Ty,

- Design Patterns
448. 058 (VO)

https://creativecommons.org/licenses/by/4.0/

0 .
Introduction ﬁ'!:y_

The Team ‘

o

Michael Krisper Georg Macher In memoriam:
michael.krisper@tugraz.at georg.macher@tugraz.at T Christian Kreiner
Uncertainty and Risks Safety & Security
in Cyber-Security in Automotive &

Autonomous Driving

ITI - Institute for Technical Informatics
Inffeldgasse 16, 15t Floor

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3

Introduction

Michael Krisper

Learning Goals for Course

Design Patterns Theory

 What is a design pattern? Why do we need them?
 What are principles behind design patterns?
 How to describe design patterns?

 What is a pattern language?

Application of Design Patterns
 When to use what?

Design Patterns in Detall

 Know core ideas and application of
Important design patterns! (~50)

Introduction Ty

Michael Krisper Grazm

Overview over all Patterns in the Course:

[=]

..............

Introduction

If you tell me, I will listen.
If you show me, I will see.

But if you let me experience, I will learn.

ZF (Liozi, 500 BC)

|||||||||||||

H What Is a pattern?

A proven solution for a (recurring) problem.

» But it's not a concrete solution!
» A concrete solution is just one example.

» A Pattern is rather a solution idea, scheme, or
template.

Patterns are a universal principle:

 Economics (Etzioni, 1964)

« Social Interaction (Newell,Simon, 1972)

« Architecture (Alexander et. al., 1975)

« Software (General awareness from 1990’s on)

Purpose of Design Patterns

« Easier knowledge transfer

« Efficient problem solving by reusing existing ideas
“Don’t reinvent the wheel”

« Establishes a common vocabulary, terminology, or
language

* Increases usefulness of an idea by generalizing the
solution

Goal: What is the “standard literature”?

Ty

“ Standard Literature

GOF: Design Patterns — Elements of Reusable Object-
Oriented Software (Gamma, Helm, Johnson, Vlissides,
1995)

POSAL: Pattern-Oriented Software Architecture Volume 1:

A system of patterns (Buschmann, Meunier, et al., 1996)

POSAZ2: Pattern-Oriented Software Architecture Volume 2:

Patterns for Concurrent and Networked Objects
(Schmidt et al., 2000)

POSA3: Pattern-Oriented Software Architecture Volume 3:

Patterns for Resource Management (Kircher and Jain,
2004)

POSA4: Pattern-Oriented Software Architecture Volume 4:

Pattern Language for Distributed Computing
(Buschmann, Henney, and Schmidt, 2007)

H Types of Design Patterns

Architectural Patterns
 Fundamental structural patterns
 Stencils for whole architectures

« Examples: Layers, Pipes-And-Filters, Broker, Model-View-
Controller, Microkernel, Async-Await

Design Patterns
« Solution templates for more isolated problems
« Examples: Composite, Adapter, Proxy, Factory

ldioms

« Fine-Grained Patterns for problems in specific programming
languages or environments

« Examples: Counted Pointer, Scoped Locking, Variadic Macros

Goal: Understand Pattern Format ﬁ

Pattern format

« Name: A catchy name for the pattern

Context: The situation where the problem occurs
Problem: General Problem Description

. Requirements and Constraints - Why does the problem
hurt in this context?

Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour, Actionable Steps

Consequences (Rationale, Resulting Context):
* What are the benefits and drawbacks? Pro and Contra?
« What are the liabilities, limitations and tradeoffs?
 How are the forces resolved?

Known-Uses: Real Life Examples

The Design Pattern House
Name

Problem Forces

Consequences

Known uUses

Goal: Understand Pattern Format ﬁ'!:y_

Michael Krisper

Alexandrian Pattern Format

92 BUS STOP N

Tawo bus stops.
Therefore:

Build bus stops so that they form tiny centers of public

life. Build them o neighbor-
hoods, work mm.empﬁwau te them 50

various combmauons, corner grocms, smoke shopt, coffee
bar, tree places, special road crossings, public bathrooms,

squares. . . .

