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Revision from last time…

• Visitor

• Composite

• State

• Template-Method

• Locks

• Scoped Locking

• Monitor

• Future

• Active-Object

• Async/Await

(Revision)
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Active-Object
Encapsulate method invocation and execute asynchronously
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Active-Object

Context: Multiple clients access 

objects running in different 

threads or contexts.

Problem: How to execute 

commands in a different context 

than the client.

Forces:

• Clients invoke remote operation 

and retrieve results later (or wait)

• Synchronized access to worker 

threads

• Make use of parallelism 

transparently

Solution:

• Implement a proxy with encapsulates all 

method calls in commands

• Use a Scheduler/CommandProcessor to 

execute the commands in a separate 

thread(pool).

• Give the client the possibility to retrieve or 

wait on the results (async/sync)

Consequences:

+ Simplifies sychronization complexity

+ Client calls an ordinary method

+ Command is executed in a different thread 

than the client thread

+ Typesafety compared to message passing 

(usage of classes/objects)

+ Transparent leveraging of parallelism

~ Order of method execution may differ from 

invocation

- Performance overhead

- Complicated debugging
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Async / Await
Execute functions cooperatively in an event loop.
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Figure by Luminousmen.com, 17.02.2019, taken from https://luminousmen.com/post/asynchronous-programming-await-the-future

https://luminousmen.com/post/asynchronous-programming-await-the-future
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Async / Await Example7

public async Task<int> SumPageSizesAsync(IList<Uri> uris) 

{

int total = 0;

foreach (var uri in uris) {

statusText.Text = string.Format("Found {0} bytes ...", total);

var data = await new WebClient().DownloadDataTaskAsync(uri);

total += data.Length;

}

statusText.Text = string.Format("Found {0} bytes total", total);

return total;

}

Creates a Task B (Closure) which is chained 

after the Task A and returned to caller.

When the Task A finishes, execution 

continues with Task B.

Creates a Task A.
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Async / Await

Context: Executing multiple functions 
waiting for I/O resources.

Problem: How to execute I/O-bound 
functions in parallel without having to 
use multithreading and 
synchronisation.

Forces:

• Executing the blocking functions 
sequentially is slow.

• Executing the functions in own 
threads may cause synchronisation 
problems or wasting resources due 
to context switching.

• Multithreading programming is error-
prone.

• Some environments don’t have true 
multithreading (python, javascript)

Solution:

• Compile the functions as state 
machines, with transitions at the “await” 
statement

• Execute the state machines in an event 
loop, advancing them based on a 
“ready”-condition (or signal).

Consequences:

+ No need to use multiple threads.

+ No need to synchronise.

+ No unnecessary waiting times due to 
blocking functions.

+ Simple usage (nearly like single-threaded 
programming, except for the “await” 
keyword).

- Syntax and Compiler support needed.

- Must be supported throughout the whole 
application (async/await and non-blocking 
functions virtually everywhere)

- Relies on cooperativeness!

- CPU-bound functions still block 
everything.

Goal: Describe Scoped-Locking
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Learning Goals for Today

Idioms:

• Counted Pointer

Resource Patterns:

• Lazy Acquisition

• Eager Acquisition

• Partial Acquisition

• Caching & Pooling

• Leasing

• Garbage Collector

Others:

• Chain of Responsibility

• Interpreter

Summary and Wrap-up
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Counted Pointer / Smart Pointer / Shared 

Pointer / Auto Pointer
Count references and call destructor when no one is using the object 

anymore.
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Counted Pointer

Context: Manual dynamic memory 
management with pointers

Problem: How to know when a 
object can be safely destroyed? 

Forces:

• We don’t know exactly who still 
has a reference to our objects.

• Several clients may share the 
same objects

• We want avoid “dangling” 
references

• If a object is not referenced 
anymore it should be destroyed 
and its memory and resources 
released

• The client should not need too 
much additional effort

Solution:

• Implement body which has a 
counter for the number of 
references.

• Implement a proxy which does 
the following for every instance 
of a body:

• Overload operator ->, =, copy

• Constructor increases counter

• Destructor decreases counter, 
on 0 it deletes object.

• Only allow access to body via 
the proxy object.

Consequences:

+ Automatic destruction if object is 
not referenced anymore

~ Shared vs. Unique Pointers?

