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Abstract. This work focuses on retrofitting a
crane model in the wood industry for automated log
grasping. AI inspired vision based approaches are
used to categorize and segment the logs and their
geometry to subsequently define optimal grasping
poses. Retrofittable sensors and robust control
strategies for cost efficient upgrading of existing
manually operated cranes towards autonomous
systems are developed.

1. Introduction

Classical production lines and handling processes
for raw materials often have a long history and
incorporate a large amount of experience based
knowledge for process optimization and handling
routines. Nowadays, these processes seem to be
stuck in a local minima in terms of efficiency
and performance due to human factors. With
the available degree of automation, robustness
of AI based perception and decision making,
and novel sensor technology, a re-thinking of
these well established processes can take place.
Instead of a radical approach to replace existing
infrastructure, this work leverages currently installed
machines in the wood sector and enables them to
work autonomously through retro-fitting of sensors,
autonomy, and AI based scene understanding. The
project has a strong focus on bringing advanced
methods in the corresponding research fields to
practice. Hence, a model log crane was built as a
1:5 scaled down copy of a real log crane (Fig. 1).
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Figure 1. Crane model in 1:5 scaled version of a real crane
used in the wood sector. The hydraulics are specifically
designed to match this scale. Manual control is identical
to the real versions.

2. Model and Retrofittable Sensor Design

The 1:5 scaled crane model has been designed and
manufactured from scratch to match the properties
of the real counterparts. This includes hydraulic
actuators, end-effector with two free joints and
an actuated revolute joint with unconstrained 360◦

actuation, and backlash. For tests and evaluation, we
installed wire-rope sensors on the hydraulic pistons
to measure their current position. Novel capacitive
and inductive sensors have been designed and
implemented as described in Section 2.1 to measure
the current absolute angles and to provide feedback
on the grasping quality. Apart of the crane itself, the
overall system (Fig. 2) also contains a log storage
box with automated emptying mechanism. Emptying
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the box is done by asynchronously opening the box
such that the model logs spread randomly on the
floor. The floor area designed as log picking area
can be shielded during a box emptying process to
prevent the logs from spreading too wide in the
area. With the project goal of the crane being
able to autonomously store the logs in the box,
this automated emptying process enables an endless
cycle for automated training refining the AI based
procedures without supervision.

The crane is controlled at a high level by an
external PC which is connected via Ethernet to
a HAWE-ESX control unit. The ESX controls
the hydraulic pistons and sends the signals of the
wire-rope and custom angular sensors via Ethernet
back to the host PC. The PC also receives data from
two cameras mounted on the fix and movable part
of the crane as well as from five IMUs mounted on
each of the crane joints. These sensors will serve
for automated model creation as we assume to not
have CAD drawings of every crane in a retrofitting
process. The overall connectivity schematic is shown
in Fig. 3.

Figure 2. Crane model system with automated elements
for continuous learning without human intervention.

Figure 3. Overview on the connectivity of the model
crane, the sensors, and the external PC.

2.1. Retrofittable Sensors

Automating machinery in the wood sector is
challenging since not only the sensors that enable
autonomy need to be equipped ideally without
disassembling the machine, they also need to be
autarkic in terms of energy, and withstand very
harsh environments. Thus, robust magnetic angular
position sensors following [1] suitable for retrofitting
and wireless operation have been integrated on the
crane model. They can easily be adapted for different
joint geometries. The basic architecture is shown
in Fig. 4 together with the lab setup (currently
with wired CAN). In addition, capacitive sensors

Figure 4. The experimental sensor and CAD coil geometry
on the rotary joint of the end-effector: The coil PCB and
signal processing circuitry is mounted to the non-rotating
head whereas the conductive plate is mounted on the
rotating shaft. The conductive counterpart consists of a
3D printed holder and wrapped copper foil.

following [2] are integrated in the end-effector to
augment the machinery with a sense for log grasping
quality (Fig. 5). The crane and sensors are simulated

Figure 5. Left: V-REP model. Bottom right: gripper
design. Top right: photograph of the gripper prototype
including the sensor elements wireless electronics.

in V-REP. There, the communication and control are
tested using V-REP/ROS and V-REP/Python bridge.
The simulation also serves as an environment for AI
training of the crane controls and for optimizations
on sensor placement following [3]. A video of the
simulation framework can be found in [4]
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3. Control and State Estimation

The manipulator as a forest crane is vastly
different compared to a standard industrial robot:
the rather unconventional design requires detailed
geometrical knowledge to derive the kinematic
model. Also, the hydraulic driving system suffers
from heavy vibrations, backlashes and jerks which
require detailed dynamic parameters for proper
modelling. To capture the complex relationships
on existing machines where CAD and dynamic
models are rarely available, we use machine learning
techniques for the prediction of kinematics and
dynamics parameters. Additional inertial and visual
sensors further help to re-fine the overall state
estimation including the adaptive estimation of the
dynamic parameters defining the sway-motion of the
two free joints on the end-effector. This adaptive
estimation of the kinematic and dynamic parameters
allows a simplified manipulator model for adaptive
control schemes when picking and placing logs with
sway motion.

3.1. Automated Grasping Point Prediction

To find the optimal points for the gripper to grasp
a log (or logs), it is necessary to recognize graspable
objects in the surrounding area of the robotic
manipulator and calculate possible candidates. A
candidate is defined as a point/area of the log
which can successfully be grasped by the gripper.
A ZED camera is used for image acquisition and
consists of a stereo camera system capturing high
resolution RGB-D images from the scene. Core
component of the prediction method is a deep
learning approach using a Convolutional Neural
Network to predict grasping candidates in 2D image
space, similar to [5]. The depth information is used
for: 1) Automatic annotation of training data for a
deep neural network by leveraging sequential depth
data. This method is a step towards continuous
learning making it easily possible to generate new
ground truth training data during real time system
application. 2) Calculation of the final 3D position of
the grasping point from the previously predicted 2D
grasping candidate. Fig. 6 shows a sample scenario
with some logs remaining in the picking area and
marked grasping locations by the AI method.

3.2. Conclusion and Next Steps

We proposed a mechanical setup for training a
crane model of the wood industry for automated

Figure 6. Model logs in the picking area of the 1:5 scaled
model crane with marked grasping positions by our AI
based method. Red marks the desired locations of the two
grippers in the end-effector of the crane.

log grasping. The setup allows automated operation
such that continuous learning without human
intervention can be possible. Retrofittable sensors
allow additional sensing capability in order to
autonomously control the grasping procedure and to
verify correct picking of the desired logs. The current
results show that while the alignment of the desired
gripper positions to grasp a log is correctly predicted
by the AI, not all suggested locations are ideal in
view of the center of gravity. Next steps will include
the feedback of the capacitive sensors to correct the
AI decision in an automated learning procedure.
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