.

• hidden class definition or otherwise unavailable for

subclassing

Solution:

• Define a Decorator which forwards requests to its

Component object.

• The decorator may optionally perform additional

operations before and after forwarding the request.

Consequences:

+ More flexibility by adding responsibilities

+ Flexibility responsibilities can be added and removed

also at runtime

+ Decorators also make it easy to add a property twice

+ Avoids feature-laden classes high up in the hierarchy

+ Avoids the class explosion issue

- Decorator and its component are not identically

- Can be hard to learn and debug (lots of little objects

only different in the way of their interconnection)

34

Decorator

Proxy
Provide a placeholder for another object to control it.

Proxy

35

Proxy

Context: Need for versatile references to objects.

Problem: How to handle objects which are not directly

accessible?

Forces:

• Objects could be in different address space (remote

proxy).

• An expensive object needs to be created on demand

(virtual proxy).

• The access to the original object must be supervised

(access rights! – protection proxy).

• A smart reference is needed as a replacement for a

bare pointer that performs additional actions when an

object is accessed.

Solution:

• Maintain a reference that lets the proxy access

the real subject and provide interface identical

to Subject

• Control access to the real subject (may also

include creating and deleting) and act like the real

subject.

Consequences:

+ Introduces a level of indirection when accessing an

object (separation of housekeeping and

functionality)

+ Remote Proxy decouples client and server

+ Virtual Proxy can perform hidden optimizations

+ Caching Proxy could reuse subjects

+ Security Proxy can control access

- Overkill via sophisticated strategies

- Less efficiency due to indirection

36

Proxy

Layers
Split your system into layers based on abstraction levels

37

Layers

Context: Large systems that require decomposition

Problem:

• Many functions and responsibilities

• Hard to understand structure, many dependencies

Forces:

• Changes should be limited to one component

• Clear boundaries of responsibility

• Interfaces should be stable

• Parts should be exchangeable

• Parts should be reusable

• Smaller groups for easier understandability,

maintainability

Solution:

• Structure the function into appropriate number of

layers, based on their abstraction levels

• Every layer uses defined services of sublayer

• Every layer provides defined services to upper layer

Consequences:

+ Dependencies/Changes are kept local

+ Defined Interfaces between Layers

+ Layers are exchangeable & reusable

- Lower efficiency

- No fine grained control of sublayers

- Changes cascade and are costly

- Right granularity is difficult to find

38

Layers – Known Uses

• Network Stack

• Virtual Machines

• API’s

• Operating Systems

• Companies

• Cities

• …

39

Layers – Implementation Issues

• Who composes the layers at runtime?

• How are Interfaces defined?

• Workarounds / Skip layers?

• Stateless / Stateful Implementations?

• Layers are Black Boxes

40

Broker
Manage dynamic communication between clients and servers in distributed systems.

41

Broker

Context: Working in distributed or heterogeneous

systems with independent cooperating components.

Problem: You want to build complex systems as a

set of decoupled and interoperating components

Forces:

• The addition, exchange, or removal of services

shall be supported dynamically

• System details shall be omitted for developer

• The architecture shall support location

transparency

• Remote method invocation shall be supported

Solution:

• Specify broker API (client side and server side)

• Define an object model, or use an existing model (use

e.g. CORBA, OLE/COM/.NET, gRPC…)

• Use proxy objects to hide implementation details

Consequences:

+ Broker is responsible for locating a server (location

transparency)

+ Changeability & extensibility of components (due proxies

& bridges)

+ Broker hides OS & network details (portability)

+ Interoperability between different broker

+ Reusability of components

+ Server fault tolerance (servers can fail independently)

- Restricted efficiency (communication overhead,

communication through broker)

- Broker is single point of failure

- Hard to test & debug (many components involved)

42

Pipes & Filters
Form a sequence of processing steps using a common interface.

43

Pipes & Filters

Context: Processing of data streams.

Problem: How to can data streams be decomposed into

several processing stages.

Forces:

• Exchanging or reordering of processing steps

shall be possible (future system enhancements).

• Small processing steps are easier to reuse than

larger.

• Probably different sources of input data exist (file,

network, sensor,..)

• Results shall be storable in different ways.

• Explicit storage of interim steps shall be possible.

• Multiprocessing shall be enabled.

Solution:

• Divide System task into a sequence of processing

steps (dependent only on output of predecessor and

connected by the dataflow)

• Define a data format to be passed along each pipe.

• Implement each pipe connection either push or pull

• Filter design and implementation

• Design Error handling

• Setup processing pipeline

Consequences:

+ Intermediate files possible

+ Flexible via filter exchange

+ Flexible via recombination

+ Efficient for parallel processing

- Sharing state infos is expensive

- Data transformation overhead

- Error handling is crucial

44

Master-Slave
Distribute work amongst some helpers.

