
Michael Krisper

u www.iti.tugraz.at

20.11.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision from last time…

Communication Patterns:

• MEDIATOR

• BLACKBOARD

• MICROKERNEL

• BRIDGE

• BROKER

• MESSAGES

• MESSAGE ENDPOINT

• MESSAGE TRANSLATOR

• MESSAGE ROUTER

• REQUEST HANDLER

• REQUESTOR

(Revision)

2

Michael Krisper

Messaging in Broker

(Revision)

3

Michael Krisper

Michael Krisper

Learning Goals for Today
Collection-Patterns

• Iterator (revision)

• Visitor

• Composite / Whole-Part

Behavioral-Patterns

• State

• Template-Method

Synchronisation / Concurrency Patterns

• Locks: Mutex, Semaphor

• Monitor

• Active Object

• Future

• Scoped Locking

• Thread-Specific Storage

• Proactor / Reactor

• Double Checked Locking

Learning Goals

4

Michael Krisper

Visitor
Add behaviour on aggregates of different objects

Goal: Describe Visitor

5

Michael Krisper

Michael Krisper

Visitor

Context: Performing operations on

elements of an aggregate.

Problem: How to execute some

behaviour on an aggregate of

different objects?

Forces:

• Object aggregate contains

different interfaces

• Avoid polluting classes with

unrelated operations

• Structure rarely changes

Solution:

• Pack related operations together in a

visitor and implement one for every

needed object type

• Implement means to iterate over

aggregate and apply visitor to every

contained object.

Consequences:

+ Makes adding new functionality easy

+ Combines related functions

+ Account for different object types

+ Can accumulate state

~ Who traverses the aggregate? How?

~ Double-dispatch or not?

- Adding new class types is expensive

- Visitor may need access to private

members (breaks encapsulation)

Goal: Describe Visitor

6

Michael Krisper

Composite
Handle different granularities of objects uniformly

Goal: Describe Composite

7

Michael Krisper

Michael Krisper

Composite

Context:

Hierarchies of objects with different

granularities

Problem:

How to uniformly handle different

granularities of objects in hierarchies?

Forces:

• Represent hierarchies of objects

• Treat all objects uniformly

• Ignore differences behaviour of

individual objects and aggregates

Solution:

• Define common Interface for all

granularities to manage children and call

methods.

• Implement Composites: Forward call to

children

• Implement Leaves: Execute calls directly

Consequences:

+ Defines hierarchies of primitive and

composite objects

+ Simple handling for client

+ Adding new kinds of composites is easy

~ Default implementations?

~ Parent references?

~ Changing roles? Leaf ↔ Composite?

~ Caching?

- Constraints are difficult to implement

- Interface limits functionality

Goal: Describe Composite

8

Michael Krisper

State
Change object behaviour depending on a situation

Goal: Describe State

9

Michael KrisperA

CB

D

Michael Krisper

State
Context: Objects which change their

behaviour according to a situation

Problem: How to switch behaviour of

an object without complex

implementation?

Forces:

• Behaviour should change with

internal state

• Behaviour should change at runtime

• Transition between states should not

depend on complex multipart

conditional statements (no if-else-if-

else-…)

• States should not be mixed.

Solution:

• Define Context(manager) which knows

the states and transitions and exposes

the client-interface

• Define general Interface for all States

• Implement the different states in

individual classes

• Define the transitions between states

Consequences:

+ State specific behaviour is encapsulated

within the state objects.

+ New States and transitions can easily be

defined

+ Transition logic is partitioned and simple.

+ Transition are explicit – no mixed states

+ State Object can be shared (-> Flyweight)

~ Who makes the transitions?

- More classes

- Special transitions may be difficult

Goal: Describe State

10

Michael Krisper

State11

Sleep

Eat

WorkLearn

Train

When alarm

At 8:00

Afterwards

At 19:00

When tired

Michael Krisper

Template-Method
Define methods and let children implement the behaviour.

Goal: Describe Template-Method

12

Michael Krisper

Michael Krisper

Template-Method vs Strategy vs Command

vs Visitor

• What is the intent of each?

• How do they differ?

• In which situations can they be applied?

10 minutes group work (á 2-3 students)!

Goal: Compare Template-Method to others

13

Michael Krisper

Locks: Mutex, Semaphore, Read/Write Lock
Ensure mutual exclusive access to some resource.

Goal: Describe Locks

14

Michael Krisper

Michael Krisper

Locks

Context: Simultaneous access to

resources

Problem: How to avoid conflicts and

ensure the same view for all

accessors?

Forces:

• Parallel access to shared resources

(multiple Threads or Processes)

• Locally on one machine

• Read or Write access

• Avoid conflicts (who writes first)

• Enforce consistency (same view for

all accessors)

Solution:

• Acquire lock before accessing a

resource or wait until lock is available.

• Release the lock after resource is not

needed anymore.

• Use a Lock which is synchronized and

atomic to the client

Consequences:

+ Access to resources is mutually

exclusive

+ Logic order is established

~ Which lock is appropriate?

~ Maybe lock is not needed? (Immutable

data types? Thread specific storage?

Lock-Less Implementations?)

- Using locks produces overhead & waiting

times

- Race-Conditions & Deadlocks

Goal: Describe Locks

15

Michael Krisper

Monitor
Synchronize method calls to an object

Goal: Describe Monitor

16

Michael Krisper

Michael Krisper

Monitor

Context: Multiple threads accessing

an object concurrently

Problem: How to concurrently access

an object and call the method

without manual synchronization?

Forces:

• Concurrent invocation of methods

in an object by multiple threads

• Prevent race conditions: only one

method should be active

• Method calls should be

synchronized

• Object state should stay stable and

resumable

Solution:

• Use a general lock for one object

instance

• Acquire lock before method call,

Release after method is finished.

