Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision: Adapter, Facade, Decorator, Proxy

TU

Grazm

Revision from last time... wrappers

Proxy:
Encapsulate access to objects.

Adapter:

Make object compatible. oot S subloct
Target + Request()
Client target
o | + Request() ZF 4&
ConcreteSubject Proxy

target.Request() Adaptee

T

adaptee

+ SpecificRequest()

Adapter »
+ Request() --- adaptee.SpecificRequest()
Decorator:
Extend functionality.
Component

+ Operation()

ZF ZF ! component

ConcreteComponent Decorator

+ Operation() ®--------1 component.Operation()

T 1

+ Operation()

ConcreteDecorator1 ConcreteDecorator2

+ addedState: * + Operation() Demmmen Decorator‘.Qperation();
AddedBehaviour();

+ Operation() + AddedBehaviour()

subject

+ Request()

+ Request()

P---subject.Request()

Facade:
Create combined interface.

Subsystem

Client

v

Facade

%?Hﬁ

Prox
Revision: Adapter, Facade, Decorator, y

Michael Krisper

TU

Grazm

2 Revision from last time...

Live Programming Demao...

{
Adaptee a = new Adaptee();
a.Spe(ificRequeSt();
ISource s1 = new Adaptee();
vold Request(); s1.5pecificRequest();
ass ClassAdapten ; Adaptee, TTarget
ISourc H
_— _ e's? = ney Decorator(sl),
; sZ.SpeufxcRequest();
Eansole.nr;t(-\.inc("(alled (lassﬂdapter.ﬂequest()*);
spa:mm.q..m();
ISource S3 = ey Proxy();
sS.SpecificRequest();
ass Oh]ktAﬂapter- + ITarget
Private ISounce ga_daptez;
Marget ¢ - New ClassAdapter();
?ublu l!u]ectAaaptarLlSour\ce adaptee) t-Request();
~adaptee = daptee;
ITarget 1w s
New Op ect,
z“"“‘ ol ey tl.Request(); J Adapter(sl);
Ennsale..«rutline("ta 1
d Dbjecty . [—
: _mptmp_lmmdm(“ e P Reuesty) % o T ——
—

irtual void Sp

Console. writeLine(

fcorator : ISource

fote resdonly ISource _decoratedoy

lic ne::nr:r{:s.:u:e a«om:eoej«:)

»decc'ate:&:fec: = ne:orr.eaoc:'e(:;

ProxXy : ISource

ivate ISource 2daptes.

Blic pogy

e N

e w nuly;

“elic void 3¢

Michael Krisper

Revision: Adapter, Facade, Decorator, Proxy

TU

Grazm

Revision from last time... architectural

—("

Client

Client-Server

Pipes & Filters

Broker

Q ------- bf_ﬁ + ForwardRequest()

buffer

Filter 1

process

.

Filter n

process

buffer

D

buffer

e

Filter 2

process

Client Proxy
Client Q.'SendReques«)% &
u

process
boundary

Server Proxy
+ 5. ... + CallService() @
- Jf.-©J)+ sendresponse)

; ' Server
process + RunService()
boundary

[BrokerA

BrokerB | ™

)

+ ForwardRequest() &Q o

+ RegisterService()

)
+ RegisterService()

BridgeA

BridgeB

+ ForwardMessage T@ e
+ TransmitMessage g

0 + TransmitMessage

process
boundary

+ ForwardMessage

Client

v

Leader-Follower

EventQueue

+ WaitForEvent(): event

Master-Slave

Master

p| + Service()

(@ async call

Thread 1 |

Leader <~
A 4 swap
roles
Thread 2 ,

Follower -

Slave

—O |

+ Subservice()

»| + GetResult()

1) Map: Delegate to Slaves (async) ;

2) Reduce: Combine Results

“ Multiple Instances of Slave

£
o
=0
Q
(6)] o
P
=
w
o
@
o

Learning Goals ﬂTU

Learning Goals for Today

MVC / MVP / MVVM / PAC

Understand and describe Creational Patterns:
 Factory Method

« Abstract Factory

 Builder

Prototype

« Singleton

Understand and describe basic ideas of the following patterns:
« Memento

* Flyweight
 Pooling & Caching

Explain idea behind “classes at runtime” in dynamic script-languages

H Model-View-Controller (MVC) /
Model-View-Presenter (MVP) /
Model-View-Viewmodel (MVVM)

Separate the responsibilities of visualizing, processing and data
— management for GUI applications.

Processing

Controller]

Visualization

Michael Krisper

Problem?

