
Michael Krisper

u www.iti.tugraz.at

27.11.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

https://europlop.net/

The European Conference on Pattern Languages of Programs

https://europlop.net/

Michael Krisper

Revision from last time…

• Visitor

• Composite

• State

• Template-Method

• Locks

• Scoped Locking

• Monitor

• Future

• Active-Object

• Async/Await

(Revision)

3

Michael Krisper

Active-Object
Encapsulate method invocation and execute asynchronously

4

Michael Krisper

Michael Krisper

Active-Object

Context: Multiple clients access

objects running in different

threads or contexts.

Problem: How to execute

commands in a different context

than the client.

Forces:

• Clients invoke remote operation

and retrieve results later (or wait)

• Synchronized access to worker

threads

• Make use of parallelism

transparently

Solution:

• Implement a proxy with encapsulates all

method calls in commands

• Use a Scheduler/CommandProcessor to

execute the commands in a separate

thread(pool).

• Give the client the possibility to retrieve or

wait on the results (async/sync)

Consequences:

+ Simplifies sychronization complexity

+ Client calls an ordinary method

+ Command is executed in a different thread

than the client thread

+ Typesafety compared to message passing

(usage of classes/objects)

+ Transparent leveraging of parallelism

~ Order of method execution may differ from

invocation

- Performance overhead

- Complicated debugging

5

Michael Krisper

Async / Await
Execute functions cooperatively in an event loop.

6

Figure by Luminousmen.com, 17.02.2019, taken from https://luminousmen.com/post/asynchronous-programming-await-the-future

https://luminousmen.com/post/asynchronous-programming-await-the-future

Michael Krisper

Async / Await Example7

public async Task<int> SumPageSizesAsync(IList<Uri> uris)

{

int total = 0;

foreach (var uri in uris) {

statusText.Text = string.Format("Found {0} bytes ...", total);

var data = await new WebClient().DownloadDataTaskAsync(uri);

total += data.Length;

}

statusText.Text = string.Format("Found {0} bytes total", total);

return total;

}

Creates a Task B (Closure) which is chained

after the Task A and returned to caller.

When the Task A finishes, execution

continues with Task B.

Creates a Task A.

Michael Krisper

Async / Await

Context: Executing multiple functions
waiting for I/O resources.

Problem: How to execute I/O-bound
functions in parallel without having to
use multithreading and
synchronisation.

Forces:

• Executing the blocking functions
sequentially is slow.

• Executing the functions in own
threads may cause synchronisation
problems or wasting resources due
to context switching.

• Multithreading programming is error-
prone.

• Some environments don’t have true
multithreading (python, javascript)

Solution:

• Compile the functions as state
machines, with transitions at the “await”
statement

• Execute the state machines in an event
loop, advancing them based on a
“ready”-condition (or signal).

Consequences:

+ No need to use multiple threads.

+ No need to synchronise.

+ No unnecessary waiting times due to
blocking functions.

+ Simple usage (nearly like single-threaded
programming, except for the “await”
keyword).

- Syntax and Compiler support needed.

- Must be supported throughout the whole
application (async/await and non-blocking
functions virtually everywhere)

- Relies on cooperativeness!

- CPU-bound functions still block
everything.

Goal: Describe Scoped-Locking

8

Michael Krisper

Learning Goals for Today

Idioms:

• Counted Pointer

Resource Patterns:

• Lazy Acquisition

• Eager Acquisition

• Partial Acquisition

• Caching & Pooling

• Leasing

• Garbage Collector

Others:

• Chain of Responsibility

• Interpreter

Summary and Wrap-up

9

Michael Krisper

Counted Pointer / Smart Pointer / Shared

Pointer / Auto Pointer
Count references and call destructor when no one is using the object

anymore.

10

Michael Krisper

Michael Krisper

Counted Pointer

Context: Manual dynamic memory
management with pointers

Problem: How to know when a
object can be safely destroyed?

Forces:

• We don’t know exactly who still
has a reference to our objects.

• Several clients may share the
same objects

• We want avoid “dangling”
references

• If a object is not referenced
anymore it should be destroyed
and its memory and resources
released

• The client should not need too
much additional effort

Solution:

• Implement body which has a
counter for the number of
references.

• Implement a proxy which does
the following for every instance
of a body:

• Overload operator ->, =, copy

• Constructor increases counter

• Destructor decreases counter,
on 0 it deletes object.

• Only allow access to body via
the proxy object.

Consequences:

+ Automatic destruction if object is
not referenced anymore

~ Shared vs. Unique Pointers?

- Circle references!