Goal: Describe Master - Slave Pattern

45

Master - Slave

Context: Partitioning of work into semantically-identical

sub-tasks.

Problem: You want to solve instances of the same

problem, partition identical work and separate

concerns.

Forces:

• Processing of sub-tasks should not depend on

algorithms for partitioning work and assembling the

result

• Sub-tasks might need coordination

• Many instances of the same problem must be

solved

• Different algorithm implementation may be

required

• Multi-threaded applications may be wanted

Solution:

• Introduce a coordination instance between clients of

the service and the processing of individual sub-tasks

• The master component divides work into equal sub-

tasks, distributes these sub-tasks to Slave components

& combines results (maintaining slaves)

• Provide all slaves with a common interface. The clients

will only communicate with the Master

Consequences:

+ Exchangeability and extensibility

+ Separation of concerns

+ Fault tolerance – several replicated implementations

can detect and handle failures

+ Efficiency (support of parallel computation)

- Not always feasible

- Partitioning & control can be tricky

Goal: Describe Master - Slave Pattern

46

Client-Server
Let clients send requests to servers which answers with responses.

Goal: Describe Client - Server Pattern

47

Client-Server

Context: Distributed application.

Problem: You want to cooperate (share resources,

content or service function) with multiple distributed

clients.

Forces:

• Availability of services (resources, functions,..) is

limited, but required by multiple requesters.

• Service might be provided by only one dedicated

provider (centralized system).

• Client may not have the processing power.

• Number of possible requests might be unknown.

Solution:

• Service-Interface: Define a protocol for serving a request/response

communication.

• Server-Side Implementation: Implement a Listener which waits for

requests from potentially multiple clients and individually answers with

responses.

• Client-Side Implementation: Implement a Client who sends requests

and waits for responses.

Consequences:

+ Encourages Service-Oriented Architectures

+ Centralization of specific services

+ Services get available for many clients

+ Doesn’t need to know exact number of clients

+ Workload gets moved to server. Clients are free to do something else

+ Exchangeability and extensibility

- Server could get overloaded

- Single-Point-Of-Failure, Denial-Of-Service Attacks are possible

- Communication overhead

- Client rely upon network and servers.

Goal: Describe Client - Server Pattern

48

Factory Method
Delegate the creation of objects to someone else.

Goal: Describe Factory Method Pattern

49

Factory Method

Context: Creation of an object, whose class is not

known until runtime.

Problem: How to create an object for which the

concrete class is not known.

Forces:

• We don’t care which object is created, as long

as it provides the same functionality.

• We can’t anticipate the class we want to create

at coding time.

• We want to shift the decision to someone else.

Solution:

• Define an interface of capabilities your objects

must implement.

• Define some means (method or own class) to

create the actual object somewhere else.

• Let the actual object implement the needed

interface.

Consequences:

+ Isolates Framework and Application code

+ Flexibility (Compiletime/Runtime)

+ Lesser Dependencies

+ Connects parallel class hierarchies

+ Decoupling of Implementation and Usage

+ Abstraction of actual instances

~ Hides constructors

- Needs an interface/abstraction layer!

50

Goal: Describe Factory Method Pattern

Factory Method – Implementation Issues

• Naming Convention (e.g. XyzFactory)

• Constructor Parameters?

• Universal-God-Interface vs. Duck Typing

• How to avoid direct constructions?

(Private Constructor?)

• Abstract Creator (subclasses must implement)

vs.

Concrete Creator (default implementation, but subclasses can override)

Goal: Describe Factory Method Pattern

51

Abstract Factory

Create whole families of related objects

Goal: Describe Abstract Factory

52

Abstract Factory

Context:

Having multiple related families of similar

objects

Problem:

How to create only matching objects?

Forces:

• Only create objects which fit together

• Choose object family at runtime

• Reveal just the interfaces, not the

implementations

Solution:

•Define Interface for Products.

•Define Interface for Factories.

•Implement both accordingly.

•Select the needed factory at runtime to create the

needed products.

Consequences:

+ Makes exchanging product families easy

+ Promotes consistency among products

+ Isolates concrete classes

~ When is the product family selected? Who selects?

~ Factories as singletons?

~ Use prototypes as templates?

- Supporting new kinds of products is difficult

53

Goal: Describe Abstract Factory

Builder

Split up creation into multiple steps

54

Builder

Context:

Creation of complex objects

Problem:

How to create complex objects in an easy and

comfortable way?

Forces:

• Manage many different construction options

• Creation of objects should be independent

of assembling

Solution:

• Split creation from assembling

• Define Interface for creating individual parts
& assembling

• Implement methods for parts

Consequences:

+ Allows many combinations of parts

+ Isolates code for construction and
representation

+Allows finer control of construction

- Construction is not a simple “new” anymore

- How to ensure that parts are correctly
configured?

