Ty,

- Design Patterns
448. 058 (VO)



https://creativecommons.org/licenses/by/4.0/

Conference Patterns Hillside Europe

https://europlop.net/

The European Conference on Pattern Languages of Programs


https://europlop.net/

|||||||||||||

H Revision from last time...

e Visitor

« Composite

e State

« Template-Method
* Locks

e Scoped Locking
 Monitor

* Future

* Active-Object
« Async/Awalit



TU

Michael Krisper Grazm

Active-Object

Encapsulate method invocation and execute asynchronously

----------------------------------------

Proxy CommandProcessor

- commandsQueue  [€--

Client —— + Method1()

+ Method2() »| + Insert(Command) ::
. 1| +StartEventloop) R~
creates | |
@ ...... EE ..... > Command Receiver

----------------------------------------

+ Execute() r} + Action()
Thread 2

..........................................

Michael Krisper



Michael Krisper

TU

Grazm

Active-Object

Context: Multiple clients access

objects running in different
threads or contexts.

Problem: How to execute

commands in a different context
than the client.

Forces:

Clients invoke remote operation
and retrieve results later (or wait)

Synchronized access to worker
threads

Make use of parallelism
transparently

Solution:

« Implement a proxy with encapsulates all
method calls in commands

 Use a Scheduler/CommandProcessor to
execute the commands in a separate
thread(pool).

* Give the client the possibility to retrieve or
wait on the results (async/sync)

Consequences:
+ Simplifies sychronization complexity
+ Client calls an ordinary method

+ Command is executed in a different thread
than the client thread

+ Typesafety compared to message passing
(usage of classes/objects)

+ Transparent leveraging of parallelism

Order of method execution may differ from
invocation

- Performance overhead
- Complicated debugging



H Async / Awalit

Execute functions cooperatively in an event loop.

@ ,uminousmen.com

Figure by Luminousmen.com, 17.02.2019, taken from https://luminousmen.com/post/asynchronous-programming-await-the-future



https://luminousmen.com/post/asynchronous-programming-await-the-future

Ty

By
Michael Krisper

Async / Await Example

public async Task<int> SumPageSizesAsync(IList<Uri> uris)

o Aq
int total = ©;
foreach (var uri in uris) {
statusText.Text = string.Format("Found {0} bytes ...", total);
var data = new WebClient() K
&
total += dath.Leng Creates a Task A

}
QLIRS SN Creates a lask B (Clostre)whichisehained
return total; after the Task A and returned to caller.

} _ When the Task A finishes, execution

— Coroutne tag continues with Task B.

Call stack

coroutine



Goal: Describe Scoped-Locking Y,

Michael Krisper

“ Async / Awalit Solution:

« Compile the functions as state
machines, with transitions at the “await”
statement

» Execute the state machines in an event
loop, advancing them based on a
“ready”-condition (or signal).

Context: Executing multiple functions
waiting for 1/O resources.

Problem: How to execute I/O-bound
functions in parallel without having 1o consequences:
use multithreading and

S + No need to use multiple threads.
synchronisation.

+ No need to synchronise.
+ NO unnecessary waiting times due to

Forces: blocking functions.

* Executing the blocking functions + Simple usage (nearly like single-threaded
sequentially is slow. programming, except for the “await”

« Executing the functions in own keyword).
threads may cause synchronisation - Syntax and Compiler support needed.
problems or wasting resources due - Must be supported throughout the whole
to context switching. application (async/await and non-blocking

« Multithreading programming is error-  functions virtually everywhere)
prone. - Relies on cooperativeness!

« Some environments don’t have true - CPU-bound functions still block

multithreading (python, javascript) everything.



By
Michael Krisper

H Learning Goals for Today

ldioms:
e Counted Pointer

Resource Patterns:

« Lazy Acquisition

« Eager Acquisition

« Partial Acquisition
« Caching & Pooling
 Leasing

« Garbage Collector

Others:
« Chain of Responsibility
* Interpreter

Summary and Wrap-up



TU

Michael Krisper Grazm

Counted Pointer / Smart Pointer / Shared
Pointer / Auto Pointer

Count references and call destructor when no one is using the object
anymore.

handle body
Client >——h Handle <

P> Body

- refCounter: int

+ Handle() ® - -body.refCount = 1

+ ~Handle() ¢--

4

body . refCount- - + SomeMethod()

A

+ «operator» -> @--return body

4

+ «operator» = @ - -body.refCount++

[<9X| Michael Krisper




TU

Michael Krisper Grazm

Counted Pointer Solution:

