Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

(Revision)

Michael Krisper

TU

Grazm

Revision from last time...

Communication Patterns:

Client

Abstraction Implementor

imp

MEDIATOR
BLACKBOARD
MICROKERNEL

<

+ Operation() P + Operationimp()

? imp.OperationImp() Zr Zr

RefinedAbstraction Concretelmplementor1

Concretelmplementor2

+ Operationimp()

+ Operationimp()

| Server Proxy

BRIDGE

BROKER

MESSAGES

MESSAGE ENDPOINT
MESSAGE TRANSLATOR
MESSAGE ROUTER
REQUEST HANDLER

er]

2|l »[3+ Caliservice()
=l -2+ sendResponse()

i bl
E ©

o ‘& server

proctss. + RunService()
Souncany

REQUESTOR

Message Endpoint
Sender + Read(): data
data messag
»| + Write(data) Elﬂ--b-

Header Header
Bod
process
boundary

Message Endpoint

Messaging message
Middleware i--- P+ Read(): data

+ Write(data)

e

data .
Receiver

(Revision)

Michael Krisper

TU

Grazm

Messaging in Broker

Client Pr}p\

Broker

Server Proxy

Client

p SendRquest() Eﬁ

+ ForwardRequest()
+ ForwardRespanse()

+ RegisterService()

=t -hy-- +\CallService()

—- @ +/sendResponse()

-

N Server

prcu:s,- g5, + RunService() «—

boundary ™.,

BrokerB

process
" boundary
BrokerA
1+ ForwardRequest() — +
+ ForwardResponse() +
+ RegisterService() *

ForwardRequest() [“ZI-@ - --p
ForwardResponse() :

ReqisterService()

—

BridgeA

BridgeB

p

22

+ ForwardMessage

+ TransmitMessage

+ ForwardMessage [M}—=-di.
_ AN
+ TransmitMessage [,D
oroce

/

boundary

Michael Krisper

Learning Goals

Michael Krisper

Learning Goals for Today

Collection-Patterns

« |terator (revision)

« Visitor

« Composite / Whole-Part

Behavioral-Patterns
e State
« Template-Method

Synchronisation / Concurrency Patterns
 Locks: Mutex, Semaphor

e Monitor
 Active Object
e Future

« Scoped Locking
 Thread-Specific Storage
* Proactor / Reactor
 Double Checked Locking

Michael Krisper

Goal: Describe Visitor

TU

Grazm

Visitor

Add behaviour on aggregates of different objects

Client

.

ObjectStructure

v

Element

+ Accept(Visitor)

r 1

ElementA

ElementB

+ Accept(v: Visitor) ¢

b4

v.VisitElementA(this)

+ Accept(v: Visitor) ¢

D -

v.VisitElementB(this)

Visitor

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)

T

T

ConcreteVisitor1

ConcreteVisitor2

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)

|<9OXI| Michael Krisper

Goal: Describe Visitor TU

Michael Krisper Grazm

H Visitor Solution:

« Pack related operations together in a
visitor and implement one for every

Context: Performing operations on needed object type
elements of an aggregate. * Implement means to iterate over
aggregate and apply visitor to every
Problem: How to execute some contained object.
behaviour on an aggregate of
different objects? Consequences:
+ Makes adding new functionality easy
Forces: + Combines related functions
« Object aggregate contains + Account for different object types

different interfaces

» Avoid polluting classes with
unrelated operations

« Structure rarely changes

+ Can accumulate state
Who traverses the aggregate? How?
Double-dispatch or not?

- Adding new class types is expensive

- Visitor may need access to private
members (breaks encapsulation)

Goal: Describe Composite

Michael Krisper

TU

Grazm

Composite

Handle different granularities of objects uniformly

Client

> Component
+ Operation() -
+ Add(component)
+ Remove(component)
A A children
Leaf Composite
_ for c in children:
+ Operation() + Operation() ®---- c.Operation()

+ Add(component)

+ Remove(component)

Michael Krisper

Goal: Describe Composite Y,

Michael Krisper

“ Composite Solution:

* Define common Interface for all
granularities to manage children and call

Context: methods.
Hierarchies of objects with different * Implement Composites: Forward call to
granularities children
* Implement Leaves: Execute calls directly
Problem:
How to uniformly handle different Consequences:

granularities of objects in hierarchies? + Defines hierarchies of primitive and
composite objects

Forces: + Simple handling for client
* Represent hierarchies of objects + Adding new kinds of composites is easy
« Treat all objects uniformly Default implementations?
» Ignore differences behaviour of Parent references?
individual objects and aggregates Changing roles? Leaf < Composite?
Caching?