55

Singleton
Allow only one instance of an object

Goal: Describe Singleton Pattern

56

Singleton

Context:

Creation of exactly one instance

Problem:

Ensure a class only has one instance, provide a

global point of access

Forces:

• There must be exactly one instance of a class, and it

must be accessible to clients from a well-known access

point

• When the sole instance should be extensible by

subclassing, clients should be able to use and extended

instance without modifying their code

Solution:

•Hide the constructor of a class (protected or private)

•Add a static Factory Method to create exactly one instance

stored as static member

•Consequent creations only return the already created

instance.

•Prohibit deep copying of the object

Consequences:

• Controlled access to sole instance

• Reduced name space

• Permits refinement of operations and representation

(subclassing)

• Permits a variable number of instances

• More flexible than static class operations

57

Goal: Describe Singleton Pattern

Singleton Example
58

class Singleton

{

private static readonly Singleton _instance = new Singleton();

protected Singleton() { }

public static Singleton Instance()

{

return _instance;

}

}

void Main()

{

var s1 = Singleton.Instance();

var s2 = Singleton.Instance();

Console.WriteLine($"Singletons are equal: {s1.Equals(s2)}");

}

Prototype

Create objects by cloning from templates

59

Prototype

Context:

Creation of objects whose classes and
properties are not known until run-time

Problem:

How to dynamically implement and use
objects without knowing its properties?

Forces:
• Object Members are defined at runtime

• Avoid building complex class hierarchies
and factories

• Avoid long taking instantiations

Solution:

• Declare cloning interface

• Implement cloning interface

• (Add mechanism for dynamically setting/getting

members and calling methods → Dictionary!)

Consequences:

+ Dynamic objects can be created at runtime

+ Class system is bypassed

+ No complex inheritance hierarchy

+ Long taking initialisation are done only once

~ Usage of prototype manager? (registry)

~ Shallow vs deep copy?

~ How to access members?

- No type safety!

- No compile-time errors!

60

Memento
Store & Load the internal state of an object

61

Problem

How can an object be

persisted?

Forces

• State of object

should be

storable/restorable.

• Do not break

encapsulation

Solution:

• Create a Memento-

Class: Data class for

storing the state.

• Implement method for

returning a Memento.

• Implement method for

reading a Memento.

Consequences:

+ State can be persisted without

exposing all internal members.

+ Persisted state can be used to

restore the object.

+ Snapshots are possible.

+ Combines very well with

Command Pattern

- If data format is known, data

could be manipulated “offline”.

(make sure to add some

checksum or digitally sign the

memento)

State
Change object behaviour depending on a situation

Goal: Describe State

62

State

Context: Objects which change their behaviour

according to a situation

Problem: How to switch behaviour of an object

without complex implementation?

Forces:

• Behaviour should change with internal state

• Behaviour should change at runtime

• Transition between states should not depend on

complex multipart conditional statements (no if-

else-if-else-…)

• States should not be mixed.

Solution:

•Define Context(manager) which knows the states

and transitions and exposes the client-interface

•Define general Interface for all States

•Implement the different states in individual classes

•Define the transitions between states

Consequences:

+ State specific behaviour is encapsulated within the

state objects.

+ New States and transitions can easily be defined

+ Transition logic is partitioned and simple.

+ Transition are explicit – no mixed states

+ State Object can be shared (-> Flyweight)

~ Who makes the transitions?

- More classes

- Special transitions may be difficult

63

Goal: Describe State

Flyweight
Share global state and vary differences only when needed.

64

Visitor

Add behaviour on aggregates of different objects

List, Array
Tree, Set, …

interface IVisitor
{

void Visit(ElementA e);
void Visit(ElementB e);

}

void main() {
IVisitor visitor = new HeightCalculator();
foreach(e in list)

e.Accept(visitor);
}

class Circle : IElement {
void Accept(IVisitor v) {

v.Visit(this);
}

}

class HeightCalculator: IVisitor {
void Visit { … }
void Visit(Triangle { … }
void Visit { … }

}

Visitor

Context: Performing operations on elements of an

aggregate.

Problem: How to execute some behaviour on an

aggregate of different objects?

Forces:

• Object aggregate contains different interfaces

• Avoid polluting classes with unrelated operations

• Structure rarely changes

Solution:

• Implement the functionality for each different object

type in an visitor.

• Implement means to apply the visitor to every object.

Consequences:

+ Makes adding new functionality easy

+ Combines related functions

+ Account for different object types

+ Can accumulate state

~ Who traverses the aggregate? How?

~ Double-dispatch or not?

