
Michael Krisper

u www.iti.tugraz.at

30.10.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision from last time… wrappers

Revision: Adapter, Façade, Decorator, Proxy

2

Decorator:

Extend functionality.

Façade:

Create combined interface.

Proxy:

Encapsulate access to objects.Adapter:

Make object compatible.

Michael Krisper

Revision from last time…

Revision: Adapter, Façade, Decorator, Proxy

3

Live Programming Demo…

Michael Krisper

Revision from last time… architectural

Revision: Adapter, Façade, Decorator, Proxy

4

Client-Server

Broker

Pipes & Filters
Master-Slave

Leader-Follower

Michael Krisper

Learning Goals for Today

• MVC / MVP / MVVM / PAC

• Understand and describe Creational Patterns:
• Factory Method

• Abstract Factory

• Builder

• Prototype

• Singleton

• Understand and describe basic ideas of the following patterns:
• Memento

• Flyweight

• Pooling & Caching

• Explain idea behind “classes at runtime” in dynamic script-languages

Learning Goals

5

Michael Krisper

Model-View-Controller (MVC) /

Model-View-Presenter (MVP) /

Model-View-Viewmodel (MVVM)
Separate the responsibilities of visualizing, processing and data

management for GUI applications.

Goal: Describe MVC / MVVM Pattern

6

Processing

Visualization

Data

Model

View

Controller

Michael Krisper

Problem?7

View

Model

Controller

 Completely mixed Responsibilities. Fully coupled. Bad.

Michael Krisper

Problem?8

Controller

View

 Principle of least surprise broken. You never know what is

implemented in GUI code.

Michael Krisper

Model-View-Controller (MVC)
Separate the responsibilities of visualizing, processing and data

management for GUI applications.

Goal: Describe MVC / MVVM Pattern

9

Michael Krisper

Michael Krisper

MVC / MVP / MVVM

Some Variations…

Goal: Describe MVC / MVP / MVVM Pattern

10

Figure by Erwin Van der Valk, 2009, https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/

https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/

Michael Krisper

MVC vs. MVP vs. MVVM

Goal: Describe MVC / MVP / MVVM Pattern

11

Figure by Arslan Butt, 09.09.2014, http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html

http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html

Michael Krisper

MVC / MVP / MVVM

Context: Important dataset that needs

to be provided to be processed.

Problem: Tight coupling of data and

representation. I want to separate

data and representation.

Forces:

• Independent change of data and

views

• Separation of concerns

• Different lifecycles / update rates

• Different expertise

Solution:

• Decouple components for data,

visualisation, and control

• Dedicated part for representation (view)

• Part for manipulation of data (controller)

• Independent model for storage of data

(model)

Consequences:

+ Increased reusability of code

+ Separable for different development

teams

+ Independence between data and

representation (decoupling)

- Complexity increase

- Unit testing more complex

Goal: Describe MVC / MVP / MVVM Pattern

12

Michael Krisper

Presentation-Abstraction-Control (PAC)
Decompose GUI generation into smaller agents, each consisting of three

parts: presentation, abstraction and control.

13

ModelView Controller
Michael Krisper

Michael Krisper

Creational Patterns

How to create objects in a decoupled and flexible way?

• Who creates the object?

• Dependencies?

• How are parameters set?

14

If I see a “new” in your application code, I kill you!
– Prof. Sven Havemann, Graz University of Technology, 2012

Michael Krisper

Factory Method
Delegate the creation of objects to someone else.

Goal: Describe Factory Method

15

Michael Krisper

Michael Krisper

Factory Method

Context: Creation of an object, whose

class is not known until runtime.

Problem: How to create an object for

which the concrete class is not

known.

Forces:

• We don’t care which object is

created, as long as it provides the

same functionality.

• We can’t anticipate the class we

want to create at coding time.

• We want to shift the decision to

someone else.

Solution:

• Define an interface of capabilities your

objects must implement.

• Define some means (method or own

class) to create the actual object.

• Let the actual object implement the

needed interface.

Consequences:

+ Isolates Framework and Application code

+ Flexibility (Compiletime/Runtime)

+ Lesser Dependencies

+ Connects parallel class hierarchies

+ Decoupling of Implementation and Usage

+ Abstraction of actual instances

+ Makes dependency injection possible!

~ Hides constructors

- Needs an interface/abstraction layer!

Goal: Describe Factory Method

16

Michael Krisper

Abstract Factory

Create whole families of related objects

Goal: Describe Abstract Factory

17

Michael Krisper

Michael Krisper

Abstract Factory

Context:

Having multiple related families of

similar objects

Problem:

How to create only matching

objects?