- Circle references!
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Lazy Acquisition
Defer acquisition of resources to time of actual usage
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Lazy Acquisition

Context: Using resources in an 
application

Problem: How to save resources 
and load an application faster?

Forces:

• Special resources are needed 
in an application (Memory, 
Files, Network).

• They take time to load.

• They may be scarce.

• They are not needed from the 
beginning, but later on.

Solution:

• Implement a proxy which can 

be used by the client

• The proxy should defer 

acquisition of the resource until 

the last possible moment.

Consequences:

+Resources are only acquired 

when really needed.

+Client doesn’t have to care 

about using to much resources 

early on.

+Application starts faster. 

- Waiting times during acquiring 

the resources (do it async!)

- Additional layer of abstraction

- Avoid acquiring resources to 

often (caching & pooling!)
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Eager Acquisition
Acquire resources in advance.
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Eager Acquisition

Context: Using resources in an 
application

Problem: How to avoid having to 
wait for resources during runtime.

Forces:

• Special resources are needed 
in an application (Memory, 
Files, Network).

• Exclusive access is no 
problem.

• They are always needed in the 
application.

Solution:

• Acquire the resources on 

startup and store them in some 

cache or vault (singleton).

• Give access to the already 

loaded resources

Consequences:

+Resources must not be loaded 

later on.

+No delay on using the 

resources.

- Resources take up memory 

space.

- Startup may be slowed down 

due to loading the resources (do 

it async!)
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Partial Acquisition
Acquire resource in parts. Only use the part which is 

currently needed.
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Caching & Pooling
Save resources for later reuse.
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Caching
Let the client decide

what to cache

Pooling
Wrap access to the resource in a manager.

Michael Krisper
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Caching & Pooling

Context: Using resources in an 
application

Problem: How to avoid loading or 
creating resources over and 
over?

Forces:

• Special resources are needed 
in an application (Memory, 
Files, Network).

• They may take time to load.

• They are needed more than 
once and in different places.

Solution:

• Provide a cache to store 

already loaded resources there 

(singleton).

• Supply means to access the 

cache to the client (factory).

• Restrict access if needed.

Consequences:

+Resources are loaded only once 

and reused afterwards

+Subsequent usages are much 

faster

~Mutual exclusive access for 

other applications?

- Uses much memory space

- Resources may be outdated
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Leasing
Set expire-timeout for resources.
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Leasing

Context: Using resources in an 

application

Problem: How to avoid that 

resources can be exclusively be 

used by only one client.

Forces:

• Special resources are needed 

in an application (Memory, 

Files, Network).

• The resource may be used by 

multiple clients.

• It should be avoided that one 

client can exclusively use a 

resource forever.

Solution:

• Supply access to the resource 

via a LeasingProxy which 

invalidates the resource some 

time after acquisition.

• Inform the client that the usage 

time is over.

• Restrict direct access to the 

resource.

Consequences:

+ Resources cannot be used 

exclusively anymore

+If client forgets to release the 

resource it gets released 

automatically after some time.

~What is the right duration?

- To early release could lead to 

errors.
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Garbage Collector
Maintain reference-graph of objects and delete unreachable branches.

    

                

          
            

Goal: Describe Garbage Collector
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Garbage Collector

Context: Application which 
acquires dynamic memory.

Problem: How to avoid 
dangling references in an 
application to avoid memory 
leaks?

Forces:

• Memory can be dynamically 
acquired to store objects

• Pointers/References can be 
freely passed and copied

• Client doesn’t want to care 
about memory allocation.

Solution:

• Maintain reference graph for each 

and every dynamically created 

object.

• Periodically search over graph for 

unreachable branches/subgraphs

• Delete unreachable subgraphs.

Consequences:

+Client doesn’t has to care for manual 

memory management.

+No memory leaks

~How often should collection be done? 

Performance Optimizations 

(Generation Concept)? 

- Performance overhead during creation 

and garbage collection (traversal)

- Memory overhead by storing all 

reference counts
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Chain of Responsibility
Forward a call until an object can handle it.
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Chain of Responsibility

Context: Having a task or problem 
which can be handled by several 
objects.

Problem: How to dynamically 
resolve which object is responsible 
for a specific problem/task?