- Adding new class types is expensive

- Visitor may need access to private members (breaks

encapsulation)

66

Strategy
Substitute behaviour later.

Goal: Describe Strategy Pattern

67

Strategy
Context:

•Many related classes which differ only in their

behaviour.

•Methods with complex behaviour based on many

conditionals.

Problem:

How to manage the different behaviours and simplify

the architecture?

Forces:

• You need different variants for an algorithm.

• The behaviour should be exchangeable at

runtime.

• You want to split up behaviour of classes to

simplify it.

Solution:

• Define interfaces for algorithms

• Encapsulate the algorithms to make them
interchangeable.

• Let the algorithm vary independently from the
clients.

Consequences:

+ Split up behaviour and decision logic.

+ Elimination of Subclasses just for different
behaviour (composition over inheritance!)

+ Reuse: Behaviour of one class can be reused for
others.

- Communication overhead

- Access to private fields?

- Increased number of objects (every behaviour is an
own object)

~ Who assembles the concrete strategies at runtime?

68

Goal: Describe Strategy Pattern

Command
Encapsulate a request. Decouple invocation from execution.

Goal: Describe Command Pattern

69

Command

Context:

Invoking some behaviour of an object

Problem:

We just want to invoke an operation, regardless of its

concrete implementation and executing context.

Forces:

• Avoid coupling of the invoker and the context of the

request.

• We do not know the exact implementation of a request

• A request should be undoable

Solution:

•Define an interface for commands with a very simple

interface (just Execute()).

•Encapsulate the behaviour in concrete commands

implementing this interface and containing all needed

parameters as members.

•Implement means to let the client initialise the parameters.

Consequences:

+ A request does not depend upon the creating class

anymore.

+ A request can be executed in isolation.

+ Undo/Redo-Operations become possible

+ Switching the receiver at runtime becomes possible

+ Behaviour can be reused for multiple receivers.

- Increased number of objects

- References to all needed parameters must be stored

70

Goal: Describe Command Pattern

Composite

Handle different granularities of objects uniformly

Composite

Client Component
Leaf

Leaf

Client Component

Composite
Composite

Composite

Leaf Leaf Composite

Composite

Leaf Leaf Leaf

Client Component
Composite

Single Objects:

Object Chains:

Object Trees: void main()
{

component.Method();
}

Client:72

Composite Examples

$(document).ready(function(){
$("button").click(function(){
$("p").hide();

});
});

jQuery https://jquery.com IDisposable (.NET)
public class MyControl : IDisposable

{

private IDisposables _subControls;

public void Dispose()

{

foreach (var c in _subControls)

c.Dispose();

}

}

73

https://jquery.com/

Composite

Context:

Hierarchies of objects with different granularities

Problem:

How to uniformly handle different granularities of

objects in hierarchies?

Forces:

• Treat all object-granularities uniformly

• Represent arbitrary hierarchies of objects

• Ignore differences behaviour of individual objects

and aggregates

• Apply/Reroute a method call to all objects

Solution:

• Define common Interface for all granularities to

manage children and call methods.

• Implement Composites: Forward call to children

• Implement Leaves: Execute calls directly

Consequences:

+ Defines hierarchies of primitive and composite

objects

+ Simple handling for client

+ Adding new kinds of composites is easy

~ Default implementations?

~ Parent references?

~ Changing roles? Leaf ↔ Composite?

~ Caching?

- Client doesn’t recognize complexity of calls.

- High call hierarchy

- Possibly unrecognized side effects?

74

Template-Method

Define methods and let children implement the behaviour.

Mediator
Mediate communication between multiple objects

76

Bridge
Decouple abstractions from implementations

Bridge

Context: Application with Abstraction and Implementation

Hierarchies

Problem: How to decouple the development of

abstractions from its implementations

Forces:

• Avoid permanent binding between abstraction and

implementation

• Both sides should be extensible by subclassing

• Changes should be contained to one side

• You want to hide the implementation side completely

• Implementations should be compatible to multiple

abstractions

Solution:

• Create two interfaces:
1. Implementor-Interface (internal primitives)

2. Abstraction-Interface (client-requirements)

• Implement those Interfaces with individual classes.

• Only use the implementation-interface in the
abstraction

Consequences:

+ Decoupling of abstraction and implementation

+ Improved extensibility: Both sides can grow
independently

+ Hiding implementation details from client

+ Implementation can be configured at runtime

+ Elimination of compile-time dependencies

+ Encourages layering

~ Who defines the composition? (Who builds the
bridge?)

- Higher complexity (more classes, more interfaces)

78

Blackboard
Collaborate on common data to get the best solution.

79

Microkernel
Route requests to the responsible components

80

Messaging Family
Pack information in messages and send these messages between components.

