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Learning Goals for Course

Design Patterns Theory

• What is a design pattern? Why do we need them?

• What are principles behind design patterns?

• How to describe design patterns?

• What is a pattern language?

Application of Design Patterns

• When to use what?

Design Patterns in Detail

• Know core ideas and application of 
important design patterns! (~50)

Introduction
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Overview over all Patterns in the Course:
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If you tell me, I will listen.

If you show me, I will see.

But if you let me experience, I will learn.

老子 (Lǎozǐ, 500 BC)

Introduction
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What is a pattern?

A proven solution for a (recurring) problem.

➢ But it’s not a concrete solution!

➢ A concrete solution is just one example.

➢ A Pattern is rather a solution idea, scheme, or 
template.

Patterns are a universal principle:

• Economics (Etzioni, 1964)

• Social Interaction (Newell,Simon, 1972)

• Architecture (Alexander et. al., 1975)

• Software (General awareness from 1990’s on)

Goal: What is a pattern?
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Purpose of Design Patterns

• Easier knowledge transfer

• Efficient problem solving by reusing existing ideas

“Don’t reinvent the wheel”

• Establishes a common vocabulary, terminology, or 

language

• Increases usefulness of an idea by generalizing the 

solution

Goal: Purpose and Principles of Patterns
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Standard Literature

• GOF: Design Patterns – Elements of Reusable Object-

Oriented Software (Gamma, Helm, Johnson, Vlissides, 

1995)

• POSA1: Pattern-Oriented Software Architecture Volume 1: 

A system of patterns (Buschmann, Meunier, et al., 1996) 

• POSA2: Pattern-Oriented Software Architecture Volume 2: 

Patterns for Concurrent and Networked Objects 

(Schmidt et al., 2000) 

• POSA3: Pattern-Oriented Software Architecture Volume 3: 

Patterns for Resource Management (Kircher and Jain, 

2004) 

• POSA4: Pattern-Oriented Software Architecture Volume 4: 

Pattern Language for Distributed Computing 

(Buschmann, Henney, and Schmidt, 2007) 

Goal: What is the “standard literature”?

8



Michael Krisper

Types of Design Patterns

Architectural Patterns

• Fundamental structural patterns

• Stencils for whole architectures

• Examples: Layers, Pipes-And-Filters, Broker, Model-View-
Controller, Microkernel, Async-Await

Design Patterns

• Solution templates for more isolated problems

• Examples: Composite, Adapter, Proxy, Factory

Idioms

• Fine-Grained Patterns for problems in specific programming 
languages or environments

• Examples: Counted Pointer, Scoped Locking, Variadic Macros

Goal: What is a pattern language?
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Pattern format

• Name: A catchy name for the pattern

• Context: The situation where the problem occurs

• Problem: General Problem Description

• Forces: Requirements and Constraints - Why does the problem 

hurt in this context? 

• Solution: Generic Description of a proven solution.

Static Structures, Dynamic Behaviour, Actionable Steps

• Consequences (Rationale, Resulting Context):
• What are the benefits and drawbacks? Pro and Contra?

• What are the liabilities, limitations and tradeoffs?

• How are the forces resolved?

• Known-Uses: Real Life Examples

Goal: Understand Pattern Format
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Alexandrian Pattern Format

Goal: Understand Pattern Format
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Context

Problem and Forces

Solution and 

Consequences

Related Patterns, 

Epilogue

Name

Picture

Excerpt from [Alexander, Christopher (1979). The Timeless Way of Building. Oxford University Press. ISBN: 978-0-19-502402-9]

https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-502402-9
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How Design Patterns emerge?

Design Patterns are found - not invented!

They emerge out of real use-cases/known-uses

1. Find patterns in real solutions
➔ At least three Known-Uses, Real Projects!

2. Write down the core idea and experiences
➔ Context, Problem, Forces, Solution, Consequences

3. Discuss with others (often & repeatedly)

4. Improve Pattern (and repeat discussions)

5. Publish! (Conferences, Books, Blogs)

6. Continue to improve, apply and discuss pattern

Goal: Develop a design pattern
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Pattern Languages

… are coherent systems of patterns.

• Patterns

• Relations

• Principles (Guidelines for design and evolution):

• How to create / implement

• Beneficial combination of patterns

• How to change/evolve

Daily Life Examples: Cooking, Sports, Crafts, Sailing, 

Architecture, Programming, …

Goal: What is a pattern language?
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GOF Pattern Language

Goal: Create a pattern language
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Graphic from [Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995, ISBN 0-201-63361-2]

https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0201633612
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Layers
Split your system into layers based on abstraction levels

      

      

      

         

Goal: Evaluate some existing patterns
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Layers

Context: Large systems that require 

decomposition

Problem:

• Many functions and responsibilities

• Hard to understand structure, many 

dependencies

Forces:

• Changes should be limited to one 

component

• Clear boundaries of responsibility

• Interfaces should be stable

• Parts should be exchangeable

• Parts should be reusable

• Smaller groups for easier 

understandability, maintainability

Solution:

• Structure the function into appropriate 

number of layers, based on their 

abstraction levels

• Every layer uses defined services of 

sublayer

• Every layer provides defined services 

to upper layer

Consequences:

+ Dependencies/Changes are kept 

local

+ Defined Interfaces between Layers

+ Layers are exchangeable & reusable

- Lower efficiency

- No fine grained control of sublayers

- Changes cascade and are costly

- Right granularity is difficult to find

Goal: Evaluate some existing patterns
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• Network Stack

• Virtual Machines

• API’s

• Operating Systems

• Companies

• Cities

• …

Layers – Known Uses

Goal: Evaluate some existing patterns
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• Who composes the layers at runtime?

• How are Interfaces defined?

• Workarounds / Skip layers?

• Stateless / Stateful Implementations?

• Layers are Black Boxes

Layers – Implementation Issues

Goal: Evaluate some existing patterns
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