Picture | hot coffee

452

Excerpt from [Alexander, Christopher (1979). The Timeless Way of Building. Oxford University Press. ISBN: 978-0-19-502402-9]

https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-502402-9

|||||||||||||

How Design Patterns emerge?

Design Patterns are found - not invented!
They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
=>» At least three Known-Uses, Real Projects!

Write down the core idea and experiences
=>» Context, Problem, Forces, Solution, Consequences

Discuss with others (often & repeatedly)
Improve Pattern (and repeat discussions)
Publish! (Conferences, Books, Blogs)
Continue to improve, apply and discuss pattern

N

o 0 kW

|||||||||||||

Pattern Languages

... are coherent systems of patterns.

 Patterns

* Relations

* Principles (Guidelines for design and evolution):
 How to create / implement

« Beneficial combination of patterns
 How to change/evolve

Dally Life Examples: Cooking, Sports, Crafts, Sailing,
Architecture, Programming, ...

Goal: Create a pattern language

Michael Krisper

TU

Grazm

GOF Pattern Language

Memento Proxy

. saving sate | Adapter |
Builder
—_—
Avenkdi) :
cieree

@nuvrheraliveg
ctiaren

Aadaing [edudy e ta =T)
Fespartsitalities csig = Command
fa abyecrs

Decorator

Flywaight

chanoing skin
WENSLS (TS

aa'aimg
operalions

el
grarranar
Intarpreter

shanmg |l:haln of Flespansihillw|
sitraleqiss
shaniugy
ferrrinal
Strategy sharing syrnibals P
tat iatar
5| B85 _‘———.____ eo fese
ErGEncy
S et
callinirng State
algariinm’'s

stams
\\\—i—_| Template Method I_—f—f oftert :fses\
Prototype
configure laclony /—_4 Factory Method |

dpnanrcaly imprlarnenl usieg

Graphic from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]

https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612

©=8d Goal: Evaluate some existing patterns ﬂ 7

H Layers

Split your system into layers based on abstraction levels

L Layer n
| A A A
9 ? ?
L Layer 2 -
| S P P
A
—1 Layer 1 =

| O] Michael Krisper

Michael Krisper

Goal: Evaluate some existing patterns

Layers

Context: Large systems that require

decomposition

Problem:

« Many functions and responsibilities
» Hard to understand structure, many

dependencies

Forces:

Changes should be limited to one
component

Clear boundaries of responsibility
Interfaces should be stable

Parts should be exchangeable
Parts should be reusable

Smaller groups for easier
understandability, maintainability

Solution:

 Structure the function into appropriate
number of layers, based on their
abstraction levels

» Every layer uses defined services of
sublayer

» Every layer provides defined services
to upper layer

Consequences:

+ Dependencies/Changes are kept
local

+ Defined Interfaces between Layers
+ Layers are exchangeable & reusable
Lower efficiency

No fine grained control of sublayers
Changes cascade and are costly
Right granularity is difficult to find

Michael Krisper

Goal: Evaluate some existing patterns

TU

Grazm

Layers — Known Uses

;’J Applications

« Network Stack

DNS
(name service)

FTP
(file transfer)

TELNET

(remote login)

 Virtual Machines

PING NFS HTTP
(testing) (file service) (web)
’.i

\ Sockets

. API's i:
» Operating Systems

« Companies
« Cities

)

Ethernet |

3

* 1SO Reference Model

I Layer 7—Application

Layer 6—Presentation

Layer 5—Session

Layer 4—Transport

Layer 3—Network

Layer 2—Data Link

Layer 1—Physical

Layers — Implementation Issues

 Who composes the layers at runtime?
 How are Interfaces defined?
« Workarounds / Skip layers?
« Stateless / Stateful Implementations?

« Layers are Black Boxes