* Implement body which has a
counter for the number of

Context: Manual dynamic memory
management with pointers

references.
* Implement a proxy which does
Problem: How to know when a the following for every instance
object can be safely destroyed? of a body:
* Overload operator ->, =, copy
Forces: « Constructor increases counter
We don’t know exactly who still » Destructor decreases counter,
has a reference to our objects. on 0O it deletes object.
+  Several clients may share the * Only allow access to body via
same objects the proxy object.
We want avoid “dangling”
references Consequences:
« If a object is not referenced + Automatic destruction if object is
anymore it should be destroyed not referenced anymore
and its memory and resources Shared vs. Unique Pointers?
released

_ - Circle references!
« The client should not need too

much additional effort



Michael Krisper

TU

Grazm

Lazy Acquisition

Defer acquisition of resources to time of actual usage

Client

LazyAcquisition
Component
acquire
+ Method()
P

acquire on demand

>

Resource

[<9X| Michael Krisper



TU

Michael Krisper Grazm

Lazy Acquisition Solution:
* Implement a proxy which can
be used by the client

Context: Using resources in an * The proxy should defer
application acquisition of the resource until

the last possible moment.

Problem: How to save resources Consequences:

and load an application faster? +Resources are only acquired
when really needed.
Forces: | + Client doesn’t have to care
* Special resources are needed about using to much resources
in an application (Memory, early on.

Files, Network).
 They take time to load. L _ .
. They may be scarce. - Waiting times during acquiring

' |
 They are not needed from the the r.e.sources (doit async.).
beginning, but later on. - Additional layer of abstraction

- Avoid acquiring resources to
often (caching & pooling!)

+ Application starts faster.



TU

Michael Krisper Grazm

Eager Acquisition

Acquire resources in advance.

EagerAcquisition
Component

- resource: Resource

+ EagerAcquisitionComponent() ®acq“ire » Resource

Client ®—> + Method() %”_’

[9XIM| Michael Krisper




Michael Krisper

TU

Grazm

Eager Acquisition

Context: Using resources in an
application

Problem: How to avoid having to

wait for resources during runtime.

Forces:

« Special resources are needed
In an application (Memory,
Files, Network).

« Exclusive access is no
problem.

 They are always needed in the
application.

Solution:

* Acquire the resources on
startup and store them in some
cache or vault (singleton).

* Give access to the already
loaded resources

Consequences:

+ Resources must not be loaded
later on.

+No delay on using the
resources.

- Resources take up memory
space.

- Startup may be slowed down
due to loading the resources (do
It async!)



Michael Krisper

TU

Grazm

Partial Acquisition
Acquire resource In parts. Only use the part which is
currently needed.

PartialAcquisitor

Client

---file.ReadBytes(128)

+ GetHeader()

+ GetBody()

+ GetReferencedResource()

L op)

Resource

.i

t--file.Seek(128)

¢

acquire on demand
only what is needed

file.ReadToEnd()

Resource

Michael Krisper



TU
BY
Michael Krisper

Caching & Pooling

Save resources for later reuse.

Caching D scaure
Client @ use Resource
Let the client decide
what to cache @ L@ Cache
store »| + Insert(Resource)
Pt i »| + Get(): Resource

Michael Krisper

Pooling

Wrap access to the resource in a manager.

acquire ResourcePool resources * | |
+ Acquire(): Resource u Resource

use ‘L’
Client ®—> Resource
+ Release(Resource)
@krelease

|9 I34| Michael Krisper




TU

Michael Krisper Grazm

Caching & Pooling Solution:

 Provide a cache to store

_ _ already loaded resources there
Context: Using resources in an (singleton).

application

* Supply means to access the
cache to the client (factory).

Problem: How to avoid loading or . Restrict access if heeded.

creating resources over and

over?
Consequences:
Forces: + Resources are loaded only once
« Special resources are needed and reused afterwards
in an application (Memory, +Subsequent usages are much
Files, Network). faster

 They may take time to load.

« They are needed more than
once and in different places.

Mutual exclusive access for
other applications?

- Uses much memory space
- Resources may be outdated



Michael Krisper

TU

Grazm

Leasing

Set expire-timeout for resources.

ResourceProvider

Client

- resources|]

+ Main()

+ LeaseExpired(Resource) <

--------

+ Acquire()

set timeout
! for resource

+ LeaseExpired()

.

= <

@‘ release

Resource

delete reference;:(@

when lease expired

Michael Krisper



TU

Grazm

Context: Using resources in an
application

Problem: How to avoid that
resources can be exclusively be
used by only one client.

Forces:

« Special resources are needed
In an application (Memory,
Files, Network).

 The resource may be used by
multiple clients.

|t should be avoided that one
client can exclusively use a
resource forever.

Solution:

« Supply access to the resource
via a LeasingProxy which
iInvalidates the resource some
time after acquisition.

