Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

(Revision)

ichael Krisper

Revision from last time...

e SOLID Principles
« Single Responsibility
* Open Closed
 Liskov Substitution
* Interface Segregation
« Dependency Inversion

* Principles of Good Programming:

 Decomposition

* Abstraction
 Decoupling

« Usability & Simplicity

* Design Pattern
 Layers
e lterator
* QObserver

Goal: Describe Iterator Pattern

Mlchael Krlsper

TU

Grazm

H lterator

Retrieve items of a collection element by element.

Client P

Iterator<T>

Aggregate

+ Createlterator(): Iterator

JAN

+ First()
+ Next()
+ IsDone(): bool

+ Currentltem(): T

ConcreteAggregate

P Concretelterator

T

+ Createlterator(): Iterator

(

return new ConcreteIterator(this)

Michael Krisper

Learning Goals ﬂ-lG-laJl

|||||||||||||

H Learning Goals for Today

Understand and describe some design patterns:
* OBSERVER

* FACTORY METHOD

* STRATEGY

« COMMAND

Explain the core ideas of these patterns in own
words

Derive the Problem, Forces, Solution, and
Conseguences of these patterns

Goal: Describe Observer Pattern

Michael Krisper

TU

Grazm

Observer

Inform registered observers about changes.

Subject

observers

q Observer

+ Attach(o: Observer)

+ Detach(o: Observer)
+ Notify()

for o in observers:
o.Update()

¢---

i

ConcreteSubject

subject

+ Update()

+ subjectState

+ GetState()

+ SetState()

®---return subjectState

ConcreteObserver

+ observerState

+ Update()

y- - ObserverState =

subject.GetState()

Michael Krisper

Goal: Describe Observer Pattern

Michael Krisper

TU

Grazm

H Observer

Context: data is distributed over
multiple related objects.

Problem: Maintain consistency
between related objects.

Forces:

* When one object changes, others
should be held consistent.

» Polling is very costly or not possible.

« The other objects are not known at
compile-time and should not be
tightly coupled.

« Reuse even in isolation should be
possible.

Solution:

» Define means to manage observers for
a subject (register, unregister).

* On changes: notify all observers that a
change happened.

» Give the observers the possibility to
access the changed data.

Consequences:

+ Decouple subjects and observers.
+ Reuse subjects and observers.

+ Polling is not needed anymore.

+ Support for m:n communication.

- Unexpected updates / Frequent
updates / Cascading updates.

Synchronous vs. Asynchronous
updates!

Who initiates the update?

Goal: Describe Observer Pattern TU

Michael Krisper

Grazm

Observer - Example

abstract class Subject {

}

private readonly List<Observer> observers = new List<Observer>();
public void Attach(Observer observer) => observers.Add(observer);
public void Detach(Observer observer) => observers.Remove(observer);
public void Notify() => _observers.ForEach(o => o.Update());

abstract class Observer {

public abstract void Update();
}

class ConcreteSubject : Subject {
private string _state;
public string State {
get { _state; }
set {
_state = value;
Notify();
}
}
}

class ConcreteObserver : Observer {
public ConcreteSubject Subject;
private readonly string _name;
public ConcreteObserver(ConcreteSubject subject, string name) {
Subject = subject;
subject.Attach(this);
_name = name;
}
public override void Update() {
Console.WriteLine($"Observer {_name} was informed
that subject changed: {Subject.State}");

void Main() {

s.State =

var s = new ConcreteSubject();
var ol = new ConcreteObserver(s, "01");
"Change 1";

Goal: Describe Factory Method Pattern TU

Michael Krisper Grazm

H Factory Method

Delegate the creation of objects to someone else.

Creator

+ FactoryMethod()
Product

+ Operation() ¢ ----product = FactoryMethod()

/\ JAN

ConcreteCreator

ConcreteProduct |€¢——

+ FactoryMethod() ¢ ----- return new ConcreteProduct()

Michael Krisper

Goal: Describe Factory Method Pattern

Michael Krisper

TU

Grazm

H Factory Method

Context: Creation of an object, whose

Problem: How to create an object for

class is not known until runtime.

which the concrete class is not
known.

Forces:

We don’t care which object is
created, as long as it provides the
same functionality.

We can’t anticipate the class we
want to create at coding time.

We want to shift the decision to
someone else.

Solution:

» Define an interface of capabilities your
objects must implement.

Define some means (method or own
class) to create the actual object
somewhere else.

* Let the actual object implement the
needed interface.

Consequences:
+ Isolates Framework and Application code
+ Flexibility (Compiletime/Runtime)
+ Lesser Dependencies
+ Connects parallel class hierarchies
+ Decoupling of Implementation and Usage
+ Abstraction of actual instances
Hides constructors
- Needs an interface/abstraction layer!

Goal: Describe Factory Method Pattern ﬂ-lG-laJl

|||||||||||||

Factory Method — Implementation Issues

« Naming Convention (e.g. XyzFactory)

« Constructor Parameters?
* Universal-God-Interface vs. Duck Typing

« How to avoid direct constructions?
(Private Constructor?)

« Abstract Creator (subclasses must implement)
VS.
Concrete Creator (default implementation, but
subclasses can override)

Goal: Describe Strategy Pattern

Michael Krisper

TU

Grazm

Strategy

Substitute behaviour later.

Context

+ Contextinterface()

strategy
Strategy
+ Algorithminterface()
ConcreteStrategyA ConcreteStrategyB

+ Algorithminterface()

+ Algorithmlinterface()

+ Algorithminterface()

Michael Krisper

Goal: Describe Strategy Pattern

TU

Grazm

Strategy

Context:

« Many related classes which differ
only in their behaviour.

* Methods with complex behaviour
based on many conditionals.

Problem:

How to manage the different behaviours
and simplify the architecture?

Forces:

* You need different variants for an
algorithm.

« The behaviour should be
exchangeable at runtime.

* You want to split up behaviour of
classes to simplify it.

Solution:
* Define interfaces for algorithms

« Encapsulate the algorithms to make
them interchangeable.

* Let the algorithm vary independently
from the clients.

Consequences:
+ Split up behaviour and decision logic.

+ Elimination of Subclasses just for
different behaviour (composition over
Inheritance!)

+ Reuse: Behaviour of one class can be
reused for others.

- Communication overhead
- Access to private fields?

- Increased number of objects (every
behaviour is an own object)

Who assembles the concrete strategies
at runtime?

Goal: Describe Command Pattern JAY,

Michael Krisper Grazm

Command

Encapsulate a request. Decouple invocation from execution.

Command

+ Execute()

JAN
ConcreteCommand Receiver
Client L__pf Execute() —® + Action()

Michael Krisper

By
Michael Krisper

Goal: Describe Command Pattern

Ty

Command

Context:
Invoking some behaviour of an object

Problem:
We just want to invoke an operation,

regardless of its concrete implementation
and executing context.

Forces:

Avoid coupling of the invoker and the
context of the request.

We do not know the exact implementation
of a request

A request should be undoable

Solution:

Define an interface for commands with a
very simple interface (just Execute()).

Encapsulate the behaviour in concrete
commands implementing this interface
and containing all needed parameters as
members.

Implement means to let the client initialise
the parameters.

Consequences:

+

+
+
+

A request does not depend upon the
creating class anymore.

A request can be executed in isolation.
Undo/Redo-Operations become possible

Switching the receiver at runtime becomes
possible

Behaviour can be reused for multiple
receivers.

Increased number of objects

References to all needed parameters must
be stored

M- Summary

Summary

Patterns:

OBSERVER
FACTORY METHOD
STRATEGY
COMMAND