($categories =) o

global $wpdb, $title, $headcomments;

($categories ==) {
$sort_column = 'term_id';

&query = "“SELECT % FROM =>term_taxonomy
JOIN ->terms ON (=>term_taxonomy.term_id = —>terms.term_id)}
WHERE =>term_taxonomy.taxonomy = ‘category' AND =>terms.term_id > @ AND count

ORDER BY =>terms.name ASC";
tcategories = $wpdb—= {$query):

tcatsnum = ($categories);

($categories $category) {

£link — '2]ink rel="alternate" type="application/rss+xml" title=""';
VieW $link = $link . $title . ": ' . %category->name;
$link = $link . """ href="" . (0, $category->term_id, $category->name)

"t . flink . "Wn™;

= Completely mixed Responsibilities. Fully coupled. Bad.

TU

“ Problem?

Client Objects & Events | (o Events)
<%@ Master Language="VB" Inherits="InstantASP.InstantKB.UI.Controls.Master?
<%@ Register TagPrefix="InstantASP" Namespace="InsatantASF.Common.UI.WebConi
<!DOCTY¥PE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.or

2<html zmlns="http://www.w3.0rg/1999/xhtml":>

“<head id="ctlHeader" runat="serwver":

<title></title
</head>

=<body>

<%
If Request.Rawlrl.ToLower () .IndexOf ("defanlt.aspr™) >= 0 T
Response.Redirect ("~/Docs/Introduction")
End If
>

- ;q style="fleoat: right; width: 60%; margin:12px 12px Opx Opx ">
<div class="input BG">

<div class="input BGLeft":>
<div class="input BGContainer">
<div class="input BGContainerBG">
- <div class="text-field">
<input type="text" id="txtSearchKeywords" onke
</div>

Controller

E <div r:l._'rsvﬁ% n-field">
<buttofl T49="butInstantKBSimpleSearch" onclick=
</div>
</div>
<fdiv>
</div>
</div>

E(ftdb

= Principle of least surprise broken. You never know what is
implemented in GUI code.

Goal: Describe MVC / MVVM Pattern TY

Michael Krisper

H Model-View-Controller (MVC)

Separate the responsibilities of visualizing, processing and data
management for GUI applications.

d|Sp|ay Client @
R R R LT >
.)
@ (D Observer < ~
View + Update() Controller
manage & + , P
+ Update() “ manipulate @ Operation())
A + Update()
Model 4 @
- data :
__notify @ @ notify :
"""""""""" + Change(data) [~"""""""""""" Change Data

[cOI33]| Michael Krisper

Goal: Describe MVC / MVP / MVVM Pattern Ty

By
Michael Krisper

MVC /| MVP | MVVM
Some Variations...

s Model &
Model View Presenter
(Supervising Controller)

Model

-

Model View Presenter

(Passive View)
‘.‘ :V’Ii.. ﬁ l
Model
Presentation Model Model

Model-View-ViewModel

Figure by Erwin Van der Valk, 2009, https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/

https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/

By
Michael Krisper

MVC vs. MVP vs. MVVM

Ty

Goal: Describe MVC / MVP /| MVVM Pattern

MVC

MVP MVVM

Browser . Browser

-

Controller is the entry point
to the application

One to Many relationship
between Controller and
View

View does not have
reference to the Controller

View is very well aware of
the Model

Smalltalk, ASP.Net MVC

View is the entry point to
the application

One to One mapping
between View and
Presenter

View have the reference to
the Presenter

View is not aware of the
Model

Windows forms

E

View is the entry point to
the application

One to Many relationship
between View and
ViewModel

View have the reference to
the View Model

View is not aware of the
Model

Silverlight, WPF, HTMLS with
Knockout/Angularls

Figure by Arslan Butt, 09.09.2014, http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html

http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html

Michael Krisper

MVC / MVP | MVVM

Context: Important dataset that needs

Problem: Tight coupling of data and

Goal: Describe MVC / MVP /| MVVM Pattern

TU

Grazm

to be provided to be processed.

representation. | want to separate
data and representation.

Forces:

Independent change of data and
views

Separation of concerns
Different lifecycles / update rates
Different expertise

Solution:

» Decouple components for data,
visualisation, and control

» Dedicated part for representation (view)
 Part for manipulation of data (controller)

* Independent model for storage of data
(model)

Consequences:
+ Increased reusability of code

+ Separable for different development
teams

+ Independence between data and
representation (decoupling)

- Complexity increase
- Unit testing more complex

Ty

v
Michael Krisper

Presentation-Abstraction-Control (PAC)

Decompose GUI generation into smaller agents, each consisting of three
parts: presentation, abstraction and control.

Top-Level
iant lfee-mmmmmmmmmmmmeeaaa- Pl C | A
Client < dieniy E Agent
L LCTUILTTPPPPey e -\
' ' Intermediate-Level
do i o A
something dlsr:)lay ' E Agents

\ - - Bottom-level
--------- -1Le AR I[P AJE [e

View Controller Model

Michael Krisper

Ty

Michael Krisper

Creational Patterns

How to create objects in a decoupled and flexible way?