Messages Message-Endpoint

Message Translator

 essage ranslator
 eceiverB ender A

A B

Message Router

Message Bus

 essage us

 ervice

send receive

data message

 ervice

send receive

data message

 ervice n

send receive

data message

...

Request-Response

 lient erver
 e uest

 esponse

Messages

Encapsulate information in a standardized way

Benefits:

+ Message combines Data and Meta-Data

+ Explicitly defined format/protocol

+ Enclosed packet instead of continuous

data-stream

+ Meta-Data allows extra functionalities

Drawbacks:

- Computation overhead for serialization and

deserialization

- Communication overhead due to protocol

- Version Chaos / Change-Management

- Data-Format must be exactly defined

Message Endpoint

Provide functionality to send and receive messages

Benefits:

+ Clearly defined responsibility

+ Endpoint converts into/from a message

+ Endpoint can be reused

+ Decoupling of external protocol and

internal communication

Drawbacks:

- Changes in message-protocol have to be

communicated

- May introduce performance overhead

(additional abstraction layer)

- Single Point of Failure? Bottleneck?

Request-Response
Answer every request with a response message

Benefits:

+ Every request gets answered

+ Timeouts can be detected

+ Windowing and Buffered Responses

possible

+ Two decoupled communication events:

Question and Answer

Drawbacks:

- Continuous Data Stream not possible

- Broadcast/Multicast not possible

- Asynchronous Communication is more

difficult to debug

- Error Handling? (Error-Response or no Response?)

 lient erver
 e uest

 esponse

Message Translator

 essage ranslator
 eceiverB ender A

A B

Translate between different message formats

Benefits:

+ Sender and Receiver don‘t have to know

the same protocols/message format

+ Translator can be reused

+ Translation can be parallelized

Drawbacks:

- Translator needs to know both protocols!

- Performance Overhead for additional

translation

- Protocols may be incompatible / Only

degraded basic communication is possible

Message Router / Message Queues

Transmit messages to the right receiver

Benefits:

+ Sender and Receiver are decoupled

+ Dynamic rerouting is possible

+ Message Queues allow:

Retransmissions, Guaranteed Delivery,

Adaptive Transmission-Rate

+ Multicast / Broadcast

Drawbacks:

- Bottleneck / Single Point of Failure

- Man-In-The-Middle Attacks

- Loosing Messages on Failure?

- Loops and Broadcasting misuse

- Configuration Overhead

Message Bus
Provide a common communication platform which can be used to send and receive

messages.

 essage us

 ervice

send receive

data message

 ervice

send receive

data message

 ervice n

send receive

data message

...

Benefits:

+ Unified communication platform &

protocol

+ Communication can be controlled

(Congestion Control)

+ Prioritization

+ Single interface for communication

Drawbacks:

- Bottleneck / Single Point of Failure

- Broadcasting / Babbling Idiot

- Security Issues?

- Forced communication protocol / maybe

inefficient

Request Handler
Listening, Receiving, Sending, and

Handling of Message-Based

Communication

Requestor
Send generic requests and

arguments

88

Observer
Inform registered observers about changes.

Goal: Describe Observer Pattern

89

Observer
Context: data is distributed over multiple related

objects.

Problem: Maintain consistency between related

objects.

Forces:

• When one object changes, others should be held

consistent.

• Polling is very costly or not possible.

• The other objects are not known at compile-time

and should not be tightly coupled.

• Reuse even in isolation should be possible.

Solution:

• Define means to manage observers for a subject
(register, unregister).

• On changes: notify all observers that a change
happened.

• Give the observers the possibility to access the
changed data.

Consequences:

+ Decouple subjects and observers.

+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent updates /
Cascading updates.

~ Synchronous vs. Asynchronous updates!

~ Who initiates the update?

90

Goal: Describe Observer Pattern

Observer - Example

Goal: Describe Observer Pattern

91

abstract class Subject {

private readonly List<Observer> _observers = new List<Observer>();

public void Attach(Observer observer) => _observers.Add(observer);

public void Detach(Observer observer) => _observers.Remove(observer);

public void Notify() => _observers.ForEach(o => o.Update());

}

class ConcreteSubject : Subject {

private string _state;

public string State {

get { _state; }

set {

_state = value;

Notify();

}

}

}

abstract class Observer {

public abstract void Update();

}

class ConcreteObserver : Observer {

public ConcreteSubject Subject;

private readonly string _name;

public ConcreteObserver(ConcreteSubject subject, string name) {

Subject = subject;

subject.Attach(this);

_name = name;

}

public override void Update() {

Console.WriteLine($"Observer {_name} was informed

that subject changed: {Subject.State}");

}

}

void Main() {

var s = new ConcreteSubject();

var o1 = new ConcreteObserver(s, "O1");

s.State = "Change 1";

}

Observer Known Uses

• Events and Signals in many programming languages and operating

systems

e.g. Events like OnClick, OnEnter, OnKeyDown in C#, Java, JavaScript,

…

• Message Queue Systems: MQTT, Apache Kafka, RabbitMQ

92

Locks: Mutex, Semaphore, Read/Write Lock, Condition Vars

Ensure mutual exclusive access to some resource.