- Constraints are difficult to implement
- Interface limits functionality

Goal: Describe State

Michael Krisper

TU

Grazm

H State

Change object behaviour depending on a situation

state

Context [

+ Request() ®-

state.Handle()

A

(&) (S
©

P State

+ Handle()

ﬁ& Zt ~ 1
ConcreteStateA ConcreteStateB
+ Handle() + Handle() + Handle()

|cOI3] Michael Krisper

Goal: Describe State TY

Michael Krisper

Solution:
State « Define Context(manager) which knows

the states and transitions and exposes
the client-interface

* Define general Interface for all States

Implement the different states in
Individual classes

Context: Objects which change their
behaviour according to a situation

Problem: How to switch behaviour of
an object without complex

Implementation? * Define the transitions between states
Forces: Consequences:
« Behaviour should change with + State specific behaviour is encapsulated
internal state within the state objects.
- Behaviour should change at runtime + New States and transitions can easily be
. Transition between states should not d€fined
depend on complex multipart + Transition logic is partitioned and simple.
conditional statements (no if-else-if- + Transition are explicit — no mixed states
élse-...) + State Object can be shared (-> Flyweight)
* States should not be mixed. Who makes the transitions?

- More classes
- Special transitions may be difficult

Ty

When tired When alarm

Q@

fterwards

Goal: Describe Template-Method

Michael Krisper

TU

Grazm

Template-Method

Define methods and let children implement the behaviour.

AbstractClass

+ TemplateMethod()

~ Primitive Operation1()

~ Primitive Operation2()

q

)~ -

JAN

ConcreteClass

~ PrimitiveOperation1()

~ PrimitiveOperation2()

PrimitiveOperationl()

PrimitiveOperation2()

Michael Krisper

Goal: Compare Template-Method to others ﬁTU

||||||||||||| Grazm

Template-Method vs Strategy vs Command
VS

A

« What is the intent of each? .'
 How do they differ?
* In which situations can they be applied?

10 minutes group work (a 2-3 students)!

Goal: Describe Locks TU

Michael Krisper Grazm

Locks: Mutex, Semaphore, Read/Write Lock

Ensure mutual exclusive access to some resource.

«interface»
StrategizedLocking
Component
@ @j—b + Acquire()
Client ——9{ + Method(lock) @ﬁ_» + Release()
_ 1ock.Acql:|ir'e() 4 Z:& Z:&
@ i(.)ék.Release() STt ' E REEEER .
Mutex Semaphore ReaderWriterLock
+ Acquire() + Acquire() + Acquire()
+ Release() + Release() + Release()
Actual Lock Instance

", W
...

Goal: Describe Locks TU

Mi h el Kris isper Grazm

H Locks Solution:

« Acquire lock before accessing a
resource or wait until lock is available.

Context: Simultaneous access to « Release the lock after resource is not
resources needed anymore.
* Use a Lock which is synchronized and
Problem: How to avoid conflicts and atomic to the client
ensure the same view for all
accessors?
Consequences:
Forces:

+ Access to resources is mutually
« Parallel access to shared resources exclusive

(multiple Threads or Processes)
« Locally on one machine
* Read or Write access

+ Logic order is established
Which lock is appropriate?
Maybe lock is not needed? (Immutable

* Avoid conflicts (who writes first) data types? Thread specific storage?
« Enforce consistency (same view for Lock-Less Implementations?)
all accessors) - Using locks produces overhead & waiting
times