 Who creates the object?
 Dependencies?
« How are parameters set?

If I see a “new” 1n your application code, I kill you!
— Prof. Sven Havemann, Graz University of Technology, 2012

Goal: Describe Factory Method TJ

Michael Krisper Grazm

Factory Method

Delegate the creation of objects to someone else.

Creator

+ FactoryMethod()
Product

+ Operation() ¢ ----product = FactoryMethod()

/\ JAN

ConcreteCreator

ConcreteProduct |€¢——

+ FactoryMethod() ¢ ----- return new ConcreteProduct()

Michael Krisper

Goal: Describe Factory Method

Michael Krisper

TU

Grazm

Factory Method

Context: Creation of an object, whose

Problem: How to create an object for

class is not known until runtime.

which the concrete class is not
known.

Forces:

We don’t care which object is
created, as long as it provides the
same functionality.

We can’t anticipate the class we
want to create at coding time.

We want to shift the decision to
someone else.

Solution:

» Define an interface of capabilities your
objects must implement.

* Define some means (method or own
class) to create the actual object.

* Let the actual object implement the
needed interface.

Consequences:

+ Isolates Framework and Application code

+ Flexibility (Compiletime/Runtime)

+ Lesser Dependencies

+ Connects parallel class hierarchies

+ Decoupling of Implementation and Usage

+ Abstraction of actual instances

+ Makes dependency injection possible!
Hides constructors

- Needs an interface/abstraction layer!

Goal: Describe Abstract Factory Y,

Michael Krisper

Abstract Factory
Create whole families of related objects

ConcreteProductB2|| | ConcreteProductB1

AbstractFactory «——| cClent ——p Producta
+ CreateProductA(): ProductA ﬁk ﬁk
+ CreateProductB(): ProductB

A\ AN ConcreteProductA2| | ConcreteProductA1 IG
NI 5
ConcreteFactory1 ConcreteFactory2 1
+ CreateProductA(): ProductA @ -- [+ CreateProductA(): ProductA ¢f----- ! ProductB
+ CreateProductB(): ProductB ¢+ + CreateProductB(): ProductB PJ---- 'v ﬁk

 E E RS ..-----

1 1,

--

--

Goal: Describe Abstract Factory L

Michael Krisper Grazm

Abstract Factory Solution:

 Define Interface for Products.
 Define Interface for Factories.
* Implement both accordingly.

 Select the needed factory at
runtime to create the needed

Context:

Having multiple related families of
similar objects

Problem: products.
How to create only matching Consequences:
objects? + Makes exchanging product families
easy
Forces: + Promotes consistency among
_ - products

* Only rc]:reate objects which fit + Isolates concrete classes

together _ _ When is the product family selected?
 Choose object family at Who selects?

runtime Factories as singletons?
 Reveal just the interfaces, not Use prototypes as templates?

the implementations - Supporting new kinds of products is

difficult

TU

Michael Krisper Grazm

Split up creation into multiple steps

i builder i
Director > > Builder

+ Construct() ®-. + BuildPart()

for o in structure:]
builder.BuildPart() ConcreteBuilder f------ >

Product

+ BuildPart()

+
GetReSUIt() Michael Krisper

TU

Grazm

Context:
Creation of complex objects

Problem:

How to create complex objects in
an easy and comfortable way?

Forces:

« Manage many different
construction options

« Creation of objects should be
Independent of assembling

Solution:
« Split creation from assembling

« Define Interface for creating
iIndividual parts & assembling

* Implement methods for parts

Consequences:

+ Allows many combinations of
parts

+ |solates code for construction
and representation

+ Allows finer control of
construction

- Construction is not a simple
“‘new” anymore

- How to ensure that parts are
correctly configured?

Michael Krisper

TU

Grazm

Prototype

Create objects by cloning from templates

rototype
Client proonyp

> Prototype

D
A

Cloneg()

Prototype p = A A

prototype.Clone()

ConcretePrototype1

ConcretePrototype1

Clone()

P Clone()

return "copy of self"

i

return "copy of self"

Michael Krisper

TU

Grazm

Prototype

Context:

Creation of objects whose classes
and properties are not known
until run-time

Problem:

How to dynamically implement and
use objects without knowing its
properties?

Forces:
* Object Members are defined at
runtime

* Avoid building complex class
hierarchies and factories

* Avoid long taking instantiations

Solution:
 Declare cloning interface
* Implement cloning interface

* (Add mechanism for dynamically
setting/getting members and
calling methods - Dictionary!)

Consequences:

+ Dynamic objects can be created at
runtime

+ Class system is bypassed
+ No complex inheritance hierarchy

+ Long taking initialisation are done
only once

Usage of prototype manager?
(registry)
Shallow vs deep copy?
How to access members?
- No type safety!
- No compile-time errors!