Locks

Context: Simultaneous access to resources

Problem: How to avoid conflicts and ensure the

same view for all accessors?

Forces:

• Parallel access to shared resources (multiple

Threads or Processes)

• Locally on one machine

• Read or Write access

• Avoid conflicts (who writes first)

• Enforce consistency (same view for all accessors)

Solution:

• Acquire lock before accessing a resource or wait until

lock is available.

• Release the lock after resource is not needed anymore.

• Use a Lock which is synchronized and atomic to the

client

Consequences:

+ Access to resources is mutually exclusive

+ Logic order is established

~ Which lock is appropriate?

~ Maybe lock is not needed? (Immutable data types?

Thread specific storage? Lock-Less Implementations?)

- Using locks produces overhead & waiting times

- Race-Conditions & Deadlocks

94

Scoped Locking

Use language scope semantics for acquiring and releasing locks.

std::mutex _mutex;
int _current = 0;

void increment() {
std::lock_guard<std::mutex> lock(_mutex);
++_current;

}

class lock_guard
{

…
void lock_guard(mutex_type& m)
{

_m = m;
_m.lock()

}

void ~lock_guard()
{

_m.unlock();
}

}

Scoped-Locking

Context: Using locking mechanisms to protect a critical

section

Problem: How to avoid forgetting to release the lock?

Forces:

• A critical section of code should be protected for

concurrent access with a lock

• The section may have multiple exit points

• Developers tend to forget to release locks on the right

places

Solution:

• Implement a class which:

• Acquires a mutex in constructor

• Releases the mutex in destructor

• Hide copy constructor and assignment operator

• Use like a normal stack variable and rely on stack-

unwinding to call the destructor on leaving a scope

Consequences:

+ Increased robustness

+ Very simple usage

- Potential deadlock when used recursively

(reacquire lock needed?)

- Limitations due to language specific semantics

(process abort SIGC, longjmp)

96

Double Checked Locking
Check twice to ensure conditions

Goal: Describe Double Checked Locking

97

Monitor
Synchronize method calls to an object

Goal: Describe Monitor

98

Monitor

Context: Multiple threads accessing an object

concurrently

Problem: How to concurrently access an object and

call the method without manual synchronization?

Forces:

• Concurrent invocation of methods in an object by

multiple threads

• Prevent race conditions: only one method should

be active

• Method calls should be synchronized

• Object state should stay stable and resumable

Solution:

•Use a general lock for one object instance

•Acquire lock before method call, Release after

method is finished.

Consequences:

+ Simplification of concurrency control

+ Simplification of scheduling method execution

- Limited Scalability – too coarse lock! (extreme

case: GIL in python!)

- Inheritance/Extension is dangerous

- Nested monitors – reaquiring locks?

99

Goal: Describe Monitor

Future
Supply a placeholder for future results

Goal: Describe Future

100

1

Future

Context: Asynchronous method calls

Problem: How to get the result of an asynchronous

method call?

Forces:

• You want to do the call asynchronously.

• You don’t know when the call is finished.

• You want to access the result.

• You don’t want to busy wait.

• You don’t want to expose internal concurrency

mechanisms

Solution:

•On calling a method immediately return a handle

which will contain the result in the future.

•Execute the task asynchronously.

•As soon as the Task is finished, write the result to

the future-handle.

•Give the client a possibility to check if the result is

available or wait for it.

Consequences:

+ User has the possibility to work with “future” results

+ Asynchronous programming gets easier

- No immediate control over the executing thread (no

way to cancel, pause)

- Additional memory is needed, to hold results when

thread is finished.

- When result is not needed the future-handle is

useless.

101

Goal: Describe Future

Active-Object

Encapsulate method invocation and execute asynchronously

Active-Object

Context: Multiple clients access objects running in

different threads or contexts.

Problem: How to execute commands in a different

context than the client.

Forces:

• Clients invoke remote operation and retrieve results

later (or wait)

• Synchronized access to worker threads

• Make use of parallelism transparently

Solution:

• Implement a proxy with encapsulates all method calls

in commands

• Use a Scheduler/CommandProcessor to execute the

commands in a separate thread(pool).