- Race-Conditions & Deadlocks

Goal: Describe Monitor

Michael Krisper

TU

Grazm

Monitor

Synchronize method calls to an object

o

PR I T TR

Thread 1 i
Client 1
@,
I -
Client 2 j@
Thread 2 ,:

--_'

Lock
+ Acquire() ﬁ
Component + Release() [~
= O + Method1()
+ Method2()
6 release the lock _/
2 blocks until Lock is available
J

release the lock

Michael Krisper

Goal: Describe Monitor TU,

ichael Krisper

i@ Monitor
Context: Multiple threads accessing Solution:
an object concurrently . Use a general lock for one object
iInstance
Problem: How to concurrently access * Acquire lock before method call,
an object and call the method Release after method is finished.
without manual synchronization?
Consequences:
Forces: + Simplification of concurrency control
» Concurrent invocation of methods + Simplification of scheduling method
in an object by multiple threads execution
* Prevent race conditions: only one - Limited Scalability — too coarse lock!
method should be active (extreme case: GIL in python!)
* Method calls should be - Inheritance/Extension is dangerous

synchronized

» Object state should stay stable and
resumable

- Nested monitors — reaquiring locks?

Goal: Describe Scoped Locking L

Michael Krisper Grazm

Scoped Locking

Use scope-rules for acquiring & releasing locks

ScopedLock Lock
Component
©) (@ —¥| + ScopedLock() QL» + Acquire()
Client »| + Method()
= mb + ~ScopedLock() @—> + Release()

ScopedLock lock;
g Michael Krisper

return

std::mutex mutex;
int current = 0;

void increment () {
std::lock guard<std::mutex> lock(mutex);
++ current;

}

Goal: Describe Scoped-Locking

Michael Krisper

TU

Grazm

Scoped-Locking

Context: Using locking mechanisms to

protect a critical section

Problem: How to avoid forgetting to

release the lock?

Forces:

A critical section of code should be
protected for concurrent access with
a lock

The section may have multiple exit
points

Developers tend to forget to release
locks on the right places

Solution:

 Implement a class which:
« Acquires a mutex in constructor
* Releases the mutex in destructor

« Hide copy constructor and
assignment operator

» Use like a normal stack variable and
rely on stack-unwinding for destructor
calls on leaving a scope

Consequences:
+ Increased robustness
+ Very simple usage

- Potential deadlock when used
recursively (reacquire lock needed?)

- Limitations due to language specific
semantics (process abort SIGC,

longjmp)

Goal: Describe Double Checked Locking

Double Checked Locking

Check twice to ensure conditions

TU

Grazm

Lock
ThreadSafelnterface Implementation l
+ Acquire()
Client —p| + MethodA(conditions) F———p| + MethodA() j—p + Release()

Michael Krisper

if conditions == true:
lock.Acquire()
if conditions == true:

impl.MethodA()
lock.Release()

Goal: Describe Thread-Specific Storage Y,

Michael Krisper

Thread-Specific Storage

Store data corresponding to only one thread

ThreadSpecificStorage

P

‘Thread 2

) - data: Dictionary<Thread, data>

] T e

W

+ GetData(): data ®-,

if not data.HasKey(CurrentThread):

Client 2

}J data[CurrentThread] = new Data()
' return data[CurrentThread]

Michael Krisper

Goal: Describe Future

Michael Krisper

TU

Grazm

Future

Supply a placeholder for future results

Client —9»

Service

+ Method(): Future

D L e

Future

- result

E _return
1 \ ’

block until

result is set

+ GetResult(): result

+ SetResult(result)

<

Q‘—» + Run(Future)

Thread 2

Task

_J

Michael Krisper

Goal: Describe Future

Michael Krisper

TU

Grazm

Future

Context: Asynchronous method calls

Problem: How to get the result of an
asynchronous method call?

Forces:

You want to do the call
asynchronously.

You don’t know when the call is
finished.

You want to access the result.
You don’t want to busy wait.

You don’t want to expose internal
concurrency mechanisms

Solution:

* On calling a method immediately return
a handle which will contain the result in
the future.

« Execute the task asynchronously.

As soon as the Task is finished, write
the result to the future-handle.

« Give the client a possibility to check if
the result is available or wait for it.