Forces:

• Only create objects which fit

together

• Choose object family at

runtime

• Reveal just the interfaces, not

the implementations

Solution:

• Define Interface for Products.

• Define Interface for Factories.

• Implement both accordingly.

• Select the needed factory at

runtime to create the needed

products.

Consequences:

+ Makes exchanging product families

easy

+ Promotes consistency among

products

+ Isolates concrete classes

~ When is the product family selected?

Who selects?

~ Factories as singletons?

~ Use prototypes as templates?

- Supporting new kinds of products is

difficult

Goal: Describe Abstract Factory

18

Michael Krisper

Builder

Split up creation into multiple steps

19

Michael Krisper

Michael Krisper

Builder

Context:

Creation of complex objects

Problem:

How to create complex objects in

an easy and comfortable way?

Forces:

• Manage many different

construction options

• Creation of objects should be

independent of assembling

Solution:

• Split creation from assembling

• Define Interface for creating

individual parts & assembling

• Implement methods for parts

Consequences:

+ Allows many combinations of

parts

+Isolates code for construction

and representation

+Allows finer control of

construction

- Construction is not a simple

“new” anymore

- How to ensure that parts are

correctly configured?

20

Michael Krisper

Prototype

Create objects by cloning from templates

21

Michael Krisper

Michael Krisper

Prototype

Context:

Creation of objects whose classes
and properties are not known
until run-time

Problem:

How to dynamically implement and
use objects without knowing its
properties?

Forces:
• Object Members are defined at

runtime

• Avoid building complex class
hierarchies and factories

• Avoid long taking instantiations

Solution:

• Declare cloning interface

• Implement cloning interface

• (Add mechanism for dynamically

setting/getting members and

calling methods → Dictionary!)

Consequences:

+ Dynamic objects can be created at

runtime

+ Class system is bypassed

+ No complex inheritance hierarchy

+ Long taking initialisation are done

only once

~ Usage of prototype manager?

(registry)

~ Shallow vs deep copy?

~ How to access members?

- No type safety!

- No compile-time errors!

22

Michael Krisper

Singleton
Allow only one instance of an object

Goal: Describe Singleton Pattern

23

Michael Krisper

Michael Krisper

Singleton

Context:

Creation of exactly one instance

Problem:

Ensure a class only has one instance,

provide a global point of access

Forces:

• There must be exactly one instance of a

class, and it must be accessible to clients

from a well-known access point

• When the sole instance should be

extensible by subclassing, clients should

be able to use and extended instance

without modifying their code

Solution:

• Hide the constructor of a class (protected

or private)

• Add a static Factory Method to create

exactly one instance stored as static

member

• Consequent creations only return the

already created instance.

• Prohibit deep copying of the object

Consequences:

• Controlled access to sole instance

• Reduced name space

• Permits refinement of operations and

representation (subclassing)

• Permits a variable number of instances

• More flexible than static class operations

Goal: Describe Singleton Pattern

24

Michael Krisper

Singleton Example25

class Singleton

{

private static readonly Singleton _instance = new Singleton();

protected Singleton() { }

public static Singleton Instance()

{

return _instance;

}

}

void Main()

{

var s1 = Singleton.Instance();

var s2 = Singleton.Instance();

Console.WriteLine($"Singletons are equal: {s1.Equals(s2)}");

}

Michael Krisper

Memento
Store & Load the internal state of an object

26

Problem

How can an object be

persisted?

Forces

• State of object

should be

storable/restorable.

• Do not break

encapsulation

Solution:

• Create a Memento-

Class: Data class for

storing the state.

• Implement method for

returning a Memento.

• Implement method for

reading a Memento.

Consequences:

+ State can be persisted without

exposing all internal members.

+ Persisted state can be used to

restore the object.

+ Snapshots are possible.

+ Combines very well with

Command Pattern

- If data format is known, data

could be manipulated “offline”.

(make sure to add some

checksum or digitally sign the

memento)

Michael Krisper

Michael Krisper

Pooling & Caching
Reuse resources for “later”

27

What could the problem,

solution, and consequences be?

Take a few minutes thinking time

Finish with Discussion

Michael Krisper

Michael Krisper

Michael Krisper

Flyweight
Share global state and vary differences only when needed.

28

What could the problem, solution,

and consequences be?

Take a few minutes thinking time

Finish with Discussion

Michael Krisper

Michael Krisper

Flyweight - Example29

Michael Krisper

Summary

Patterns:

• Factory Method

• Abstract Factory

• Builder

• Prototype

• Singleton

• Memento

• Flyweight

• Pooling & Caching

Summary

30