• Give the client the possibility to retrieve or wait on the

results (async/sync)

Consequences:

+ Simplifies sychronization complexity

+ Client calls an ordinary method

+ Command is executed in a different thread than the

client thread

+ Typesafety compared to message passing (usage of

classes/objects)

+ Transparent leveraging of parallelism

~ Order of method execution may differ from invocation

- Performance overhead

- Complicated debugging

103

Thread-Specific Storage
Store separate data instances for each thread.

 hread 1

 lient

 hread pecific torage

 data: Dictionary hreadID, object

+ GetData(): data

+ SetData(data)

 hread

 lient

 hread 1

 lient

 hread pecific torage

 data: Dictionary hreadID, object

+ GetData(): data

+ SetData(data)

 hread

 lient

Thread-Specific Storage
Store separate data instances for each thread.

void main()
{

var myObj = storage.GetData();
myObj.Value = 5;
data.SetObject(MyObj);

}

void main()
{

var myObj = storage.GetData();
myObj.Value = 38317;
data.SetObject(MyObj);

}

Thread ID Data

1 { Value = 5 }

2 { Value = 38371 }

Async / Await
Execute functions cooperatively in an event loop.

106

Async / Await

Context: Executing multiple functions waiting for I/O
resources.

Problem: How to execute I/O-bound functions in
parallel without having to use multithreading and
synchronisation.

Forces:

• Executing the blocking functions sequentially is
slow.

• Executing the functions in own threads may cause
synchronisation problems or wasting resources
due to context switching.

• Multithreading programming is error-prone.

• Some environments don’t have true multithreading
(python, javascript)

Solution:

•Compile the functions as state machines, with
transitions at the “await” statement

•Execute the state machines in an event loop, advancing
them based on a “ready”-condition (or signal).

Consequences:

+ No need to use multiple threads.

+ No need to synchronise.

+ No unnecessary waiting times due to blocking
functions.

+ Simple usage (nearly like single-threaded
programming, except for the “await” keyword).

- Syntax and Compiler support needed.

- Must be supported throughout the whole application
(async/await and non-blocking functions virtually
everywhere)

- Relies on cooperativeness!

- CPU-bound functions still block everything.

107

Goal: Describe Scoped-Locking

Lazy Acquisition
Defer acquisition of resources to time of actual usage

108

Lazy Acquisition

Context: Using resources in an application

Problem: How to save resources and load an

application faster?

Forces:

• Special resources are needed in an

application (Memory, Files, Network).

• They take time to load.

• They may be scarce.

• They are not needed from the beginning,

but later on.

Solution:

•Implement a proxy which can be used by the
client

•The proxy should defer acquisition of the
resource until the last possible moment.

Consequences:

+Resources are only acquired when really
needed.

+Client doesn’t have to care about using to
much resources early on.

+Application starts faster.

- Waiting times during acquiring the resources
(do it async!)

- Additional layer of abstraction

- Avoid acquiring resources to often (caching &
pooling!)

109

Eager Acquisition

Acquire resources in advance.

Eager Acquisition

Context: Using resources in an application

Problem: How to avoid having to wait for

resources during runtime.

Forces:

• Special resources are needed in an

application (Memory, Files, Network).

• Exclusive access is no problem.

• They are always needed in the application.

Solution:

• Acquire the resources on startup and store

them in some cache or vault (singleton).

• Give access to the already loaded resources

Consequences:

+ Resources must not be loaded later on.

+ No delay on using the resources.

- Resources take up memory space.

- Startup may be slowed down due to loading

the resources (do it async!)

111

Partial Acquisition

Acquire resource in parts. Only use the part which is currently needed.

Caching & Pooling
Save resources for later reuse.

113

Caching
Let the client decide

what to cache

Pooling
Wrap access to the resource in a manager.

Caching & Pooling

Context: Using resources in an application

Problem: How to avoid loading or creating

resources over and over?

Forces:

• Special resources are needed in an

application (Memory, Files, Network).

• They may take time to load.

• They are needed more than once and in

different places.

Solution:

•Provide a cache to store already loaded

resources there (singleton).

•Supply means to access the cache to the client

(factory).

•Restrict access if needed.

Consequences:

+Resources are loaded only once and reused

afterwards

+Subsequent usages are much faster

~Mutual exclusive access for other

applications?

- Uses much memory space

- Resources may be outdated

114

Leasing

Set expire-timeout for resources.

Leasing

Context: Using resources in an application

Problem: How to avoid that resources can be

exclusively be used by only one client.

Forces:

• Special resources are needed in an application

(Memory, Files, Network).

• The resource may be used by multiple clients.

• It should be avoided that one client can

exclusively use a resource forever.

Solution:

• Supply access to the resource via a

LeasingProxy which invalidates the resource

some time after acquisition.

• Inform the client that the usage time is over.

• Restrict direct access to the resource.