» Inform the client that the usage
time is over.

 Restrict direct access to the
resource.

Consequences:

+ Resources cannot be used
exclusively anymore

+If client forgets to release the
resource it gets released
automatically after some time.

What is the right duration?

- To early release could lead to
errors.



Goal: Describe Garbage Collector Y,

Michael Krisper

Garbage Collector

Maintain reference-graph of objects and delete unreachable branches.

------------------------------------------------------------------

E Heapi
T 5
GarbageCollector
+ Collect() Jelatie ahe: [9X] Michael Krisper




TU

Michael Krisper Grazm

Garbage Collector  Solution:

« Maintain reference graph for each
and every dynamically created

Context: Application which object.
acquires dynamic memory. « Periodically search over graph for

unreachable branches/subgraphs

Problem: How to avoid « Delete unreachable subgraphs.
dangling referenc_es In an Consequences:
application to avoid memory _ ,
leaks? + Client doesn’t has to care for manual
memory management.
Forces: +No memory leaks
.+ Memory can be dynamically —How often should collection be done?
acquired to store objects Performance Optimizations
. Pointers/References can be  (Generation Concept)?
freely passed and copied - Performance overhead during creation
« Client doesn’t want to care and garbage collection (traversal)
about memory allocation. - Memory overhead by storing all

reference counts



Michael Krisper

TU

Grazm

Chain of Responsibility

Forward a call until an object can handle fit.

Client

‘ ' Successor

Handler

+ HandleRequest()

AR

ConcreteHandler1 ConcreteHandler2

+ HandleRequest() + HandleRequest()

|9 I34| Michael Krisper



Ty

Michael Krisper

Chain of Responsibility

Solution:

Context: Having a task or problem * Implement a chain of handlers.
which can be handled by several ~ * Forward the task to the first
objects. object which can handle it.

* Add more general handlers in
the end of the chain.

Problem: How to dynamically
resolve which object is responsible

for a specific problem/task? Consequences:
+ Dynamic handling of events
Forces: + Loosely coupled responsibility
« Having different types of tasks + Can be changed at runtime
which have to be handled. Who builds the chain?
* Having several objects which Common standards/conventions?

can handle different tasks. .
Only one handler or multiple?
- Tasks and the actual Handlers (decorator-style)

are not known at compile-time.
" hould b tiol Fallbacks?
ere shotlld be muitiple - Possible huge call stack

escalation levels. = ol _
- Critical path is single point of
failure



Michael Krisper

TU

Grazm

Interpreter / Abstract Syntax Tree (AST)

Read expressions one after another and build a tree of

expressions.

Client

> Context

!

AbstractExpression

+ Interpret(context: Context)

1

TerminalExpression

+ Interpret(context: Context)

T

NonterminalExpression

+ Interpret(context: Context)

Michael Krisper






Introduction (2.10.2019)

|||||||||||||

H Learning Goals for Course

Design Patterns Theory

 What is a design pattern? Why do we need them?
 What are principles behind design patterns?
 How to describe design patterns?

 What is a pattern language?

Application of Design Patterns
 When to use what?

Design Patterns in Detall

 Know core ideas and application of
Important design patterns! (~50)



TU

Michael Krisper Grazm

Design Patterns

What is a pattern? A proven solution for a (recurring)
" problem.

 Name: A catchy name for the pattern
« Context: The situation where the problem occurs
* Problem: General Problem Description

. Requirements and Constraints - Why does the problem hurt in
this context?

« Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour

« Consequences (Rationale):
What are the benefits and liabilities?
What are the limitations and tradeoffs?
How are the forces resolved?

« Known-Uses: Real Life Examples



The Design Pattern House
Name

Problem Forces

Consequences

Known uUses




Goal: Guiding Principles of Patterns ﬂ-lG-laJl

|||||||||||||

SOLID Principles (in OOP)

Single Responsibility: A class should have one, and
only one, reason to change.

Open Closed: You should be able to extend a class’s
behavior, without modifying it.

Liskov Substitution: Derived classes must be
substitutable for their base classes.

Interface Segregation: Make fine grained
Interfaces that are client specific.

Dependency Inversion: Depend on abstractions,
not on concrete implementations.



|||||||||||||

H Prmuples of Good Programming

« Decomposition
make a problem manageable
decompose it into sub-problems

« Abstraction
wrap around a problem
abstract away the details

 Decoupling
reduce dependencies, late binding
shift binding time to “later”

« Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive



Goal: What is a pattern language? ﬁ'!;la-'_

Types of Design Patterns

Architectural Patterns
 Fundamental structural patterns
 Stencils for whole architectures

 Examples: Layers, Pipes & Filters, Broker, Model-View-
Controller, Microkernel

Design Patterns
« Solution templates for more isolated problems
« Examples: Composite, Adapter, Proxy, Factory

ldioms

« Fine-Grained Patterns for problems in specific programming
languages or environments

 Examples: Counted Pointer, Scoped Locking



Goal: What is a pattern language?