Consequences:

+ Simplification of concurrency control

+ Simplification of scheduling method

execution

- Limited Scalability – too coarse lock!

(extreme case: GIL in python!)

- Inheritance/Extension is dangerous

- Nested monitors – reaquiring locks?

Goal: Describe Monitor

17

Michael Krisper

Scoped Locking
Use scope-rules for acquiring & releasing locks

Goal: Describe Scoped Locking

18

std::mutex _mutex;

int _current = 0;

void increment() {

std::lock_guard<std::mutex> lock(_mutex);

++_current;

}

Michael Krisper

Michael Krisper

Scoped-Locking

Context: Using locking mechanisms to

protect a critical section

Problem: How to avoid forgetting to

release the lock?

Forces:

• A critical section of code should be

protected for concurrent access with

a lock

• The section may have multiple exit

points

• Developers tend to forget to release

locks on the right places

Solution:

• Implement a class which:

• Acquires a mutex in constructor

• Releases the mutex in destructor

• Hide copy constructor and

assignment operator

• Use like a normal stack variable and

rely on stack-unwinding for destructor

calls on leaving a scope

Consequences:

+ Increased robustness

+ Very simple usage

- Potential deadlock when used

recursively (reacquire lock needed?)

- Limitations due to language specific

semantics (process abort SIGC,

longjmp)

Goal: Describe Scoped-Locking

19

Michael Krisper

Double Checked Locking
Check twice to ensure conditions

Goal: Describe Double Checked Locking

20

Michael Krisper

Michael Krisper

Thread-Specific Storage
Store data corresponding to only one thread

Goal: Describe Thread-Specific Storage

21

Michael Krisper

Michael Krisper

Future
Supply a placeholder for future results

Goal: Describe Future

22

1

Michael Krisper

Michael Krisper

Future

Context: Asynchronous method calls

Problem: How to get the result of an

asynchronous method call?

Forces:

• You want to do the call

asynchronously.

• You don’t know when the call is

finished.

• You want to access the result.

• You don’t want to busy wait.

• You don’t want to expose internal

concurrency mechanisms

Solution:

• On calling a method immediately return

a handle which will contain the result in

the future.

• Execute the task asynchronously.

• As soon as the Task is finished, write

the result to the future-handle.

• Give the client a possibility to check if

the result is available or wait for it.

Consequences:

+ User has the possibility to work with

“future” results

+ Asynchronous programming gets easier

- No immediate control over the executing

thread (no way to cancel, pause)

- Additional memory is needed, to hold

results when thread is finished.

- When result is not needed the future-

handle is useless.

Goal: Describe Future

23

Michael Krisper

Proactor

(async)

24

Reactor

(sync)

Michael Krisper

Michael Krisper

Michael Krisper

Active-Object
Synchronize method invocation and execute in a different

thread

Goal: Describe Active-Object

25

Michael Krisper

Michael Krisper

Active-Object

Context: Multiple clients access

objects running in different

threads or contexts.

Problem: How to execute

commands in a different context

than the client.

Forces:

• Clients invoke remote operation

and retrieve results later (or wait)

• Synchronized access to worker

threads

• Make use of parallelism

transparently

Solution:

• Implement a proxy with encapsulates all

method calls in commands

• Use a Scheduler/CommandProcessor to

execute the commands in a separate

thread(pool).

• Give the client the possibility to retrieve or

wait on the results (async/sync)

Consequences:

+ Typesafety compared to message passing

(usage of classes/objects)

+ Simplifies sychronization complexity

+ Client appears to call an ordinary method

+ Command is executed in a different thread

than the client thread

+ Transparent leveraging of parallelism

~ Order of method execution may differ from

invocation

- Performance overhead

- Complicated debugging

Goal: Describe Active-Object

26

Michael Krisper

Async / Await
Execute functions cooperatively in an event loop.

27

Figure by Luminousmen.com, 17.02.2019, taken from https://luminousmen.com/post/asynchronous-programming-await-the-future

https://luminousmen.com/post/asynchronous-programming-await-the-future

Michael Krisper

Async / Await Example28

public async Task<int> SumPageSizesAsync(IList<Uri> uris)

{

int total = 0;

foreach (var uri in uris) {

statusText.Text = string.Format("Found {0} bytes ...", total);

var data = await new WebClient().DownloadDataTaskAsync(uri);

total += data.Length;

}

statusText.Text = string.Format("Found {0} bytes total", total);

return total;

}

Creates a Task B (Closure) which is chained

after the Task A and returned to caller.

When the Task B finishes, execution

continues with Task A.

Creates a Task A.

Michael Krisper

Async / Await

Context: Executing multiple functions
waiting for I/O resources.

Problem: How to execute I/O-bound
functions in parallel without having to
use multithreading and
synchronisation.

Forces:

• Executing the blocking functions
sequentially is slow.

• Executing the functions in own
threads may cause synchronisation
problems or wasting resources due
to context switching.

• Multithreading programming is error-
prone.

• Some environments don’t have true
multithreading (python, javascript)

Solution:

• Compile the functions as state
machines, with transitions at the “await”
statement

• Execute the state machines in an event
loop, advancing them based on a
“ready”-condition (or signal).

Consequences:

+ No need to use multiple threads.

+ No need to synchronise.

+ No unnecessary waiting times due to
blocking functions.

+ Simple usage (nearly like single-threaded
programming, except for the “await”
keyword).

- Syntax and Compiler support needed.

- Must be supported throughout the whole
application (async/await and non-blocking
functions virtually everywhere)

- Relies on cooperativeness!

- CPU-bound functions may still block
everything.

Goal: Describe Scoped-Locking

29