Consequences:

+ Resources cannot be used exclusively anymore

+ If client forgets to release the resource it gets

released automatically after some time.

~ What is the right duration?

- To early release could lead to errors.

116

Garbage Collector
Maintain reference-graph of objects and delete unreachable branches.

Goal: Describe Garbage Collector

117

Garbage Collector

Context: Application which acquires dynamic

memory.

Problem: How to avoid dangling references in

an application to avoid memory leaks?

Forces:

• Memory can be dynamically acquired to

store objects

• Pointers/References can be freely passed

and copied

• Client doesn’t want to care about memory

allocation.

Solution:

•Maintain reference graph for each and every
dynamically created object.

•Periodically search over graph for unreachable
branches/subgraphs

•Delete unreachable subgraphs.

Consequences:

+Client doesn’t has to care for manual memory
management.

+No memory leaks

~How often should collection be done?
Performance Optimizations (Generation
Concept)?

- Performance overhead during creation and
garbage collection (traversal)

- Memory overhead by storing all reference
counts

118

Chain of Responsibility
Forward a call until an object can handle it.

119

Chain of Responsibility

Context: Having a task or problem which can be

handled by several objects.

Problem: How to dynamically resolve which object

is responsible for a specific problem/task?

Forces:

• Having different types of tasks which have to

be handled.

• Having several objects which can handle

different tasks.

• Tasks and the actual Handlers are not known

at compile-time.

• There should be multiple escalation levels.

Solution:

•Implement a chain of handlers.

•Forward the task to the first object which can
handle it.

•Add more general handlers in the end of the
chain.

Consequences:

+ Dynamic handling of events

+ Loosely coupled responsibility

+ Can be changed at runtime

~ Who builds the chain?

~ Common standards/conventions?

~ Only one handler or multiple? (decorator-style)

~ Fallbacks?

- Possible huge call stack

- Critical path is single point of failure

120

Counted Pointer / Smart Pointer / Shared Pointer / Auto Pointer
Count references and call destructor when no one is using the object anymore.

 lient

handle
 andle

+ Handle()

+ Handle()

+ operator

+ operator

 od

 refCounter: int

+ Some ethod()

body

(Wrapper

Variant)

 lient

handle
 andle

+ Handle()

+ Handle()

+ operator

+ operator

 od

+ refCounter: int

+ target: arget

body

 arget

+ ...

+ Some ethod()

if (body.refCounter == 0)

delete(body);

Counted Pointer

Context: Manual dynamic memory management with

pointers.

Problem: When can we safely destroy an object?

Forces:

• If an object is not referenced anymore it should be

destroyed (and its memory and resources should be

released)

• Several clients may share the same objects

• We don’t know exactly who still has a reference to our

objects.

• We want avoid dangling references.

• We tend to forget to delete objects (memory leaks).

• It should be “fool-proof” – client should not need to

think too much.

• Garbage collectors introduce performance overhead.

Solution:

• Store a counter for the number of references

somewhere.

• Implement a proxy which represents a pointer

which…

• … increases the ref-counter in the constructor.

• … decrease the ref-counter in the destructor, and on reaching 0

it deletes the object.

• … implements the arrow operator “- ” similar to pointers.

• … returns a new instance on assignment “ “ and copy

constructor.

• Only allow access to object via the proxy object.

Consequences:

+ Automatic immediate destruction if object is not

referenced anymore

+ Client does not need to worry about dangling

references, or memory leaks.

~ Shared vs. Unique Pointers?

- Circle references!

122

Interpreter / Abstract Syntax Tree (AST)
Read expressions one after another and build a tree of expressions.

123

Interpreter / Abstract Syntax Tree (AST)124

Proactor

(async)

Reactor

(sync)

125

Model-View-Controller (MVC)
Separate the responsibilities of visualizing, processing and data management for GUI

applications.

126

MVC / MVP / MVVM

Context: Important dataset that needs to be provided

to be processed.

Problem: Tight coupling of data and representation. I

want to separate data and representation.

Forces:

• Independent change of data and views

• Separation of concerns

• Different lifecycles / update rates

• Different expertise

Solution:

• Decouple components for data, visualisation, and

control

• Dedicated part for representation (view)

• Part for manipulation of data (controller)

• Independent model for storage of data (model)

Consequences:

+ Increased reusability of code

+ Separable for different development teams

+ Independence between data and representation

(decoupling)

- Complexity increase

- Unit testing more complex

127

Goal: Describe MVC / MVP / MVVM Pattern

MVC vs. MVP vs. MVVM

Goal: Describe MVC / MVP / MVVM Pattern

128

Presentation-Abstraction-Control (PAC)
Decompose GUI generation into smaller agents, each consisting of three parts: presentation,

abstraction and control.

129

ModelView Controller