Consequences:

+ User has the possibility to work with
“future” results

+ Asynchronous programming gets easier

- No immediate control over the executing
thread (no way to cancel, pause)

- Additional memory is needed, to hold
results when thread is finished.

- When result is not needed the future-
handle is useless.

Michael Krisper

24

TU

Grazm

Proactor
(async)

Reactor
(sync)

|
Event Handler

PRER 1l I

Pr r
@ oacto asynchronous
@ call

“3{ + RunEventLoop() FR— ;
R + HandleEvent()

@) GetNextEvent() @G

.....................

. @ || request _: . -
Client r-=--f--------- ». Operating System ¢ read request
: <
""""""""""" write response
process Michael Krisper
boundary

Reactor Event Handler I
)

@ synchronous
- + RunEventLoop() call + HandleEvent()

pTTTTTT et GetNextEvent()
. @ request .
Client r-=--fj--------- ». Operating System
Michael Krisper
process

boundary

Goal: Describe Active-Object TY

Michael Krisper Grazm

Active-Object
Synchronize method invocation and execute in a different
thread

--

Proxy CommandProcessor

Client —— + Method1() - commandsQueue <,

+ Method2()

creates |

@,. EE > Command Receiver

+ Execute() r} + Action()
Thread 2

..

Michael Krisper

--

Goal: Describe Active-Object

Michael Krisper

TU

Grazm

Active-Object

Context: Multiple clients access

objects running in different
threads or contexts.

Problem: How to execute

commands in a different context
than the client.

Forces:

Clients invoke remote operation
and retrieve results later (or wait)

Synchronized access to worker
threads

Make use of parallelism
transparently

Solution:

« Implement a proxy with encapsulates all
method calls in commands

 Use a Scheduler/CommandProcessor to
execute the commands in a separate
thread(pool).

* Give the client the possibility to retrieve or
wait on the results (async/sync)

Consequences:

+ Typesafety compared to message passing
(usage of classes/objects)

+ Simplifies sychronization complexity
+ Client appears to call an ordinary method

+ Command is executed in a different thread
than the client thread

+ Transparent leveraging of parallelism

Order of method execution may differ from
invocation

- Performance overhead
- Complicated debugging

Async / Awalit

Execute functions cooperatively in an event loop.

@ ,uminousmen.com

Figure by Luminousmen.com, 17.02.2019, taken from https://luminousmen.com/post/asynchronous-programming-await-the-future

https://luminousmen.com/post/asynchronous-programming-await-the-future

Ty

By
Michael Krisper

Async / Await Example

public async Task<int> SumPageSizesAsync(IList<Uri> uris)

o Aq
int total = ©;
foreach (var uri in uris) {
statusText.Text = string.Format("Found {0} bytes ...", total);
var data = new WebClient() K
&
total += dath.Leng Creates a Task A

}
QLIRS SN Creates a lask B (Clostre)whichisehained
return total; after the Task A and returned to caller.

} _ Wheii the Task B finishes, execution

— Coroutne tag continues with Task A.

Call stack

coroutine

Goal: Describe Scoped-Locking Y,

Michael Krisper

Async / Await solution:

« Compile the functions as state
machines, with transitions at the “await”
statement

» Execute the state machines in an event
loop, advancing them based on a
“ready”-condition (or signal).

Context: Executing multiple functions
waiting for 1/O resources.

Problem: How to execute I/O-bound
functions in parallel without having 1o consequences:
use multithreading and

S + No need to use multiple threads.
synchronisation.

+ No need to synchronise.
+ NO unnecessary waiting times due to

Forces: blocking functions.

* Executing the blocking functions + Simple usage (nearly like single-threaded
sequentially is slow. programming, except for the “await”

« Executing the functions in own keyword).
threads may cause synchronisation - Syntax and Compiler support needed.
problems or wasting resources due - Must be supported throughout the whole
to context switching. application (async/await and non-blocking

« Multithreading programming is error- functions virtually everywhere)
prone. - Relies on cooperativeness!

« Some environments don’t have true - CPU-bound functions may still block

multithreading (python, javascript) everything.

