
Michael Krisper

u www.iti.tugraz.at

02.10.2019

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Bachelor’s Thesis, Master’s Thesis, Projects, Seminar, PhD

Topics Presentations on Tue, 8.10.2019 at 14:30 in NXP

Seminarroom (IE01090)

The Team

Introduction

2

Michael Krisper

michael.krisper@tugraz.at

Uncertainty and Risks

in Cyber-Security

In memoriam:

† Christian Kreiner
Georg Macher

georg.macher@tugraz.at

Safety & Security

in Automotive &

Autonomous Driving

ITI - Institute for Technical Informatics
Inffeldgasse 16, 1st Floor

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3

Michael Krisper

Learning Goals for Course

Design Patterns Theory

• What is a design pattern? Why do we need them?

• What are principles behind design patterns?

• How to describe design patterns?

• What is a pattern language?

Application of Design Patterns

• When to use what?

Design Patterns in Detail

• Know core ideas and application of
important design patterns! (~50)

Introduction

3

Michael Krisper
Introduction

4

 Logical Full Object

Client 1

HalfObject1

- data1

+ Service1(): data1

+ Service2(): data2

process
boundary

HalfObject2

- data2

- data3

+ Service1(): data1

+ Service2(): data2

+ Service3(): data3

Client 2

Protocol

Server A

Invoker

+ Invoke(Message)Client

process
boundary

Component 1

+ MethodA()

+ MethodB()
Message

Server Component

Method Arguments

Message Translator
ReceiverBSender A

A B

Message Message

Sender Receiver

process
boundary

pack unpack

DataData

Header

Body

Header

Body

Overview over all Patterns in the Course:

Michael Krisper

If you tell me, I will listen.

If you show me, I will see.

But if you let me experience, I will learn.

老子 (Lǎozǐ, 500 BC)

Introduction

5

Michael Krisper

What is a pattern?

A proven solution for a (recurring) problem.

➢ But it’s not a concrete solution!

➢ A concrete solution is just one example.

➢ A Pattern is rather a solution idea, scheme, or
template.

Patterns are a universal principle:

• Economics (Etzioni, 1964)

• Social Interaction (Newell,Simon, 1972)

• Architecture (Alexander et. al., 1975)

• Software (General awareness from 1990’s on)

Goal: What is a pattern?

6

Michael Krisper

Purpose of Design Patterns

• Easier knowledge transfer

• Efficient problem solving by reusing existing ideas

“Don’t reinvent the wheel”

• Establishes a common vocabulary, terminology, or

language

• Increases usefulness of an idea by generalizing the

solution

Goal: Purpose and Principles of Patterns

7

Michael Krisper

Standard Literature

• GOF: Design Patterns – Elements of Reusable Object-

Oriented Software (Gamma, Helm, Johnson, Vlissides,

1995)

• POSA1: Pattern-Oriented Software Architecture Volume 1:

A system of patterns (Buschmann, Meunier, et al., 1996)

• POSA2: Pattern-Oriented Software Architecture Volume 2:

Patterns for Concurrent and Networked Objects

(Schmidt et al., 2000)

• POSA3: Pattern-Oriented Software Architecture Volume 3:

Patterns for Resource Management (Kircher and Jain,

2004)

• POSA4: Pattern-Oriented Software Architecture Volume 4:

Pattern Language for Distributed Computing

(Buschmann, Henney, and Schmidt, 2007)

Goal: What is the “standard literature”?

8

Michael Krisper

Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes-And-Filters, Broker, Model-View-
Controller, Microkernel, Async-Await

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming
languages or environments

• Examples: Counted Pointer, Scoped Locking, Variadic Macros

Goal: What is a pattern language?

9

Michael Krisper

Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem

hurt in this context?

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences (Rationale, Resulting Context):
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

Goal: Understand Pattern Format

10

Michael Krisper
The Design Pattern House

11

Context

Problem

Solution

Forces

Consequences

Known Uses

Name

The Design Pattern House

Michael Krisper

Michael Krisper

Alexandrian Pattern Format

Goal: Understand Pattern Format

12

Context

Problem and Forces

Solution and

Consequences

Related Patterns,

Epilogue

Name

Picture

Excerpt from [Alexander, Christopher (1979). The Timeless Way of Building. Oxford University Press. ISBN: 978-0-19-502402-9]

https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-502402-9

Michael Krisper

How Design Patterns emerge?

Design Patterns are found - not invented!

They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
➔ At least three Known-Uses, Real Projects!

2. Write down the core idea and experiences
➔ Context, Problem, Forces, Solution, Consequences

3. Discuss with others (often & repeatedly)

4. Improve Pattern (and repeat discussions)

5. Publish! (Conferences, Books, Blogs)

6. Continue to improve, apply and discuss pattern

Goal: Develop a design pattern

13

Michael Krisper

Pattern Languages

… are coherent systems of patterns.

• Patterns

• Relations

• Principles (Guidelines for design and evolution):

• How to create / implement

• Beneficial combination of patterns

• How to change/evolve

Daily Life Examples: Cooking, Sports, Crafts, Sailing,

Architecture, Programming, …

Goal: What is a pattern language?

14

Michael Krisper

GOF Pattern Language

Goal: Create a pattern language

15

Graphic from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]

https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612

Michael Krisper

Layers
Split your system into layers based on abstraction levels

Goal: Evaluate some existing patterns

16

Michael Krisper

Michael Krisper

Layers

Context: Large systems that require

decomposition

Problem:

• Many functions and responsibilities

• Hard to understand structure, many

dependencies

Forces:

• Changes should be limited to one

component

• Clear boundaries of responsibility

• Interfaces should be stable

• Parts should be exchangeable

• Parts should be reusable

• Smaller groups for easier

understandability, maintainability

Solution:

• Structure the function into appropriate

number of layers, based on their

abstraction levels

• Every layer uses defined services of

sublayer

• Every layer provides defined services

to upper layer

Consequences:

+ Dependencies/Changes are kept

local

+ Defined Interfaces between Layers

+ Layers are exchangeable & reusable

- Lower efficiency

- No fine grained control of sublayers

- Changes cascade and are costly

- Right granularity is difficult to find

Goal: Evaluate some existing patterns

17

Michael Krisper

• Network Stack

• Virtual Machines

• API’s

• Operating Systems

• Companies

• Cities

• …

Layers – Known Uses

Goal: Evaluate some existing patterns

18

Michael Krisper

• Who composes the layers at runtime?

• How are Interfaces defined?

• Workarounds / Skip layers?

• Stateless / Stateful Implementations?

• Layers are Black Boxes

Layers – Implementation Issues

Goal: Evaluate some existing patterns

19

