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Revision from last time… wrappers

Revision: Adapter, Façade, Decorator, Proxy
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Decorator:

Extend functionality.

Façade:

Create combined interface.

Proxy:

Encapsulate access to objects.Adapter:

Make object compatible.
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Revision from last time…

Revision: Adapter, Façade, Decorator, Proxy
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Live Programming Demo…
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Revision from last time… architectural

Revision: Adapter, Façade, Decorator, Proxy
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Client-Server

Broker

Pipes & Filters
Master-Slave

Leader-Follower
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Learning Goals for Today

• MVC / MVP / MVVM / PAC

• Understand and describe Creational Patterns:
• Factory Method

• Abstract Factory

• Builder

• Prototype

• Singleton

• Understand and describe basic ideas of the following patterns:
• Memento

• Flyweight

• Pooling & Caching

• Explain idea behind “classes at runtime” in dynamic script-languages

Learning Goals
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Model-View-Controller (MVC) / 

Model-View-Presenter (MVP) /

Model-View-Viewmodel (MVVM)
Separate the responsibilities of visualizing, processing and data 

management for GUI applications.

Goal: Describe MVC / MVVM Pattern
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Processing

Visualization

Data

Model

View

Controller
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Problem?7

View

Model

Controller

 Completely mixed Responsibilities. Fully coupled. Bad.
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Problem?8

Controller

View

 Principle of least surprise broken. You never know what is 

implemented in GUI code.
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Model-View-Controller (MVC)
Separate the responsibilities of visualizing, processing and data 

management for GUI applications.

Goal: Describe MVC / MVVM Pattern
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MVC / MVP / MVVM

Some Variations…

Goal: Describe MVC / MVP / MVVM Pattern
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Figure by Erwin Van der Valk, 2009, https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/

https://blogs.msdn.microsoft.com/erwinvandervalk/2009/08/14/the-difference-between-model-view-viewmodel-and-other-separated-presentation-patterns/
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MVC vs. MVP vs. MVVM

Goal: Describe MVC / MVP / MVVM Pattern
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Figure by Arslan Butt, 09.09.2014, http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html

http://bestcodeway.blogspot.com/2014/09/mvc-vs-mvvm-vs-mvp.html
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MVC / MVP / MVVM

Context: Important dataset that needs 

to be provided to be processed. 

Problem: Tight coupling of data and 

representation. I want to separate 

data and representation.

Forces:

• Independent change of data and 

views

• Separation of concerns 

• Different lifecycles / update rates

• Different expertise

Solution:

• Decouple components for data, 

visualisation, and control

• Dedicated part for representation (view)

• Part for manipulation of data (controller)

• Independent model for storage of data 

(model)

Consequences:

+ Increased reusability of code

+ Separable for different development 

teams

+ Independence between data and 

representation (decoupling)

- Complexity increase

- Unit testing more complex

Goal: Describe MVC / MVP / MVVM Pattern
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Presentation-Abstraction-Control (PAC)
Decompose GUI generation into smaller agents, each consisting of three 

parts: presentation, abstraction and control.
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Creational Patterns

How to create objects in a decoupled and flexible way?

• Who creates the object?

• Dependencies?

• How are parameters set?
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If I see a “new” in your application code, I kill you!
– Prof. Sven Havemann, Graz University of Technology, 2012
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Factory Method
Delegate the creation of objects to someone else.

       

               

               

                

       

                

            

                          

   
                       
   

Goal: Describe Factory Method
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Factory Method

Context: Creation of an object, whose 

class is not known until runtime.

Problem: How to create an object for 

which the concrete class is not 

known.

Forces:

• We don’t care which object is 

created, as long as it provides the 

same functionality.

• We can’t anticipate the class we 

want to create at coding time.

• We want to shift the decision to 

someone else.

Solution:

• Define an interface of capabilities your 

objects must implement.

• Define some means (method or own 

class) to create the actual object.

• Let the actual object implement the 

needed interface.

Consequences:

+ Isolates Framework and Application code

+ Flexibility (Compiletime/Runtime)

+ Lesser Dependencies

+ Connects parallel class hierarchies

+ Decoupling of Implementation and Usage

+ Abstraction of actual instances

+ Makes dependency injection possible!

~ Hides constructors

- Needs an interface/abstraction layer!

Goal: Describe Factory Method
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Abstract Factory

Create whole families of related objects

        

                 

        

                                  

                 

      

                

                          

                          

                

                          

                          

               

                          

                          

               

            

               

               

         

         

               
         

               

        

            
      

            
                

    

         

         

    

            

       

Goal: Describe Abstract Factory
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Abstract Factory

Context:

Having multiple related families of 

similar objects

Problem:

How to create only matching 

objects?