Forces:

• Having different types of tasks 
which have to be handled.

• Having several objects which 
can handle different tasks.

• Tasks and the actual Handlers 
are not known at compile-time.

• There should be multiple 
escalation levels.

Solution:

• Implement a chain of handlers.

• Forward the task to the first 
object which can handle it.

• Add more general handlers in 
the end of the chain.

Consequences:

+ Dynamic handling of events

+ Loosely coupled responsibility

+ Can be changed at runtime

~ Who builds the chain?

~ Common standards/conventions?

~ Only one handler or multiple? 
(decorator-style)

~ Fallbacks?

- Possible huge call stack

- Critical path is single point of 
failure
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Interpreter / Abstract Syntax Tree (AST)
Read expressions one after another and build a tree of 

expressions.
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Summary and Wrap-Up
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Learning Goals for Course

Design Patterns Theory

• What is a design pattern? Why do we need them?

• What are principles behind design patterns?

• How to describe design patterns?

• What is a pattern language?

Application of Design Patterns

• When to use what?

Design Patterns in Detail

• Know core ideas and application of 
important design patterns! (~50)

Introduction (2.10.2019)
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Design Patterns

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem hurt in 

this context? 

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour

• Consequences (Rationale):

What are the benefits and liabilities?

What are the limitations and tradeoffs?

How are the forces resolved?

• Known-Uses: Real Life Examples

28

A proven solution for a (recurring) 

problem.
What is a pattern?
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The Design Pattern House
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Context

Problem

Solution

Forces

Consequences

Known Uses

Name

The Design Pattern House
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SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and 

only one, reason to change.

• Open Closed: You should be able to extend a class’s 

behavior, without modifying it.

• Liskov Substitution: Derived classes must be 

substitutable for their base classes.

• Interface Segregation: Make fine grained 

interfaces that are client specific.

• Dependency Inversion: Depend on abstractions, 

not on concrete implementations.

Goal: Guiding Principles of Patterns
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Principles of Good Programming

• Decomposition

make a problem manageable

decompose it into sub-problems

• Abstraction

wrap around a problem

abstract away the details

• Decoupling

reduce dependencies, late binding

shift binding time to “later”

• Usability & Simplicity

make things easy to use right, hard to use wrong

adhere to expectations, make usage intuitive

(Revision) Goal: Explain Principles of Good Programming

31



Michael Krisper

Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes & Filters, Broker, Model-View-
Controller, Microkernel

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming 
languages or environments

• Examples: Counted Pointer, Scoped Locking

Goal: What is a pattern language?
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GoF Patterns

Goal: What is a pattern language?

33

Figure from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]

https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612
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POSA 1 Patterns

Goal: What is a pattern language?

34

Figure from [Pattern-Oriented Software Architecture Volume 1: A system of patterns (Buschmann, Meunier, et al., 1996)]
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POSA 2

Goal: What is a pattern language?
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Figure from [Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent and Networked Objects (Schmidt et al., 2000)]
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53 Patterns…

• Wrapping: Adapter, Façade, Decorator, Proxy

• Creation: Factory Method, Abstract Factory, Builder, Prototype, 

Singleton, Flyweight

• Behaviour: Strategy, Command, State

• Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-

Server

• Collections: Iterator, Visitor, Composite

• Communication: Observer, Bridge, Broker, Mediator, Blackboard, 

Microkernel, Client-Dispatcher-Server/Lookup, Messages, Endpoint, 

Translator, Router, Handler, MVC

• Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, 

Thread-Specific Storage, Double-Checked-Locking, Async/Await

• Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, 

Caching & Pooling, Leasing, Garbage Collector

• Others: Memento, Counted Pointer, Chain of Responsibility, 

Interpreter/Abstract Syntax Tree

Goal: Know and Describe some Patterns…
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A few philosophical thoughts…

“Patterns are a universal principle”

• How to transfer knowledge?

• How to make knowledge explicit?

• How to make knowledge findable?

• How to make knowledge understandable?

• How to make knowledge applicable?
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“Study hard what interests you the most 

in the most undisciplined, irreverent and 

original manner possible.”

― Richard Feynmann



Michael Krisper

Georg Macher

georg.macher@tugraz.at

Thank you & Good Luck!
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