TU

Grazm

GoF Patterns

Memento Proxy
. saving siato Adapter
\ T )
Iterator m‘g‘gm Bridge

craaiing
composifes \
SNENThE )
cipiiaren '!""19
addimg
resporisEtiitios -
[Faltalat
Decorator sharing
aading
cperalions
i il
Flywaight e g

changing skin
VENSLNS TS

shanng Intarpreber
sirateqies

Strateqgy nal
haring Spribois ;
p Mediator

slalss

CenTOss

o iining
traversals ;.'":;Wmm

adoVng
operations | chain of Respensibility |

_

gg.rnpl'ﬂx
Erdency
rETagETent Observer

sf.sps“ﬂ-________——
Template Method

| Nt USes

Prototy pe
configure factons /*——I Factory Method |
dynamically Implarnsnt using
N
/—/'"/I Abstract Factory
sirgle

insfancs
F.
. acade

Irsiance

Figure from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]



https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612

Goal: What is a pattern language?

TU

Grazm

s POSA 1 Patterns

Broker only:

dynamic invocation
 implementation Broker &
Microkernel
1
Blackboard l internal request
structuring transmission Broker: shielding
knowledge source clients/servers
implementation from broker internals
Microkernel:
implementing
' adapters
base/meta
Reflection level Layers I
' structuring T [
i: Client- | Proxy

inter-layer
communication

’

| Pipes & Filters l

Publisher-
Subscriber
view
coordination
Command | View |
Processor Handler
command change view
handling propagation coordination

l—i Mvc I/ PAC |-—l

Y

Dispatcher-Server

# A

Forwarder-
Receiver

Iy

distributed slave

/ interprocess
/ communication ‘

distributed slave
representation

L1 \

Master-Slave '—

forwarder/
receiver
decomposition

counting proxy
implementation

Y

part lifetime

metalevel
decomposition » Whole-Part }— management ﬂ| Counted Pointer |

Figure from [Pattern-Oriented Software Architecture Volume 1: A system of patterns (Buschmann, Meunier, et al., 1996)]



Goal: What is a pattern language? ﬁ-lc:y.

POSA 2

async. layer
i mpl%nmmgtei on

SRR
e,
, IPE
ey T
) Acceptor!
Eeneirensy | Connector
[y
copgese!
Component
Configurator
dnprosita 1
Interceptor
role-specific i andler
inte aces sgon‘.:l'gsrl‘jemy ifierogtptogr
Extension
" Eeoenten | interface

ro Y £¥%ion

Figure from [Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent and Networked Objects (Schmidt et al., 2000)]



36

Goal: Know and Describe some Patterns... ﬂ-!;-l;'.

£
(=}
=
Q
@
=
&
w
©
5]
]

53 Patterns...

Wrapping: Adapter, Facade, Decorator, Proxy

Creation: Factory Method, Abstract Factory, Builder, Prototype,
Singleton, Flyweight

Behaviour: Strategy, Command, State

Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-
Server

Collections: Iterator, Visitor, Composite

Communication: Observer, Bridge, Broker, Mediator, Blackboard,
Microkernel, Client-Dispatcher-Server/Lookup, Messages, Endpoint,
Translator, Router, Handler, MVC

Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking,
Thread-Specific Storage, Double-Checked-Locking, Async/Await
Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition,
Caching & Pooling, Leasing, Garbage Collector

Others: Memento, Counted Pointer, Chain of Responsibility,
Interpreter/Abstract Syntax Tree



Michael Krisper

A few philosophical thoughts...

“Patterns are a universal principle”

How to ma
e Howto ma
How to ma
How to ma

KE
KE
KE

KE

<KNOW
<KNOW
<KNOW

<KNOW

edl
edl
edl

edl

How to transfer knowledge?

ge explicit?

ge findable?

ge understandable?
ge applicable?



“Study hard what interests you the most
1n the most undisciplined, irreverent and
original manner possible.”

— Richard Feynmann



TU

Michael Krisper Grazm

Thank you & Good Luck!

Remember us for Projects/Seminars/Bachelor/Master @ IT]

Michael Krisper 5 ANDRITL

) ) L Hydro
michael.krisper@tugraz.at H--.jDHYAMONT
Georg Macher VEQTQ Project:

georg.macher@tugraz.at TEACHING



mailto:georg.macher@tugraz.at
mailto:michael.krisper@tugraz.at