Goal: Describe Singleton Pattern

Michael Krisper

TU

Grazm

Singleton

Allow only one instance of an object

Singleton s =
Singleton.Instance()

Singleton

- «static» instance: Singleton

+ «static» Instance(): Singleton

- Singleton()

©---return instance;

[<9X| Michael Krisper

5
Michael Krisper

Goal: Describe Singleton Pattern

Ty

Singleton

Context:
Creation of exactly one instance

Problem:
Ensure a class only has one instance,

provide a global point of access

Forces:

There must be exactly one instance of a
class, and it must be accessible to clients
from a well-known access point

When the sole instance should be
extensible by subclassing, clients should
be able to use and extended instance
without modifying their code

Solution:

Hide the constructor of a class (protected
or private)

Add a static Factory Method to create
exactly one instance stored as static
member

Consequent creations only return the
already created instance.

Prohibit deep copying of the object

Consequences:

Controlled access to sole instance
Reduced name space

Permits refinement of operations and
representation (subclassing)

Permits a variable number of instances
More flexible than static class operations

TU

Michael Krisper Grazm

Singleton Example

class Singleton
{
private static readonly Singleton _instance = new Singleton();
protected Singleton() { }
public static Singleton Instance()
{
return _instance;
}
}

void Main()

{

var sl = Singleton.Instance();
var s2 = Singleton.Instance();
Console.WriteLine($"Singletons are equal: {sl.Equals(s2)}");

Michael Krisper

TU

Grazm

Memento

Store & Load the internal state of an object

Originator

+ state

Memento memento

+ CreateMemento()

+ SetMemento(m: Memento) ¢

(

+ state

D---state = m.GetState()

D--=

+ GetState()

+ SetState()

Caretaker

Michael Krisper

return new Memento(state)

Problem
How can an object be
persisted?

« State of object
should be
storable/restorable.

* Do not break
encapsulation

Solution:

* Create a Memento-
Class: Data class for
storing the state.

* Implement method for
returning a Memento.
Implement method for
reading a Memento.

Consequences:

+ State can be persisted without
exposing all internal members.
+ Persisted state can be used to
restore the object.

+ Snapshots are possible.

+ Combines very well with
Command Pattern

- If data format is known, data
could be manipulated “offline”.
(make sure to add some
checksum or digitally sign the
memento)

Michael Krisper

TU

Grazm

Pooling & Caching

Reuse resources for “later”

acquire

O]ff

ResourcePool

@use
Client ——p| Resource

@ krelease

‘LV + Acquire(): Resource

resources * | I
Resource

@ acquire

fb + Release(Resource)

>
Client | use ,| Resource
Cache
store P + Insert(Resource)
_re-acquire

+ Get(): Resource

[<9I34]| Michael Krisper

|9 I34| Michael Krisper

What could the problem,

solution, and consequences be?
Take a few minutes thinking time
Finish with Discussion 2

Michael Krisper

TU

Grazm

Flyweight

Share global state and vary differences only when needed.

FlyweightFactory [<>

hd

Client

+ GetFlyweight(key) ¢---- K

return flyweights[key]

flyweights
yres > Flyweight
+ Operation(extrinsicState)
if not flyweights[key] exists:
flyweights[key] = new Flyweight()
ConcreteFlyweight UnsharedConcreteFlyweight
- intrinsicState - allState

L

+ Operation(extrinsicState)

+ Operation(extrinsicState)

J Michael Krisper

What could the problem, solution,

and consequences be?

Take a few minutes thinking time

Finish

with Discussion

TU

Michael Krisper Grazm

Flyweight - Example

P & 0 7o o B oo % o o1 11 oy 1200 o130 g o 14 0 g 15 0 |-

LI

VAT

Lehrkonzept

Lernziele

1o 18

.19 .

Design Pattern Theory

¢ Design Patterns und Pattern Languages verstehen und verwenden

.M

¢ Aufbau von Patterns erkldren (Kontext/Problem/Forces/Solution/Consequences)

¢ Denkweise von Entwurfsmustern iibernehmen (Wissensweitergabe, Produkt zahlt — nicht
der Autor)

¢ Dahinterliegende Prinzipien verstehen und anwenden (Don’t reinvent the wheel, Make it

I

easy to use right — make it hard to use wrong!, Shift Binding Time from Design Time to Rur
Time, Decoupling, Abstraktion)

.71

¢ Auswirkung und Anwendung von Patterns verstehen und kritisch bewerten kénnen /
hinterfragen (Macht es Sinn das Pattern anzuwenden? Overengineering vermeiden!) -

(24 .

|||||||||||||

Patterns:

Factory Method
Abstract Factory
Builder

Prototype
Singleton
Memento
Flyweight

Pooling & Caching