11

Michael Krisper

Lazy Acquisition
Defer acquisition of resources to time of actual usage

12

Michael Krisper

Michael Krisper

Lazy Acquisition

Context: Using resources in an
application

Problem: How to save resources
and load an application faster?

Forces:

• Special resources are needed
in an application (Memory,
Files, Network).

• They take time to load.

• They may be scarce.

• They are not needed from the
beginning, but later on.

Solution:

• Implement a proxy which can

be used by the client

• The proxy should defer

acquisition of the resource until

the last possible moment.

Consequences:

+Resources are only acquired

when really needed.

+Client doesn’t have to care

about using to much resources

early on.

+Application starts faster.

- Waiting times during acquiring

the resources (do it async!)

- Additional layer of abstraction

- Avoid acquiring resources to

often (caching & pooling!)

13

Michael Krisper

Eager Acquisition
Acquire resources in advance.

14

Michael Krisper

Michael Krisper

Eager Acquisition

Context: Using resources in an
application

Problem: How to avoid having to
wait for resources during runtime.

Forces:

• Special resources are needed
in an application (Memory,
Files, Network).

• Exclusive access is no
problem.

• They are always needed in the
application.

Solution:

• Acquire the resources on

startup and store them in some

cache or vault (singleton).

• Give access to the already

loaded resources

Consequences:

+Resources must not be loaded

later on.

+No delay on using the

resources.

- Resources take up memory

space.

- Startup may be slowed down

due to loading the resources (do

it async!)

15

Michael Krisper

Partial Acquisition
Acquire resource in parts. Only use the part which is

currently needed.

16

Michael Krisper

Michael Krisper

Caching & Pooling
Save resources for later reuse.

17

 Michael Krisper

Caching
Let the client decide

what to cache

Pooling
Wrap access to the resource in a manager.

Michael Krisper

Michael Krisper

Caching & Pooling

Context: Using resources in an
application

Problem: How to avoid loading or
creating resources over and
over?

Forces:

• Special resources are needed
in an application (Memory,
Files, Network).

• They may take time to load.

• They are needed more than
once and in different places.

Solution:

• Provide a cache to store

already loaded resources there

(singleton).

• Supply means to access the

cache to the client (factory).

• Restrict access if needed.

Consequences:

+Resources are loaded only once

and reused afterwards

+Subsequent usages are much

faster

~Mutual exclusive access for

other applications?

- Uses much memory space

- Resources may be outdated

18

Michael Krisper

Leasing
Set expire-timeout for resources.

19

Michael Krisper

Michael Krisper

Leasing

Context: Using resources in an

application

Problem: How to avoid that

resources can be exclusively be

used by only one client.

Forces:

• Special resources are needed

in an application (Memory,

Files, Network).

• The resource may be used by

multiple clients.

• It should be avoided that one

client can exclusively use a

resource forever.

Solution:

• Supply access to the resource

via a LeasingProxy which

invalidates the resource some

time after acquisition.

• Inform the client that the usage

time is over.

• Restrict direct access to the

resource.

Consequences:

+ Resources cannot be used

exclusively anymore

+If client forgets to release the

resource it gets released

automatically after some time.

~What is the right duration?

- To early release could lead to

errors.

20

Michael Krisper

Garbage Collector
Maintain reference-graph of objects and delete unreachable branches.

Goal: Describe Garbage Collector

21

Michael Krisper

Michael Krisper

Garbage Collector

Context: Application which
acquires dynamic memory.

Problem: How to avoid
dangling references in an
application to avoid memory
leaks?

Forces:

• Memory can be dynamically
acquired to store objects

• Pointers/References can be
freely passed and copied

• Client doesn’t want to care
about memory allocation.

Solution:

• Maintain reference graph for each

and every dynamically created

object.

• Periodically search over graph for

unreachable branches/subgraphs

• Delete unreachable subgraphs.

Consequences:

+Client doesn’t has to care for manual

memory management.

+No memory leaks

~How often should collection be done?

Performance Optimizations

(Generation Concept)?

- Performance overhead during creation

and garbage collection (traversal)

- Memory overhead by storing all

reference counts

22

Michael Krisper

Chain of Responsibility
Forward a call until an object can handle it.

23

Michael Krisper

Michael Krisper

Chain of Responsibility

Context: Having a task or problem
which can be handled by several
objects.

Problem: How to dynamically
resolve which object is responsible
for a specific problem/task?

Forces:

• Having different types of tasks
which have to be handled.

• Having several objects which
can handle different tasks.

• Tasks and the actual Handlers
are not known at compile-time.