Forces:

• Only create objects which fit 

together

• Choose object family at 

runtime

• Reveal just the interfaces, not 

the implementations

Solution:

• Define Interface for Products.

• Define Interface for Factories.

• Implement both accordingly.

• Select the needed factory at 

runtime to create the needed 

products.

Consequences:

+ Makes exchanging product families 

easy

+ Promotes consistency among 

products

+ Isolates concrete classes

~ When is the product family selected? 

Who selects?

~ Factories as singletons?

~ Use prototypes as templates?

- Supporting new kinds of products is 

difficult

Goal: Describe Abstract Factory
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Builder

Split up creation into multiple steps
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Builder

Context:

Creation of complex objects

Problem:

How to create complex objects in 

an easy and comfortable way?

Forces:

• Manage many different 

construction options

• Creation of objects should be 

independent of assembling

Solution:

• Split creation from assembling

• Define Interface for creating 

individual parts & assembling

• Implement methods for parts

Consequences:

+ Allows many combinations of 

parts

+Isolates code for construction 

and representation

+Allows finer control of 

construction

- Construction is not a simple 

“new” anymore

- How to ensure that parts are 

correctly configured?
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Prototype

Create objects by cloning from templates
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Prototype

Context: 

Creation of objects whose classes 
and properties are not known 
until run-time

Problem: 

How to dynamically implement and 
use objects without knowing its 
properties?

Forces:
• Object Members are defined at 

runtime

• Avoid building complex class 
hierarchies and factories

• Avoid long taking instantiations

Solution:

• Declare cloning interface

• Implement cloning interface

• (Add mechanism for dynamically 

setting/getting members and 

calling methods → Dictionary!)

Consequences:

+ Dynamic objects can be created at 

runtime

+ Class system is bypassed

+ No complex inheritance hierarchy

+ Long taking initialisation are done 

only once

~ Usage of prototype manager? 

(registry)

~ Shallow vs deep copy?

~ How to access members?

- No type safety!

- No compile-time errors!
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Singleton
Allow only one instance of an object

         

                           

                             

            

      

               
           

                    

Goal: Describe Singleton Pattern
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Singleton

Context: 

Creation of exactly one instance

Problem: 

Ensure a class only has one instance, 

provide a global point of access

Forces:

• There must be exactly one instance of a 

class, and it must be accessible to clients 

from a well-known access point

• When the sole instance should be 

extensible by subclassing, clients should 

be able to use and extended instance 

without modifying their code

Solution:

• Hide the constructor of a class (protected 

or private)

• Add a static Factory Method to create 

exactly one instance stored as static 

member

• Consequent creations only return the 

already created instance.

• Prohibit deep copying of the object

Consequences:

• Controlled access to sole instance

• Reduced name space

• Permits refinement of operations and 

representation (subclassing)

• Permits a variable number of instances

• More flexible than static class operations

Goal: Describe Singleton Pattern
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Singleton Example25

class Singleton

{

private static readonly Singleton _instance = new Singleton();

protected Singleton() { }

public static Singleton Instance()

{

return _instance;

}

}

void Main()

{

var s1 = Singleton.Instance();

var s2 = Singleton.Instance();

Console.WriteLine($"Singletons are equal: {s1.Equals(s2)}");

}
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Memento
Store & Load the internal state of an object
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Problem

How can an object be 

persisted?

Forces

• State of object 

should be 

storable/restorable.

• Do not break 

encapsulation

Solution:

• Create a Memento-

Class: Data class for 

storing the state.

• Implement method for 

returning a Memento.

• Implement method for 

reading a Memento.

Consequences:

+ State can be persisted without 

exposing all internal members.

+ Persisted state can be used to 

restore the object.

+ Snapshots are possible.

+ Combines very well with 

Command Pattern

- If data format is known, data 

could be manipulated “offline”.

(make sure to add some 

checksum or digitally sign the 

memento)

Michael Krisper
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Pooling & Caching
Reuse resources for “later”

      

            

                   

                  

       

        
   

       

        
        
        

          

 

 

 

27

      

     

                 

               

       

           

     

 

 

 

          

 

What could the problem, 

solution, and consequences be?

Take a few minutes thinking time

Finish with Discussion

Michael Krisper
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Flyweight
Share global state and vary differences only when needed.

      

                

                  

         

                          

                 

               

                          

                         

         

                          

                           
                              

                     

         

28

What could the problem, solution, 

and consequences be?

Take a few minutes thinking time  

Finish with Discussion

Michael Krisper
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Flyweight - Example29
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Summary

Patterns:

• Factory Method

• Abstract Factory

• Builder

• Prototype

• Singleton

• Memento

• Flyweight

• Pooling & Caching

Summary
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