• There should be multiple
escalation levels.

Solution:

• Implement a chain of handlers.

• Forward the task to the first
object which can handle it.

• Add more general handlers in
the end of the chain.

Consequences:

+ Dynamic handling of events

+ Loosely coupled responsibility

+ Can be changed at runtime

~ Who builds the chain?

~ Common standards/conventions?

~ Only one handler or multiple?
(decorator-style)

~ Fallbacks?

- Possible huge call stack

- Critical path is single point of
failure

24

Michael Krisper

Interpreter / Abstract Syntax Tree (AST)
Read expressions one after another and build a tree of

expressions.

25

Michael Krisper

Michael Krisper

u www.iti.tugraz.at

Summary and Wrap-Up

26

Michael Krisper

Learning Goals for Course

Design Patterns Theory

• What is a design pattern? Why do we need them?

• What are principles behind design patterns?

• How to describe design patterns?

• What is a pattern language?

Application of Design Patterns

• When to use what?

Design Patterns in Detail

• Know core ideas and application of
important design patterns! (~50)

Introduction (2.10.2019)

27

Michael Krisper

Design Patterns

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem hurt in

this context?

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour

• Consequences (Rationale):

What are the benefits and liabilities?

What are the limitations and tradeoffs?

How are the forces resolved?

• Known-Uses: Real Life Examples

28

A proven solution for a (recurring)

problem.
What is a pattern?

Michael Krisper
The Design Pattern House

29

Context

Problem

Solution

Forces

Consequences

Known Uses

Name

The Design Pattern House

Michael Krisper

Michael Krisper

SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and

only one, reason to change.

• Open Closed: You should be able to extend a class’s

behavior, without modifying it.

• Liskov Substitution: Derived classes must be

substitutable for their base classes.

• Interface Segregation: Make fine grained

interfaces that are client specific.

• Dependency Inversion: Depend on abstractions,

not on concrete implementations.

Goal: Guiding Principles of Patterns

30

Michael Krisper

Principles of Good Programming

• Decomposition

make a problem manageable

decompose it into sub-problems

• Abstraction

wrap around a problem

abstract away the details

• Decoupling

reduce dependencies, late binding

shift binding time to “later”

• Usability & Simplicity

make things easy to use right, hard to use wrong

adhere to expectations, make usage intuitive

(Revision) Goal: Explain Principles of Good Programming

31

Michael Krisper

Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes & Filters, Broker, Model-View-
Controller, Microkernel

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming
languages or environments

• Examples: Counted Pointer, Scoped Locking

Goal: What is a pattern language?

32

Michael Krisper

GoF Patterns

Goal: What is a pattern language?

33

Figure from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]

https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612

Michael Krisper

POSA 1 Patterns

Goal: What is a pattern language?

34

Figure from [Pattern-Oriented Software Architecture Volume 1: A system of patterns (Buschmann, Meunier, et al., 1996)]

Michael Krisper

POSA 2

Goal: What is a pattern language?

35

Figure from [Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent and Networked Objects (Schmidt et al., 2000)]

Michael Krisper

53 Patterns…

• Wrapping: Adapter, Façade, Decorator, Proxy

• Creation: Factory Method, Abstract Factory, Builder, Prototype,

Singleton, Flyweight

• Behaviour: Strategy, Command, State

• Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-

Server

• Collections: Iterator, Visitor, Composite

• Communication: Observer, Bridge, Broker, Mediator, Blackboard,

Microkernel, Client-Dispatcher-Server/Lookup, Messages, Endpoint,

Translator, Router, Handler, MVC

• Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking,

Thread-Specific Storage, Double-Checked-Locking, Async/Await

• Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition,

Caching & Pooling, Leasing, Garbage Collector

• Others: Memento, Counted Pointer, Chain of Responsibility,

Interpreter/Abstract Syntax Tree

Goal: Know and Describe some Patterns…

36

Michael Krisper

A few philosophical thoughts…

“Patterns are a universal principle”

• How to transfer knowledge?

• How to make knowledge explicit?

• How to make knowledge findable?

• How to make knowledge understandable?

• How to make knowledge applicable?

37

Michael Krisper

“Study hard what interests you the most

in the most undisciplined, irreverent and

original manner possible.”

― Richard Feynmann

Michael Krisper

Georg Macher

georg.macher@tugraz.at

Thank you & Good Luck!

39

Remember us for Projects/Seminars/Bachelor/Master @ ITI

Michael Krisper

michael.krisper@tugraz.at

mailto:georg.macher@tugraz.at
mailto:michael.krisper@tugraz.at

